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Abstract: Structural health monitoring for offshore wind turbines is imperative. Offshore wind
energy is progressively attained at greater water depths, beyond 30 m, where jacket foundations
are presently the best solution to cope with the harsh environment (extreme sites with poor soil
conditions). Structural integrity is of key importance in these underwater structures. In this work, a
methodology for the diagnosis of structural damage in jacket-type foundations is stated. The method
is based on the criterion that any damage or structural change produces variations in the vibrational
response of the structure. Most studies in this area are, primarily, focused on the case of measurable
input excitation and vibration response signals. Nevertheless, in this paper it is assumed that the
only available excitation, the wind, is not measurable. Therefore, using vibration-response-only
accelerometer information, a data-driven approach is developed following the next steps: (i) the
wind is simulated as a Gaussian white noise and the accelerometer data are collected; (ii) the
data are pre-processed using group-reshape and column-scaling; (iii) principal component analysis
is used for both linear dimensionality reduction and feature extraction; finally, (iv) two different
machine-learning algorithms, k nearest neighbor (k-NN) and quadratic-kernel support vector machine
(SVM), are tested as classifiers. The overall accuracy is estimated by 5-fold cross-validation. The
proposed approach is experimentally validated in a laboratory small-scale structure. The results
manifest the reliability of the stated fault diagnosis method being the best performance given by the
SVM classifier.

Keywords: structural health monitoring; jacket-type; accelerometers; support vector machines;
principal component analysis

1. Introduction

The potential of offshore wind power is enormous. In offshore wind farms, wind turbines
(WTs) are erected with different types of foundations. Monopile foundations are by far the most
common foundation (81%). These are quite simple structures anchored directly to the seabed. Gravity
foundation systems are very rare (at 5.7% market share) as they involve using a large concrete or steel
platform with a diameter of approximately 15 m and a weight of approximately 3000 tons. Finally,
jackets are preferred for extreme sites with poor soil conditions as these are foundations with a lattice
framework that feature three or four seabed anchoring points, which increases the levels of safety
when anchoring the towers; see Figure 1. As said previously, the potential of offshore wind power
is enormous. However, it can only be exploited by diminishing operation and maintenance costs.
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Structural health monitoring (SHM) solutions to provide an early warning of damage are essential to
accomplish this objective. Thus, this paper focuses in the problem of damage detection for jacked-type
foundations.

Figure 1. Fixed type WT foundations [1]. Monopile (a), jacket (b), and gravity-based (c).

In the literature, a lot of methodologies for damage detection can be found, among them the
vibration-based methods are one of the most prolific ones, as shown in [2]. Vibration-based SHM
methods are data-based approaches employing random excitation and/or vibration response signals
(time series), statistical model building, and statistical decision making schemes for inferring the health
state of a structure [3]. The interest in these methods has been growing in recent years, due to their
simplicity, ease of use, and high effectiveness [4]. However, most studies are, primarily, focused on
the case of measurable input excitation and vibration response signals, with only a few recent studies
focused on the vibration-response-only case [5], the importance of which stems from the fact that in
some applications the excitation cannot be imposed and is often not measurable. This work, aims to
contribute in this area of vibration-response-only as the vibration excitation is given by the wind (it
cannot be imposed and it is assumed to be unknown).

An overview of SHM systems for various WT components is presented, for example, in [6]. Some
important studies that focus specifically on the offshore WT structure are the following. In [7] a review
of SHM systems for offshore WTs has been carried out considering the topic as a statistical pattern
recognition problem. In [8] health monitoring systems and operational safety evaluation techniques of
the offshore wind turbine structure are systematically investigated and summarized. It is noteworthy
the work of Mieloszyk et al. [9] where a SHM system is stated based on fiber Bragg grating sensors
dedicated to an offshore wind turbine support structure model is presented to detect and localize crack
occurrence. It is also remarkable the work of Fritzen et al. [10] where a method for online damage
detection/localization is presented accompanied with on field tests of a prototype 5MW plant. In [11]
a method for damage localization using finite element model updating is introduced as a subsequent
step to a three tier SHM scheme for damage detection. It is also noteworthy the work of Weijtjens
et al. [12] related to the foundation SHM of a real offshore monopile WT based on its resonance
frequencies where the key problems are the operational and environmental variability of the resonance
frequencies of the turbine that potentially conceal any structural change. Another method based on
random decrement and neural networks is stated in [13]. A method based on finite element model
updating and fuzzy logic is applied on a lab-scale jacket-type platform in [14]. At the lowest level of
SHM, the main objective is simply the detection of the presence of damage. In most cases, a model
of normality is built [15], and data originating from the structure of interest are tested, usually after
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some processing, in terms of novelty (when compared to the normal model). Novel data are thus
detected and can be considered indicative of damage. Although this process is generally considered
less challenging than the full identification of damage, it has a great advantage: it does not need data
from damaged states. Finally, in [16], where an experimental testbed similar to the one stated in this
work is used, damage detection is accomplished (but not localization or classification) by means of the
covariance matrix estimate damage indicator.

This paper contributes a damage detection and localization method (the latter being treated as a
classification problem) for a jacket-type WT model by using only acceleration response data. As in
[17], it is assumed that the available excitation is the wind, thus the input excitation is not measurable.
Hence, the contributed methodology comprises the following steps. First, a Gaussian white noise
is used to simulate the wind excitation. Secondly, the data coming from the WT accelerometers are
acquired. Thirdly, the raw data are pre-processed using group-reshape (to increase the amount of
information contained by each observation) and column-scaling (to simplify the computation of the
principal components (PCs)). Fourthly, the PCA is used as a feature selection technique as well as to
reduce the dimensionality of the data and the computing time. Finally, the k-nearest neighbor (k-NN)
and the quadratic Support Vector Machine (SVM) classifiers are tested. To estimate their performance,
the 5-fold cross-validation technique is used to advise that the SVM has the best performance. The
reliability of the proposed method is verified using different bar crack locations in a small-scale
structure—an experimental testbed modeling a jacket-type WT.

