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RESUM 

Els hivernacles en coberta (RTG) són una oportunitat que les ciutats no poden deixar passar. No 

només permeten el desenvolupament d'un nou model de producció agrícola de proximitat 

urbana, sinó que també contribueixen a una economia baixa en carboni, alhora que aprofiten els 

espais de la ciutat que fins ara estaven en desús: les cobertes dels edificis. L'objectiu d'aquest 

estudi és realitzar l'avaluació del cicle de vida ambiental i econòmic dels RTG en comparació amb 

els sistemes d'hivernacles convencionals mitjançant l'anàlisi de diferents materials de cobertura 

per a definir l'escenari òptim de RTG. 

L'avaluació es divideix en: (1) un estudi comparatiu d'avaluació del cicle de vida (LCA) entre els 

dos hivernacles de referència: el RTG i l'hivernacle convencional (CG). (2) L'avaluació de diferents 

materials de cobertura: vidre per a horticultura (HG), policarbonat (PC), polietilè (PE), polietilè de 

doble capa i ETFE. (3) Una avaluació del cicle de vida amb el material de cobertura òptim per a 

analitzar les càrregues ambientals de l'escenari òptim per al RTG. Juntament amb l'avaluació del 

Cost del Cicle de Vida (LCC), que s'aplica per a analitzar l'acompliment econòmic de l'escenari 

actual i òptim i determinar la millor opció. 

Seguint un enfocament del bressol a la tomba, s'inclouen en l'estudi les etapes de construcció, 

operació i final de la vida útil. La unitat funcional es defineix com 1 kg de tomàquets produïts 

durant 1 any. Els mètodes LCIA aplicats són el ReCiPe (jeràrquic, midpoint), que inclou les 

següents categories d'impacte: escalfament global (GW), eutrofització d'aigua dolça (FE), 

escassetat de recursos minerals (MRS) i consum d'aigua (WC), i el mètode únic de demanda 

d'energia acumulada (CED). Per a l'anàlisi econòmica es considera el Valor Actual Net (VAN). 

Segons els resultats obtinguts en aquesta tesi, els resultats mostren que el RTG té un impacte 

ambiental entre 1.3 per a WC a 2.7 per a GW vegades major que el CG. Els valors obtinguts per 

als altres indicadors estan entre aquest interval. L'estructura de l'hivernacle (estructura, material 

de coberta i equip auxiliar) representa entre el 66% i el 98% de l'impacte total per al RTG i, entre 

el 60% i el 83% per al CG en tota la seva vida útil. A més, el polietilè és el material amb el menor 

impacte ambiental per cada hivernacle. S'ha valorat l’ETFE com a substitut del material de coberta 

actual del RTG, ja que el reemplaçament amb polietilè no compleix amb els requisits estructurals 

i de seguretat en els edificis. 

Finalment, amb la nova coberta d’ETFE, hi ha una millora global per a totes les categories 

d'impacte. GW destaca per la seva reducció del 7% de les emissions de CO2 eq, evitant 0.05 kg de 

CO2 eq per kg de tomàquets produïts. També s'ha obtingut una reducció del 10% en la CED, 
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estalviant 0,84 MJ per kg de tomàquet. A nivell de costos, el reemplaçament de la cobertura total 

de RTG augmenta el preu en 6.8 € per m2. 

En conclusió, el polietilè pot considerar-se òptim, des d'un punt de vista ambiental i econòmic, 

per a hivernacles convencionals o RTG no integrats. No obstant això, per al RTG de referència en 

aquest treball, el material de coberta òptim és l’ETFE, que té resultats similars al polietilè mentre 

que "s'ajusta" millor en l'entorn urbà. 

Paraules clau: RTG, hivernacle convencional, LCA, LCC, materials de cobertura, sostenibilitat.  
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RESUMEN 

Los invernaderos en cubierta (RTG) son una oportunidad que las ciudades no pueden dejar pasar. 

No solo permiten el desarrollo de un nuevo modelo de producción agrícola de proximidad urbana, 

sino que también contribuyen a una economía baja en carbono, a la vez que aprovechan los 

espacios de la ciudad que hasta ahora estaban en desuso: las cubiertas de los edificios. El objetivo 

de este estudio es realizar la evaluación del ciclo de vida ambiental y económico de los RTG en 

comparación con los sistemas de invernaderos convencionales mediante el análisis de diferentes 

materiales de cobertura para definir el escenario óptimo de RTG. 

La evaluación se divide en: (1) un estudio comparativo de evaluación del ciclo de vida (LCA) entre 

los dos invernaderos de referencia: el RTG y el invernadero convencional (CG). (2) La evaluación 

de diferentes materiales de cobertura: vidrio para horticultura (HG), policarbonato (PC), 

polietileno (PE), polietileno de doble capa y ETFE. (3) Una evaluación del ciclo de vida con el 

material de cobertura óptimo para analizar las cargas ambientales del escenario óptimo para el 

RTG. Junto con la evaluación del Costo del Ciclo de Vida (LCC), que se aplica para analizar el 

desempeño económico de los escenarios actual y óptimo y determinar la mejor opción. 

Siguiendo un enfoque de la cuna a la tumba, se incluyen en el estudio las etapas de construcción, 

operación y final de la vida útil. La unidad funcional se define como 1 kg de tomates producidos 

durante 1 año. Los métodos LCIA aplicados son el ReCiPe (jerárquico, midpoint), que incluye las 

siguientes categorías de impacto: calentamiento global (GW), eutrofización del agua dulce (FE), 

escasez de recursos minerales (MRS) y consumo de agua (WC), y el método único de demanda 

de energía acumulada (CED). Para el análisis económico se considera el Valor Actual Neto (VAN). 

Según los resultados obtenidos en esta tesis, los resultados muestran que el RTG tiene un impacto 

ambiental entre 1.3 para WC a 2.7 para GW veces mayor que un CG. Los valores obtenidos para 

los otros indicadores están entre este intervalo. La estructura del invernadero (estructura, 

material de cubierta y equipo auxiliar) representa entre el 66% y el 98% del impacto total para el 

RTG y, entre el 60% y el 83% para el CG en toda su vida útil. Además, el polietileno es el material 

con el menor impacto ambiental por cada invernadero. Se ha valorado el ETFE como sustituto del 

material de cubierta actual del RTG, ya que el reemplazo con polietileno no cumple con los 

requisitos estructurales y de seguridad en los edificios. 

Finalmente, con la nueva cubierta de ETFE, hay una mejora global para todas las categorías de 

impacto. GW destaca por su reducción del 7% de las emisiones de CO2 eq, evitando 0.05 kg de 

CO2 eq por kg de tomates producidos. También se ha obtenido una reducción del 10% en la CED, 



Environmental and economic analysis of the life cycle of Rooftop Greenhouses (RTGs) 

 

13 
 

ahorrando 0,84 MJ por kg de tomate. A nivel de costes, el reemplazo de la cobertura total de RTG 

aumenta el precio en 6.8 € por m2. 

En conclusión, el polietileno puede considerarse óptimo, desde un punto de vista ambiental y 

económico, para invernaderos convencionales o RTG no integrados. Sin embargo, para el RTG de 

referencia en este trabajo, el material de cubierta óptimo es el ETFE, que tiene resultados 

similares al polietileno mientras que "se ajusta" mejor en el entorno urbano. 

Palabras clave: RTG, invernadero convencional, LCA, LCC, materiales de cobertura, sostenibilidad. 

  



Environmental and economic analysis of the life cycle of Rooftop Greenhouses (RTGs) 

 

14 
 

SUMMARY  

Rooftop Greenhouses (RTG) are an opportunity that cities cannot miss. Not only do they allow 

the development of a new agricultural production model of urban proximity, but also contribute 

to a low carbon economy, all while taking advantage of the city's spaces that up until now were 

disused: the roofs of the buildings. The aim of this study is to perform the environmental and 

economic life cycle assessment of Rooftop Greenhouses (RTGs) in comparison with conventional 

greenhouses systems by analysing different covering materials to define the optimal RTG 

scenario.  

The assessment is divided into: (1) a comparative Life Cycle Assessment (LCA) study between the 

two reference greenhouses: the RTG and the conventional greenhouse (CG). (2) The assessment 

of different covering materials– horticulture glass (HG), polycarbonate (PC), polyethylene (PE), 

polyethylene double-layer and ETFE. (3) A life cycle assessment with the optimal covering 

material to analyse the environmental burdens optimal scenario for the RTG. Along with the Life 

Cycle Costing (LCC) assessment, which is applied in order to analyse the economic performance 

of current and optimal scenario and determine the best option. 

Following a cradle-to-grave approach, construction, operation and end-of-life stages are included 

in the study. The functional unit is defined as 1 kg of tomatoes produced over 1 year. The applied 

LCIA methods are the ReCiPe (hierarchical, midpoint), including the following impact categories: 

Global Warming (GW), Freshwater Eutrophication (FE), Mineral Resource Scarcity (MRS) and 

Water Consumption (WC), and the single method Cumulative Energy Demand (CED). For the 

economic analysis Net present value (NPV) are considered. 

According to the results obtained in this thesis, results show that the RTG has an environmental 

impact between 1.3 for WC to 2.7 for GW times higher than a CG. The values obtained for the 

other indicators are between this interval. The structure of the greenhouse - structure, cover 

material and auxiliary equipment - represents between 66% and 98% of the total impact for the 

RTG and, between 60% and 83% for the CG in its whole useful life. Moreover, polyethylene is the 

material with the lowest environmental impact per greenhouse. The use of ETFE has been valued 

as a substitute for the current RTG covering, as the replacement with polyethylene does not meet 

the structural and safety requirements in buildings.   

Finally, with the new ETFE cover, there is a global improvement for all impact categories. GW 

stands out for its reduction of 7% of CO2 eq emissions, avoiding 0.05 kg of CO2 eq by kg of 

tomatoes produced. An important reduction of 10% at CED was also identified, saving 0.84 MJ 
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per kg of tomato. At a cost level, the replacement of the total RTG covering increases the price 

by 6.8€ per m2. 

In conclusion, polyethylene can be considered optimal, from an environmental and economic 

point of view, for conventional greenhouses or non-integrated RTG. However, for the RTG of 

reference in this work, the optimal cover material is the ETFE, which has similar results than the 

polyethylene while it “fits” better in the urban environment. 

Keywords: RTG, conventional greenhouse, LCA, LCC, covering materials, sustainability. 
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ABBREVIATIONS 

Associations of Growing Producers of Fruit, Vegetables, Flowers and Live 

Plants FEPEX 

Building Integrated Photovoltaic Panel BIPV 

Cadmium telluride CdTe 

Conventional Greenhouse  CG 

Copper indium gallium CIG 

Copper indium gallium diselenide CGIS 

Cumulative Energy Demand  CED 

Current Retail Price Index RPI 

Efficient use of input in protected horticulture EUPHOROS 

Ethylene-tetrafluoroethylene ETFE 

Food and Agriculture Organization of the United Nations  FAO 

Global Horizontal Irradiation  GHI 

Horticulture Glass  HG 

Institut de Ciència i Tecnologia Ambiental - Institut Català de Palentologia ICTA-ICP 

Institut de Recerca i Tecnologia Agroalimentàries IRTA 

Instituto Nacional de Estadística INE 

Instituto para la Diversificación y ahorro de la Energía IDEA 

Integrated-Rooftop Greenhouse i-RTG 

International Reference Life Cycle Data System Handbook ILCD Handbook 

International Standarization Organization ISO 

Japanese yen JPY 

Life Cycle Assessment  LCA 

Life Cycle Costing LCC 

Life cycle inventory LCI 

Mercados Centrales De Abastecimientos Sa MERCASA 

Ministry of Economy and Competitiveness of Spain MINECO 

Net Present Value NPV 

Rooftop Greenhouse RTG 

Photosynthetically Active Radiation  PAR 

Polycarbonate  PC 

Polyethylene PE 

Polymethyl methacrylate PMMA 
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Polyvinyl chloride  PVC 

Semi-integrated Rooftop Greenhouse si-RTG 

Society of Environmental Toxicology and Chemistry SETAC 

Universitat Autònoma de Barcelona  UAB 

Universitat Politècnica de Catalunya  UPC 

Urban Agriculture UA 

United Nations Environment Programme  UNEP 
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1 INTRODUCTION 

1.1 URBAN AGRICULTURE 

Urban Agriculture can be defined as the growing, processing, and distribution of food and other 

products through plant cultivation and raising livestock in and around cities for feeding local 

populations or to sale in nearby markets. (FAO, 2019; Hendrickson & Porth, 2012). 

Although cities only represent an occupation of 3% of the land surface, this portion of land 

concentrates more than 50% of the world population - 60% in 2030 according to the United 

Nations. Moreover, it consumes between 60 - 80% of the energy produced, 75% of global carbon 

emissions are emitted and concentrate between 70 - 90% of the economic activity (United 

Nations, 2019). As a result, cities have become the most vulnerable areas to climate change and 

natural disasters. 

Furthermore, observing the trends that can be developed in the upcoming years, it is vital to be 

able to create policies and develop technologies in order to initiate a paradigm change in which 

the main objective is to make cities inclusive, safe, sustainable and resilient - Objective 11 of the 

Sustainable Development Goals (United Nations, 2019). With these data, the incorporation of 

sustainability criteria in this process of urban growth will be one of the main challenges of the 

twenty-first century (Alberti, 2008). 

As the population in cities increases, food production is threatened as an effect of depopulation 

in rural areas which, aside from important environmental impacts, also affect social aspects such 

as: loss of biodiversity, erosion, degradation of the landscape, loss of cultural heritage, 

overpopulation of cities, loss of quality of life, etc. (Asociación Vidasana, 2018). The farming 

industry must assess food security challenges and involve strategic management practices to 

identify new possibilities, opportunities and risks (ElBialy et al., 2018).  

