
A new interior-point approach for large
two-stage stochastic problems

Jordi Castro Paula de la Lama
Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya
Barcelona, Catalonia

jordi.castro@upc.edu paula.de.la.lama@upc.edu

Research Report UPC-DEIO-JC DR 2020-01
April 2020

Report available from http://www-eio.upc.es/˜jcastro

A new interior-point approach for large two-stage stochastic problems

Jordi Castro∗ Paula de la Lama Zubirán
Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya
Jordi Girona 1–3, 08034 Barcelona

jordi.castro@upc.edu paula.de.la.lama@upc.edu

Two-stage stochastic models give rise to very large optimization problems. Several approaches have
been devised for efficiently solving them, including interior-point methods (IPMs). However, using
IPMs, the linking columns associated to first-stage decisions cause excessive fill-in for the solution
of the normal equations. This downside is usually alleviated if variable splitting is applied to first-
stage variables. This work presents a specialized IPM that applies variable splitting and exploits the
structure of the deterministic equivalent of the stochastic problem. The specialized IPM combines
Cholesky factorizations and preconditioned conjugate gradients for solving the normal equations.
This specialized IPM outperforms other approaches when the number of first-stage variables is large
enough. This paper provides computational results for two stochastic problems: (1) a supply chain
system and (2) capacity expansion in an electric system. Both linear and convex quadratic formu-
lations were used, obtaining instances of up to 38 million variables and six million constraints. The
computational results show that our procedure is more efficient than alternative state-of-the-art IPM
implementations (e.g., CPLEX) and other specialized solvers for stochastic optimization.

Keywords: interior-point methods; stochastic optimization; structured problems; large-scale
optimization

AMS Subject Classification: 90C51, 90C15, 90C06

1. Introduction

Stochastic programming is a framework for modelling optimization problems with uncer-
tain data, and it has a wide range of applications in real-life situations. The variability
in these models may appear in the objective or the constraints of the decision-making
process, and it is due to their relationships to random elements [4]. Such problems can
be solved for realistic instances—which are both large and complex—because advances
in computing power and algorithm development allow finding solutions in a reasonable
amount of time. However, larger instances increasingly demand more efficient solution
techniques [1].
A two-stage stochastic model includes two types of variables. The first-stage variables

occur at the beginning of the period and are the decisions to be made before the out-
come of random events; and the second-stage variables are decided after the outcomes
of uncertain events are known. In the extensive form of the model, all scenarios (i.e.,
possible realization of the random elements) are incorporated explicitly. This entails a
special structure of the constraints matrix with separable blocks.
Two of the most common structures in large-scale optimization correspond to problems

with linking variables between groups of constraints blocks (also named dual block-angular

∗Corresponding author

1

structure), and linking constraints between blocks (or primal block-angular structure) [5].
Two-stage stochastic problems belong to the class of problems with linking variables. The
two classical methods of resolution for each type of structure are Benders decomposition
for dual block-angular [3], and Dantzig-Wolfe for primal block-angular [11]. Interior-point
methods (IPMs) [27] exploiting problem structure is a third technique that has also proven
to be useful for these kinds of problems [6, 15–17] Hence, large-scale refers not only to
size but also to problem structure.
Linking variables of two-stage stochastic problems are usually dense columns, thus

making them difficult to be solved by standard IPMs. The reformulation technique used in
[21], named splitting formulation, removes this issue by considering copies of the first-stage
variables, equating them through simple and sparse linking constraints. The specialized
IPM implemented in the BlockIP package is tailored for problems with primal block-
angular structure and linking constraints. It solves the normal equations by combining
Cholesky factorizations for the diagonal blocks and a preconditioned conjugate gradient
(PCG) for the linking constraints [6]. The preconditioner considered has proven to perform
efficiently when the linking constraints are, precisely, simple and sparse [8, 9].
Therefore, the approach we propose in this works aims to efficiently solve two-stage

stochastic problems by using the algorithm of the BlockIP solver for a splitting formulation
of two-stage stochastic problems. Although this approach is not expected to be the most
efficient algorithm for any stochastic problem, we will show that, in problems with a
large enough number of first-stages variables, it outperforms the alternative state-of-the-
art methods. Two standard problems from the literature were used to test this approach:
a supply chain model, and a capacity expansion in an electric system. Both linear and
quadratic formulations were used to obtain instances of up to 38 million variables and six
million constraints.
The remainder of this document is organized as follows. Section 2 reviews the two-

stage stochastic problem and its splitting formulation. Section 3 outlines the specialized
interior-point method in BlockIP. Section 4 provides preliminary computational results
comparing our approach with other specialized methods for two-stage stochastic problems
in the solution of standard instances from the literature. Next, Section 5 presents the two
stochastic problems and the computational results obtained, for both linear and quadratic
instances. Finally, Section 6 summarizes the main outcomes of this paper and suggests
directions for further research.

2. Two-stage stochastic optimization problems

The general idea behind a two-stage stochastic formulation is to compute some initial
(first-stage) decisions that must be made prior to the occurrence of uncertainty, tak-
ing into account the expected value of future recourse (second-stage) actions. This work
focuses on two-stage stochastic problems with either linear or convex quadratic objec-
tive functions. The first-stage problem manages the so-called “here-and-now” decisions.
The second-stage problem refers to “wait-and-see” decisions, which represent the recourse
actions. It deals with uncertainty by analyzing possible outcomes [4].
The convex quadratic two-stage stochastic problem can be formulated in standard form

as

min
x

c>x+ 1
2x
>Fx+Q(x)

s. toMx = b
ux ≥ x ≥ 0,

(1)

where

Q(x) = Eξ[Q(x, ξ)] and
Q(x, ξ) = min

y
q>ξ y + 1

2y
>Gξy

s. toWy = hξ − Tξx
uy ≥ y ≥ 0.

(2)

The variables x ∈ IRnx and y ∈ IRny are, respectively, the first- and second-stage decisions.
The number of first- and second-stage constraints are, respectively, mx and my. The first-
stage vectors and matrices are c ∈ IRnx , F ∈ IRnx×nx , b ∈ IRmx , M ∈ IRmx×nx , where F
is symmetric and positive definite. Q(x), known as the recourse function, is the future
average cost of our second-stage decisions, for all scenarios (i.e., for all realizations of ξ).
In the second stage, qξ ∈ IRny , Gξ ∈ IRny×ny ,W ∈ IRmy×ny , Tξ ∈ IRmy×nx , and hξ ∈ IRmy ;
Gξ is symmetric and positive definite. The stochastic random vector is comprised of qξ,
Gξ, hξ and Tξ.
For some particular problems, a closed form solution can be obtained for Q(x, ξ) =

q>ξ y
∗+ 1

2y
∗>Gξy

∗, where y∗ is the optimum of the second-stage future decisions. In these
cases, it is possible to compute Q(x) = Eξ[Q(x, ξ)], which allows for the solution of (1)
only in terms of the first-stage decisions. In general, however, no closed form exists for
Q(x, ξ), which forces us to use the extensive form of the stochastic problem. For this
purpose, let us consider that ξ is a discrete random variable of k values ξ1, . . . , ξk with
probabilities p1, . . . , pk (if ξ is continuous, it must be previously discretized). Each partic-
ular value ξi, i = 1, . . . , k is usually known as a scenario. Next, second-stage variables and
constraints are replicated for each scenario (i.e., yi, i = 1, . . . , k for variables), combining
problems (1) and (2) into a single one, as follows:

min
x,yi

c>x+
1

2
x>Fx+

k∑
i=1

pi

(
q>ξiyi +

1

2
y>i Gξiyi

)
s. toMx = b

ux ≥ x ≥ 0
Tξix+Wyi = hξi
uy ≥ yi ≥ 0

}
i = 1, . . . , k.

