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Abstract—The adoption of Software Define Networking,
Network Function Virtualization and Machine Learning will
play a key role in the control and management of fifth-
generation (5G) networks in order to meet the specific
requirements of vertical industries and the stringent re-
quirements of 5G. Machine learning could be applied in 5G
networks to deal with issues such as traffic prediction, routing
optimization and resource management. To evaluate the
adoption of machine learning in 5G networks, an adequate
testing environment is required. In this paper, we introduce
a lightweight testbed, which utilizes the benefits of container
lightweight virtualization technology to create machine learn-
ing network functions over the well-known Mininet network
emulator. As a use case of this testbed, we present an
experimental real-time bandwidth prediction using the Long
Short Term Memory recurrent neural network.

Keywords—5G, SDN, NFV, machine learning, containers

I. INTRODUCTION

The fifth generation (5G) of communication networks
will bring with new requirements, such as high data rates,
high traffic densities, low latency and high reliability,
and use cases such as the Internet of Things (IoT) and
critical communication applications. These requirements
and use cases impose new challenges, which demand
efficient, intelligent and agile network management. Ad-
ditionally, 5G will create an ecosystem that increases
innovation opportunities for new applications in vertical
industries such as manufacturing, healthcare, media and
entertainment, financial services, public safety, the au-
tomotive industry, public transportation, energy utilities,
food and agriculture, and city management. Each of these
has a specific set of requirements in latency, throughput,
availability, reliability, coverage, mobility, ans so on. 5G
will provide a flexible network that caters to such varied
requirements. Network flexibility implies a high degree of
softwarization, virtualization and automation [1]. From the
network perspective, Software Defined Networking (SDN)
is considered to be the materialization of the softwarization
concept, and Network Function Virtualization (NFV) of

the virtualization paradigm [2]. One key component in
enabling network flexibility is network slicing, as it allows
us to create tailored logical networks on top of a common
shared physical infrastructure in order to efficiently satisfy
the specific needs of each vertical industry. A network
slice involves a set of network functions and resources
that are required to run these network functions. SDN
and NFV can provide the programmability, flexibility and
modularity that are necessary to create network slices [3].

Since SDN and NFV allow network functions to run in
software instead of being tightly coupled with hardware,
they provide flexibility and reconfigurability to the net-
work. Thus, network functions can be modified, updated
and placed at any location in the network. However,
the dynamic behavior of network functions introduces
complexities and makes the provisioning, management and
control of network slices impractical in a manual way.
In this dynamic environment, continuous monitoring and
network analytics become compulsory to understand the
network behavior. Similarly, providing the network with
automation capabilities is essential for network operation
and management. Network automation reduces operational
costs, avoids human error and accelerates the service time
to market.

Besides, the application of machine learning (ML) to
network analytics provides the network with learning and
decision-making capabilities. ML techniques can extract
relevant information from the network data and then
utilize this knowledge for autonomic network control and
management, as well as service provisioning. Based on
historical and real-time data, ML mechanisms can pre-
dict network behavior and adapt it to the new network
conditions by allocating the required amount of network
resources without overprovisioning. ML can also be used
for energy-saving optimization. If the current demand is
low, it may be possible to switch off some elements
or migrate services to locations with lower energy costs
in order to optimize energy consumption. ML may be
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effectively applied in automatic network orchestration and
network management, making self-organizing networks
feasible. In other words, ML is a key enabler of automation
and contributes to addressing the problem of deploying
network intelligence. In this context, SDN and NFV com-
bined with ML are key enablers of 5G networks [4].

In this respect, it is worth mentioning that standardiza-
tion entities are working in this field. The 3rd Generation
Partnership Project (3GPP) has introduced a Network
Data Analytics Function (NWDAF) in the 5G System
Architecture. NWDAF is defined as an operator-managed
network analytics logical function that can provide slice-
level network data analytics to a network function [5]. The
European Telecommunications Standards Institute (ETSI)
has created an Industry Specification Group (ISG) called
Experiential Networked Intelligence (ENI). The ENI sys-
tem is an innovative context-aware entity that enables
intelligent service operation and management applying
technologies, such as big data analysis and artificial in-
telligence mechanisms to adjust offered services based
on changes in user needs, environmental conditions and
business goals [6].