In addition, current model of food and agriculture contributes to the fragmentation of habitats, 

extensive use of energy and increase in CO2 emissions with the objective of meeting the 

requirements of large-scale marketing (Cerón-Palma, Sanyé-Mengual, Oliver-Solà, Montero, & 

Rieradevall, 2012). These challenges provide urban agriculture an opportunity to contribute to a 

low carbon economy due to the shorter supply chains and the amount of fossil fuels used in 

transportation, while increasing the yield of agriculture because costs are minimized (Ferreira, 

Guilherme, Ferreira, & Oliveira, 2018). This allows changing the current linear system of food 

production for a circular agricultural system that optimises urban cycles and contributes to the 
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food security of vulnerable people with fewer resources, among others (Cerón-Palma et al., 

2012). 

Although urban agriculture can be classified according to different factors such as location, land 

ownership, use, or purpose (Nadal, 2015), for the present thesis it is distinguish between: 

greenhouse placed in the ground or Conventional Greenhouse (CG) and greenhouses on the roof 

of buildings, also called Rooftop Greenhouses (RTG). 

1.2 GREENHOUSES 

A greenhouse is a structure with a roof made of a transparent material that allows the sunlight 

transmission, facilitating the accumulation of heat during the day and releasing it slowly during 

the night. Its main objective is to provide a favourable microclimate environment for the crops 

which grow inside and to protect them from the outdoor climatic conditions, ensuring a good 

production. Moreover, when indoor conditions are not optimal, for instance due to high indoor 

temperatures, ventilation or artificial cooling is commonly applied to dissipate the heat surplus. 

A well-designed greenhouse must maintain the important climate factors as close as possible to 

specified optimum (Elsner et al., 2000a). Consequently, it favours off-season cultivation and also 

gives greater crop productivity (Bekkaoui et al., 2018). 

Greenhouse plant production improves the yield and quality of crops through control of the 

growth environment in terms of light, water, temperature, relative humidity, CO2 concentration, 

and ventilation. (Corcelli, Fiorentino, Petit-Boix, Rieradevall, & Gabarrell, 2019; ElBialy et al., 2018; 

Yano, Onoe, & Nakata, 2014).  

Greenhouses can be classified in many ways according to construction characteristics - width, 

single or multispan, sidewall height, roof shape and slope -, covering materials - glass, rigid 

plastics, plastic-film or combinations of these - and construction materials - steel, aluminium, 

wood or combinations of these - (Elsner et al., 2000). In this thesis, the classification carried out 

consists in the covering material. 

Before defining in detail each type of greenhouse, it is worth noting that the greenhouse design 

- conventional and RTG - depends on the climatic conditions of the area. This thesis will mainly 

focus on Mediterranean climate. 

This distinction is mainly due to climate conditions and solar radiation that greenhouse might 

receive. In Northern/Central Europe, climate is characterised by cold Winters and moderate 

Summers, whereas in Southern Europe Winter is moderate, and Summer is hot. Consequently, 
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the solar irradiance in Mediterranean countries is two to three times more intense than in 

Northern Europe (Elsner et al., 2000a). 

Figure 1 shows the yearly sum of Global Horizontal Irradiation (GHI) in Europe and highlighting 

Spain; 10-years average of the period 1981-1990 [kWh/m2]. Alternatively, the maps represent 

solar electricity [kWh] generated by a 1kWp1 system per year with horizontal or inclined modules 

(Huld, Müller, & Gambardella, 2012). GHI is the amount of solar energy (integrated over a time) 

attenuated by all constituents of the atmosphere and falling on a horizontal surface on the Earth. 

GHI integrates direct, diffuse and reflected components of solar energy [Wh·m-2] (INSPIRE - 

European Comission, 2019). 

It is easily to see that in Northern/Central Europe there is a low intensity of natural light, 

particularly in Winter season. Instead, in Southern Europe - represented by Spain - the natural 

light intensity is notably higher (Tsoy, Prado, Wypkema, Quist, & Mourad, 2019). 

 

Light is one of the main factors related to the crop yield. A study of Marcelis, Broekhuijsen, 

Meinen, Nijs, & Raaphorst (2006) claims that 1% more of light results in a crop yield increase of 

0.5% – 1%. However, there are other factors to take into account. 

                                                           
1  Solar electricity systems are given a rating in kilowatts peak (kWp). This is essentially the rate at which it generates 
energy at peak performance for example at noon on a sunny day. http://www.solarae.co.uk/ask-rae/what-does-kwp-
and-kwh-mean 

Figure 1. Yearly representation of the sum of global irradiation on a horizontal (inclined) surface in global 
Europe and Spain; 10-years average of the period 1981-1990 [kWh/m2]. Alternatively the maps represent 
solar electricity [kWh] generated by a 1kWp system per year with horizontal (or inclined) modules (Huld et 

al., 2012) 
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Out of all features and focusing on climatic conditions, solar radiation influences the most. Its 

variability in the different latitude has a strong influence on the greenhouse design. For instance, 

Mediterranean climatic conditions, with mild winters and usually sunny days, allow the use of 

steel-framed, arched-roofed greenhouse with vertical sidewalls, usually covered with plastic film, 

with passive ventilation and without fixed installations for Winter heating called multi-tunnel. This 

kind of greenhouse, also called Mediterranean greenhouse is the most used in Mediterranean 

countries (Sanyé-Mengual, Oliver-Solà, Montero, & Rieradevall, 2015). These kind of greenhouses 

are completely different from northern ones which, in general, are made of more complex 

structures; covered with glass, with active ventilation and with fix heating installations that in 

Dutch greenhouses represent 75-90% of the energy consumed with the purpose to reach an 

optimum temperature for crop production (Hemming, Kempkes, & Janse, 2012). To sum up, in 

northern greenhouses advanced technology is needed for high productivity. 

1.2.1 Characteristics of Mediterranean greenhouses  

Von Elsner (2000) defined the general greenhouse design criteria claiming what Mediterranean 

greenhouses should have. These criteria are also considered applicable to RTG: 

- High total light transparency 

- Good heat insulation, especially for unheated greenhouses 

- Heating equipment to increase the minimum temperature during night time 

- Efficient ventilation by ventilators capable of being controlled 

- High stability with respect to wind and in some regions to snow loads 

- Gutters and tanks, which collect rain water for irrigation purposes 

- Greenhouse volume as large as possible 

- Availability to water saving irrigation systems 

- Protection from insects by nets 

Von Elsner (2000) also defined the main problems:  

- Temperatures below the biological optimum in winter nights, making heating necessary 

for one to three months 

- High temperatures during daytime in spring and summer 

- High air humidity at night 

- Low global radiation in winter 

- Significant wind loads, and sometimes unexpected snow loads and hail 

- Poor water availability and in certain areas poor water quality. 
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Greenhouse design is not trivial, it depends of many factors such as structural design, cooling 

technologies and, if possible, microclimate control (ElBialy et al., 2018). Greenhouse agriculture 

and cultivation has been described as ’protected’ since it provides mechanical shields against 

outdoor climatic conditions, controlling temperature, relative humidity, carbon dioxide 

concentration and light to maximise crop yield and avoid plant injury. (Benli, 2013; Fatnassi, 

Boulard, & Bouirden, 2003; Li & Willits, 2008; Sethi, Dubey, & Dhath, 2009). 

An effective greenhouse design should achieve high cooling efficiency - characterised by high 

coefficient of heat exchange -  low cost of investment demonstrating commercial viability, low 

operating costs, low maintenance and water consumption (ElBialy et al., 2018). 

RTGs also can be classified by their characteristics. One of the main classification system is based 

on the flows between the building and the greenhouse: 

- (Non-integrated) Rooftop Greenhouse (RTG): installed as an addition to the building in which 

there is no connection between the building and the greenhouse. Although they are 

contained in the building they are treated separately. 

- Integrated Rooftop Greenhouse (i-RTG): there is a connection of all the flows of the building 

with the greenhouse and vice versa, taking advantage of the development of the crop and 

maintaining optimum conditions in the building (exchange of temperature, ventilation, reuse 

of water, energy saving ...). An example of this type of greenhouse is the ICTA-IPC. 

- Semi-integrated Rooftop Greenhouse (si-RTG): these are greenhouses that have a connection 

with the building through some of their flows. For example: reuse of water but not heat 

exchange. 

Figure 2 shows examples of greenhouse types according to the flow between the building and 

the greenhouse. 
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Figure 2. Not integrated Rooftop Greenhouse - Gotham Greens (Brooklyn, NYC) – top left; Multitunnel as an exemple 
of Conventional Greenhouse – IRTA (Cabrils) – top – right; ICTA-ICP Building. RTG-Lab location and dimensions. Flow 

exchange between ICTA-ICP building and its RTG-Lab (FertileCity I) - bottom 

 

There are many structural design features that have an incidence in the effectiveness of the 

greenhouse such as: dimensions, shapes, orientations, and covering materials. Although all 

features are important, this study focuses on the covering materials.  

1.3 COVERING MATERIALS 

Covering materials are directly related to light, temperature and humidity, which are some of the 

main variables that affect the crops. As a consequence, the selection of covering material needs 

to be done thoroughly. 

For years, many authors have studied different options of materials and configurations to the 

envelopes of greenhouses. Bibliography related to covering materials is extensive, for it allows us 

to know its properties and characteristics. In the end, the knowledge and exploitation of the 

physical properties of the covering materials end up being very important because it allows for 

all those related with greenhouse industry deciding what is best suited to the needs of crops  (G. 

Papadakis et al., 2000). 

The properties of mechanical materials such as density, stiffness, strength or durability among 

others, have a direct relationship to the greenhouse design, its maintenance and the greenhouse 
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covering lifetime in relationship with the lifespan of the material (Dayan et al., 1993; ElBialy et al., 

2018; Mongkon, Thepa, Namprakai, & Pratinthong, 2013, 2014; Papadopoulos & Hao, 1997; 

Sacilik, Keskin, & Elicin, 2006; Wei et al., 2016). However, in scope definition of this work, it was 

decided to focus on the radiometric and thermal properties of the covering materials, since apart 

from being those that are almost exclusively responsible for the determination of the 

microclimate in the greenhouse, and therefore have a more direct relationship with the 

productivity of the crops and with energy consumption, they are also the most studied (G. 

Papadakis et al., 2000). 

The greenhouse covering material constitutes the barrier between the crop and the outside 

weather. The cover not only should provide a refuge during bad weather conditions, but also 

should facilitate the modification of the microclimate to ensure optimal crop growth. A cover 

material should have good insulating properties, but the fact that they are generally thin covers 

results in  low thermal capacity and poor insulating performance (G. Papadakis et al., 2000). The 

basic premise of a greenhouse cover material is to provide maximum solar radiation transmittance 

in such a way that enough light reaches the plants combined with minimum heating requirements 

during the cold season so that the heat lost through the covering materials should be as low as 

possible (Elsner et al., 2000a; IDAE, 2008). In fact, a small fraction of all the light energy that 

reaches the plant is absorbed by the crop and directly used in the process of photosynthesis. This 

small fraction of light - wavelights 400-700 nm - is Photosynthetically Active Radiation (PAR) (Ting 

& Giacomelli, 1987)(Ting & Giacomelli, 1987). The rest of radiation is transformed into heat and 

contributes to the heating of the plant (sensible heat) and transpiration (latent heat). The low 

light intensity is the most limiting environmental factor for photosynthesis and maximum crop 

development, especially in certain latitudes and in Winter conditions. In sum, the roofing material 

should always be chosen to provide greater transmission in this radiation zone (Enrique Espi, 

2012). 

1.3.1. Physical properties  

Although there are many types of materials that could meet the main functional requirements, 

these can be distinguished between glass and rigid plastics and films (Elsner et al., 2000b): 

1.3.1.1. Glass and rigid plastics 

According to Papadakis et al., (2000) glass is the most common material used in greenhouses in 

Northern Europe, used both in small and large greenhouses. Although glass is a material that 

matches the functional requirements which greenhouse cover materials have to meet (low 

thermal radiation transmittance and high visible radiation transmittance), it is much heavier 
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(2400 kg/m3) than plastic films (920 kg/m3 for polyethylene), it requires a support frame and is 

generally much more expensive than plastic films, 15.83 €/m2 of horticulture glass vs. 3.19 €/m2 

of polyethylene (ITeC, 2019). 

There are also covers formed by a double-wall glass. This type of roof is associated with an energy 

saving of between 40-50%, at the expense of a loss of transmissivity, which in a double-wall [glass] 

can be reduced up to 10% and a greater load for the structure (Elsner et al., 2000b). 

In recent years, rigid plastic covers have been introduced into the greenhouse industry with the 

aim of replacing the glass. The most used materials being polymethyl methacrylate (PMMA), 

polycarbonate (PC), and polyvinyl chloride (PVC). Although these materials have shown higher 

yields of insulation, some of them compromise the transmissivity of light and are too expensive 

(Elsner et al., 2000a, 2000b). 

1.3.1.2. Film plastics 

Unlike glass, plastic films have been used in an intense way in warm climates. Historically, glass 

has always had advantage to plastic. However, since there are more plastic-film greenhouses in 

Europe than glass greenhouses, the plastic industry offers a full variety of different plastics with 

the aim to substitute glass covers. Besides, although glass has a superior thermal performance, 

there are plastics which have close performance to glass (Hanson, 1963). 

The difference between the types of plastics is found in the physical, chemical and mechanical 

properties of each (Al-Mahdouri, Baneshi, Gonome, Okajima, & Maruyama, 2013). 

There are extra design criteria specifically for plastic-film greenhouses (Elsner et al., 2000b): 

- Tensioning of films to avoid damage due to fluttering. 