The structure of the paper is as follows. Section 2 details the experimental laboratory testbed
used to validate the proposed approach. Section 3 states the damage detection and classification
methodology. The results are presented in Section 4. Finally, the conclusions are drawn in Section 5.

2. Experimental Testbed

The general overview of the experimental testbed is given in Figure 2 and explained as follows.
The experiment starts with a white noise signal given by the function generator. This signal is
amplified and passed to the inertial shaker. This is responsible for generating vibrations (similar to
those produced by steady state wind on the blades) to the laboratory tower structure. The shaker is
placed in the upper part of the structure, thus simulating the nacelle mass. Finally, the structure is
monitored by 8 triaxial accelerometers which are connected to the data acquisition system. The next
subsections describe the testbed different steps and instrumentation.

Figure 2. General overview of the experimental testbed.

2.1. Function Generator

Function generators are signal sources which provide a specifiable voltage applied over a
specifiable time. In this work the GW INSTEKAF-2005 model is used. To perform the experimental
tests, the white noise signal is selected. Different wind speeds were simulated by multiplying the
amplitude of the white noise signal (at the function generator) by the factors 0.5, 1, 2 and 3.
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2.2. Amplifier and Shaker

When large structures need to be tested, inertial shakers provide the ideal solution. The central
spigot is attached to the structure under test and the body then provides the inertial mass. In this
work, the inertial shaker model GW-IV47 from Data Physics is used as well as its PA300E gain control
amplifier; see Figure 3. To produce vibrations that simulate the ones obtained when the wind hits the
WT blades, the white noise signal given by the function generator is amplified and this electrical signal
is applied to the shaker. Thus, the vibration needed to excite the structure is created.

Figure 3. Amplifier model PA300E (left) and inertial shaker IV47 series (right) from Data Physics used
in the experimental set-up.

2.3. Laboratory Tower Structure and Studied Types of Damage

The real structure used in this work is 2.7 m high and, as shown in Figure 4 (left), it has three
different structural components: nacelle, tower and jacket. The top piece is a 1 m long and 0.6 m wide
beam where an inertial shaker is located that simulates the nacelle mass and the environmental effects
of the wind over the whole structure. The tower is formed by three tubular sections linked with bolts
with a torque of 125 Nm. The jacket is a pyramidal structure formed by several steel bars of different
lengths, all of them linked with bolts, with a torque of 12 Nm. The studied damage is introduced
in these bars; see Figure 4 (right). In particular, the jacket has four different bar lengths, each one at
different levels (depth). Level 1 is where the shortest bars are located, near the water surface. Then,
greater depth leads to next levels up to level 4 where the longest bars are situated (near the see bottom).
The damage will be introduced, one at a time, at the four different levels, i.e., at four different bars
located at level 1, 2, 3 and 4 as illustrated in Figure 4 (right). Fatigue cracks are one of the types of
damage found on offshore WT foundations. The probability of detection of a fatigue crack is low for
small crack sizes. However, for larger and therefore better detectable fatigue cracks, the crack growth
rate accelerates rapidly [18]. Consequently, there is only a small time window for detection and repair
of this type of cracks before failure. Thus, in this work a 5 mm crack is considered located at different
bars of the jacket structure, one at a time. Please note that in [16] a modal analysis and power spectral
density signal processing methods were not able to detect this 5 mm crack located in the substructure
using a similar laboratory tower model.
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Figure 4. WT scaled offshore fixed jacket-type platform tower model used in the experimental tests
(left). Bars (pointed with arrows) where the crack damage is introduced (right); note that in this picture
the damage is introduced at level 4 (red circle), but it will be introduced on each level one by one.

2.4. Sensors

Eight triaxial accelerometers (model 356A17, PCB Piezotronics) (PCB® manufacturer, Depew, NY,
USA) have been used strategically (placed at the tower and jacket by direct adhesive mount) to detect
some anomaly in the dynamic behavior of the structure. These are high sensitivity and ceramic shear
accelerometers that have a fixed voltage sensitivity, regardless of the type of cable used or its length;
and its output signal is low impedance, so it can transmit over long cables in hostile environments
without losing signal quality. The device is accompanied by a cable that trifurcates giving an output
for each spatial component x, y, and z; see Figure 5. Hence, data from 24 sensors are acquired.

Figure 5. Triaxial accelerometers used in the testbed (PCB Piezotronics, model 356A17).

The optimal location of the sensors (see Figure 6) is determined according to the sensor elimination
by modal assurance criterion (SEAMAC) [16, Chapter 3.7, page 53]. This is a sensor removal algorithm
based on eliminating iteratively, one by one, the degrees of freedom that show a lower impact on MAC
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matrix values. This iterative process stops when you get a default MAC matrix, high values in the
diagonal terms and low values in off-diagonal terms.

Figure 6. Location of the sensors on the overall structure.