In this scenario, as ML has recently received much
attention as a key enabler of the control and management
of 5G networks, researchers need tools to design, test
and evaluate it. Researchers face various difficulties when
testing ML applications due to infrastructure limitations,
the expense or difficulty in building physical testbeds, or
the unavailability of emulation platforms. Thus, in this
paper we present an emulation test platform that is able
to emulate ML as network functions using Mininet and
Docker containers to facilitate the development and testing
of ML applications in 5G networks. Network functions are
executed inside Docker containers that are interconnected
through the underlying Mininet-based emulation environ-
ment.

The remainder of this paper is structured as follows. In
Section II, theoretical background is reviewed. In Section
III, we introduce the testbed architecture and detail its
components. Section IV presents the results of experimen-
tation results consisting of traffic prediction using the Long
Short Term Memory (LSTM) recurrent neural network as
a ML technique. Finally, in Section V, conclusions and
plans for future work are presented.

II. BACKGROUND
A. Network Functions Virtualization (NFV)

NFV transforms the way in which operators design
and manage networks by employing virtualization tech-
nology [7]. NFV decouples specialized network functions
from hardware and implements them as Virtual Network
Functions (VNFs). VNFs are implemented in software
and deployed on commercial off-the-shelf (COTS) servers
[8]. Multiple VNFs can be connected in order to create
complex network services (NSs), which are managed by
a management and orchestration system (MANO).

By separating network functions from hardware, NFV
offers several advantages over traditional network archi-

tectures: (1) reduced equipment footprint and power con-
sumption, as it is possible to collapse multiple network
functions into a single physical server; (2) rapid service
development and deployment, making network upgrade
tasks easier; (3) longer hardware life cycles; and (4)
reduced maintenance costs. These benefits mean that NFV
enhances flexibility and scalability while reducing CApital
and OPerational EXpenditure (CAPEX and OPEX) [7].

B. Containers

Since NFV involves implementing network functions
in software, virtualization technologies such as virtual
machines (VMs) and containers play an important role
in VNFs’ development. Prior to the deployment of VNFs
in production environments, VNFs must be tested in
confined, lightweight environments [9]. Researchers and
developers use these environments in the development and
prototyping of new NSs. In these environments workloads
run as software instances over VMs or containers.

Containers and VMs provide application isolation and
bundle applications with all of their dependencies in a self-
contained unit that can run anywhere. Both share physical
computing resources, allowing for efficient use in terms
of energy consumption and cost. Although the goals of
containers and VMs are similar, the approach to achieving
them differs. While VMs provide hardware virtualizations,
containers provide operating-system-level virtualization.

Containers are a more lightweight virtualization tech-
nology than VMs; unlike VMs, containers do not require a
hypervisor, as VMs do. A VM also needs its own operating
system, which means that each VM runs a full copy of
an operating system, regardless of whether the operating
system is the same on two or more VMs. This adds an
overhead, as starting an operating system occupies time,
memory and storage.

Containers run on the top of the host operating sys-
tem, sharing the kernel. Applications running in contain-
ers share operating-system-level architecture that provides
them with basic services. Containers require an underlying
operating system that provides the basic services to all
of the containerized applications. By sharing operating
system resources, the need to replicate operating system
code is significantly reduced, which means that a server
can run multiple containerized applications with a single
operating system installation. Therefore, containers are
very lightweight in terms of size and starting time. In other
words, this means that by using containers, we can run
more application instances on a single server than we can
with VMs.

Containers utilizes two kernel features, such as names-
paces and control groups (cgroups), to create virtual en-
vironments on top of an operating system. Namespaces
provide a layer of isolation by limiting what a container
can view and access, such as processes trees, networking
resources or file system. When a container runs, the kernel
creates a separate namespace that the container will use.
Thus, this container’s access is limited to that namespace.
In contrast, cgroups provide resource allocation. With
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cgroups, the kernel create groups of processes for resource
management purposes. Cgroups allow granular control
over resources by limiting or prioritizing system resources
such as CPU time, system memory, network bandwidth, or
combinations of these. In this sense, cgroups ensure that
the containers use the resources that they require [10].

C. GPU Usage in ML

As mentioned in Section I, ML will play a crucial role in
the operation and management of 5G networks. Applying
ML in network analytics enables the intelligent use of
network-generated data. ML will provide the network with
insights into traffic patterns, available resources, potential
security threats and user behavior, allowing the network to
proactively adapt or change its behavior based on previous
knowledge of these issues.