(3)

For real problems, (3) can be very large and needs to be solved by specialized procedures
that exploit the particular problem structure [4, Ch. 5–8], [19, 24].

2.1. The constraints structure of the two-stage problem

The constraints matrix in (3) shows the following dual block-angular structure

A =

x y1 y2 · · · yk
M
T1 W
T2 W
...

. . .
Tk W

 ,
(4)

where Tξi in (3) has been renamed as Ti to simplify the notation. As shown in the top
picture of Figure 1, the linking columns associated with the first-stage variables gives
rise to large fill-in when computing the Cholesky factorization of the normal equations
PAΘA>P> in an IPM—with Θ being a positive diagonal matrix and P a row permutation

Figure 1.: Multiplication of AΘT T with and without splitting [21]

matrix. This is true even for good permutation matrices. We note that F and Gξ must
be diagonal matrices if Θ is assumed to be diagonal; indeed, F and Gξ are considered
diagonal in the specialized IPM of Section 3 for reasons of efficiency. Solving the normal
equations system constitutes the main computational burden on any IPM. The solution
time critically depends upon preserving the sparsity in matrix AA> [21].

2.1.1. Splitting Formulation

The linking columns ensure that the first-stage decision variables x are feasible under
each future scenario. Since the same first-stage decision variables x are used throughout,
those necessarily satisfy the nonanticipativity requirement. Second-stage decisions yi, i =
1, . . . , k, depend on both the first-stage variables and the realization of stochastic events.
In [21], variable splitting was suggested for reducing fill-in. Two variants were at-

tempted: full and partial splitting. The full version split all first-stage variables, while
in partial splitting only the dense first-stage variables were replicated. We will make
use of full splitting, which is more appropriate than partial splitting for the specialized
interior-point algorithm in this work, because it causes more highly sparse (but also much
larger) matrices. This is different from general interior-point solvers, where partial split-
ting was shown to be superior in [21]. The bottom picture of Figure 1 shows the effect of
splitting on the normal equations matrix.
Replicating the first-stage variables for each scenario one obtains the following equiva-

lent extensive form formulation:

min
xi,yi

c>x1 +
1

2
x>1 Fx1 +

k∑
i=1

pi

(
q>ξiyi +

1

2
y>i Gξiyi

)
s. toMx1 = b

ux ≥ x1 ≥ 0
Tξixi +Wyi = hξi
uy ≥ yi ≥ 0

}
i = 1, . . . , k

x1 − xi = 0
ux ≥ xi ≥ 0

}
i = 2, . . . , k.

(5)

Reordering columns by the number of scenarios, the constraint matrix in (5) can be
written as:

x1 y1 x2 y2 · · · xk yk

A(5) =

M
T1 W

T2 W
. . .

Tk W
I −I
...

. . .
I −I

.

(6)

Alternative formulations can be obtained by different linking constraints that force the
same values for copies of the first-stage variables. For instance, another equivalent problem
is obtained by replacing the last group of constraints in (5) with xi = xi+1, i = 1, . . . , k−1,
thus obtaining

min
xi,yi

c>x1 +
1

2
x>1 Fx1 +

k∑
i=1

pi

(
q>ξiyi +

1

2
y>i Gξiyi

)
s. toMx1 = b

ux ≥ x1 ≥ 0
Tξixi +Wyi = hξi
uy ≥ yi ≥ 0

}
i = 1, . . . , k

xi − xi+1 = 0
ux ≥ xi ≥ 0

}
i = 1, . . . , k − 1.

(7)

The constraints matrix of formulation (7) is

x1 y1 x2 y2 x3 y3 · · · xk−1 yk−1 xk yk

A(7) =

M
T1 W

T2 W
T3 W

. . .
Tk−1 W

Tk W
I −I

I −I
. . .

I −I

.
(8)

Although (5) and (7) are equivalent, the latter is computationally more efficient for the
specialized IPM that will be used, as will be shown in Subsection 3.2.
Both constraint matrices (6) and (8) have a primal block-angular structure with (k −

1)nx very sparse linking constraints. The linear programming problems (5) and (7) match
the following general block-angular formulation:

min
x1,...,xk

k∑
i=1

(
ci
>
xi +

1

2
xi
>
Qixi

)

s. to

N1

N2

. . .
Nk

R1 R2 . . . Rk I

x1

x2

...
xk

x0

 =

b1

b2

...
bk

b0

0 ≤ xi ≤ ui i = 1, . . . , k
0 ≤ x0 ≤ b0.

(9)

For both formulations (5) and (7) xi, ui ∈ IRnx+ny are, respectively, (x>i y>i)> and
(u>x u>y)> i = 1, . . . , k; x0 are the slacks of the linking constraints (they are zero since
linking constraints are equalities in the splitting formulation of two-stage stochastic prob-
lems). The linear cost vectors ci ∈ IRnx+ny are defined as c1 = (c> p1q

>
ξ1

)>, whereas
ci = (0 piq

>
ξi

)> for i = 2, . . . , k. The quadratic cost matrices Qi ∈ IR(nx+ny)×(nx+ny)

are Q1 =

[
F
Gξ1

]
, and Qi =

[
0
Gξi

]
for i = 2, . . . , k; we assume Qi are diag-

onal matrices. The right-hand-side terms are IRmx+my 3 b1 = (b> h>ξ1)
>, while

IRmy 3 bi = hξi i = 2, . . . , k, and IR(k−1)nx 3 b0 = 0. As for the diagonal blocks,

N1 ∈ IR(mx+my)×(nx+ny) is
[
M
T1 W

]
, and Ni ∈ IRmy×(nx+ny), are [Ti W] , i = 2, . . . , k.

Linking constraints for (5) are defined by

R1 =

 I1 0y1
...

...
Ik−1 0yk−1

 Ri =

0x1 0y1
...

...
0xi−2 0yi−2
−Ii−1 0yi−1

0xi 0yi
...

...
0xk−1 0yk−1

i = 2, . . . , k, (10)

where 0xi , Ii ∈ IRnx×nx , 0yi ∈ IRnx×ny , and the subindex denotes the block row position.
For (7) the linking constraints are defined by

R1 =

I1 0y1
0x2 0y2
...

...
0xk−1 0yk−1

Ri =

0x1 0y1
...

...
0xi−2 0yi−2
−Ii−1 0yi−1
Ii 0yi

0xi+1 0yi+1
...

...
0xk−1 0yk−1

i = 2, . . . , k − 1,

Rk =

0x1 0y1
...