- Film installation to allow easy replacement. 

- Insulation of those parts of the structure heated by solar radiation and in contact with 

the film. 

- Prevention of condensed water falling from the cover onto the crops. 

1.3.2. Optical properties 

The main optical properties which define the material response to the incident radiation are 

(Kailas, 2016; New Technologies Research Centre. University of West Bohemia, 2019; George 

Papadakis et al., 2000). 
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- Transmissivity: optical property of a material, which describes how much light is 

transmitted through material in relation to an amount of light incident on the material. 

The light that was not transmitted was either reflected or absorbed.  

- Reflectivity:  optical property of material, which describes how much light is reflected 

from the material in relation to an amount of light incident on the material. The reflection 

occurs always on the surface of the material, for the light-diffusing (translucent) materials 

also in the volume of the material. On a smooth surface the reflection is specular (direct). 

On a rough surface the reflection is diffuse (scattered). 

- Absorptivity:  is an optical property of a material, which describes how much light was 

absorbed in material in relation to an amount of light incident on the material. The light 

absorption occurs for optically opaque materials on their surface and for semi-

transparent materials on the surface and in the bulk of the material.  

In any case, the total intensity of the incident light striking a surface is equal to the sum of the 

absorbed, reflected, and transmitted intensity (Figure 3). 

 

 

 

Furthermore, materials can be classified due to their interaction with visible light into three 

categories: 

- Transparent: material which permits a large portion of radiation to pass through.  

- Opaque: material which blocks radiation. These are the materials that do not allow the 

passage of light, and you cannot see through them. 

- Translucent or semi-transparent: These are materials that allow the passage of light, but 

they do not allow seeing clearly through them. These materials break up radiation rays; 

this causes radiation to go in all directions, giving isotropic radiation distribution and 

weak shadows on the side of the material opposite to the radiation source. 

It is important to mention that an unclear appearance of a material does not mean that the 

material possesses high or low transmittance (G. Papadakis et al., 2000). 

Consequently, it can be concluded that radiation may pass through a transparent material 

according to the following: 

Figure 3. From right to left: transmissivity, reflectivity, absorptivity. 
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- Direct Solar Radiation on a horizontal surface [W·h/m2]: the radiation is direct beam comes 

in a direct line from the sun and passes directly through the material maintaining the 

same direction with some distortion. The direct part of the global solar radiation is of 

mayor importance at southern latitudes. (Elsner et al., 2000a; Swinkels, Sonneveld, & Bot, 

2002) 

- Diffuse Solar Radiation on a horizontal surface [W·h/m2]: the diffuse radiation is scattered 

out and it is breaking up in rays that cause the radiation to go in all directions. At northern 

latitudes, diffuse light dominates the global radiation (Elsner et al., 2000a; Swinkels et al., 

2002) 

The sum of Direct Solar Radiation and Diffuse Solar Radiation results in Horizontal Global Solar 

Radiation [W·h/m2].  

The radiometric properties of the covering material in short wavelengths directly influence the 

microclimate inside the greenhouse. As a consequence, the transmissivity of the cover materials 

are the most studied elements both at the theoretical and practical levels  (G. Papadakis et al., 

2000). 

Solar radiation is emitted by the Sun and forms the major source of energy reaching the Earth's 

surface. Solar irradiance has its peak at a wavelength of about 500 nm. About 40% of the solar 

energy is emitted at wavelengths of between 400 and 700 nm, while about 39% is emitted at 

wavelengths of between 700 and 1500 nm (near infrared) (Monteith & Unsworth, 2013). Light 

corresponds to the spectral region from 380 to 760 nm (visible radiation-practically same range 

as PAR). 

The intensity of the incoming solar radiation is an important parameter influencing the indoor 

climate, as well as the photosynthetic activity of the plants.  

The greenhouse structure and the covering material are responsible for solar radiation losses. 

Specifically, the transmitted global radiation is reduced by:  

- Absorption and reflection at the covering material. 

- Shading by greenhouse structural components. 

- Dirt on the covering material. 

- Condensation on the covering material. 

The radiation spectra of interest for greenhouse covering materials are listed in 
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Table 1. 

 

Table 1. Classification of radiation spectra of interest greenhouse covering materials  adapted from (G. Papadakis et 
al., 2000). 

 Radiation Wavelength, nm  

Solar (short wave) ≈ 200 − 380 

Photosynthetically  active (PAR) 380 𝑡𝑜 760 

Thermal (long wave) > 760 

 

When crop photosynthesis is examined, the determination of the radiometric properties of the 

cover should take into account the spectral sensitivity of the crop (IDAE, 2008). Table 2 shows the 

different physiological effects that plants have on the basis of the wavelength which they receive. 

In addition, a figure of the electromagnetic spectrum has also been joined to easily identify the 

different wavelength bands defined in Table 2 (Figure 4) 

Table 2. Physiological effects on plants of different radiation wavelengths (Tesi, 1989) 

Color 
Wavelength, 

𝒏𝒎 
Plants effect 

Medium and short ultraviolet < 280 Lethal effect for vegetables and germicidal action 

Long ultraviolet 280 − 380 
Damages and possibly undesirable formative effects 

(smaller plants and very narrow leaves) 

Blue violet 380 − 490 Photosynthetic and photoperiodic effects. 

Green yellow 490 − 595 Limited photosynthetic effect 

Red-orange 595 − 760 Maximum photosynthetic and photoperiodic effect. 

Medium and short infrared (MIR and 
SIR) 

760 − 2500 
Excessive stem extension. Heating of the 

environment 

Far infrared (FIR) < 2500 
Thermal effect on the environment (radiation 
absorbed by plants and converted into heat) 

 

 
Figure 4. Electromagnetic spectrum. VectorStock. 
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1.3.3. Thermal properties 

Thermal radiation is defined as the electromagnetic radiation emitted by a body because of its 

temperature. When it concerns covering material, understanding its thermal characteristics is 

important to understand its behaviour in front of the temperature conservation inside the 

greenhouse. 

Two types of materials can be distinguished: those which allow thermal radiation to pass through 

and those which block this change. The last ones tend to conserve energy better and to keep a 

greenhouse warmer than other materials. Accordingly, the less thermal radiation transmissivity 

the better. For instance, thermal radiation transfer is a very important mechanism responsible 

for heat losses of polyethylene-covered greenhouses, due to the fact that polyethylene, unlike 

glass, has high transmissivity to thermal radiation (Nijskens, J; Deltour, J; Nisen, A; Coutisse, 1989; 

George Papadakis et al., 2000) 

The global greenhouse thermal behaviour is defined by U value. U value is a measure of heat loss 

in a building element or in this case, in a greenhouse. This means that the higher the U value, the 

worse the thermal performance of the building envelope. Consequently, low U value indicates 

high levels of insulation(Brennan, n.d.). 

The greenhouse U value depends on (George Papadakis et al., 2000): 

- The type and condition of material (e.g. wet or dry). 

- The convection heat exchange mechanism at the inside and the outside of the cover. 

- The thermal radiation exchange. 

- The air leakage. 

- The area of the covering material. 

- The type of the greenhouse (structure, geometry). 

- Its ground area 

- The presence of a thermal screen. 

As a conclusion of the last two sections, it can stated that ideal cover has to accomplish two basic 

characteristics (George Papadakis et al., 2000): 

- To allow 100% PAR transmissivity while restricting the transmissivity of solar radiation 

outside the PAR in accordance with the requirements of the greenhouse. 

- To have good insulation characteristics associated with a low U. 

There are other characteristics that a greenhouse cover has to satisfy. For instance, radiation 

diffusion characteristics for better radiation penetration into the plant foliage and a better 
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distribution within the greenhouse or the K value of the covering material, which is only one 

component of the U value and only takes into account the overall heat transfers through the 

covering material due to the combined action of conduction and convection.  

1.4 GREENHOUSE PRODUCTION 

Spain is an agricultural country with more than 17 million hectares of arable land, which 

represents a third of its entire geographical area. Within this area, 13,239,403 ha (77.8%) are 

destined for dryland farming, in which cereals are mainly grown. With an occupation of 3,703,741 

ha (21.8%), irrigated farming is mainly used for the cultivation of fruit trees, olive trees and 

vineyards. Finally, only 70,545 ha (0.4%) are used for greenhouse cultivation. (Gobierno de 

España, 2018). 

At a Catalan level, the distribution of crops is similar; of all the present cultivation area (822,681 

ha) greenhouse cultivation only represents 0.1%, with 839 ha of the total arable land compared 

to 68.2%, which represents the dryland farming cultivation and 31.7% occupied by irrigated 

farming (Generalitat de Catalunya. Direcció General de Planificació i Relacions Agràries, 2018). It 

can be concluded that, in this territory, greenhouse cultivation is relatively low. 

Nowadays, the main horticultural crops produced in greenhouses in the Mediterranean area are 

tomato, pepper, zucchini, melon, strawberry, cucumber and beans. Although it can also be found 

in a smaller amount lettuce, cabbage, cauliflower, peas, among others (Novagric, 2015).Out of all 

these crops, the one used as a reference in different studies, as well as in this thesis, is the tomato 

crop (Solanum lycopersicum).  

Nowadays, tomato is one of the most consumed and appreciated vegetables in the world with a 

total production of 170,750 million kilos in 2017. Spain is the eighth largest producer in the world 

and the second largest tomato producer country in Europe after Italy, with a total destined area 

of 56,120 ha (23.41%) and a production of 4,768,800 t (27.95%) (Eurostat, 2018). In Catalonia, at 

the same time period, 26,000 tn of tomato were produced, of which 15,150 tn were produced in 

greenhouses. 

Tomato is the second most consumed fresh vegetable in Spain after potatoes with a total of 13.2 

kg per capita and year -according to 2018 data, which represents 23.1% of the total consumption 

of fresh vegetables according to Spanish Federation of Associations of Growing Producers of Fruit, 

Vegetables, Flowers and Live Plants (FEPEX) and MERCASA (FEPEX, 2019; MERCASA, 2018). In 

addition, tomato crops cultivation is carried out in the RTG in the ICTA-ICP building, so first-hand 
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data is available for the realisation of this study. The same crop was used for conventional 

greenhouse. 
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2 SCOPE AND OBJECTIVES 

2.1. Scope 

In the framework of this thesis, an environmental and economic analysis of the life cycle Rooftop 

Greenhouses (RTGs) is attained by analysing the different materials used for the construction and 

operation. These include the structural elements and covering of these greenhouses as well as  

the results of the production process in comparison with conventional greenhouse systems. 

A comparative Life Cycle Assessment (LCA) study is carried out for two types of greenhouse: the 

RTG and the Conventional Greenhouse (CG). The purpose of this comparison is to determine 

which of the structures has a better environmental performance. However, one of the central 

parts of the work is the selection and study of different covering materials. Structural design 

features are numerous: dimensions, shapes, orientations, and covering materials.  Although all 

features are important, this study focuses on the covering materials due to its direct relationship 

to the main energy source for plants: solar radiation. Finally, after determining the different 

scenarios for the study, Life Cycle Costing assessment is applied in order to understand their 

economic performance. 

This thesis operates within the framework of the FertileCity II project (CTM2016-75772-C3-1-R). 

FertileCity II is a research carried out by the Sostenipra research group (Universitat Autònoma de 

Barcelona (UAB) and Universitat Politècnica de Catalunya (UPC)) funded by the Research Agency, 

AI / EU-Feder, and Ministry of Economy and Competitiveness of Spain (MINECO), aiming to 

provide deeper research and promotion on urban agriculture through integrated rooftop 

greenhouses, giving information and tools that allow a path to urban food security within circular 

economy. 

2.1 Aim 

The aim of this thesis is to conduct an environmental and economic analysis of the RTG life cycle 

in comparison to the conventional GH while analysing the different covering materials in order to 

define the optimal RTG scenario. 

2.2 Objectives 

Specific objectives are defined below: 

- Carry out a review of the existing background on structural materials and covering used in 

greenhouses, more specifically on roofs of buildings. 
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- Define the needs (functional, structural, etc.) of a greenhouse, identifying the specific needs 

for each type (conventional vs. RTG) 

- Review the existing background on the works oriented to the analysis of environmental life 

cycle and costs related to the selected materials, and their application in conventional 

greenhouses (ground installation) and on building roofs. 

- Define and apply the most appropriate life cycle and cost analysis methodology (based on the 

background) for the evaluation of the environmental and economic impact associated with 

the selected materials. An inventory analysis, evaluation of the life cycle and cost impact and 

its interpretation will be carried out. 

- Compare the alternatives of materials considered, both economically (material cost, 

assembly / disassembly cost, maintenance cost, etc.) and environmental. 

- Carry out a comparison (economic and environmental) of a greenhouse type design on roofs 

of buildings with a greenhouse of the same functional characteristics, but of conventional 

type (with ground installation). 

- Carry out a comparative environmental study between production in RTG systems and the 

conventional system. 
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3 METHODOLOGY 

3.1 Environmental Analysis 

Concerning environmental analysis and to compare the environmental burdens of the systems 

contemplated in the objectives of this work, the chosen method was the Life Cycle Assessment 

(LCA)  (ISO, 2006a). This method is defined as:  

 “LCA is the compilation and evaluation of the inputs, outputs and the potential environmental 

impacts of a product System throughout its life cycle (i.e., consecutive and interlinked stages of a 

product System, from raw materials acquisition or generation from natural resource to final 

disposal)” (ISO, 2006a). 