In 5G, the number of devices connected to the network
is expected to grow exponentially. Therefore, the amount
of data collected for network control and management
will also increase. Moreover, it is envisioned that 5G will
involve a combination of different technologies such as
heterogeneous networks, cloud computing or edge com-
puting. In this complex ecosystem with large volumes and
varied types of data, the application of ML in network
analytics will require a significant computational power,
which Graphical Processing Units (GPUs) can provide.

The execution of ML workloads can be accelerated by
using GPUs. A GPU has more numerous and smaller cores
than a CPU. As GPUs have many cores and each core
performs rapid calculations simultaneously, they are highly
suitable for parallel processing. Thus, the use of GPUs
in ML is a cost-effective and high-performance option in
comparison to traditional CPUs.

III. TESTBED ARCHITECTURE

The application of ML to provide the network with a
certain degree of intelligence has attracted the attention
of several standards bodies and industry forums. ML
techniques enable the network to make autonomous de-
cisions by processing large amounts of network data. As
mentioned in Section I, 3GPP has included a dedicated
function called NWDAF in 5G system architecture for the
purposes of data collection and data analytics.

At this point, it is worth mentioning that 3GPP’s 5G
system architecture is service based. In a Service-based
Architecture (SBA), the architecture elements are defined
as network functions that offer their services via a common
bus known as Service-Based Interface (SBI). Network
functions that are allowed to make use of the provided
services can directly communicate with each other as
originators or consumers. The SBA model takes advantage
of the latest virtualization and software technologies, such
as containers, to offer modularity, extensibility, reusability
and self-containment in network functions. NWDAF is
one key function within SBA, facilitating access to net-
work data analytics. Consumer network functions decide
how the data analytics provided by NWDAF are used
to improve the network performance. For example, the
Policy Control Function (PCF) may use per slice data
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analytics in its policy decisions, or the Network Slice
Selection Function (NSSF) may use the load-level analytic
information for slice selection.

In addition, the application of ML in network analyt-
ics requires both a module to monitor and collect data
from the network and a module to apply ML techniques
to extract knowledge from the data collected. The data
collection module’s role is to gather and store sufficient in-
formation from different sources to understand the current
state of the network. It also performs data preprocessing
to ensure that only useful data is stored. Relevant col-
lected data may include network configuration, traffic data,
control and management data, application and service-
level data, and even external information, such as social
networks [11]. The collected data are transformed into
knowledge via ML in the second module. This module
is the key component, as it is responsible for choosing
the best ML algorithm that fits a certain problem or use
case. In this module, based on real-time and historical
network data, ML techniques can bring intelligence to
the network by providing useful insights about its current
and future states. The outcome of this module can be
used by network controller or management systems to
make decisions (either automatically or through human
intervention) in order to optimize the use of network
resources and enhance the provision of NSs.

In this context, it is necessary to have a platform
ready for the development, prototyping and evaluation
of network functions that provide network data analytics
services such as NWDAF. The main objective of this work
is to integrate the concepts and technologies described in
Section II into a testbed, using the well-known Mininet
network emulator and one of the most commonly-used
container engines, Docker. The testbed architecture is
ilustrated in Fig. 1.

In this testbed, data analytics network functions run
as containerized applications within Docker containers.
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Table I
TESTBED COMPONENTS

Component Testbed Component
Network Emulator Containernet
GPU Support for Containers  NVIDIA Container Runtime
Container Engine Docker
Host Operating System Ubuntu Bionic Beaver
GPU NVIDIA GPU

There are two types of containers: one for data collection
and one for ML application. The latter container type
executes ML algorithms using GPUs. Since the used GPU
is an NVIDIA GPU, the Docker containers use NVIDIA
Container Runtime to access the GPU. NVIDIA Container
Runtime simplifies the process of building and deploying
containerized GPU-accelerated applications and guaran-
tees the best performance on NVIDIA GPUs. Similarly,
to provide interconnection between Docker containers on
the top of Mininet, a fork of Mininet called Containernet
is used [12]. Containernet extends the Mininet network
emulator to allow the use of standard Docker containers
as Mininet virtual hosts within the emulated network. In
addition, Containernet allows the user to add or remove
containers from the emulated network and to change re-
source limitation at runtime. Finally, any traffic generation
tool, such as Iperf, can be used to generate traffic. The
traffic generator host can be either a Mininet host or a
Docker container.