2.5. Data Acquisition System

The data acquisition system is composed by the cDAQ-9188 chassis and six NI-9234 modules
from National Instruments™manufacturer (Austin, TX, USA), as shown in Figure 7. The cDAQ-9188 is
a CompactDAQ Ethernet chassis, consisting of 8 input slots, and each slot can receive up to 4 different
signals. The chassis is capable of controlling timing, synchronization and data transfer between the
C Series I / O modules and an external server. The NI-9234 modules can measure signals from
integrated electronic piezoelectric sensors (IEPE) and non-IEPE such as accelerometers (used in this
work), tachometers and proximity sensors.

Figure 7. Data Acquisition System (DAQ) used in this work: cDAQ-9188 chassis and six NI-9234
modules from National Instruments.
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3. Damage Detection Methodology

3.1. Data Collection and Reshape

In this work, data collection and reshape is considered with the goal of combining different
response signals (measured by different sensors during multiple observations) into a single and unified
view. We will present a method for data fusion, dimensionality reduction and feature extraction using
a particular unfolding. We then apply a machine-learning classifier (k-NN and SVM are tested) to
detect damage or structural changes in incoming collected data. It is clear that the classifiers will
play a key role in the damage detection methodology. However, given the three-dimensional nature
of the collected information in this paper (time, sensors, experiments), how the data are collected,
arranged, scaled, transformed, and reduced may affect the overall performance of the strategy [19].
A similar problem is considered in [20], where the three-dimensional nature of the SHM data comes
from location, frequency and time. In that case, tensor analysis is considered to extract the features.

One of the most widely adopted ways to deal with this kind of three-dimensional source of
information is the unfolding proposed by Westerhuis et al. [21], where six alternative ways of arranging
a 3-dimensional data matrix are proposed. In our case, the combination of the different response signals
into a unified view will be represented by a two-dimensional matrix X =

(
xk,l

i,j

)
∈ M(n1+···+nE)×(K·L)

as follows:

X =
(

xk,l
i,j

)
=



x1,1
1,1 · · · x1,L

1,1 x2,1
1,1 · · · x2,L

1,1 · · · xK,1
1,1 · · · xK,L

1,1
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1,1
n1,1 · · · x1,L

n1,1 x2,1
n1,1 · · · x2,L

n1,1 · · · xK,1
n1,1 · · · xK,L

n1,1

x1,1
1,2 · · · x1,L

1,2 x2,1
1,2 · · · x2,L

1,2 · · · xK,1
1,2 · · · xK,L

1,2
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1,1
n2,2 · · · x1,L

n2,2 x2,1
n2,2 · · · x2,L

n2,2 · · · xK,1
n1,2 · · · xK,L

n2,2
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1,1
1,J · · · x1,L

1,J x2,1
1,J · · · x2,L

1,J · · · xK,1
1,J · · · xK,L

1,J
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1,1
nJ ,J · · · x1,L

nJ ,J x2,1
nJ ,J · · · x2,L

nJ ,J · · · xK,1
nJ ,J · · · xK,L

nJ ,J



(1)

=



X1

X2

...

XJ


=

[
X1 X2 · · · XK

]
.

Matrix X in equation (1) is presented for a general case, so that the proposed strategy can be
easily reproduced. The two subindices i and j and the two superindices k and l are related to the
experimental trial, structural state, sensor and time instant, respectively. More precisely,

• i = 1, . . . , nj represents the i−th experimental trial, while nj is the number of observations or
experimental trials per structural state;

• j = 1, . . . , J is the structural state that is been measured, while J is the quantity of different
structural states;

• k = 1, . . . , K indicates the sensor that is measuring, while K is the total number of sensors;
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• l = 1, . . . , L identifies the time stamp, while L is the number of time stamps per experiment.

Please note that matrix X in Equation (1) can also be viewed as the vertical concatenation of J matrices
Xj, j = 1, . . . , J, where each matrix is associated with a different structural state. Similarly, matrix X
can also be considered to be the horizontal concatenation of K matrices Xk, k = 1, . . . , K, where each
matrix is associated with a different sensor. This horizontal concatenation of matrices can also be
viewed as a kind of group-reshaping, where we measure a sensor during nj · L time instants (in the j−th
structural state), and we finally arrange these nj · L time instants in a nj × L matrix Xj . It is noteworthy
that by this reshape—that is the key of the selected unfolding proposed by Westerhuis et al. [21]—it
is increased the amount of information contained by each observation (row). Moreover, this choice
facilitates the study of the variability among samples, because we compile the information related to
the sensor measurements and their variations over time.

3.2. Column-Scaling and Principal Component Analysis (PCA)

The raw data in matrix X in Equation (1) is scaled for two main reasons: first, to process data that
come from different sensors and second, to simplify the computations of the data transformation using
PCA [22–25]. In this work, column-wise scaling (CS) is used. More precisely, each column vector in
matrix X is normalized by subtracting the mean of all the elements in the column and by dividing by
the standard deviation of the same set of data. Thus, each column of the new scaled matrix, X̆, has a
mean of zero and a standard deviation of one.

Recall that before using a classifier, the data must be processed (transformed and reduced) to
obtain the most suitable features. In this work, multiway PCA is selected to accomplish this objective.
On one hand, the transformation is calculated as a matrix-to-matrix multiplication

T = X̆P,

where P is the matrix that contains, written as columns, the principal components of matrix X̆. T is a
(n1 + · · ·+ nJ)× (K · L) matrix. On the other hand, the dimensionality reduction is performed through
the reduced PCA model P` that contains, written as columns, the first ` principal components. More
precisely, T` is the projection of the scaled matrix X̆ into the vectorial space spanned by the reduced
PCA model through the matrix-to-matrix multiplication

T` = X̆P`.