...
0xk−2 0yk−2
−Ik−1 0yk−1

 , (11)

where Ii, 0xi and 0yi have the same dimensions as above. We will denote as mi and ni
the number of rows and columns of each diagonal block Ni, and by l the number of
linking constraints. The next section outlines the specialized interior-point approach for
the efficient solution of (9).

3. The specialized interior-point approach

The specialized IPM is based on a primal-dual path-following algorithm [26], that
solves the normal equations by means of a scheme that sensibly combines direct sparse
Cholesky factorizations [23] and iterative preconditioned conjugate gradient (PCG for
short) solvers. This procedure was initially suggested for multicommodity flow problems
[9] and later extended to primal block-angular problems [8]. Thus, it can be applied to
problem (9). This specialized IPM was recently implemented in the BlockIP solver [6].
Denoting by A the constraint matrix in (9), the normal equations for the dual variables

direction ∆λ are

(AΘA>)∆λ = g, (12)

where Θ is a diagonal matrix of positive entries which are related to variables xi and
diagonal matrices Qi; and g is an appropriate right-hand-side. Exploiting the structure

of A and appropriately partitioning Θ, the matrix of system (12) can be recast as

AΘA> =

N1Θ1N
>
1 N1Θ1R

>
1

. . .
...

NkΘkN
>
k NkΘkR

>
k

R1Θ1N
>
1 . . . RkΘkN

>
k Θ0 +

∑k
i=1RiΘiR

>
i

=

[
B C
C> E

]
,

(13)

B ∈ IRm̃×m̃ (m̃ =
∑k

i=1mi), C ∈ IRm̃×l and E ∈ IRl×l being the blocks of AΘA> and
Θi, i = 0, . . . , k, the submatrices of Θ associated with the k + 1 groups of variables in
(9). Appropriately partitioning g and ∆λ, the normal equations can be written as[

B C
CT E

] [
∆λ1
∆λ2

]
=

[
g1
g2

]
. (14)

Eliminating ∆λ1 from the first group of equations of (14), we get

(E − C>B−1C)∆λ2 = (g2 − C>B−1g1) (15)

B∆λ1 = (g1 − C∆λ2). (16)

System (16) is solved by performing one Cholesky factorization for each diagonal block
NiΘ

iN>i , i = 1, . . . , k of B. System (15) is solved by a PCG. The dimension of this system
is l, i.e., the number of linking constraints. A good preconditioner is imperative for the
efficient solution of (15).
The preconditioner obtained in [9] for multicommodity flows can be applied to any

primal block-angular problem [8]. The Neumann series preconditioner is based on the
following result (see [9] for a proof):

(E − C>B−1C)−1 =

(∞∑
i=0

(E−1(C>B−1C))i

)
E−1. (17)

The preconditioner, an approximation of (E−C>B−1C)−1, is thus obtained by truncating
the infinite power series (17) at some term φ. From (17), the quality of the preconditioner
depends on the spectral radius ρ (i.e., the largest eigenvalue) of matrix (E−1(C>B−1C)),
which is known to be in [0, 1) [9]. When ρ is not too close to 1, the contribution of
higher-order terms of the Neumann series can be neglected, and just a few terms (i.e., a
small φ) are enough for a good preconditioner. Since the preconditioner is used at each
iteration of PCG for the solution of system (E−C>B−1C)z = r (for some vectors z and
r), increasing φ by one means solving an additional system with matrices B and E at
each PCG iteration. Therefore, even though it is problem-dependent, we can consider as
a rule of thumb φ = 0 or φ = 1 are reasonable choices. φ = 0 has been used for all the
computational results in this paper. However, note that even for φ = 0, one system with
matrix E needs to be solved at each PCG iteration. Therefore, the efficient solution to
systems with E is indispensable for the performance of the method. In next two sections
we analyze the structure and efficient factorization of E for both formulations (5) and
(7).

0 50 100 150

0

50

100

150

nz = 450
0 50 100 150

0

50

100

150

nz = 350

a b
Figure 2.: Problem with nx = 50 first-stage variables and k = 4 scenarios: a) Structure

of (18) for formulation (5); b) Structure of (19) for formulation (7)

One of the important parameters for the efficient solution of (15) is the tolerance
requested to the PCG solution. This tolerance is dynamically updated at each interior-
point iteration i as εi = max{βεi−1,minε}, where ε0 is the initial tolerance (by default
10−2 for linear problems, and 10−3 for quadratic ones), minε is the minimum allowed
tolerance (by default is 10−8), and β is a tolerance reduction factor at each interior-point
iteration (by default 0.95). Unless otherwise stated, the above default values were used
in the computational results of Sections 4 and 5.

3.1. Structure of E for formulation (5)

Θi is made of two diagonal submatrices, Θx
i and Θy

i , which are, respectively, related to
first- and second-stage variables xi and yi. Since E = Θ0+

∑k
i=1RiΘiR

>
i , and using (10),

the structure of E is given by

E = Θ0 +

Θx

1 + Θx
2 Θx

1 . . . Θx
1 Θx

1

Θx
1 Θx

1 + Θx
3 . . . Θx

1 Θx
1

...
...

. . .
...

...
Θx

1 Θx
1 . . . Θx

1 + Θx
k−1 Θx

1

Θx
1 Θx

1 . . . Θx
1 Θx

1 + Θx
k

 . (18)

E in (18) is a symmetric positive definite matrix and it is also partially banded, with
only 2(k − 2) + 1 non-zero diagonals: Eij > 0 if |i − j| is a multiple of nx and Eij = 0
elsewhere. This is a particular case of the general band matrix (see, e.g., [12, Ch. 4]).
Figure 2.a shows the structure of (18) for a problem with nx = 50 first-stage variables
and k = 4 scenarios, as well as 2(k − 2) + 1 = 5 non-zero diagonals and 450 non-zero
elements.
It is not difficult to prove that either the LDL> or Cholesky factorizations preserve

the sparsity (zero fill-in) of (18); this guarantees an efficient factorization. However, we
will omit such details. Instead, our focus in the next subsection will be on the E matrix
of formulation (7), which is a more efficient alternative.

3.2. Structure of E for formulation (7)

From the definition of E in (13) and those of Ri in (11), and considering as above that
Θi is made up of Θx

i and Θy
i , by block multiplication we get

E = Θ0 +

Θx

1 + Θx
2 −Θx

2

−Θx
2 Θx

2 + Θx
3 −Θx

3
.

−Θx
k−2 Θx

k−2 + Θx
k−1 −Θx

k−1
−Θx

k−1 Θx
k−1 + Θx

k

 . (19)

Figure 2.b shows the structure of (19) for the same problem in Subsection 3.1, reformu-
lated as in (7). The fundamental difference between (18) and (19) is that the latter has
only three non-zero diagonals, independently of the number of scenarios. In practice, this
leads to the efficient solution of systems Ez = r (for some z and r).
Matrix (19) is a symmetric positive definite “nx-shifted tridiagonal matrix”, a gener-

alization of a tridiagonal matrix where the superdiagonal (nonzero diagonal above the
main diagonal) and subdiagonal (nonzero diagonal below the main nonzero diagonal)
are shifted nx positions from the main diagonal, i.e., elements (i, j) are non-zero only if
|i− j| is either 0 or nx. Matrices with such a structure can be efficiently factorized with
zero fill-in by extending a standard factorization for tridiagonal matrices. This particular
factorization has been added to the BlockIP solver.