Life Cycle Assessment (LCA) (ISO, 2006a, 2006b) is a structured, comprehensive and 

internationally standardised method. It quantifies all relevant emissions and resource 

consumption as well as, related environmental and health impacts and resource depletion issues 

that are associated with the entire life cycle of any goods or services. However, the Life Cycle 

Assessment (LCA) is only the environmental part of the sustainability measures; it is important to 

introduce the Life Cycle Sustainability Assessment (LCSA) concept. LCSA allows the evaluation of 

all environmental, social and economic impacts and benefits in the decision-making processes for 

the development of sustainable products and services throughout their entire LCA, Life Cycle 

Costing (LCC) and Social Life Cycle Assessment (SLCA) (UNEP & SETAC, 2011). 

ISO 14040 (ISO, 2006a) presents a four-stage method for the development of and LCA. Figure 7 

depicts a schema of the LCA process: 

- Goal and scope definition. 

- Inventory. 

- Life Cycle Impact Assessment (LCIA) (in the environmental analysis). 

- Interpretation. 
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Figure 5. LCA stages ((ISO, 2006a). 

LCA study is an iterative process, based on the repetition of the previous scheme process to arrive 

to the decision or the desired result by the repetition of the 4 steps. 

3.1.1 Goal and scope 

The goal and scope definition is the first phase of any life cycle assessment. During the definition 

of the goal, the decision context, the planned applications of the study and the target audience 

are identified.  

During the scope definition phase, the object of the LCI is identified and defined in detail. This 

shall be done in line with the goal definition.  The scope definition focuses on describing and 

detailing the following aspects: 

- The system or process under assessment, in terms of function, functional unit and 

reference flows. 

- The LCI modelling framework. 

- The system boundaries. Defining the life cycle phases that are included in the study, 

extraction of materials, manufacturing, use, re-processing and end-of-life (cradle-to 

grave), or any of the many options available (gate-to-gate, cradle-to-gate, cradle-to-site, 

etc.). These boundaries will be subject to data availability and their accuracy and should 

also define what aspects were excluded and a justification for these decisions (lack of 

data, negligible inputs/outputs). Figure 6 shows summarised as a scheme the different 

system boundaries that exist. 

Impact assessment 
(ISO 14042) 

Definition of goal and 
scope 

(ISO 14041) 

Inventory analysis 

(ISO 14041) 

Interpretation of 
results 

(ISO 14043) 
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- The LCI data quality requirements. 

- The LCIA impact categories and methods to be used. 

During the goal and scope definition, the definition of the functional unit is a key aspect, since it 

quantifies the qualitative and quantitative aspects of the functions of the system under 

assessment. 

3.1.2 Life cycle inventory 

The life cycle inventory consists in the compilation of all the environmental inputs and outputs 

associated with a product or service, such as all the resources consumed and all the emissions 

released into the environment throughout the entire life cycle of a system, process or product. 

Inputs can be categorised as resources from nature (e.g., mineral extraction, water) or resources 

from the technosphere (e.g., plastics, electricity), the use of raw materials and energy, the 

emission of pollutants and the waste streams. Outputs are differentiated among emissions to the 

environment (air, water, soil) and to the technosphere (wastes to treatment) (European 

Commission - Joint Research Centre, 2010a). 

Typically, the LCI phase requires the highest efforts and resources of an LCA. It is necessary to 

perform an iterative procedure to develop a good LCI. The main steps are described below 

(European Commission - Joint Research Centre, 2010a): 

- Identifying the processes that are required for the system: attributional or consequential 

modelling. System boundaries vary depending on the type of LCA performed: 

attributional, which describes the environmentally relevant physical flows to and from 

subsystems within the overall system analysed, and consequential, an evaluation of 

consequences of system actions (Ekvall & Weidema, 2004). 

Figure 6. Example of the different system boundaries that can exist in a life cycle assessment of a given system. 

Source: own elaboration 
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- Planning of the collection of the raw data and information, and of data sets from 

secondary sources. 

- Collecting for the foreground system unit process inventory data for these process 

ensuring the quality and how to deal with missing inventory data. 

- Developing generic LCI data, especially when average or specific data are not available 

and cannot be developed. 

- Obtaining complementary background data as a unit process or LCI result data sets from 

data providers. 

- Averaging LCI data across process or products, including for developing production, 

supply and consumption mixes. 

- Modelling the system by connecting and scaling the data sets correctly, so that the 

system is providing its functional unit. 

- Calculating LCI results, e.g. summing up all inputs and outputs of all processes within the 

system boundaries.  

3.1.3 Life cycle impact assessment 

Life Cycle Impact Assessment (LCIA) is the phase in an LCA when the inputs and outputs of 

elementary flows, that were collected and reported in the inventory, are transformed into impact 

indicators. This is achieved by applying an impact assessment method, such as ReCiPe (Goedkoop 

et al., 2008), CML-IA method (Guinee, 2002), or ILCD 2011 Midpoint + (European Commission; 

Joint Research Centre; Instirute for Environment and Sustainability, 2012), with the aim to 

understand and evaluate the magnitude and significance of the potential environmental impacts 

of a product system. 

According to ISO 14044, Life Cycle Impact Assessment consists of two mandatory steps and two 

optional steps (ISO, 2006b) 

- Mandatory Steps: 

o Classification: the environmental impacts relevant to the study are defined. The 

elementary flows from the life cycle inventory (e.g. resource consumption, 

emissions into air, etc.) are then assigned to impact categories according to the 

substances ability to contribute to different environmental problems. 

o Characterisation: the impact of each emission or resource consumption is 

modelled quantitatively, according to the environmental mechanism. The result 

is expressed as an impact score in a unit common to all contributions within the 

impact category by applying the so-called characterisation factors. For example, 
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kg of CO2 eq. for greenhouse gases contributing to the impact category Global 

Warming. 

- Optional Steps 

o Normalisation: in this step the characterised impact scores are associated to a 

common reference. 

o Weighting: the different environmental impact categories and/or Areas of 

Protection are ranked according to their relative importance. 

Impacts can be assess at the midpoint or endpoint level (UNEP & SETAC, 2011). Midpoint impact 

categories are links in the cause-effect environmental chain, and while these are easier to 

quantify, they are more difficult to understand. Contrastingly, endpoint categories represent the 

end of the chain, the final effect, which is easier to understand, but more difficult to quantify. 

Figure 7 represents, in a schematic way, the general classifications of midpoint impact categories 

linking damage categories or endpoint. 

 
Figure 7. Overall UNEP/SETAC scheme of the environmental LCIA framework, linking LCI results via the midpoint 

categories to damage categories (adapted from Jolliet et al., (2003)) 

In this study, midpoint categories will be depicted because these focus on specific environmental 

impacts, unlike the endpoint categories, which integrates the midpoint categories into three 

general indicators. The endpoint categories, as a result of the aggregation of midpoint results, 

provide uncertainty in the results, so they were intentionally avoided (National Institute for Public 

Health and the Environment, 2018).  

ReCiPe and Cumulative Energy Demand (CED) are chosen as an impact evaluation method 

because they are the most referenced methods in the bibliography and they facilitates the 
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comparison of results and their discussion. The ReCiPe impact categories (Goedkoop et al., 2008) 

and CED (Frischknecht, Wyss, Knöpfel, Lützkendorf, & Balouktsi, 2015) as an energy flow indicator 

are described in Table 3. 

Table 3. List of the ReCiPe impact categories and CED as an energy flow indicator. 

ReCiPe IMPACT CATEGORIES 

Impact Category Abbreviation Unit Description 

Global warming GW kg CO2 eq 
Impact of some anthropogenic emissions 
(CO2, CH4, etc.) to the atmosphere that 
contribute to global warming. 

Stratospheric ozone 
depletion 

SOD 
kg CFC11 

eq 

The stratospheric ozone layer blocks a large 
part of the harmful UV radiation before it 
reaches the surface. Certain (mostly bromine 
and chlorine containing) substances however 
have the potential to destroy stratospheric 
ozone and thereby increase the amount of 
radiation that reaches the surface which 
causes damage to human health. 

Ionizing radiation IR 
kBq Co-60 

eq 

Radiation emitted in the form of particles, X-
rays or gamma rays with sufficient energy to 
cause ionization in the medium through which 
it travels. 

Ozone formation, 
Human health 

OF, HH kg NOx eq 
It refers to the formation of ozone that affects 
human health. 

Fine particulate matter 
formation 

FP kg PM2.5 eq 

Particulate matter formation starts with an 
emission of NOx, NH3, SO2, or primary PM2.5 to 
the atmosphere, followed by atmospheric 
fate and chemistry in the air; NOx, NH3, and 
SO2 are transformed in air to secondary 
aerosols. 

Ozone formation, 
Terrestrial ecosystems 

OF, TE kg NOx eq 
It corresponds to the formation of ozone that 
affects terrestrial ecosystems. 

Terrestrial acidification TA kg SO2 eq 
Soil acidification as a result of the deposition 
of acidifying inorganic substances such as 
sulphates, nitrates and phosphates. 

Freshwater 
eutrophication 

FE kg P eq 

Eutrophication of fresh water as a result of a 
high concentration of nutrients, usually P and 
N. It results in a decay of the oxygen 
concentration in the water. 

Marine eutrophication ME kg N eq 
The same concept as in eutrophication in 
fresh water, but in marine waters. 

Terrestrial ecotoxicity TEcotox kg 1,4-DCB 

Ecotoxicity refers to the impact of chemicals 
that affect ecosystems. Is calculated 
considering the persistence and effect of 
these chemicals. 

Freshwater ecotoxicity FEcotox kg 1,4-DCB Ecotoxicity affecting freshwater. 

Marine ecotoxicity MEcotox kg 1,4-DCB Ecotoxicity that affects seawater. 

Human carcinogenic 
toxicity 

HCT kg 1,4-DCB 
Human carcinogenic toxicity from materials 
and used resources. 

Human non-
carcinogenic toxicity 

HnCT kg 1,4-DCB 
Toxicity that affects humans but not in a 
carcinogenic way. 

Land use LU m2a crop eq 
Represents the occupation of land as a main 
driver of global biodiversity loss. Within a 
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product’s life cycle, the land use impacts can 
represent a significant portion of their total 
environmental burden.  

Mineral resource 
scarcity 

MRS kg Cu eq 
Corresponds to the scarcity of mineral 
resources. 

Fossil resource scarcity FRS kg oil eq 
Corresponds to the scarcity of fossil 
resources. 

Water consumption WC m3 
Water consumption used throughout the 
analysis 

ENERGY FLOW INDICATOR 

Cumulative Energy 
Demand 

CED MJ 

CED quantifies the energy content of all the 
different energy resources (renewable and 
non-renewable). The method is based on 
higher heating values (HHV). 

 

ReCiPe offers different cultural perspectives. These are based on different temporal perspectives 

and the more or less proven effects of them. Three great models of behaviour are defined: 

- Egalitarian: long-term perspective. A minimum of scientific evidence justifies the inclusion 

of a certain category of damage. 

- Individualist: short-term temporary perspective, only the fully tested effects are included. 

- Hierarchist: a balanced, short-term and long-term perspective, the consensus among 

scientists determines the inclusion of certain effects. 

3.1.4 Interpretation 

The interpretation stage is the last in an LCA study. This is necessary for identifying, quantifying, 

checking and evaluating information from the results of the LCI and/or the LCIA. During the 

iterative steps of the LCA and for all kinds of deliverables, the interpretation phase serves to steer 

the work towards improving the Life Cycle Inventory model and to meet the needs derived from 

the study goal. Finally, when the study is finalised, this interpretation phase should achieve the 

main conclusions and recommendations of the study. 

3.1.5 Limitations of LCA studies 

LCA is a methodology in constant development. This is basically due to the fact that there are still 

no generally accepted methodologies defined to associate inventory data with the potential 

environmental impacts, in a consistent and accurate manner. The same happens with the impact 

categories that define each methodology, since over the years, they are evolving by incorporating 

or eliminating parameters or even by creating new ones. Another handicap is the subjectivity 

associated both with the choice and evaluation of impact categories, and in the phase of 

environmental impact assessment. 
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Finally, it is considered that the traceability of any data is vital to ensure the transparency of the 

study at all times. It is crucial to define the origin of the data used (geographic origin and time), 

as well as the hypotheses, assumptions and limitations that are taken into account in order to 

keep in mind the uncertainties associated with the study (Antón Vallejo, 2004; LCA notes from 

Análisi de Ciclo de Vida (subject), 2018). 

3.2 Material selection 

For the selection of materials, different criteria were defined based on the bibliography consulted 

and specific interests of this study. Among these criteria one can distinguish those that must 

compulsorily meet all materials: (1) functional requirements and (2) availability. Last, specific 

criteria, which are those that only some materials have, though considered to be interesting to 

study due to current usage, promising innovative materials and functional advantages.  

- Functional requirements can be summarised in two main ones: provision of maximum 

solar radiation transmittance in a way that enough light reaches the plants combined 

with minimum heating requirements during the cold season so that heat losses through 

the covering materials should be as low as possible (Elsner et al., 2000a; IDAE, 2008). 

- Availability:  material is available in the market and accessible at the specific location. 

- Current usage: Polycarbonate, Polyethylene and Glass are probably the top three most 

widely applied materials. Case studies for this dissertation are already using two of these 

materials: ICTA-ICP building’s RTG employs polycarbonate and IRTA, polyethylene. 

- Innovation: ETFE plastic is widely used in the construction industry as a substitute for 

glass. Therefore, it has been considered that this material could also be a good substitute 

for horticultural glass since it is highly transparent in light of the entire spectrum of visible 

light and it has a high level of heat retention, retaining the thermal radiation of long wave.   

- Other: the 2 layers of polyethylene is considered as a cover because this is the cheapest 

material and according to studies, the use of two layers has functional advantages(Kim, 

Kang, Moon, Lee, & Oh, 2018; Sirelkhatim K Abbouda, Emad A Almuhanna, & Ali M Al-

Amri, 2012). 