Since we have applied column-scaling, the trace of the variance-covariance matrix is equal to K · L.
This means that the first ` principal components retain a proportion of variance given by

λ1 + λ2 + · · ·+ λ`

KL
,

where λi are the eigenvalues associated with the eigenvectors (principal components) of the
variance-covariance matrix, in decreasing order.

3.3. Machine-Learning Classifiers

Multi-class classification algorithms are used to categorize the different structural states. In
particular, the supervised learning algorithms k-NN and SVM are used and its performance compared
through different indicators. The k-NN classifier is an instance-based learner, i.e., it stores the training
data in the memory instead of constructing a model and compares the new test data to closest saved
instances to perform the prediction. On the other hand, the SVM classifier constructs a model that is
supposed to generalize well. The classifiers are succinctly introduced in the following subsections.
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3.3.1. k-Nearest Neighbor (k-NN)

The k-NN algorithm [26,27] stores the training dataset and to make a prediction computes the
k nearest neighbors to the observation to be categorized and assigns the category of the majority. It
only requires tuning one parameter: the number of neighbors, k. The main drawback is that as it does
not train a model, the algorithm spends more time during the prediction. Please note that we use the
same symbol k as one of the superindices in the generic element of matrix X in Equation (1), but with a
different meaning. We will keep the notation k-NN because we think that there is no possibility of
ambiguity.

3.3.2. Support Vector Machine (SVM)

It is not the purpose of this paper to give a detailed explanation of the SVM classifier. For the
interested reader, an excellent detailed review is given in reference [28]. However, to hand over the
background and motivation for the proposed methodology, a summary of the method is given. This
recap is based on reference [29].

SVM classification is primarily a binary classification technique. Suppose a training set
{(xi, yi)}N

i=1 with d-dimensional data xi ∈ Rd and their complementary binary label yi ∈ {−1,+1}.
Figure 8 shows a two-dimensional example of these type of data where one class is labeled as (+) and
the other one as (−). The objective of the SVM is to find the hyperplane with the widest margin to
separate both classes; see Figure 8. Conventionally, the hyperplane is given by

Figure 8. Linear support vector machine (SVM) in a two-dimensional example.

h(x) = ωTx + b, (2)

where ω is the weight vector and b is the bias term. Among all the possible descriptions of the
hyperplane, usually the so-called canonical hyperplane is used that satisfies

ωTxsv
+ + b = 1, (3)

ωTxsv
− + b = −1, (4)
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where xsv
+ and xsv

− illustrate the (+) and (−) training samples closest to the hyperplane (the so-called
support vectors); see Figure 8. Maximizing the margin is equivalent to the following minimization
problem

min
ω,b

1
2
||ω||2 subject to h(xi)yi ≥ 1, i = 1, . . . , N. (5)

When the data are not separable by a hyperplane, SVM can use a soft margin, meaning to find
a hyperplane that separates many but not all the data. Therefore, the problem is generalized by
introducing slack variables, εi, and a penalty parameter, C. Then, the general formulation, for the
linear kernel, is,

min
ω,b,εi

1
2
||ω||2 + C

N

∑
i=1

εi subject to

 h(xi)yi ≥ 1− εi, i = 1, . . . , N;

εi ≥ 0, i = 1, . . . , N.
(6)

In this case, using Lagrange multipliers, the problem reads

min
αi

[
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjxT
i xj

]
subject to

 ∑N
i=1 αiyi = 0;

0 ≤ αi ≤ C, i = 1, . . . , N.
(7)

The final set of constraints demonstrate why the penalty parameter C is called a box constraint, as it
retains the values of the Lagrange multipliers in a bounded region.

From Equation (7), it is obvious that optimization depends only on dot products of pairs of
samples. Plus, the decision rule depends only on the dot product. Thus, when the classification
problem does not have a simple separating hyperplane, even using a soft margin, a transformation
to another space can be used, φ(·). Indeed, the transformation itself is not needed, but just the dot
product (so-called kernel function),

K(xi, xj) = φ(xi)φ(xj). (8)

The kernel function permits the computation of the inner product between the mapped vectors
without expressly calculating the mapping. This is known as the kernel trick [30]. Different kernels can
be used, namely polynomial, hyperbolic tangent, or Gaussian radial basis function. Here, to give an
insight and understand why the quadratic kernel is selected in this work, some scatter plots are shown
in Figure 9. It can be seen that these plots reveal a quadratic relationship and, particularly, the first
versus the second feature scatter plot exposes a concentric circles shape of the data set. Therefore, the
quadratic SVM classifier is adopted, i.e., the following polynomial kernel is used

K(xi, xj) =

(
1 +

1
ρ2 xTi xj

)2
(9)

where ρ is the so-called kernel-scale parameter; and xi and xj denote here different observations of our
data set.
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(a) Scatter plots of the first versus the second
principal component.

(b) Scatter plots of the first versus the third
principal component.

(c) Scatter plots of the first versus the fourteenth
principal component.

(d) Scatter plots of the first versus the
twenty-fifth principal component.

Figure 9. Blue dots represent healthy samples, orange dots represent samples of damage at level 1,
yellow dots represent samples of damage at level 2, purple dots represent samples of damage at level 3
and green dots represent samples of damage at level 4.