4. Preliminary computational results

The problem formulation (7) was implemented and solved using the BlockIP package
[6, 8], which is based on the the specialized IPM of Section 3. The instances used for
preliminarily testing the performance of the approach was a subset of the instances pro-
posed in [1] and [13]. They are publicly available in SMPS format [14]. These two-stage
stochastic instances have been used to measure performance in several solvers, such as in
[15] and [28].
For testing the performance of the proposed specialized interior-point method, an initial

comparison was made using the state-of-the-art IBM ILOG CPLEX (v.12.7) barrier op-
timizer. Unlike BlockIP, CPLEX computes directions by Cholesky factorizations, instead
of a combination of Cholesky and PCG. CPLEX executions were made without crossover
for a fair comparison with BlockIP. In this preliminary experiments, for BlockIP the
problems were modelled using the splitting formulation (7), whereas for CPLEX the dual
of the extensive form (3) was used, in an attempt to avoid dense columns due to the first-
stage variables. All the experiments in this work were carried out on a Fujitsu Primergy
RX2540 M1 4X server with two 2.6 GHz Intel Xeon E5-2690v3 CPUs (48 cores) and
192 Gigabytes of RAM, under a GNU/Linux operating system (openSuse 13.2), without
exploitation of multithreading capabilities.
Table 1 shows a sample of the results with the instances referred to above. The first

column indicates the name of each instance; the second column (named 1st) gives the
number of variables in the first stage; columns k, m, and n refer to, respectively the
number of scenarios, total constraints, and total variables. In the case of BlockIP, we
show the number of interior-point iterations (column “Iter”), CPU time (column “CPU”)
and total number of PCG iterations (column “PCG”). For CPLEX we have the number of
interior-point iterations and CPU time. We considered an initial tolerance of ε0 = 10−2 for
the PCG solutions (which is the default in BlockIP for linear problems). The optimality
tolerances for BlockIP and CPLEX were set to 10−3 (smaller values were difficult to

BlockIP CPLEX
Instance 1st k m n Iter CPU PCG Iter CPU
LandS 4 3 23 62 9 0.00 41 6 0.00
AIRL_first 4 25 152 402 12 0.00 121 7 0.00
pltexpA2 188 6 686 2760 60 0.05 492 10 0.01
4node128 52 128 9486 32008 35 0.97 1167 25 0.30
4node4096 52 4096 303118 1024008 49 76.06 2938 45 17.30
4node16384 52 16384 1212430 4096008 59 522.10 5131 43 57.89
env_15 49 15 768 2046 21 0.03 78 14 0.01
env_1875 49 1875 90048 251286 64 9.09 1096 26 1.17
envDiss8232 49 8232 395184 1103124 135 154.36 4066 62 15.02
phone 8 32768 753665 3309569 21 38.02 255 23 26.00

Table 1.: Results of linear instances with BlockIP and CPLEX barrier

BlockIP CPLEX
Instance 1st k m n Iter CPU PCG Iter CPU
LandS 4 3 23 62 9 0.00 48 6 0.00
AIRL_first 4 25 152 402 11 0.00 173 10 0.00
pltexpA2 188 6 686 2760 54 0.03 241 10 0.2
4node128 52 128 9486 32008 29 0.61 534 7 0.12
4node4096 52 4096 303118 1024008 31 36.60 984 7 6.81
4node16384 52 16384 1212430 4096008 31 137.87 1219 8 14.29
env_15 49 15 768 2046 14 0.01 46 13 0.02
env_1875 49 1875 90048 251286 15 2.24 261 17 1.11
envDiss8232 49 8232 395184 1103124 17 19.44 393 18 4.60
phone 8 32768 753665 3309569 13 21.95 169 18 12.88

Table 2.: Results of quadratic instances with BlockIP and CPLEX barrier

achieve by BlockIP in those instances due to the approximate solution of the Newton
direction by PCG). The results of Table 1 indicate that BlockIP is slower in these kinds
of instances where, although with a large number of scenarios, the number of first-stage
variables is small.
From the above linear instances we created a set of quadratic stochastic problems by

adding convex separable quadratic costs to the first and second stage variables; these
quadratic terms were synthetic and of the same order as the linear costs. Table 2 reports
the characteristics of these quadratic instances and the results obtained with BlockIP and
CPLEX. In these executions the initial PCG tolerance was set to ε0 = 10−3 (the default
value in BlockIP for quadratic problems). The optimality tolerances used for BlockIP and
CPLEX were 5 · 10−2. The specialized IPM in BlockIP is known to be more efficient for
quadratic than for linear instances [7]. Then, as expected, the performance of BlockIP
improved in these quadratic stochastic instances. However, it was still outperformed by
CPLEX.

4.1. Comparison with other specialized solvers for stochastic optimization

In addition to the CPLEX general purpose solver, we explored other specialized meth-
ods for two-stage stochastic problems, namely: Benders decomposition, and Benders de-
composition with regularization by the level set method, as implemented in the FortSP
stochastic solver [28]; the primal-dual column generation approach of [15]; and the dual
decomposition approach (with an interior-point cutting-plane generator) implemented in
the DSP (Decomposition for Structured Programming) stochastic solver [18]. Compar-
ing BlockIP with these other approaches is not straightforward since: the solvers of [28]

BlockIP DSP
Instance 1st k m n Iter CPU PCG Algorithm CPU

LandS 4 3 23 62 9 0.00 41 Benders 0
Dual 0.3

AIRL_first 4 25 152 402 12 0.00 121 Benders 0.8
Dual 6.6

pltexpA2 188 6 686 2760 60 0.05 492 Benders 0.1
Dual 0.1

4node128 52 128 9486 32008 35 0.97 1167 Benders 3.7
Dual 16529.1

4node4096 52 4096 303118 1024008 49 76.06 2938 Benders 1535.1
Dual —

phone 8 32768 753665 3309569 21 38.02 255 Benders —
Dual —

— Instance exceeded the maximum memory allotted by Neos Server to a job

Table 3.: Results of linear instances with BlockIP and DSP

and [15] are not freely available; the DSP solver had to be used remotely from the Neos
Server [10] (we did not succeed in installing it locally due to its many dependencies with
third-party software); and the four hardwares (i.e., those of [28], [15], the Neos Server,
and our work) were different, so only an indirect comparison can be performed.
Table 3 shows the results obtained with BlockIP and two of the algorithms in the DSP

package (namely, a Benders decomposition and a dual decomposition) for a subset of
the instances of Table 1. CPU times for DSP were provided by the Neos Server [22],
so the comparison between our approach and DSP should be done with caution. When
the instance exceeded the maximum memory allotted by the Neos Server to a job, the
solution was not found; this is marked with “—” in Table 3. From the times reported,
DSP seems not to be competitive with our approach, specially for the largest instances. A
possible explanation might be that DSP was mainly designed for mixed integer stochastic
problems.
Concerning the other two specialized methods, and according to the information pro-