3.3 Cost analysis 

Life-cycle costing (LCC) (ISO, 2017) is a consolidated methodology which provides a framework 

for calculating the overall cost of a product or a service over its lifespan or life cycle. It is defined 

in the ISO standard, Buildings and Constructed Assets, Service-life Planning, Part 5: Life-cycle 

Costing (ISO 15686-5) as an: 
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“Economic assessment considering all agreed projected significant and relevant cost flows over a 

period of analysis expressed in monetary value. The projected costs are those needed to achieve 

defined levels of performance, including reliability, safety and availability.” 

LCC was developed originally from a strict financial cost accounting perspective, but in recent 

years LCC has gained importance and it is applied in the framework of decisions over products or 

investments requiring high initial capital such as: buildings, energy systems, transport, and 

durable goods in general, since it provides robust level of comparative analysis and cost 

benchmarking between alternatives. 

Hunkeler et al. (2008) were the first to specify an LCC methodology with the aim to provide an 

assessment of the costs of a product across its entire life cycle consistent to an (environmental) 

LCA (UNEP & SETAC, 2011).  

Life cycle costing is extremely useful for monitoring costs under different scenarios, making it 

attractive to the product’s clients and the financial sector. Basically, LCC consists in an aggregation 

of all costs that are directly related to a product over its entire life cycle – from resource 

extraction, processes, construction, maintenance and disposal. It is usually carried out following 

ISO 15686-5:2017 and the same life cycle approach as LCA. 

 

For an LCC study, the goal of the study, a functional unit, system boundaries, allocation 

procedures and discount rates must be defined. At this stage, a cost breakdown structure (CBS) 

should also be developed in order to facilitate the consistent collection of data along the full life 

cycle and which can too be aggregated along the life cycle.  

Although converting future costs into a present value for current decision-making, applying a 

discount rate is generally accepted, there is no consensus on criteria about which discount rate 

should be applied for an LCC.  

Construction Operation Maintenance End-of-life 

Life Cycle Cost (LCC) 

Environmental cost 

Figure 8.Costs that should be included in life-cycle costing (adapted from (ISO, 2008)) 
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An LCC is always conducted for a certain function that must be fulfilled by the analysed system. 

This function is quantified by the functional unit, which provides a reference to which all costs 

and benefits are then related. 

LCC can be studied through different cost evaluations like: cost-benefit analysis, cost-effective 

analysis, risk-benefit analysis, and others. In this study, only the calculation of Net Present Value 

(NPV) is assumed. Internal Rate of Return (IRR) and the Payback period cannot be calculated for 

there is no economic benefit - it is not possible to recover the initial investment. 

Net present value (NPV) (Eq 1) is considered a standard criterion to decide if an option can be 

justified on economic principles. NPV (euros) is the sum of the discounted future cash flows, 

defined as the difference between the present value of inflows and outflows, and determines the 

current value of the initial investment and all future incomes/outcomes over the 50 years of 

lifespan of the system. 

𝑁𝑃𝑉 = −𝐼0 + ∑
𝐹𝑡

(1 + 𝑘)𝑡
= −𝐼0 +

𝐹1

(1 + 𝑘)1
+

𝐹2

(1 + 𝑘)2
+ ⋯ +

𝐹𝑛

(1 + 𝑘)𝑛

𝑛

𝑡=1

   (𝐸𝑞. 1) 

Where:  

𝐹𝑡 : are the cash flows in each period t. 

𝐼0 : is the investment made at the initial moment (𝑡 = 0). 

𝑛: number of time periods. 

𝑘: is the discount rate or interest rate required for the investment 

The NPV is mainly used for: (1) to determine if the investments are effective and (2) see which 

investment is better in absolute terms compared to others.  

The decision criteria is the following: 

- 𝑁𝑃𝑉 > 0: The updated value of future payments and payments of the investment, at the 

chosen discount rate will generate benefits. 

- 𝑁𝑃𝑉 = 0The investment project will not generate benefits or losses, being in principle, 

indifferent. 

- 𝑁𝑃𝑉 < 0: The investment project will generate losses, so it must be rejected. 
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4 CASE STUDIES 

In order to study the direct relation between the covering materials and the yield in production, 

two greenhouses were used as a reference in this study: i-RTG Lab located in the ICTA-ICP building 

as example of RTG and a multitunnel greenhouse of IRTA (Cabrils) as example of CGs. The use of 

these greenhouses is mainly chosen for the data availability and the commonly applied 

characteristics in Mediterranean climates. 

4.1 Rooftop Greenhouse - ICTA-ICP building 

The Institute of Environmental Science and Technology - Catalan Institute of Palaeontology 

Miquel Crusafont (ICTA-ICP) building was built in 2014 and includes, as the name implies, the 

Institute of Environmental Science and Technology and the Catalan Institute of Palaeontology. 

The building has an area of 7500 m2 distributed over six floors and is located at Universitat 

Autònoma de Barcelona (UAB) on the Bellaterra Campus. The ICTA-ICP has an external “double 

skin” that surrounds the rooftop (including i-RTG). This structure is made up of a metal frame with 

corrugated polycarbonate sheets, with a lifespan of 10 years, which opens and closes depending 

on internal and external temperature, allowing passive acclimatisation and ventilation in the 

building and the greenhouse. 

The RTG which is been assumed as a reference is one of the i-RTG Lab located in the ICTA-ICP 

building.  As mentioned before, the choice of reference greenhouses has been mainly based on 

data availability. Therefore, although the RTG used is really an i-RTG, for the realisation of this 

thesis, this distinction has not proceeded, for the flows present in the building have not been 

included in detail. 

The RTG is located on the south-eastern corner of the ICTA-ICP building roof. It has an area of 

122.8 m2 and a cultivation area of 84.34 m2. Its structure consists mainly of galvanised steel. The 

280.85m2 of roof is also a "double skin" of corrugated polycarbonate. 
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Figure 9. Layout of the rooftop of the ICTA-ICP building and the i-RTG (Sanyé-Mengual et al., 2015). 

 
The tomato crop conducted in i-Lab of ICTA-ICP is taken as a reference crop for RTG. Considering 

data from 2015-2016, the density of tomato plants was 2 plants per square meter. In the 15.5 

months (from February 2015 to July 2016, with the exception of August 2015, as there was no 

activity in the building) in which different studies on RTG production were done, three different 

crops were conducted.  

Table 4. Characteristics and periods of tomatoes cultivation in ICTA-ICP 2015-2016 (Sanjuan Delmás, 2017) 

Cultivation Season Starts Finishes Days (n) 

S1 Spring – Summer 10/02/2015 23/07/2015 164 

W Fall – winter 15/09/2015 04/03/2016 169 

S2 Spring - Summer 08/03/2016 20/07/2016) 133 

 

A hydroponic system was used for irrigation to supply a nutrient solution (water plus fertilisers, 

also called fertigation) to plants located on an inert substrate: perlite. The perlite was supplied in 

bags of 40 L. These bags were placed on a row and each provided a substrate for three plants. 

The same bags were used for all three crops (S1, W and S2) (Sanjuan Delmás, 2017). 

4.2 Conventional Greenhouse - IRTA 

A steel-framed, arched-roofed greenhouse with vertical sidewalls called multi-tunnel is the most 

used in Mediterranean countries (Antón Vallejo, 2004). However, in this thesis, the conventional 

greenhouse of reference is a Venlo type greenhouse located at IRTA in Cabrils (Maresme). It 
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consists of a greenhouse of 240 m2 (20 meters long and 12 meters wide) formed by four chapels. 

It has a maximum height of 6 meters and 3.5 meters to the gutters. The structure is basically 

formed by galvanized steel and the cover (514 m2) is low density polyethylene . 

 

 

 

 

 

 

 

Regarding the crop chosen for the conventional greenhouse, the one established in the 

EUPHOROS project was used and adapted to the conventional reference greenhouse defined for 

the present study. 

The cultivation of the EUPHOROS project was carried out on a crop area of 10,000 m2 between 

September 15, 2007 and June 4, 2008. It is clear that the crop period is much shorter than the 

one that took place at the ICTA-ICP. In this scenario, the yield obtained was 16.5 kg of tomatoes 

per square meter. A fertirrigation and perlite system was also used as a substrate, but for one 

crop only. (Montero, Antón, Torrellas, Ruijs, & Vermeulen, 2011). 

 

 

 

  

Figure 10. Greenhouses in IRTA – Cabrils and the interior of greenhouse studied. (Ribas, 2019) 
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4.3 Materials selected 

4.3.1 Horticulture Glass (HG) 

Horticultural glass was the most widely used material in greenhouses in Northern Europe. It is the 

material with the best thermal properties for it does not allow the transmission of infrared or 

thermal radiation from outside (0%) and a light transmissivity in the visible wavelength of 91 % 

(Table 5). In addition, horticultural glass is a material that provides good thermal insulation, it is 

resistant to adverse weather conditions and agrochemicals and it has a long lifespan (in this work 

it has been considered a useful life of 50 years)  (Nijskens, J; Deltour, J; Nisen, A; Coutisse, 1989; 

George Papadakis et al., 2000). 

However, it is also a very heavy material (5.31 kg/m3), which results in the need for a reinforced 

structure that supports the roof. It is a fragile material and therefore its impact resistance is also 

low.  

 

4.3.2 Polyethylene (PE) 

Polyethylene is the most used plastic film in the Mediterranean regions. Unlike glass, it is 

characterised by allowing both visible radiation (88 - 0.91 %) and infrared radiation (70 – 84 %) to 

pass with a U value of 9.1 W/m2 oC. In addition, it has a reduced lifespan (between 3 and 4 years). 

At a structural level, it is susceptible to mechanical failure due to harsh conditions of high 

temperature, solar radiation, and wind (Abbouda, Almuhanna, & Al-amri, 2014).  

Figure 11. Agròpolis UPC - Horticulture glass covered greenhouse (Interempresas, 2010; Ribas, 2019)  
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 The main advantage is that it is a very cheap and easily accessible material and does not require 

a complex structure to install. 

Figure 12. Polyethylene covered multitunnel greenhous in Almeria (left) and IRTA Cabrils - Polyethylene covered 
greenhouse (right) (Montero et al., 2011; Ribas, 2019) 

4.3.3 Polyethylene double-layer 

As stated earlier, polyethylene is one of the cheapest materials. Therefore, it has been considered 

to study the effects of using a double layer without air space since authors such as (George 

Papadakis et al., 2000) or (Nijskens, J; Deltour, J; Nisen, A; Coutisse, 1989) have reported U values 

of 4.2-6.0 W/m2 oC and 4.8-6.4 W/m2 oC, respectively for double polyethylene covers vs. the value 

of 9.1 W/m2 oC of a single layer.  

Multiple layers of materials alter the incoming radiation and compromise the light transmissivity 

almost up to a 10% lower than single layer transmissivity and consequently the energy balance in 

the greenhouse resulting into high operational costs (Sanford, 2011). 

Figure 13. Double layer polyethylene cover greenhouse (Tunnel Vision Hoops, 2019) 
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4.3.4 Polycarbonate (PC) 

Polycarbonate is a material that combines good optical and thermal properties with very good 

mechanical resistance. It is a thermoplastic that lets the visible radiation pass easily enough 

(transmissivity around 80%) and prevents, to a large extent, the passage of infrared rays (it allows 

about 2-3% the passage of this type of ray). It is not entirely transparent. Just like glass, it is quite 

a good thermal insulation. It has a low density that makes it ideal for this type of structure. It is 

not an expensive material and has a very high useful life time compared to other cover materials 

(Brett Martin, 2019; George Papadakis et al., 2000). 

4.3.5 ETFE 

ETFE (ethylene-tetrafluoroethylene) consists of modified copolymers of ethylene and 

tetrafluoroethylene. In recent years, it has been widely used in the construction industry as a 

substitute for glass. Therefore, it has been considered that this material could also be a good 

substitute for horticultural glass since it is highly transparent in light of the entire spectrum of 

visible light and it has a high level of heat retention, retaining the thermal radiation of long wave. 

In addition, ETFE can maintain this transparency and this force for more than 30 years. 

It is a very light material. A ETFE sheet (0.25 mm thickness) weighs only 0.70 kg/m2, while a single 

layer of glass (4 mm thick) weighs 10 kg/m2. ETFE is 14 times lighter than glass. ETFE is a very 

ductile material, in fact, it can stretch up to three times its length without breaking. When broken, 

its strong intermolecular links prevent the material from breaking like glass. 

Figure 14. ICTA-ICP - Polycarbonate cover greenhouse (Sanjuan Delmás, 2017). 
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Finally, fluorocarbon polymers are relatively inert and are especially not active against chemical 

and weather attack (Designing Buildings Wiki, 2011; SpecialChem, 2019). 

 

4.3.6 Solar panels 

During the process of selecting materials, the option to study a solar cover was considered. This 

option can be presented as a cover that further accomplishes the previous requirements, while 

officially the add value of energy  production in order to improve the overall sustainability of the 

covering material. 

There are different studies and practical cases in which the use of conventional and semi-

transparent photovoltaic technologies is studied. For example, Ureña-Sánchez et.al. (2012) 

studied the effect produced by the installation of flexible solar panels mounted on greenhouse 

roof with a crop of tomatoes and thus see what effects there was on the yield and the quality of 

the fruit. This study concluded that the Mediterranean basin, with a cover ratio of 9.8%, the 

production of tomatoes was not compromised, but that the shape, size and colour of the fruits 

were affected. 

Other authors such as Fatnassi et al. (2018) wanted to identify with their studies design features 

such as the ideal height of the greenhouses, the best orientation or the best distribution of 

conventional solar panels to the covers of the greenhouses to define the design criteria for the 

new generation of greenhouses. As a result, conclusions such as the checkerboard pattern and 

the N-S orientation allow to improve the uniformity of the light have been obtained. 