As said previously, SVM classification is a binary classification technique, which must be adapted
to cope with multi-classification problems. Two of the most common methods to enable this adaptation
include the one-vs-one and one-vs-all approaches. The one-vs-all technique [31] represents the earliest
and most common SVM multi-class approach and comprises the division of an N class dataset into N
two-class cases and it designates the class which classifies the test with greatest margin. The one-vs-one
strategy [32] comprises constructing a machine for each pair of classes, thus resulting in N(N − 1)/2
machines. When this approach is applied to a test point, each classification gives one vote to the
winning class and the point is labeled with the class with most votes. The one-vs-one strategy is more
computationally demanding since the results of more SVM pairs ought to be computed. In this work,
the one-vs-all approach is used.

3.4. κ-Fold Cross-Validation

Cross-validation is a technique used to evaluate the results and ensure that they are independent
of the partition between training and test data. It comes from the improvement of the holdout method
that consists of dividing the sample data into two complementary sets, performing the training in
the first subset and validating with the other subset. By the holdout method, the evaluation can
depend to a large extent on how the partition between training and test data is performed. Due to
this deficiency the concept of cross-validation appears. In the cross-validation of κ iterations, or κ-fold
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cross-validation, the data is divided into κ subsets. One of the subsets is used as test data and the rest
(κ− 1) as training data. This process is repeated κ times, and at each iteration a different subset is used
as test data and the others as training data. Finally, the arithmetic mean of the results of each iteration
is performed to obtain a single result. This method is a more accurate estimate of model prediction
performance since it evaluates from κ different combinations of training and test data. In this paper,
5-fold cross-validation is used to estimate the performance of the proposed strategy.

4. Results

4.1. Experimental Set-Up

As said in Section 2.3, we have considered J = 5 different structural states, the healthy WT and
the structure with damage located at four different jacket levels. Moreover, a total of n1 + n2 + n3 +

n4 + n5 = 11620 experimental tests are conducted, which includes the four amplitudes that represent
the different wind speed regions (multiplying the amplitude of the white noise signal by the factors
0.5, 1, 2 and 3). In particular:

(i) 1245 tests with the original healthy bar for each amplitude, i.e., n1 = 1245 · 4 = 4980 tests.
(ii) 415 tests with damage located at level 1 for each amplitude, i.e., n2 = 415 · 4 = 1660 tests.

(iii) 415 tests with damage located at level 2 for each amplitude, i.e., n3 = 415 · 4 = 1660 tests.
(iv) 415 tests with damage located at level 3 for each amplitude, i.e., n4 = 415 · 4 = 1660 tests.
(v) 415 tests with damage located at level 4 for each amplitude, i.e., n5 = 415 · 4 = 1660 tests.

For each experimental test, we measure K = 24 sensors (see Section 2.4), during L = 199 time
instants. Since the accelerometers measure at a sampling frequency of about 275 Hz, the time step is
∆ = 0.003633 seconds, which represents a time window for each experimental test of 199

275 Hz = 0.7236
seconds. Please note that this sampling frequency is feasible in an offshore environment using
accelerometers; see [8].

Therefore, with the raw matrix X as in equation (1) where

n1 = 4980

n2 = 1660

n3 = 1660

n4 = 1660

n5 = 1660

J = 5

L = 199

K = 24

we apply the column-scaling and we compute the PCA model for the data transformation as detailed
in Section 3.2. The extent of the data reduction can be measured as the rate of the number of principal
components that retains a predetermined variance with respect to the number of columns in matrix X
in Equation (1). For instance:

(i) if we retain 85% of the variance, the first 443 principal components are needed out of K · L = 4776
columns. This represents a data reduction (leading to reduced memory requirements) of 90.72%.

(ii) if we retain 90% of the variance, the first 887 principal components are needed. The reduction in
this case is 81.43%.

(iii) if we retain 95% of the variance, the first 1770 principal components are needed. This represents
a still significant reduction of 62.94%.

Data reduction is of paramount importance in both the training time and the prediction speed. The
results in this section are computed and assessed using MATLAB©.
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4.2. Metrics for Evaluating Classification Models

In classification problems, training data is used to build a model and thus predict the class label
for a new sample. To know if the model that we have trained has the best performance according to
the problem presented, it is important to evaluate the classification model through metrics such as
accuracy, precision, sensitivity and specificity that can be generated from a confusion matrix such as
the one shown in Table 1. Regularly, these metrics evaluate binary classification problems.

Table 1. Binary confusion matrix.

Predicted class

Positive Negative

A
ct

ua
lc

la
ss Positive

True positive

(TP)

False negative

(FN)

Negative
False positive

(FP)

True negative

(TN)

From this binary confusion matrix:

• True positive (TP) is the number of positive cases that were correctly identified.
• False positive (FP) is the quantity of negative cases that were incorrectly classified as positive.
• True negative (TN) is defined as the sum of negative cases that were correctly classified.
• False negative (FN) is the total of positive cases that were incorrectly classified as negative.

The meaning of positive and negative may vary from one application to another. For instance, in
[23] and [33], where a 5 MW high-fidelity WT model is considered for fault detection, if a new sample
is categorized as positive it means that the current structure is classified as healthy. Otherwise, some
kind of fault is present in the WT. In the present work, we follow the same classification with respect
to positive and negative.

Table 2 shows the most common metrics for choosing the best solution to a binary classification
problem.
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Table 2. Metrics for evaluating binary classification models.

Metric Formula Description

Accuracy acc = TP+TN
TP+FP+FN+TN

It is the number of correct predictions made by the model

according to the total number of records. The best accuracy is

100%, which indicates that all predictions are correct. Accuracy

alone does not tell the full story when working with a

class-imbalanced data set.

Precision ppv = TP
TP+FP

This parameter evaluates the data by its performance of positive

predictions, in other words, it is the proportion of positive cases

that have been correctly predicted.