vided by their authors, the processors used in [15] and [28] were, in single-thread mode,
respectively a 27% and a 11% faster (in terms of Mflops, millions of floating point op-
erations per second) than the one used in our work. The approach of [15] outperformed
in general all the methods tested in [28], from the results in those papers. Therefore we
will focus on the primal-dual column generation method of [15]. This approach required
(in the hardware used in [15]) for the 10 instances of Table 1, respectively, 0.03, 0.03,
0.11, 0.56, 10.83, 37.97, 0.05, 0.68, 5.86 and 0.76 CPU seconds. Using the 27% correc-
tion factor between processors, if we had ran the approach of [15] in our hardware, the
CPU times would have been, approximately, 0.04, 0.04, 0.15, 0.76, 14.77, 51.78, 0.07,
0.93, 7.99 and 1.03. We observe from Table 1 that the performance of CPLEX was very
similar in those instances (excluding the last two, where the approach of [15] was sig-
nificantly faster—specially for the last instance). Therefore, although being a general
purpose solver, CPLEX can be considered a good candidate for benchmarking (this is
also consistent with the results of [28], where the CPLEX barrier ranked among the best
three algorithms for stochastic optimization). In addition, CPLEX can solve quadratic
instances, while the approaches of [15] and [28] dealt only with linear problems. CPLEX
will thus be the solver used to test our approach in next section, for the solution of more
difficult instances provided by two particular applications.

5. Computational results for two particular applications

The instances of Tables 1 and 2 have a small number of first-stage linking variables, so they
are loosely coupled among the different scenarios. For this reason, they can be considered
“not too difficult”, and specially tailored for decomposition algorithms. In order to get
more difficult instances, we modified two problems from the literature: (1) a stochastic
supply chain problem based on [2], which will be described in Section 5.1; (2) and instance
LandS of Section 4, which corresponds to a stochastic electricity generation problem and
it is is explained below in Section 5.2. The implementations developed for these two
problems allowed us to manage the number of scenarios and the number of first- (mainly)
and second-stage variables. Both problems were solved with CPLEX and BlockIP. For
the solution with BlockIP they were modelled with the splitting formulation (7), thus
obtaining the constraints structure (8). For CPLEX we considered two formulations: the
splitting formulation (7) (as for BlockIP); and the dual of the original extensive form (3)
(whose constraints matrix is the transpose of (4) for linear problems), such that linking
variables are converted into linking constraints which, in principle, avoid the presence
of dense columns, thus potentially increasing the performance of the CPLEX barrier
algorithm.

5.1. The stochastic supply chain problem

This problem was created from the models in [2] and [25]. The original model considered
a supply chain network G = (N ,A), where N is the set of nodes and A is the set of arcs.
The set N consists of suppliers S, potential processing facilities P and customer centers
C, i.e., N = S∪P∪C. The decisions for first-stage are associated with a binary variable xi,
such that xi = 1 if processing facility i is built, and 0 otherwise. The second-stage refers
to tactical decisions on routing the flow of some product from suppliers to customers.
Variable yij denotes the flow of the product from a node i to a node j in the network,
where (ij) ∈ A, and zj denotes a shortfall of the product at customer j, meaning that it
is impossible to meet the demand. The random vector ξ includes the demands, supplies
and costs (of processing, transportation and shortage).
In our model, modifications were made to expand the problem, especially the first-stage

variables. First, the number of nodes for each set could be chosen (this is provided as
input data), thus allowing to increase the number of first-decision variables as well as the
number of scenarios for expanding the problem as much as is necessary. In addition, the
capacity decision uij for arcs (ij) ∈ A was included, where uij cannot be greater than
M . This capacity could not be exceeded during transportation operations. Finally, we
added the nodes of suppliers S to the decision on whether or not to build the facility.
Furthermore, all binary variables xi were relaxed, i.e., 0 ≤ xi ≤ 1.
The resulting stochastic supply chain design problem is formulated as follows:

min
x,u

∑
i∈S∪P

cixi +
∑

(ij)∈A

fijuij +Q(x, u)

s. to 0 ≤ xi ≤ 1 ∀i ∈ S ∪ P
0 ≤ uij ≤M ∀(ij) ∈ A

and Q(x, u) = Eξ[Q(x, u, ξ)], (20)

where Q(x, u, ξ) is the optimal value of the following problem:

Q(x, u, ξ) = min
y,z

∑
(ij)∈A

qijyij +
∑
j∈C

hjzj (21a)

s. to
∑
i∈N

yij −
∑
l∈N

yjl = 0 ∀j ∈ P (21b)

∑
i∈N

yij + zj ≥ dj ∀j ∈ C (21c)

∑
j∈N

yij ≤ sixi ∀i ∈ S (21d)

∑
i∈N

yij ≤ mjxj ∀j ∈ P (21e)

0 ≤ yij ≤ uij ∀(ij) ∈ A (21f)

zj ≥ 0 ∀j ∈ C, (21g)

whose parameters are:

• ci is the investment cost for supply and processing facility i.
• fij is the cost per-unit of capacity on the arc ij.
• qij represents the per-unit cost of transporting the product on arc ij.
• hj is the per-unit penalty incurred for failing to meet demand of the product at customer

center j.
• M denotes the maximum capacity per arc.
• dj is the demand of customer j.
• si is the maximum supply capacity of supplier i.
• mj is the maximum processing capacity of processing plant j.

The first-stage problem (20) consists of choosing the design variables xi and uij . The
objective function minimizes the total investment for nodes S and P, arc capacities uij ,
and the expected value of the second stage. Binary variables xi are relaxed, and the upper
bound M is set for all arc capacities.
The second-stage problem (21) involves the processing and the transportation of the

product, where the objective function (21a) minimizes the transportation and shortage
costs. The first set of constraints (21b) enforces the flow conservation across each pro-
cessing node j. The next group of constraints (21c) requires that the total flow for the
customer j plus its shortfall should be at least the demand dj . Constraints (21d) ensure
that the total flow from a supplier node i should not exceed the supply capacity si at
that node if it is built. The set of constraints (21e) establishes that the number of units
to process should not be greater than the capacity mj of facility j if it is built. If facility
i ∈ S ∪ P is not built, the above two groups of constraint will force all flow variables
yij = 0 for all i ∈ S ∪ P. Finally, constraints (21f) and (21g) are the upper and lower
bounds.

5.1.1. Test instances

The original model in [2] considered a supply chain with four suppliers (A, B, C, and D),
four possible processing facilities (E, F, G and H), and three customer centers (L, M and
N). This supply network is depicted in Fig. 3. The product considered in [2] was uniform-
quality wine in bulk (raw material). Four scenarios were considered (boom, good, fair and
poor), with different probabilities associated to each one. It should be stressed that in

Figure 3.: The network of the wine company used in [2]

[2] the supplies, transportation costs and shortage costs were considered as deterministic
parameters for the extensive form (or deterministic equivalent) formulation.
We extended the original model in [2] in several ways. First, all the parameters of the

problem were created by means of a random generator considering different ranges of
values. For instance, the range of investment costs for building each processing (bottling)
plant was between 250,000 and 350,000. The costs per unit of arc capacities were between
1000 and 1,000,000. The unit production costs and market demands under each scenario
were in the range of 500–750 and 550–800, respectively. The costs for transporting bulk
wine from the suppliers to the processing facilities, and bottled wine from the processing
facilities to the clients were, respectively, around 150 and 450. The unit storage costs
at each distribution center were in the range of 10–16 thousand units. Furthermore, the
maximum amount of bulk wine that can be shipped from the suppliers was between 250
and 350 units.
Next, we increased the number of first-stage variables by considering 10 suppliers, 10

processing facilities and 50 customers. This resulted in a problem with 620 first-stage
variables, used as the base case from which the several instances in below Sections 5.3.1
and 5.4.1 are obtained by replicating the number of scenarios.