Although there are several solutions for photovoltaic panels: organic photovoltaic cells, 

semiconductors such as CdTe (Cadmium telluride), CIG (Copper indium gallium) and CGIS (Copper 

indium gallium diselenide) or panel types (flexible, thin films), semi-transparent photovoltaic 

technology is considered strategic. 

Figure 15. ETFE covered greenhouse (AGC Chemicals, 2019). 
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After an extensive bibliographic review, the option posed by this thesis and characterised by its 

innovative nature was a semi-transparent photovoltaic cover with Sphelar® technology. 

Sphelar® technology, developed by Kyosemi Corporation, is based on single-crystalline silicon 

spheres, with a diameter of between 1-2 mm. Each sphere works like an individual solar cell, 

allowing countless combinations. However, the main feature is that it is the only photovoltaic 

technology capable of capturing solar radiation from all directions. 

 

 

Figure 17. Sphelar® cells with 1-2 mm diameter (Sphelar Power Corporation, 2019b) vs. Conventional solar cell 156 x 
156 mm (Wikipedia, 2019). 

Another advantage is that it allows maximising the effective use of silicon in its production in 

addition to being able to use 'kerf loss', that is, the excess silicon of the production of conventional 

photovoltaic panels thanks to its size. Therefore, the generation of raw material waste can be 

considered minimal. 

Figure 16. On the left, inside of a greenhouse with a solar cover of conventional panels. On the right, a semi-
transparents panels with Sphelar® Technology (Cossu et al., 2016) 

Figure  SEQ Figure \* ARABIC 18. On the left, inside of a greenhouse with a solar cover of conventional panels. On the 
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Generally, its creators analysed the different advantages that this technology presents. They are 

the following: 

- Sphelar® module can easily make Series/Parallel. 

- Bigger of power generation per nominal maximum output. 

- Smaller in directivity of sunlight. 

- Fewer influence of partial shade 

- Higher mechanical strength for the shape of spherical 

- More excellent earthquake resistance, strong winds 

- Resistance such as typhoons, and impact resistance 

- Recycling possible 

- Resistant to light damage 

- Friendly to the landscape 

- Rich in design, such as see-through, flexibility. 

Despite all the specified advantages, this is not extensively implemented technology. There is only 

one study (Cossu et al., 2016) in which a first integration of a photovoltaic panel with Sphelar® is 

carried out.  

A greenhouse prototype was built and a semi-transparent photovoltaic module, composed by 

4800 spherical silicon micro-cells (1.2 mm diameter) put together between 3-mm- thick glass 

plates after they were embedded in 2-mm-thick transparent resin and integrated in a greenhouse 

roof with a 26.5° slope. The percentage of the semi-transparent photovoltaic module area 

covered with micro-cells was 2.3%, reaching 9.7% considering the metallic conductors. The cell 

density was 2 cells cm-2 and the measured perpendicular light transmissivity of the semi-

transparent area was 73%. 

Figure 18. Detail of Sphelar panel (left). Example of two Building Integrated Photovoltaic Panels 
(BIPV) one in its straight version and another showing the flexibility capacity (right). 
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Although this study concluded that the energy produced by the semi-transparent photovoltaic 

module is still insufficient to fulfil the greenhouse electrical demands which are consumed in 

Mediterranean greenhouses equipped with basic climate control appliance. Hence, technology 

improvements to increase the conversion efficiency and the light transmissivity of the module 

are necessary.  

However, in Silicon cells: Catching rays (Taira & Nakata, 2010) it is verified that the energy 

accumulated for each panel with Sphelar® technology for 1 Wp was 2.7 times higher than the 

energy accumulated by a conventional panel. Consequently, with the same cover ratio of 9.7% 

(considering spheres and metal conductors), the performance of a conventional panel is obtained 

by almost 3 times. 

So far, the solar cover with Sphelar® technology meets the common criteria of functional 

requirements, as despite almost 10% of the covering surface is covered by the spheres and the 

conductor filaments, the measured perpendicular light transmissivity of the semi-transparent 

area is 73% and depending on the material (glass or plastic) the adequate thermal properties 

would have been achieved. 

Regarding the availability criteria, no bibliographic data were available, so contact was made via 

email with Sphelar® Power Corporation, a spin-off from Kyosemi Corporation. 

From there, information was obtained on the commercialisation of this technology, the feasibility 

of producing massively, the production process and the price. 

Regarding the commercialisation and viability of mass production, a positive response was 

obtained. A mass production was viable, making the price of the Building Integrated Photovoltaic 

Panel (BIPV) down and making it accessible. However, in this response, it was also said that this 

is not the case at the moment. 

In relation to the production process, the information is not very extensive. It is comprehensible 

as to avoid plagiarism. This was one of the main reasons why this cover was not taken into account 

as an option in this work. To carry out the LCIA, one needs information such as raw materials, 

processes, consumption of electricity, transport, etc. As follows, not having these data was 

considered the option to make an estimate from the data of production of conventional solar 

panels. However, in the end, the idea was rejected, since it was considered that the results 

obtained would not be entirely reliable. 

Finally, the price of a BIPV is, approximately 300,000 JPY/m2 (about 2,500 EUR/m2). 
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Therefore, despite being a very interesting option, for everything mentioned above, this was 

discarded. Although the aim was to address it in this thesis in order to take it into account for the 

future.
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Table 5. Characteristics of the selected materials. Adapted from (IDAE, 2008). 

Material Lifespan 
Thickness 

(mm) 

Transmissivity 
U  

(W/m2oC) 

Density 

(kg/m3) 

Kg/m2 

(according to 

thickness) 

Availability 
Cost 

(€/m2) 
Visible radiation (380 

- 760 nm) 

Thermic radiation 

(2500 - 40000 nm) 

Horticulture glass (3, 4) 30 4 0.91 0 6.7 2400 10 Yes 50 

Polyethylene (1, 2, 3) 4 0.1 0.88-0.91 0.79-0.84 9.1 920 0.88–0.96 Yes 3.2 

Polyethylene) x 2 

layers (1, 2, 3,7) 
4 4 + 4 0.78 0.50 4.8-6.45 1840 0.88–0.96 Yes 6 

Polycarbonate (1, 2, 5) 10 4 0.75-0.79 0.02-0.03 3.5 170 - 200 4,8 Yes 7.5 

Ethylene 

Tetrafluoroethylene 

(ETFE) (6) 

50 0.25 0.92-095 0.11 5.6 175 1,7 Yes 280 

Semi-transparent 

Photovoltaic panels 

(glass + silicon sphere 

cells) (8) 

- - 0.91 0 - - - 
Yes. Non-large 

scale 
2500 

1. (Nisen, A.; Coutisse, 1981) 

2. (Nijskens, J.; Deltour, J.; Coutisse, 1984) 

3. (Nijskens, J; Deltour, J; Nisen, A; Coutisse, 1989) 

4. (Feuilloley, P.; Issanchou, G.; Jaques, J.C.; Guillaume, S.; Mekikdjian, CH.; Mirabella, J.F.; Merlot, 1994) 

5. (Brett Martin, 2019) 

6. (AGC Chemicals, 2019) 

7. (Sanford, 2011) 

8. (Sphelar Power Corporation, 2019a; Taira & Nakata, 2010) 
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5 LCA 

5.1 Goal and scope 

Assessment is divided in three parts. The first one allows to evaluate the reference greenhouses 

– RTG and CG – in its current scenario. The second one evaluates the different covering materials 

that have been selected to determine the optimal RTG. Finally, with the optimal material selected, 

an environmental assessment of the scenario defined as optimal is conducted. 

5.1.1 Functional unit 

The functional unit is defined as 1 kg of tomatoes produced over 1 year.  

5.1.2 System boundaries 

A cradle-to-grave analysis is conducted. The assessment includes the following stages: 

construction, operation and end of life for each greenhouse. Moreover, a covering material 

assessment is carried out too. Figure 19 (see below) depicted the system boundaries of this study. 

In the construction phase, the structure - formed mainly by steel and concrete,  the rainwater 

collection system (RTG only), the auxiliary equipment that includes all the necessary materials to 

carry out the tomato production - pipes, tanks, etc. – and cover are considered. In this part, the 

maintenance of the structure is considered too. 

In the operation stage, the production carried out in the greenhouse is considering taking into 

account the consumption of expanded perlite, fertilizers, water, etc. 

Finally, the end of life stage takes into account the deconstruction of greenhouses and the 

transport of waste to the treatment, without valuing the waste management. Recycling or final 

disposal of materials is not considered part of the system under study because it was considered 

that it lacked accurate information related to the treatment of each material. In all stages, 

materials (extraction and processing), energy consumption and transport are taken into account.  

At the same time, an LCA cradle-to-grave is also achieved for each of the selected materials. This 

analysis takes into account the phase of installation, maintenance and end of life 

The lifespan of RTG is 50 years according to other studies. In order to compare the RTG with the 

conventional greenhouse, a 50-year lifespan for the conventional greenhouse has also been 

considered. 
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Figure 19. System boundaries of the LCA. 

Greenhouses are constituted, basically by three components: 1) the greenhouse structure, 2) the 

covering materials and 3) the production 

5.1.3 Greenhouse structure 

The RTG and the conventional greenhouse structures are made up of two parts: the first one is 

the own greenhouse structure - made mainly of galvanised steel and concrete. This part stays 

constant during the whole life of the greenhouse (with the corresponding maintenance, if 

applicable). Only in the case of the RTG has the rainwater harvesting system been considered as 

part of the structure. Secondly, the auxiliary equipment is the part that is characterised by being 

subject to changes according to the crop, considering the necessary auxiliary equipment that is 

needed to grow the plants (banks, leaks, pipes, etc.). The material associated with the pump and 

distribution network of water for irrigation has been considered for the conventional greenhouse, 

which is extracted from a nearby well and is boosted to the greenhouse.  

In this part, the following limitations were considered: 
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- ICTA-ICP is a building that due to its uniqueness, it is not reproducible. However, it is 

considered interesting to study due to its data accessibility. 

- The structure of the ICTA-ICP takes into account the rainwater harvesting system as a 

structure. This is a specific installation of the ICTA-ICP which is not considered in the 

conventional greenhouse. 

- It is assumed that the conventional greenhouse is located in the same place as the ICTA-

ICP, consequently, all distances have been assumed. This is applicable in the analysis of 

the covering materials. 

- On the one hand, the inventory of RTG materials (structure, rainwater harvesting, 

covering material, auxiliary equipment) are from published articles. On the other hand,  

conventional greenhouse inventory, based on IRTA, has been attained from a recent 

study in which only the structure and cover is taken into account. Based on this, it is been 

assumed that the auxiliary equipment for this last greenhouse will be the same as for the 

RTG adapted to its dimensions. Both the conventional greenhouse inventory and the 

auxiliary equipment inventory have been contrasted with other studies (Antón Vallejo, 

2004; Torrellas et al., 2012). 

- With the available data, the construction and maintenance of the entire structure has 

been taken into account in the construction stage. From the literature, it is determined 

in which phase most of the impact is concentrated: construction, maintenance or end of 

life. 

5.1.4 Covering materials  

Five materials were previously selected, based on common and specific criteria. Once the 

selection was made, the weight of covering material for each of the two greenhouses were 

calculated.  

Weight is determined by the area and consulted bibliography and technical data sheets of 

materials that provide the density (kg·m-2) and requirements. Table 5 (see below) shows specific 

quantification for each material and greenhouse. The evaluation of the cover materials include 

the following stages: installation, maintenance and end of life.  

For each stage it was considered the materials (extraction and processing), maintenance and 

transport to the waste treatment centre. Therefore, the mentioned is also a cradle-to-grave 

analysis as the greenhouse structure.  

In this part, the following limitations were considered: 
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- Auxiliary material for the installation of each cover was not considered due to data 

availability. 

- Energy associated with the maintenance, understanding maintenance as the action of 

changing the cover so that the material reach the end of their lifespan. The use of a lifting 

platform was also considered with the help of a ladder. The energy for the realisation of 

a single change was estimated from the available data of the replacement of the 

polycarbonate panels of the ICTA-ICP.  

5.1.5 Production 

In the production part, all those elements associated with the production of tomatoes are taken 

into account (Table 6). 

Table 6. Data production of RTG and Conventional Greenhouse 

 
RTG (ICTA-ICP ) 

Adapted from (Sanjuan Delmás, 2017) 

CONVENTIONAL GREENHOUSE 

Adapted from (Montero et al., 

2011) 

Crop period (days) 

333 

(Summer: 10/02/2015 – 23/07/2015 

Winter: 15/09/2015 – 04/03/2016 

263 

(15/09/2007 – 04/06/2008) 

Crop surface (m2) 84.34 166 

Yield tomato production (kg · m2) 25 16.5 

Substrate Perlite Perlite 

n. substrate bag (40L) 57 111 

Plants (plants · m-2) 2 1,2 

Water use (L · kg tomato) 214,9 28,81 

Water use (L · m-2) 6,471.97 474.8 

N (kg · m-2) 0.28 0.08 

P2O5 (kg · m-2) 0.06 0.05 

K2O (kg · m-2) 0.51 0.16 

Phytosanitary treatment (fungicide and 

insecticide) ((kg · m-2) 
0.09 3.23 · 10-3 

 

It is imperative to consider the following limitations: 

- Regarding productivity, production data is taken from two different sources; (1) for RTG 

data comes from the study about the environmental assessment of food production in a 

i-RTG considering rainwater residual heat (energy) , residual air (CO2) and food from an 

industrial ecology perspective (Sanjuan Delmás, 2017), (2) for conventional greenhouse 

data comes from the European project EUPHOROS (2011). The data used in this section 

is presented in Table 4. It should be taken into account that the availability of data 

regarding production in greenhouses, either conventional or RTG, are limited. For this 

reason, at this point some simplifications and estimations were used.  
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- The years and periods of production are factors to consider. Both the production years 

and the periods are different and therefore, the external environmental conditions are 

too. In other words, the solar radiation the crops receive, as well as the temperature 

outside will be different from one crop to another. This is also linked to the physical 

location of the two crops. The EUPHOROS data was collected in Almeria in the year 2008, 

whereas the data from the ICTA-ICP building was collected from 2015 to 2016 in 

Barcelona. There is no preceding data since the ICTA-ICP building was built in 2014.  