Sensibility/Recall tpr = TP
TP+FN

This parameter calculates the fraction of the positive cases that

our model has been able to identify as positive (true positive).

F1-Score F1 = 2 ppv × tpr
ppv +tpr

It is defined as the harmonic mean of precision and sensitivity. A

F1 score reaches its best value at 1 (accuracy and perfect sensitivity)

and worse at 0.

Specificity tnr = TN
TN+FP

The specificity or true negative rate is calculated as the proportion

of correct negative predictions divided by the total number

of cases that are classified as negative.

Specificity is the exact opposite of sensitivity, the proportion of

negative cases predicted correctly.

As shown in [34], these metrics are easy to calculate and applicable to binary and multi-class
classification problems. When the classification problem is multi-class, according to [35] and [36] the
result is the average obtained by adding the result of each class and dividing over the total number of
classes. The formulas for calculating these metrics in a multi-class classification model are shown in
Table 3.

Table 3. Metrics for evaluating multi-class classification models, where j refers to the individual class
and J is the total number of classes.

Metric Formula

Average Accuracy (acc) 1
J ∑J

j=1
TPj+TNj

TPj+FPj+FNj+TNj

Average Precision (ppv) 1
J ∑J

j=1
TPj

TPj+FPj

Average Sensibility/Recall (tpr) 1
J ∑J

j=1
TPj

TPj+FNj

Average F1-Score (F1) 2
ppv× tpr
ppv + tpr

Average Specificity (tnr) 1
J ∑J

j=1
TNj

TNj+FPj

In a multi-class confusion matrix, the classification results TP, TN, FP and FN can also be
considered for each class, as shown in [35, page 71]. Table 4 summarizes a confusion matrix with 5
different classes. When we focus, for instance, on class B (that is, the second class), we can identify
four regions:
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• the green region is related to the true positive (TP2);
• the magenta region is related to the false positive (FP2). More precisely, FP2 is the sum of the

elements in the second column but BB, i.e., FP2 = AB + CB + DB + EB;
• the orange region is related to the false negative (FN2). More precisely, FN2 is the sum of the

elements in the second row but BB, i.e., FN2 = BA + BC + BD + BE; and finally,
• the cyan region is related to the true negative (TN2). More precisely, TN2 is the sum of all the

elements of the confusion matrix but the ones in the second row and the second column.

Table 4. Multi-class confusion matrix. In this case, the confusion matrix has five classes.

Predicted Class

Class A Class B Class C Class D Class E

A
ct

ua
lc

la
ss

...
...

...

Class A AA AB AC AD AE

Class B BA BB BC BD BE

Class C CA CB CC CD CE

Class D DA DB DC DD DE

Class E EA EB EC ED EE

The classification results TPj, FPj, FNj and TNj for j = 1, . . . , 5 that correspond to classes A, B, C,
D and E in Table 4, respectively, are computed similarly.

Recall that this paper shows a multiple classification problem that collects data grouped in five
different classes: the original healthy bar, damage located at jacket level 1, damage located at jacket
level 2, damage located at jacket level 3 and damage located at jacket level 4.

4.3. Results of k-NN Classification Method

First, the k-NN classifier is tested. The indicators introduced in Section 4.2 are employed to tune
the value of the parameter k, which is the number of neighbors to be used, and also decide the best
variance to be adopted when applying PCA.

Table 5 shows the results obtained when working with 85%, 90% and 95% of the variance, and
also varying the number of neighbors, k. The classifiers with the best performance are highlighted in
boldface font. It can be observed that the best classifiers from 90% and 95% of the variance, respectively,
have both similar indicators. In this case, working only with 90% of variance is preferred as it will
reduce the computational memory requirement. In terms of time, Table 6 shows the training time
and prediction speed for each of the classifiers with the best performance. It can be inferred that the
classifier using 90% of the variance and k = 200 neighbors has the best performance. In particular,
for this classifier, Figure 10 graphically shows its performance indicators (pink line) and Table 7
represents its confusion matrix. Regarding Figure 10 it is observed that initially, increasing the number
of neighbors leads to better indicators, however when k is greater than 200 the performance degrades
for all the indicators. With regard to the confusion matrix (Table 7), each row represents the instances
in a true class while each column represents the instances in a predicted class (by the classifier). In
particular, the first row (and first column) is labeled as 0 and corresponds to the healthy bar. The next
labels (for rows and columns) 1, 2, 3, and 4 correspond to bars damage in the corresponding levels of
the jacket structure. From this confusion matrix, it can be derived all the aforementioned indicators.
In particular, it is noteworthy that an average accuracy of 95%, an average precision (proportion
of healthy cases predicted correctly) of 95%, and an average specificity (proportion of faulty cases
predicted correctly) of 99.5% are obtained.
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Table 5. Evaluation indicators for the k-NN method using different percentages of variance and
different number of nearest neighbors (k). The best classifiers for each variance are highlighted using a
boldface font.