5.2. The stochastic electricity generation problem

This problem (based on [20]) consists of finding the optimal investment over various types
of power plants to satisfy an uncertain electricity demand. A two-period model with a
set ofM operating modes and a set of T different technologies is considered. The modes
are a discrete representation of the true load-duration demand curve, where each mode
is a rectangular approximation of a part of this curve. It is necessary to consider large
number of modes for a good approximation to the reality. The several power plants use
one of the available technologies. See [1, 4] for more details.
Technology i ∈ T has an associated investment cost ci (a multiple of e/Mw), and a

production cost qi (a multiple of e/Mwh). Operating modes are defined by its duration
tj (hours) and demand dj (Mw), for j ∈ M; the demand d1 = ξ of the first mode is
the stochastic parameter of this problem. First-stage decisions are the capacities xi (Mw)
invested in each technology i ∈ T . Second-stage variables are the capacities yij effectively
operated in each mode j ∈ M, for each technology i ∈ T . We assume technologies are
always available, so they can be operated full-time.

The model formulation is the following:

min
x

∑
i∈T

cixi +Q(x)

s. to
∑
i∈T

xi ≥ C∑
i∈T

cixi ≤ B

xi ≥ 0 i ∈ T

and Q(x) = Eξ[Q(x, ξ)], (22)

where

Q(x, ξ) = min
y

∑
i∈T

∑
j∈M

qitjyij (23a)

s. to
∑
j∈M

yij ≤ xi i ∈ T (23b)

∑
i∈T

yij = ξ j ∈ {1} (23c)

∑
i∈T

yij = dj j ∈M \ {1} (23d)

yij ≥ 0 i ∈ T , j ∈M, (23e)

B and C being, respectively, a budget limit and a minimum capacity to be provided in
the first stage.
The first-stage problem (22) considers the investment cost for each technology, subject

to a minimum total capacity and a maximum budget constraints. The objective function
(23a) of the second-stage problem consists of minimizing the operational costs for each
technology effectively used in every mode. The constraints (23b) impose that available
capacities cannot be exceeded, for each technology. The other two sets of constraints
(23c)–(23d) impose demand satisfaction for every mode; the first constraint is for the
first mode, whose demand is stochastic.

5.2.1. Test Instances

The instance presented in [1, 4] considered m = 3 operating modes and n = 4 available
technologies, along with demands d = (ξ, 2, 3) (that is, the demand of the first operating
mode is stochastic) and load durations t = (10, 6, 1). The three scenarios had the values
of ξ = (3, 5, 7) and (0.3, 0.4, 0.3) probabilities, respectively. The investment costs were
c = (10, 7, 16, 6) for each technology, with production costs q = (4, 4.5, 3.2, 5.5). The
budget keeps all investment below B = 120 and minimum capacity is C = 12.
The previous basic instance was extended by increasing the number of technologies

available (which is the same as the number of first-stage constraints), existing operating
modes and scenarios for every instance. The rest of parameters were randomly generated
from the values of the basic instance. For instance, the budget and minimum capacity
varied according to the number of technologies. The random demand took values between
2 and 10, the investment costs c in the range 2–20, q between 2 and 6, and t went up to
10. The number of technologies (that is, first-stage decisions), was increased up to 600
(as it will be seen in below sections of results); in this case, rather than technologies,
first-stage decisions could be considered as different power plants.

BlockIP CPLEX CPLEX
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU
200 259380 511380 140 28.18 2747 19 149.76 21 109.34
400 519380 1023380 174 59.36 2504 25 424.54 30 262.32
600 779380 1535380 155 77.32 2076 32 616.63 29 250.59
800 1039380 2047380 192 128.81 2565 19 566.50 31 342.79
1000 1299380 2559380 200 312.07 6295 23 843.60 32 428.56

Table 4.: Results for supply chain problem up to 1000 scenarios

BlockIP CPLEX CPLEX
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU
2000 2599380 5119380 48 48.34 204 11 647.42 20 627.82
3000 3899380 7679380 43 67.41 197 10 916.60 18 1208.98
4000 5199380 10239380 86 159.94 275 10 1242.50 18 2112.53
5000 6499380 12799380 81 214.08 379 10 1572.92 19 3678.25

Table 5.: Results for supply chain problem up to 5000 scenarios

5.3. Results for linear instances

Next two subsections present results for the linear instances of the supply chain and elec-
tricity generation problems. Those instances were obtained by increasing the number of
first-stage variables and/or scenarios in the base instances described in previous sections.
In these runs, the optimality gap was set to 10−6 for both BlockIP and CPLEX, unless
otherwise stated. For BlockIP, the initial tolerance and the tolerance reduction factor of
the PCG were, respectively, ε0 = 10−2 and β = 0.95 (which are BlockIP default values),
unless otherwise stated.

5.3.1. Linear instances of the stochastic supply chain problem

From the base instance of 10 suppliers, 10 processing facilities and 50 customers—with
a total of 620 first-stage variables—described in above Section 5.1.1, we generated a first
set of stochastic instances with 200, 400, 600, 8000 and 1000 scenarios. Table 4 shows the
results obtained with BlockIP (splitting formulation), and CPLEX (for both the with and
without splitting formulations). The meaning of the columns is the same as in previous
tables. These instances resulted to be difficult for BlockIP, as the spectral radius ρ was
close to one in the early iterations. Therefore, the optimality gap was set to 10−5 for
both BlockIP and CPLEX. The PCG tolerance reduction factor in BlockIP was also set
to β = 1 (that is, the PCG tolerance was not reduced at each interior-point iteration).
From 4 it is clearly observed that BlockIP was more efficient than CPLEX either with or
without splitting.
Table 5 reports results for a second set of larger instances with a number of scenarios

between 2000 and 5000; the largest instance has 6.4M constraints and 12.8M variables.
The optimality tolerance was increased to 10−3 for both BlockIP and CPLEX, which can
be considered a reasonable choice for stochastic models with a large number of scenarios,
and at the same time it allowed us to avoid the last interior-point iterations where the
spectral radius ρ usually tends to one. From 5 we see that BlockIP clearly outperformed
both CPLEX variants. It is also worth to note that, unlike in Table 4, the CPLEX runs

0

200

400

600

800

1,000

1,200

1,400

1,600

0 1000 2000 3000 4000 5000

Ti
m

e
(s

ec
on

ds
)

Scenarios

BlockIP Cplex

Figure 4.: BlockIP vs CPLEX for linear supply chain problem (CPLEX without
splitting)

BlockIP CPLEX
1st m n Iter CPU PCG Iter CPU
400 80602 519602 83 7.14 559 23 87.50
450 90552 584552 85 8.20 533 20 86.42
500 100502 649502 81 9.02 470 23 110.02
550 110452 714452 90 12.45 714 28 139.01
600 120402 779402 85 12.00 491 19 108.76

Table 6.: Results for electricity generation problem for different number of first-stage
variables

for the model with splitting were much slower than those without splitting. This fact will
be even more evident in below Table 9 for the quadratic instances of the supply chain
problem. This is due to the aggressive preprocessing applied by CPLEX to the splitting
model, which removes a significant number of constraints and variables at the expense of
modifying the matrix structure and significantly increasing the fill-in of the factorizations
(some numbers will be provided below for the results of Table 9 for quadratic instances).
As summarized in Figure 4 (which plots the solution time against the number of sce-

narios for the instances of Tables 4 and 5), BlockIP always outperformed CPLEX, and
one could infer that the difference between them will increase if the number of scenarios
grows higher.