- The available production data corresponds to an industrial greenhouse (19,440 m2) and 

the reference conventional greenhouse thesis is 240 m2; 80 times smaller. At this point, 

it is necessary to adapt all available data from the industrial greenhouse to the reference 

greenhouse. Therefore, the values that have changed are those of cultivation area and 

bags of perlite. This reduction in a surface area also entails a clear decrease in the 

consumption of water, fertilizers, etc. 

- Another simplified factor is the use of nutrients and phytosanitary treatments. For 

instance, in the Sanjuan-Delmás’s thesis shows the values of macronutrients and 

micronutrients used and required for each of the crops. However, it was considered that 

for the present study, this level of detail was not necessary, so only phosphorus, nitrogen 

and potassium data were taken into account. 

5.2 Life cycle inventory 

Material and energy data was mainly obtained from bibliographic sources and the Ecoinvent v3 

database (Swiss Center for Life Cycle Inventories, 2013). Production data for RTG was obtained 

from experimental data of ICTA-ICP researchers. When lacking of bibliographic data, 

approximations were considered, along with its reliability and accuracy. 

Table 7 contains all the sources of information used for the inventory of greenhouse structures. 

More details are available in Table 15 and Table 16 the Annex 

Table 7. LCI of greenhouse structures 

LIFE CYCLE INVENTORY OF GREENHOUSES WITHOUT COVERING MATERIAL 

 RTG CONVENTIONAL 

STRUCTURE 

Construction 

Materials (Sanyé-Mengual et al., 2015) (Ribas, 2019) 

Processes materials (Sanyé-Mengual et al., 2015) Calculated 

Transport materials (Sanyé-Mengual et al., 2015) Calculated 

Construction (Sanyé-Mengual et al., 2015) (Ribas, 2019) 

Maintenance 
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Materials (Sanyé-Mengual et al., 2015) (Ribas, 2019) 

Processes materials (Sanyé-Mengual et al., 2015) Calculated 

Transport materials (Sanyé-Mengual et al., 2015) Calculated 

Maintenance (Antón Vallejo, 2004) (Antón Vallejo, 2004) 

End of life 

Deconstruction (Ribas, 2019) (Ribas, 2019) 

Waste transport (Sanyé-Mengual et al., 2015) Calculated 

WATER 

 Rainwater Harvesting 

The conventional greenhouse have not got 

rainwater harvesting 

Installation and Maintenance 

Materials (Sanjuan Delmás, 2017) 

Processes materials (Sanjuan Delmás, 2017) 

Transport materials (Sanjuan Delmás, 2017) 

Installation (Sanjuan Delmás, 2017) 

End of life 

Deconstruction (Sanjuan Delmás, 2017) 

Waste transport (Sanjuan Delmás, 2017) 

AUXILIARY EQUIPMENT 

Installation 

Materials (Sanjuan Delmás, 2017) (Sanjuan Delmás, 2017) 

Processes materials (Sanjuan Delmás, 2017) (Sanjuan Delmás, 2017) 

Transport materials (Sanjuan Delmás, 2017) (Sanjuan Delmás, 2017) 

End of life 

Waste transport (Sanjuan Delmás, 2017) (Sanjuan Delmás, 2017) 

PRODUCTION 

Installation 

Materials 
EUPHOROS  (Montero et al., 2011) + (Llorach-

Massana et al., 2017) 

EUPHOROS  (Montero et al., 2011) + 

(Llorach-Massana et al., 2017) 

Processes materials EUPHOROS EUPHOROS 

Transport materials 
EUPHOROS  (Montero et al., 2011) + (Llorach-

Massana et al., 2017) 

EUPHOROS  (Montero et al., 2011) + 

(Sanjuan Delmás, 2017) 

Operation 

Operation 
(Ribas, 2019) (Ribas, 2019) 

End of life 

Waste transport Calculated Calculated 
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Table 8 contains all the sources of information used for the inventory of covering materials.  

Table 8. LCI of covering materials 

LIFE CYCLE INVENTORY OF COVERING MATERIAL 

 POLYCARBONATE POLYETHYLENE 
POLYETHYLENE 

(2 LAYERS) 

HORTICULTURE 

GLASS 
ETFE 

INSTALLATION 

Materials 
(Sanyé-Mengual et al., 

2015) 
(Ribas, 2019) 

Calculated from (Ribas, 

2019) 
Calculated Calculated 

Processes 
(Sanyé-Mengual et al., 

2015) 
(Ribas, 2019) 

Calculated from (Ribas, 

2019) 
Calculated Calculated 

MAINTENANCE 

Materials 
(Sanyé-Mengual et al., 

2015) 
(Ribas, 2019) 

Calculated from (Ribas, 

2019) 
Calculated Calculated 

Processes 
(Sanyé-Mengual et al., 

2015) 
(Ribas, 2019) 

Calculated from (Ribas, 

2019) 
Calculated Calculated 

END OF LIFE (DEMOLITION + TRANSPORT TO WASTE TREATMENT) 

Materials 
(Sanyé-Mengual et al., 

2015) 
(Ribas, 2019) 

Calculated from (Ribas, 

2019) 
Calculated Calculated 

Processes 
(Sanyé-Mengual et al., 

2015) 
(Ribas, 2019) 

Calculated from (Ribas, 

2019) 
Calculated Calculated 
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5.3 Life cycle impact 

Environmental impact at midpoint level was calculated using ReCiPe 2016 v1.1 (Goedkoop et al., 

2008) through a hierarchic perspective, as recommended in the ILCD Handbook (European 

Commission - Joint Research Centre, 2010b) and SimaPro 9.0 (Pré Consultants, 2019) software. 

The selection of impact categories were made based on the existing bibliography. Moreover, 

Cumulative Energy Demand (CED) was calculated too. 

- Global Warming (GW): It is considered a popular indicator both at the level of scientific 

community and at a general level, since it is a widely known global problem. It was 

calculated for all the LCAs. 

- Freshwater Eutrophication (FE): This category is directly linked to the production phase of 

the greenhouses. It allows to determine the impact of the nutrients used in the 

production of tomatoes. 

- Mineral Resource Scarcity (MRS): This indicator allows to see the effect caused to mineral 

resources (mainly metals) as a consequence of the structure and covering materials. 

- Water Depletion (WD): In a similar way to GW, water consumption is also an 

understandable indicator for all audiences and applied in various studies. It has been 

calculated for all the LCAs. 

- Cumulative Energy Demand (CED): is an energy flow indicator that quantifies the energy 

content of all the different energy resources (renewable and non-renewable). It is 

extensively used. 

First, a comparative analysis is carried out between RTG and CG with their current covering. This 

analysis allows to obtain the current environmental burdens for each greenhouse on its current 

scenario. It is wanted to determine which of the two greenhouses has a higher environmental 

impact. 

Subsequently, a comparative analysis is performed between the 5 covering materials selected 

using the impact categories selected above. The purpose of this point is to determine the material 

with the least associated impact. 

The last analysis is to evaluate the optimum scenario. The new environmental burdens of the 

greenhouses along with the optimal covering are analysed, compared to the current scenarios. 

Finally, the environmental improvement with the covering replacement is calculated. 
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6 LCC 

A Life Cycle Costing (LCC) analysis was performed for each of the structures studied. In order to 

carry out this evaluation, the inventory defined in the Life Cycle Assessment part was used. The 

prices corresponding to the different elements were assigned. It should be taken into account 

that in some cases the price of an item was assumed and not its material, such as pumps or tanks. 

The majority of prices have been taken from the iTeC database of the year's price bank. Those 

prices which were not contemplated in this database, were obtained from external reliable 

sources. 

In order to conduct this analysis, the construction materials (both the initials and those used for 

maintenance), labour and machinery associated to construction, maintenance, transport, 

electrical consumption and deconstruction were considered. Finally, all these costs were grouped 

into: construction, maintenance, production and end of life. Table 9 shows the global results for 

each stage. However, all the details of the prices are found in the Annex Table 27. 

The economic evaluation was carried out assuming a lifespan of 50 years for all the greenhouses 

by 1 m2. Current Retail Price Index (RPI) - 0.3 positive in August 2019 (Instituto Nacional de 

Estadística (INE), 2019)-  was taken into account in order to calculate the costs for the following 

years acknowledging the reference prices. 

From here, the NPV was calculated with the mainly purpose of determining if the current 

investment is better than the optimal or vice versa. It was calculated with an interest rate of 

0.55% (Satista, 2019). 

Table 9. Global economic data for  current RTG with polycarbonate and optimal RTG with ETFE. 

 
RTG POLYCARBONATE RTG ETFE 

€/m2 €/m2 

Materials 48.15 147.75 

Production 36.3 36.3 

Construction 67.8 76.6 

Maintenance 7.8 1.6 

Deconstruction 32.9 32.95 
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7. RESULTS 

7.1. Current scenario assessment: RTG with polycarbonate and CG with 

polyethylene 

This section deals with the global analysis which was performed comparing the RTG and the CG 

in their current scenario for all impact categories. It is important to bear in mind that the 

greenhouses are divided into different parts - structure, auxiliary equipment, production and 

covering. However there are some difference between each greenhouse, mainly in the structure. 

RTG has a complex structure made with galvanised steel and concrete and with a rainwater 

harvesting system included. On contrary, CG has a much more simple structure with less material 

associated and has not got any rainwater harvesting system. Regarding production and end of 

life, both greenhouses have similar composition.Figure 20Figure 20 compares the RTG and the 

CG according to the impact category of global warming. For the RTG, the highest impact is 

associated to the structure, which represents 54% of the total CO2 eq emissions per kg of 

tomatoes. Furthermore, production raises to a 27% and becomes second when considering the 

highest impact, followed by covering which represents a 14% of the total of emissions. Finally, 

the auxiliary equipment represents the part with the lowest impact with only a 5%. In sum, for 

each kilo of tomatoes, the RTG emissions reach 0.80 kg of CO2 eq. 

Focusing on the CG, the part with the highest impact falls on production with 43% of total CO2 eq 

emissions per kg of tomatoes. The structure, with 35%, is the second part with the highest impact. 

Finally, the auxiliary equipment and cover are the parts with the least impact with  16% and 6% 

of the total respectively. For every kg of tomatoes, the CG emits 0.30 kg CO2 eq. It can be  

concluded that the complete life cycle of the RTG emits 2.7 times more kg of CO2 eq/kg of tomato 

than the CG.  
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Figure 20. Comparison between the current RTG and current CG for the Global Warming impact category. 

Figure 21 shows the results of comparing RTG and CG based on the Freshwater Eutrophication 

impact category. It can be seen that both the auxiliary equipment and the cover lose importance 

when it comes to the structure and the production. For RTG, the structure represents 84% of the 

total emissions of P eq., a 13% increase in comparison to the CG. Regarding production, RTG  

represents 14% of the total and 21% for the CG. Finally, the auxiliary equipment and the cover 

material have an insignificant weight in both greenhouses, for both the RTG auxiliary equipment  

and the cover material represent 1%. For CG, the auxiliary equipment shows a 7%, while the cover 

1%. For each kilo of tomatoes produced, the RTG emits 3.5·10-4 kg P eq and CG 1.54·10-4 kg P eq. 

Globally, every life cycle of the RTG emits 2.3 times more P eq/kg tomatoes than the CG.  
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Figure 21. Comparison between the current RTG and current CG for the Freshwater Eutrophication impact category. 
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The Mineral Resource Scarcity impact category on both analysed structures is shown in Figure 22. 

The results obtained for this impact category are similar to those obtained by Freshwater 

Eutrophication. In this impact category and for the two reference greenhouses, the structure is 

the part that consumes most mineral resources: 90% for the RTG and 80% for the CG. The parts 

of the greenhouses not mentioned above, have a less important relative weight than the 

structure itself. Production for RTG represents 9% of the consumption of Cu eq/kg tomatoes and 

17% for CG. The rest of the parts altogether add up to less than 3% of the total as a whole for 

each greenhouse. In general, RTG consumes 6.47·10-3 kg Cu eq per kg of tomatoes and CG 

3.20·10-3 kg Cu eq throughout its life cycle. Finally, the RTG has a consumption of mineral resources 

2 times higher than CG. 

 

 

 

 

 

 

Figure 22. Comparison between the current RTG and current CG for the Mineral Resource Scarcity impact category. 

  

STRUCTURE
90%

AUXILIARY 
EQUIPMENT

1%

PRODUCTION
9%

COVERING
0%

STRUCTURE
80%

AUXILIARY 
EQUIPMENT

3%

PRODUCTION
17%

COVERING
0%

0,0E+00

1,0E-03

2,0E-03

3,0E-03

4,0E-03

5,0E-03

6,0E-03

7,0E-03

RTG CG

kg
 C

u
 e

q
/k

g 
to

m
at

o
es

Mineral Resource Scarcity

2.0 



Environmental and economic analysis of the life cycle of Rooftop Greenhouses (RTGs) 

 

69 
 

The results obtained by Water Consumption (Figure 23) are clearly different from those obtained 

so far. At this point, it can be seen that for the two greenhouses, the production represents the 

highest water consumption - 73% of the total for RTG and 94% of the total for CG. Regarding the 

rest of the parties, only the structure of the RTG stands out with a 24% of water consumption. 