This testbed, therefore, provides a framework for de-
veloping, testing and evaluating the application of ML in
5G networks in a simple, flexible and lightweight manner.
Table I summarizes the components of this testbed.

IV. EXPERIMENTAL EVALUATION

We conducted an experiment to validate whether our
testbed is lightweight and easy to use. The experiment
consisted of predicting the traffic of a network via the
use of ML; specifically, we used LSTM to do this. The
experiment was carried out on a single physical machine
which featured a CPU Intel(R) Core(TM) i19-9900K 3.60
GHz, 64 GB of RAM, running Ubuntu 18.04. The GPU
used was an NVIDIA GeForce RTX 2080 with 2944 built-
in cores and 8 GB of GDDR6 dedicated memory.

A. Traffic Prediction and LSTM

Network traffic prediction is an important issue in net-
work operations and management, especially with regard
to such diverse and complex networks as 5G networks.
The aim of traffic prediction is to forecast the volume of
future traffic by analyzing historical traffic information.
Based on the results of traffic prediction, the network can
make decisions in advance and adopt suitable preemptive
actions to ensure its smooth operation, before a network
overload occurs. These actions may include proactive
routing policies or the provision of network resources.

Traffic prediction has been addressed via time series
forecasting (TSF) [13]. Recent advances in deep learning
have demonstrated that Recurrent Neural Networks (RNN)

are powerful tools for TSF [14]. In our experimentation
we used LSTM RNN for traffic prediction.

Time series traffic forecasting uses past traffic measure-
ments to forecast future traffic patterns. For example, given
a traffic measurement z(t) at a time ¢, one can obtain
a time series of {z(t),t =1,2,...}. Traffic prediction
consists of estimating the traffic at a future time (¢ 4+ m)
given m previous measurements, i. e.,

z(t+m)=f({z(n),n=1,2,...,t}) (1)

LSTM is a special case and the most commonly used
type of RNN. It is capable of learning long-term depen-
dencies, which means that it can remember information
that was previously learned. LSTM comprises multiple
layers formed by one or more memory cells. A cell is
responsible for memorizing values over time. Each cell
is composed of three basic units: the input, output and
forget gates that control information flow in an LSTM
cell. The gates decide whether to forget, keep, update or
output previously acquired information. LSTM is the most
successful model for predicting long-term time series [15].

The input vector of our LSTM traffic prediction neural
network corresponds to the recent traffic measurements,
ie., x = [z(t),z(t — 1),...,2(t — n)], while the output
vector is the predicted traffic in a future time y =
[x(t+1),z(t+2),...,2(t +m)]. Since LSTM networks
retain past memory, traffic prediction for time interval
[t + 1,t+ m] is not only determined by the recent traffic
measurements in [t — n,t] but also indirectly by traffic
measurements before ¢ — n through the memory cells.

B. Experimental Results

In our experiment, we deployed a simple topology over
Mininet that consisted of a traffic generator host and the
corresponding traffic sink, the data collector function and
the ML function. All of these components were connected
via a Mininet switch. Using Iperf, the traffic generator host
generated traffic based on the dataset described later in
this section. The data collector and ML network functions
were Docker containers. One of the advantages of using
Docker is that it offers us a repository of container images
called the Docker hub. In this repository, we can find many
containerized applications ready for use. As we intended
to test ML algorithms, we used a container image that
includes TensorFlow and CUDA. TensorFlow is an open-
source platform for ML that provides a complete and flexi-
ble set of tools and libraries for ML development, whereas
CUDA is a parallel computing platform which allows to
harness the power of the NVIDIA GPUs, accelerating the
ML workload execution.

To emulate the data collection function, we developed
a Python script that periodically collected statistics from
Mininet’s switch interfaces and stored the collected data in
a shared volume. The ML function accessed the collected
data that were stored in the shared volume and used these
data to train the LSTM RNN. Once the ML model had
been trained, it was stored in the shared volume for later
use in real-time traffic prediction. The training task is an
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Experiment details

offline task that uses historical data for training LSTM
model and can periodically retrain the model with the
collected data, while the prediction task is an online task
that makes prediction when a new traffic measurement is
received. We also developed training and prediction tasks
as Python scripts. It is worth mentioning that containerized
network functions are executed on demand, which means
that they run only for as long as it takes to execute
the Python scripts execution, thus optimizing the use of
computational resources. Fig. 2 presents the details of the
experimental testbed.