5.3.2. Linear instances of the stochastic electricity generation problem

We generated a preliminary set of instances where the first-stage variables (number
of available technologies) were increased up to 600, the number of modes of electricity
demand were set at 10, and the number of scenarios at 100. The default tolerances were
used (i.e., optimality tolerance was 10−6, ε0 = 10−2 and β = 0.95). The performance of
BlockIP was very promising, as it is shown in Table 6.
Encouraged by the previous results, we worked on the 600 first-stage variables instance

while increasing the number of scenarios to 1000. Default tolerances were also used. The
results are given in Table 7, which shows that the performance of BlockIP is much better
than the one of CPLEX either with or without splitting. It is seen that CPLEX with
either model required large executions in those instances. For this reason, the second set
of even larger instances obtained by considering a number of scenarios between 2000 and
5000 were only ran with BlockIP. The results are provided in Table 8. BlockIP was very

BlockIP CPLEX CPLEX
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU
200 241402 1559402 89 30.07 703 22 589.79 33 1309.60
400 483402 3119402 107 66.73 790 126 17633.54 40 10547.41
600 725402 4679402 79 81.93 691 87 54178.15 41 33770.16
800 967402 6239402 106 145.09 1036 20 45467.37 40 73447.25
1000 1209402 7799402 84 145.06 761 117 309381.56 44 167873.29

Table 7.: Results for electricity generation problem up to 1000 scenarios

BlockIP
k m n Iter CPU PCG

2000 2419402 15599402 101 359.41 1074
3000 3629402 23399402 116 660.73 1204
4000 4839402 31199402 108 825.09 1193
5000 6049402 38999402 107 1027.31 1199

Table 8.: Results for electricity generation problem up to 5000 scenarios

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

ec
on

ds
)

Scenarios

BlockIP CPLEX

Figure 5.: BlockIP vs CPLEX for linear electricity generation problems (CPLEX with
splitting)

efficient, being able to solve the largest case of 6M constraints and 39M variables in less
than 18 minutes. It is also worth remarking that in those largest instances CPLEX ran
out of memory (it exhausted the available 192 Gigabytes of RAM). The plot in Figure 5
(which reports the solution time against the number of scenarios) helps better appreciate
that BlockIP is by far faster than CPLEX in those instances.

5.4. Results for quadratic instances

From the previous linear instances we created a set of quadratic cases by adding convex
separable quadratic costs to the first and second stage variables. The quadratic terms
were synthetic and of the same order as the linear costs. The interest of testing quadratic
instances relies on the fact that BlockIP is known to be faster for quadratic problems
than for linear ones, since quadratic terms tend to reduce the spectral radius ρ (see [7]
for details). In all the runs, the optimality tolerance for BlockIP and CPLEX was 10−6.
For BlockIP the initial PCG tolerance and reduction factor were ε0 = 10−3 and β = 0.95,

BlockIP CPLEX CPLEX
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU
200 259380 511380 89 26.08 2774 17 132.12 15 1299.24
400 519380 1023380 146 78.34 3952 18 338.61 16 10960.21
600 779380 1535380 112 108.95 3703 20 403.64 15 36211.61
800 1039380 2047380 126 210.26 5661 19 548.12 16 102556.88
1000 1299380 2559380 129 289.83 6048 21 788.77 14 173633.19

Table 9.: Results for supply chain problem up to 1000 scenarios

BlockIP CPLEX
no splitting

k m n Iter CPU PCG Iter CPU
2000 2599380 5119380 170 889.21 9538 22 1199.15
3000 3899380 7679380 193 1052.82 6834 21 1701.36
4000 5199380 10239380 147 1054.70 5206 20 2307.52
5000 6499380 12799380 149 1701.24 5282 19 2680.00

Table 10.: Results for supply chain problem up to 5000 scenarios

which are its default values for quadratic problems. As for the linear instances, the results
with BlockIP were computed with the splitting formulation (7), while for CPLEX both
the splitting formulation (7) and the (no splitting) dual of the extensive form (3) were
considered (note that in the latter case the constraints matrix contains both the transpose
of (4) and the terms associated to quadratic costs).

5.4.1. Quadratic instances of the stochastic supply chain problem

As for the linear instances, we considered the base case of 620 first-stage variables
and increased the number of scenarios up to 1000. The results can be seen in Table
9. Clearly, BlockIP outperformed both CPLEX runs (with and without splitting). It is
also observed that CPLEX is much less efficient with splitting in those instances. After
analyzing the CPLEX outputs, we concluded this is due to the large fill-in created to
the reduced problem after the aggressive preprocessing applied by CPLEX. For example,
for the 1000 scenarios case of Table 9, CPLEX without splitting has after preprocessing
a reduced problem with 650620 rows, 1331240 columns, and 3621240 nonzeros, but the
number of nonzeros in the lower triangle of AA> is 22100000, and the number of nonzeros
in the factor (after reordering) is 346453439. For the splitting model of the same instance
these numbers are 680000 rows, 650620 columns, and 2970000 nonzeros (therefore, same
order as for the no-splitting case), but the number of nonzeros in lower triangle of AA>
is 312500000 (14 times higher than for the model without splitting), and the number of
nonzeros in the factor (after reordering) is 10855849207 (31 times higher than without
splitting). This explains the poor performance of the splitting model wiht CPLEX in
some cases.
Next, we raised the number of scenarios up to 5000. The results are shown in Table

10. CPLEX was not executed with the splitting model for these instances to avoid large
CPU times. BlockIP is also faster than CPLEX. In short, the differences in this quadratic
problem can also be seen in Figure 6, where BlockIP remains always below the time of
CPLEX, even in small instances.