Variance
Number

of PCs

Neighbors

k

Accuracy

acc

Precision

ppv

Recall

tpr

F1 score

F1

Specificity

tnr

85% 443

1 0.857 0.860 0.846 0.853 0.950

5 0.856 0.869 0.82 0.844 0.953

10 0.867 0.891 0.827 0.858 0.956

25 0.868 0.898 0.828 0.862 0.955

50 0.874 0.912 0.831 0.87 0.958

100 0.911 0.928 0.879 0.903 0.981

150 0.933 0.942 0.908 0.925 0.988

200 0.946 0.947 0.924 0.936 0.993

250 0.940 0.938 0.917 0.927 0.991

300 0.930 0.929 0.903 0.915 0.988

500 0.899 0.909 0.859 0.884 0.976

90% 887

1 0.857 0.856 0.845 0.85 0.961

5 0.860 0.870 0.828 0.849 0.956

10 0.872 0.887 0.838 0.862 0.961

25 0.873 0.889 0.840 0.864 0.961

50 0.884 0.913 0.846 0.878 0.964

100 0.917 0.930 0.886 0.907 0.984

150 0.938 0.945 0.914 0.929 0.990

200 0.950 0.950 0.931 0.940 0.995

250 0.944 0.941 0.922 0.932 0.993

300 0.933 0.931 0.906 0.918 0.989

500 0.903 0.912 0.864 0.888 0.977

95% 1770

1 0.854 0.853 0.842 0.847 0.960

5 0.858 0.865 0.829 0.847 0.956

10 0.872 0.885 0.841 0.862 0.962

25 0.873 0.888 0.841 0.864 0.962

50 0.885 0.911 0.848 0.879 0.965

100 0.918 0.930 0.888 0.908 0.985

150 0.938 0.945 0.915 0.930 0.990

200 0.950 0.950 0.930 0.940 0.995

250 0.945 0.942 0.923 0.932 0.993

300 0.934 0.931 0.908 0.919 0.989

500 0.904 0.913 0.866 0.889 0.978
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Table 6. Prediction speed and training time results for the best performance classifiers of each variance
(85%, 90% and 95%) using the k-NN classification method on a 3GHz Intel Core i7, 16 GB RAM
computer. The best classifier in terms of accuracy is highlighted using a boldface font.

Variance Accuracy

Prediction

speed

(obs/sec)

Training

time

(sec)

85% 94.6% 210 329

90% 95.0% 110 638

95% 95.0% 55 1251

acc ppv trp F1 tnr
0.8

0.85

0.9

0.95

1
k=1

k=5

k=10

k=25

k=50

k=100

k=150

k=200

k=250

k=300

k=500

Figure 10. Indicators corresponding to the k-NN method using 90% of variance. The case k = 200,
represented by the pink line, shows the best performance in each of the evaluation indicators.

Table 7. Confusion matrix for the k-NN algorithm with k =200 neighbors. The obtained accuracy is
95%. Label 0 corresponds to the healthy state, and labels 1, 2, 3 and 4 correspond to the damage state
located at the corresponding level. In this matrix, each row represents the instances in a true class while
each column represents the instances in a predicted class. An empty blank square means 0%.

0 1 2 3 4

0 > 99% < 1%

1 < 1% 98% 2%

2 7% 93% < 1%

3 75% 25%

4 1% < 1% 99%
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4.4. Results of SVM Classification Method

In this Section the results of the SVM classification method are presented. As stated in Section
3.3.2, since the scatter plots in Figure 9 reveal a quadratic relationship (particularly the first versus the
second principal components), the quadratic SVM classifier is adopted. Therefore, in this case, the
hyper-parameters are the box constraint C, see (6), and the kernel scale ρ, see (9), that are tuned using
the indicators detailed in Section 4.2.

Table 8 summarizes the results obtained when working with 85%, 90% and 95% of the variance.
Since the problem we are dealing with seems a separable problem, no changes were found in the
performance of the indicators when considering different values of the box constraint C. Therefore,
C = 1 is considered for the rest of the analysis. The cases that present the best results have been
highlighted in boldface font. It can be observed that the best classifiers from 85%, 90% and 95% of the
variance reach a level of accuracy, precision, recall, F1 score and specificity around 99.8% and 100%.
However, the best cases are the ones that consider 85% of the variance and kernel scales ρ = 90 and
ρ = 100. In these cases, the results are almost ideal reaching a specificity value of 100% and the rest of
the indicators 99.9%. With respect to the time, Table 9 presents the training time and the prediction
speed for each one of the classifiers with the best performance. According to this table, it is observed
that the classifier with 85% of the variance and a kernel scale ρ=90 has a higher prediction speed
(in terms of observations per second) and a shorter training time. Therefore, this classifier has the
best performance. It may seem incongruous that a case with fewer principal components (85%, 443
PCs) behaves better than cases with more principal components (90%, 887 PCs; or even 95%, 1770).
However, this can occur, since the last principal components usually collect the noise present in the
measurements.

Figure 11 graphically shows the magnitude of the indicators in Table 3 with respect to the kernel
scale ρ for the case with 85% of the variance. It can be seen that increasing the kernel scale from ρ = 5
(solid light blue) onwards improves the overall performance of the classification method up to a certain
limit. The performance degradation appears for values greater than ρ = 100.

The confusion matrix for the best performing classifier (85% variance and kernel scale ρ = 90) is
represented in Table 10. From this confusion matrix and according to the indicators of evaluation, we
obtain an average accuracy of 99.9%, an average precision of 99.9% and an average specificity of 100%.
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Table 8. Evaluation indicators for the SVM model using different percentages of variance and different
values for ρ (kernel scale). The best values for each indicator are highlighted using a boldface font.