The process of training our ML model is described
below. We used a dataset from [16]. The dataset con-
tained information about the traffic generated on a cellular
network and provided hourly data on traffic statistics for
each base station. The dataset consisted of (1) a base
station identifier, (2) the date and time in UNIX format,
(3) the number of users associated with the base station,
(4) packets and (5) bytes transferred by the base station at
the indicated time. In our case, we took the information of
bytes and the date and time of two base stations to predict
the traffic that each base station would use in the future.

Specifically, we forecasted the traffic demand for each
base station in the next hour, based on 24 past measure-
ments (n = 24 (1 day)).

We generated training samples using a sliding window-
based approach [14]. For example, to predict the traffic
in the next hour (m = 1) based on the past 24 traffic
measurements (n = 24), we used every consecutive
25 measurements as one training sample. The first 24
measurements became the input vector, and the 25% mea-
surement in the training sample was used as the output
label.

As the dataset was week-long, we reproduced the same
data for the previous six months for training purposes.
The dataset was divided in 80% training and 20% testing.
Using the trained model, we predicted future traffic. Given
that the LSTM architecture is characterized by the number
of epochs and the batch size, we performed a set of ex-
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periments in order to identify the optimal values for these
parameters to minimize the prediction error and execution
time. The batch size is the number of training samples used
in each iteration. We chose the value for the batch size
that minimized the execution time. Fig. 3(a) shows that a
batch size of above 1700 minimizes the execution time. In
addition, the number of epochs determines the maximum
number of passes over the training dataset. Different values
for the number of epochs were tested in order to identify
the optimal one that minimizes the prediction error. Thus,
in the Fig. 3(b) it is evident that after 700 epochs, there
is not a considerable improvement in prediction error, so
this value was chosen in the LSTM.

We configured the LSTM network with one hidden
layer, 100 neurons, an Adam optimizer with default values,
700 epochs and a batch size of 1700. Fig. 4 presents the
traffic prediction results for the two base stations. The
prediction values are very similar to the actual values, so
this model was considered as a valid model for traffic
prediction in this dataset.

In order to validate the computational overhead, we
conducted offline training and online prediction, both in
the CPU and GPU. In addition, to evaluate the overhead
introduced by containers, we performed the same tasks on
Docker containers and directly on the host. The training
and prediction overhead in terms of processing time are
presented in Table II. From the results in this table, it is
evident that the training time is longer than the prediction
time which is very short. However, this is not a problem
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Table II
PROCESSING TIME FOR TRAINING AND PREDICTION

Processing Time (s)

Host Container
CPU GPU CPU GPU
Training 14350 9.195 14390 9.312
Prediction 0.062 0.067 0.064 0.069

in traffic prediction, because training is an offline task and
once the training is completed, the trained model can be
used for real-time prediction.

As expected, the processing times for training and
prediction on the containers and the host were similar;
this is because containers can access the hardware directly
through the operating system. Using containers does not
lead to a virtualization overhead unlike in VMs with
the hypervisor. Finally, using the GPU reduced training
runtime, since GPUs allow parallel computing over a
large number of cores, running thousands of threads at
a time. GPU and CPU prediction times are quite similar,
as prediction is a small workload and does not require a
large number of threads. It is evident that the prediction
time on the CPU is slightly lower than on the GPU, due
to higher frequency of the CPU cores; the frequency in
the CPU is 3600 MHz, whereas GPU’s frequency is 1515
MHz.

V. CONCLUSIONS AND FUTURE WORK

This work presents the use of Docker containers and
Mininet to build a lightweight testbed with the aim to

evaluate the application of ML in 5G networks. In this
testbed, the functions that perform network analytics using
ML run as containerized NFVs. This paper also describes
how containers can run ML algorithms on GPUs.

In our future work, we intend to integrate the testbed
with an SDN controller and MANO system to test a
comprehensive network ecosystem, in which the output of
ML network functions will assist in the decision-making
process to apply adequate policies and configuration pa-
rameters in the network. Likewise, we will use this testbed
to assess the introduction of a distributed network analytics
architecture for 5G networks applying distributed ML
approaches.
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