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000

Ti
m

e
(s

ec
on

ds
)

Scenarios

Quadratic

BlockIP

Cplex

Figure 6.: BlockIP vs CPLEX for quadratic supply chain problems (CPLEX without
splitting)

BlockIP CPLEX CPLEX
no splitting with splitting

k m n Iter CPU PCG Iter CPU Iter CPU
200 41902 259902 43 5.45 1760 71 336.45 65 10.02
400 83902 519902 42 11.19 1911 66 652.94 61 18.13
600 125902 779902 43 14.77 1471 67 996.91 69 37.18
800 167902 1039902 46 22.42 1575 73 1447.08 62 48.01
1000 209902 1299902 56 191.98 13604 72 1784.58 62 63.80
2000 419902 2599902 58 258.42 9037 73 3610.31 64 138.01
3000 629902 3899902 60 153.12 3205 74 5544.63 67 211.03
4000 839902 5199902 59 219.14 3493 78 7714.95 67 282.93
5000 1049902 6499902 61 227.20 2738 77 9599.25 67 363.00
10000 2099902 12999902 59 457.10 2509 75 19681.28 70 764.49

Table 11.: Results for electricity generation problem up to 10000 scenarios

5.4.2. Quadratic instances of the stochastic electricity generation problem

We considered as the base case the instance with 100 first-stage variables, such that
the number or scenarios can be largely increased without obtaining an out-of-memory
error by CPLEX (like it happened for linear instances and the 600 first-stage variables
base case). Table 11 presents the results for up to 10000 scenarios. In these executions
the model with splitting was the most efficient variant for CPLEX; anyway, it was still
outperformed by BlockIP except for the instances with 1000 and 2000 scenarios. In those
two instances BlockIP required many PCG iterations and this explains its poor behaviour.
The good results obtained in most cases with BlockIP are evident in Figure 7.

6. Conclusions

In this work, we explored the performance of a specialized interior-point algorithm for
block-angular problems (implemented in the BlockIP package) for two-stage stochastic
programming while using a splitting technique. The computational experiments used
small- and large-scale instances to test both linear and quadratic objective functions. The
performance of BlockIP was compared against alternative state-of-the-art interior-point
(CPLEX barrier) and other specialized solvers for stochastic optimization. The results
proved that BlockIP is competitive, mainly when the instances have a large number of

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
(s

ec
on

ds
)

Scenarios

BlockIP CPLEX

Figure 7.: BlockIP vs CPLEX for quadratic electricity generation problems (CPLEX
with splitting)

first-stage variables. However, for the list of (small to medium) problems in [1], BlockIP
was outperformed by the other approaches.
This new approach for stochastic optimization has potential in areas where decision-

makers need to analyze many first-stage decisions, with a large number of future scenarios,
and in a very short time.
Future studies should focus on the applicability of the specialized interior-point algo-

rithm to block-angular reformulations of multistage stochastic problems.

Acknowledgments

This work has been supported by the grants MINECO/FEDER MTM2015-65362-R and
MCIU/AEI/FEDER RTI2018-097580-B-I00. The second author was supported by the
CONACyT (Consejo Nacional de Ciencia y Tecnologia, México) grant CVU-394291.

References

[1] K.A. Ariyawansa and A.J. Felt, On a new collection of stochastic linear programming test problems,
INFORMS Journal on Computing 16(3) (2004), pp. 291–299.

[2] A. Azaron, K.N. Brown, S.A. Tarim and M. Modarres, A multi-objective stochastic programming
approach for supply chain design considering risk, International Journal of Production Economics
116(1) (2008), pp. 129–138

[3] J. F. Benders, Partitioning procedures for solving mixed-variables programming problems, Numerische
Mathematik 4(1) (1962), pp. 238–252.

[4] J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Science & Business
Media, (2011).

[5] S. Bradley, A. Hax and T. Magnanti, Applied mathematical programming, Addison Wesley, (1977).
[6] J. Castro, Interior-point solver for convex separable block-angular problems, Optimization Methods

and Software 31(1) (2016), pp. 88–109.
[7] J. Castro and J. Cuesta, Quadratic regularizations in an interior-point method for primal block-

angular problems, Mathematical Programming 130(2) (2011), pp. 415–445.
[8] J. Castro, An interior-point approach for primal block-angular problems, Computational Optimiza-

tion and Applications 36(2) (2007), pp. 195–219.
[9] J. Castro, A specialized interior-point algorithm for multicommodity network flows, SIAM Journal

on Optimization 10(3) (2000), pp. 852–877.
[10] J. Czyzyk, M.P. Mesnier, J.J. Moré, The NEOS Server, IEEE Journal on Computational Science

and Engineering 5(3) (1998), pp. 68–75.
[11] G.B. Dantzig and P. Wolfe, The decomposition algorithm for linear programs, Econometrica 29(4)

(1961), pp. 767–778.

[12] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, (2012).
[13] D. Holmes, A Portable Stochastic programming Test Set, available in: http://users.iems.

northwestern.edu/~jrbirge/html/dholmes/post.html, (1995) [Accessed on 2018-11-15].
[14] H.I. Gassmann and B. Kristjánsson, The SMPS format explained, IMA Journal of Management

Mathematics 19(4) (2007), pp. 1–31
[15] J. Gondzio, P. González-Brevis and P. Munari, Large-scale optimization with the primal-dual column

generation method, Mathematical Programming Computation 8(1) (2016), pp. 47–82
[16] J. Gondzio, Interior point methods 25 years later, European Journal of Operational Research 218(3)

(2012), pp. 587–601.
[17] J.Gondzio and A. Grothey, Solving non-linear portfolio optimization problems with the primal-dual

interior point method, European Journal of Operational Research 181(3) (2007), pp. 1019–1029.
[18] K. Kibaek and V. M. Zavala, Algorithmic innovations and software for the dual decomposition method

applied to stochastic mixed-integer programs, Mathematical Programming Computation 10(2) (2018),
pp. 225–266

[19] W.K. Klein Haneveld and M.H. van der Vlerk, Stochastic integer programming: General models and
algorithms, Annals of Operations Research 85 (1999), pp. 39–57.

[20] F.V. Louveau and Y. Smeers, Optimal investments for electricity generation: A stochastic model and
a test-problem, in Numerical Techniques for Stochastic Optimization, R. J-B. Wets and Y. Ermoliev,
eds., Springer, 1988, pp. 445–453.

[21] I.J. Lustig, J.M. Mulvey and T.J. Carpenter, Formulating stochastic programs for interior point
methods, Operations Research 39 (1991), pp. 757–770.

[22] NEOS Server: State-of-the-Art Solvers for Numerical Optimization, Wisconsin Institute for Discov-
ery Available in: https://neos-server.org/neos/, [Accessed on 2019-06-17]

[23] E. Ng and B.W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor computers,
SIAM Journal on Scientific Computing 14(5) (1993), pp. 1034–1056.

[24] A. Ruszczyński, Interior point methods in stochastic programming, International Institute for Ap-
plied Systems analysis, Working paper 93-8, (1993)

[25] T. Santoso, S. Ahmed, M Goetschalckx and A. Shapiro, A stochastic programming approach for
supply chain network design under uncertainty, European Journal of Operational Research 167(1)
(2005), pp. 96–115.

[26] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, (1997).
[27] F. A. Potra and S. J. Wright, Interior-point methods, Journal of Computational and Applied Math-

ematics 124 (2000), pp. 281–302.
[28] V. Zverovich, C. I Fábián, E. F Ellison and G. Mitra, A computational study of a solver system for

processing two-stage stochastic LPs with enhanced Benders decomposition, Mathematical Program-
ming Computation 4(3) (2012), pp. 211–238.

http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html
https://neos-server.org/neos/