Variance/

Number of

components

Box

constraint

C

Kernel

scale

ρ

Accuracy

acc

Precision

ppv

Recall

tpr

F1 score

F1

Specificity

tnr

85%/443 1

5 0.987 0.993 0.983 0.988 0.995

20 0.994 0.991 0.991 0.991 1.000

30 0.995 0.994 0.994 0.994 1.000

40 0.996 0.995 0.995 0.995 1.000

50 0.997 0.996 0.996 0.996 1.000

60 0.998 0.997 0.997 0.997 1.000

70 0.998 0.998 0.998 0.998 1.000

80 0.999 0.998 0.998 0.998 1.000

90 0.999 0.999 0.999 0.999 1.000

100 0.999 0.999 0.999 0.999 1.000

150 0.998 0.998 0.998 0.998 1.000

200 0.997 0.996 0.997 0.997 0.999

300 0.882 0.926 0.835 0.878 0.954

90%/887 1

5 0.987 0.993 0.982 0.988 0.995

20 0.991 0.988 0.988 0.988 1.000

30 0.995 0.993 0.993 0.993 1.000

40 0.996 0.995 0.995 0.995 1.000

50 0.997 0.997 0.997 0.997 1.000

60 0.998 0.997 0.997 0.997 1.000

70 0.998 0.997 0.997 0.997 1.000

80 0.998 0.997 0.997 0.997 1.000

90 0.998 0.998 0.998 0.998 1.000

100 0.998 0.998 0.998 0.998 1.000

150 0.998 0.998 0.998 0.998 0.999

200 0.997 0.996 0.996 0.996 0.999

300 0.883 0.927 0.837 0.880 0.955

95%/1770 1

5 0.986 0.993 0.981 0.987 0.994

20 0.990 0.987 0.986 0.986 1.000

30 0.994 0.992 0.992 0.992 1.000

40 0.996 0.994 0.994 0.994 1.000

50 0.997 0.996 0.996 0.996 1.000

60 0.997 0.997 0.997 0.997 1.000

70 0.998 0.997 0.997 0.997 1.000

80 0.998 0.997 0.998 0.998 1.000

90 0.998 0.998 0.998 0.998 1.000

100 0.998 0.997 0.998 0.998 1.000

150 0.998 0.997 0.998 0.997 0.999

200 0.996 0.996 0.996 0.996 0.999

300 0.997 0.997 0.997 0.997 0.999
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Table 9. Prediction speed and training time results for the best performance cases of each variance
(85%, 90% and 95%) using the SVM classification method. The best classifier in terms of accuracy and
computational cost is highlighted using a boldface font.

Variance

Kernel

scale

ρ

Accuracy

Prediction

speed

(obs/sec)

Training

time

(sec)

85%
90 0.999 1700 76

100 0.999 1600 79

90%
90 0.998 320 256

100 0.998 580 364

95% 90 0.998 100 676

acc ppv trp F1 tnr
0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1 =5

=20
=30

=40
=50

=60
=70

=80
=90

=100
=150

=200

Figure 11. Indicators to evaluate the SVM classification model using 85% of variance. The cases with
the best performance are ρ = 90 and ρ = 100 that are represented by the overlapped orange (solid) line
and blue (dotted) line, respectively. The graph omits ρ = 300 since the results obtained are much worse
and would be out of the y-axis scale used in this graph.

5. Conclusions

In this work, a methodology has been stated for damage detection and localization on a
laboratory-scale WT with jacket-type foundation. In particular, a crack damage is studied in four
different locations of the jacket foundation. The main conclusions stressed from this work are the
following:
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Table 10. Confusion matrix of the SVM model with ρ = 90 and C = 1, we get an accuracy of 99.9%.
Label 0 corresponds to healthy, label 1 corresponds to level 1, label 2 corresponds to level 2, label 3 level
3 and label 4 corresponds to level 4. In this matrix, each row represents the instances in a true class
while each column represents the instances in a predicted class. An empty blank square means 0%.

0 1 2 3 4

0 > 99% < 1% < 1%

1 < 1% 99% < 1%

2 < 1% 99%

3 > 99% < 1%

4 100%

(i) A vibration-response-only methodology has been conceived and a satisfactory experimental
proof of concept has been conducted. However, future work is needed to validate the technology
in a more realistic environment that takes into account the varying environmental and operational
conditions.

(ii) The contribution of this work resides in how three-dimensional data (coming from different time,
sensors, and experiments) is collected, arranged, scaled, transformed, and dimension reduced
following a general framework stated in Sections 3.1 and 3.2, and afterwards particularized for
the specific application that concerns us in Section 4.1.

(iii) The damage detection and localization methodology with the quadratic SVM classifier, kernel
scale ρ = 90, box constraint C = 1, and 443 principal components (85% of variance kept) has a
very close to ideal performance, achieving in all indicators a result equal o higher to 99.99% with
a very fast prediction speed (1700 obs/sec) and short training time (76 sec).

Finally, it is important to note that environmental and operational conditions (EOC) play an
important role when dealing with long term monitoring, because they can complicate damage detection.
Large variations in EOCs make EOC monitoring almost as important as structural monitoring itself.
Therefore, its influence should be compensated. Several methods for EOC compensation for WTs
have been developed to make SHM possible. For example, in [37] affinity propagation clustering is
used to delineate data into WT groups of similar EOC. In [38] covariance-driven stochastic subspace
identification is used. Finally, in [39] and [40] fuzzy classification techniques are used for EOC
compensation. However, as noted previously, this work is an experimental proof of concept and
EOC compensation is left as future work using pattern recognition techniques in a more realistic
environment.
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Abbreviations

The following abbreviations are used in this manuscript:

CS column-scaling

FN false negative

FP false positive

k-NN k nearest neighbors

IEPE integrated electronic piezoelectric sensors

MAC modal assurance criterion

PC principal component

PCA principal component analysis

SHM structural health monitoring

SVM support vector machine

TN true negative

TP true positive

WT wind turbine
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