For the rest -auxiliary equipment and production of the RTG and structure, auxiliary equipment 

and production of the CG - represent little more than a 3% for both greenhouses. For the RTG, 

the global water consumption is 0.04 m3 per kg of tomatoes and for CG of 0.03 m3 per kg of 

tomatoes. The RTG represents a water consumption 1.3 times higher than CG.  

 

 

 

 

 

Figure 23. Comparison between the current RTG and current CG for the Water Consumption impact category 
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Finally, for the Cumulative Energy Demand (Figure 24) we find that the proportion of energy 

demand for each of the parts is different between the two greenhouses. For RTG, the part with 

the most accumulated primary energy is the structure, which represents 58% of the total MJ/kg 

tomatoes, followed by production, with 23% of MJ per kg of tomato. On the contrary, for CG the 

most weighted part is the production with 48% of the total MJ/kg tomatoes followed by the 

structure by 27%. This same behaviour occurs between the auxiliary equipment and the covering 

material. For the RTG, the polycarbonate cover represents 11% of the total energy followed by 

the auxiliary equipment with 8%. Oppositely, for CG, the polyethylene cover is the part with the 

least accumulated energy, only 2% compared to the 23% that represents the auxiliary equipment. 

According to the mentioned data, the primary energy accumulated in RTG throughout its life cycle 

is 8.6 MJ per kg of tomatoes and for CG is 3.6 MJ per kg of tomato. So that the accumulated 

energy of the RTG is 2.4 higher than that of the CG. 

 

 

 

 

 

Figure 24. Comparison between the current RTG and current CG for Cumulative Energy Demand 
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7.2. Covering materials assessment 

The total values – including installation, maintenance and end of life - relative to each impact 

category are shown in Table 10. The purpose of this table is to represent, in a visual way, the 

relative impact value of each material and for each category of impact by taking the highest value 

as the reference value. Following this, the comparison between materials is simplified and allows 

an easy selection of the most optimal cover material at the environmental level. 

Table 10. Relative value of the impact of each material for each type of greenhouse and indicator, taking as the 
reference value the highest value. 

  
GW (kg CO2 eq) FE (kg P eq) MRS (kg Cu eq) WC (m3) CED (MJ) 

% % % % % 

  RTG CG RTG CG RTG CG RTG CG RTG CG 

Polycarbonate 8.7 19.0 1.4 3.1 0.4 0.8 5.0 10.9 6.6 14.5 

Polyethylene 1.3 1.3 0.5 0.5 0.2 0.2 1.4 1.4 2.4 2.4 

Polyethylene double-layer 2.5 2.5 1.0 1.0 0.3 0.3 2.7 2.7 4.8 4.8 

Horticulture glass 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

ETFE 4.4 4.4 0.5 0.5 0.3 0.3 0.6 0.6 0.4 0.4 

 

The horticultural glass followed by the polycarbonate are the two covering materials with the 

highest relative impact both for the RTG and the CG (Table 10). It should be taken into account 

that the polycarbonate, despite being the second material with the most associated 

environmental impact, is far from the values obtained by horticultural glass. 

Although polyethylene, double layer polyethylene and ETFE have lower values in contrast to glass 

or polyethylene, polyethylene double-layer is the material which takes third position. 

Regarding polyethylene and ETFE, polyethylene has the lowest impact value for the GW and MRS 

categories. Instead, ETFE has the lowest values for WC and CED. For FE, the relative value is equal 

to polyethylene and ETFE.  

Therefore, it can be determined that polyethylene is the material with a lower environmental 

impact compared to all the materials evaluated. 

However, ETFE is also selected as an optimal material. Consequently, polyethylene film is not 

feasible to use it in construction, whereas ETFE is. In addition, the values obtained for the ETFE 

are very similar to those of the polyethylene, except for those obtained by GW. 

For both materials, a graphic was produced showing the impact associated to each type of 

greenhouse based on the different impact categories, and for each phase of its life cycle 

(installation, maintenance and end of life). Percentage impact values were normalized to facilitate 
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graphic representation. In the Annex, the same pictures for polycarbonate can be found (Figure 

32), for polyethylene double-layer (Figure 34) and for horticulture glass (Figure 35). 

In Figure 25, the maintenance of polyethylene can be observed. This is the phase of its life cycle 

with the most associated impact: 92% of the total. The installation only represents 8% and the 

end of life is considered despicable. The results obtained in this section are clearly conditioned 

by the useful life of polyethylene, approximately 4 years. Taking into account that a 50-year 

lifespan of each greenhouse was assumed, this created the need to change covers every 4 years, 

with a total of approximately 12 changes. Regarding the end of life, the fact of considering only 

the transport to the gate of the management, without taking into account any treatment, causes 

that only the impact associated with the own transport is taken into account which is minimum 

regarding the phases of construction and maintenance. 

 

Figure 25. Representation of the impact of the polyethylene life cycle for each stage of the life cycle, distinguishing 
between greenhouses and for all impact categories. 

The results for ETFE for each life cycle stage (Figure 26). Almost 100% of the impact is associated 

to the installation phase - a proportion less than 1% is associated to the end of life. Unlike 

polyethylene, this material does not require maintenance since its lifespan is equal to the 

greenhouses lifespan (50 years) and therefore, it should not be replaced at any time. That is why 

the entire impact is concentrated in the installation phase. The despicable value of the end of life 

has the same explanation given by plastic polyethylene. 
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Figure 26. Representation of the impact of the ETFE life cycle for each stage of the life cycle, distinguishing between 
greenhouses and for all impact categories. 

The relative improvement that could be achieved with the change of polycarbonate to 

polyethylene cover for RTG (Table 11). It is clear that, for all impact categories, this change of 

polycarbonate to polyethylene would be an improvement since the impact would be between 

2.3 and 6.9 times lower, according to the indicator evaluated. Whereas for the change of 

polycarbonate to ETFE, it is observed that due to the impact categories of GW and MRS, the 

reduction of the impact is not so attractive for what is achieved with polyethylene. However, for 

WC and CED categories, a remarkable reduction is obtained - 7.8 times the impact of the WC and 

15.8 times the impact of the CED. For FE, the same decrease is obtained. 

Table 11. Relation between the current RTG material covering - polycarbonate and the materials defined as optimal - 
polyethylene and ETFE 

RTG 
GW (kg CO2 eq) FE (kg P eq) MRS (kg Cu eq) WC (m3) CED (MJ) 

% % % % % 

Polycarbonate 8.7 1.4 0.4 5.0 6.6 

Polyethylene 1.3 0.5 0.2 1.4 2.4 

ETFE 4.4 0.5 0.3 0.6 0.4 

 

Polycarbonate/Polyethylene 6.9 3.0 2.3 3.6 2.8 

Polycarbonate/ETFE 2.0 3.0 1.4 7.8 15.7 

 

In Table 12, the same exercise was done for CG. It is worth mentioning that this greenhouse has 

polyethylene as a current cover material, therefore only the change to ETFE was evaluated. Even 

though the environmental impact increases due to GW and MRS, when WC and CED are 

evaluated, the impact is 2.2 and 5.7 lower respectively. No changes can be noticed concerning 
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FE. Despite some improvement over the current cover material, the change of coverage with ETFE 

does not imply a global improvement for the CG. 

Table 12. Relation between the current CG material covering - polycarbonate and the materials defined as optimal - 
polyethylene and ETFE 

CG 
GW (kg CO2 eq) FE (kg P eq) MRS (kg Cu eq) WC (m3) CED (MJ) 

% % % % % 

Polyethylene 1.3 0.5 0.2 1.4 2.4 

ETFE 4.4 0.5 0.5 0.6 0.4 

 

Polyethylene/ETFE 0.3 1.0 0.6 2.2 5.7 

 

7.3. Optimal scenario assessment 

Based on the selection of the optimal material, each impact category and CED is represented by 

the current RTG and the optimum scenario of each, obtained from the change of cover material. 

In the optimum scenarios, the structure, auxiliary equipment and production were preserved and 

only the cover material was modified. Therefore, any optimisation of the greenhouses will be 

given by the change of this last element. 

In Figure 27, it is seen that in RTG, along with the ETFE cover, the CO2 eq emitted by kg of 

tomatoes decreases in contrast to the current RTG cover of polycarbonate 

As for the current greenhouse, the cover represents 14% (0.11 kg of CO2 eq/kg tomatoes) of the 

total. Contrary to this, with ETFE it represents 7% (0.05 kg of CO2 eq/kg tomatoes). It has been 

obtained that with change of cover to ETFE, the emissions of CO2 eq would be approximately 7% 

inferior avoiding the emission of 0.06 kg CO2 eq/kg tomatoes.  
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Figure 27. Comparison, based on Global warming, between the current RTG with polycarbonate covering and the 
optimised version: RTG with ETFE cover.  
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Figure 28 presents the same results as the previous figure, but dealing with Freshwater 

eutrophication. In this impact category it can be observed that the cover has a very discreet 

representation in contrast to the rest of parts of the greenhouses for RTG on its current version 

– 1.4% (4.82·10-6 kg of P eq/kg tomatoes). Considering the low weight the covering has in the 

global greenhouse, it can be expected that the reduction of kg of P eq emitted by kilo of tomato 

will be very low. For the ETFE the kg of P eq decreases to 1% (3.51·10.4 kg of P eq/kg tomatoes). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Comparison, based on Freshwater eutrophication, between the current RTG with polycarbonate covering 
and the optimised version: RTG with ETFE cover. 
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For Mineral resource scarcity (Figure 29), the depiction of the cover material is almost negligible. 

For RTG, the covering only represents 0.2% (1.53·10-5 kg of Cu eq/kg tomatoes).By changing the 

covering, the percentage loses importance. It represents the ETFE 0.2% (1.16·10-5 kg of Cu eq/kg 

tomatoes).  

As for the previous category, given the low weight that covers have in the global greenhouse, it 

is expected that the reduction of kg of Cu eq issued by tomato kg will be very low. For the new 

ETFE cover, the decrease in kg of Cu eq is 0.0% (3.7·10-6 kg of Cu eq/kg tomatoes).  

 

 

 

 

 

Figure 29. Comparison, based on Mineral resource scarcity, between the current RTG with polycarbonate covering and 
the optimised version: RTG with ETFE cover. 
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For water consumption, the cover has no significant representation (Figure 30). For RTG, the 

cover only represents 2% (6.8·10-4 m3/kg tomatoes). With the respective cover change, this 

percentage loses even more importance. In the case of RTG with ETFE, it represents 0 %                

(8.7·10-5 m3/kg tomatoes).  

As for the previous category, seeing the little weight the covering has in the global greenhouse, 

it is expected that the reduction of the consumption of m3 of water per kg of tomato will also be 

very low. For the new ETFE cover, the decrease of m3 is 2% (5.9·10-4 m3/kg tomatoes).  

 

 

 

 

 

 

Figure 30. Comparison, based on Water consumption, between the current RTG with polycarbonate covering and the 
optimised version: RTG with ETFE cover 
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In Figure 31, the Cumulative Energy Demand for each of the RTG with different covering materials 

is evaluated. Based on this indicator, it can be observed that the cover has a relative higher 

importance than previously evaluated categories - FE, MRS and WC. Therefore, for the present 

RTG, the covering represents 11% (0.9 MJ/kg tomatoes). 

With the replacement of a new cover, it is observed for the RTG, that with the new ETFE cover, 

the primary energy (MJ) associated to one kg of tomato would be 1% (6.0·10-2 MJ/kg tomatoes) 

lower. This value is also reflected on the fact that the relative weight of the ETFE cover also 

decreases to 10%. 

 

 

 

 

 

 

Figure 31. Comparison, based on Cumulative Energy Demand, between the current RTG with polycarbonate covering 
and the optimised version: RTG with ETFE cover. 
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7.4. Economic assessment 

Within this section, only the RTG was evaluated in its current scenario, along with the scenario 

considered optimal at an environmental level. It was decided to obviate the economic evaluation 

of the CG. The results obtained in the environmental analysis as a result of the change of 

polyethylene cover to ETFE do not imply a significant environmental improvement. Moreover, 

the price per m2 of the ETFE covering (280€/m2) is the highest, so it allows us to determine that 

it is the worst option in reference to the current CG scenario with polyethylene (the cheapest 

plastic). 

Table 27 of the Annex shows the price per m2 per 1 year for the elements of the RTG. We assume 

some elements negligible and we simplify others. It should be noted that the only part that varies 

is that related to the cover and its maintenance, since it is determined by the type of material. 

Table 13 shows the total investment per m2 and per 50 years for the greenhouse in its current 

scenario and in the optimal scenario, differentiating construction, maintenance, production and 

end of life for each type of RTG. In addition, the percentages of the relative weight are included. 

Table 13. Total investment for m2 of RTG in 50 years. 

Price (€/m2) RTG – PC RTG - ETFE 

Construction 125.5 (11%) 224.4 (19%) 

Maintenance 202.4 (17%) 112.9 (10%) 

Production 812.95 (69%) 812,95 (69%) 

End of life 38.6 (3%) 36,0 (3%) 

TOTAL 1179.5 1186.3 

 

It can be determined that the investment for the RTG with ETFE is higher than the investment for 

RTG with polycarbonate. The difference between the both investment is 6.8 €. 

Table 14 shows the NPV obtained for RTG with polycarbonate and RTG with ETFE.  

Table 14. Net Present Value (NPV) for RTG with polycarbonate and RTG with ETFE 

 RTG – PC RTG - ETFE 

NPV - 117.5 - 182.1 

 

As expected, both results are negative, since the generation of any kind of benefit has not been 

taken into account and therefore the cash flow is always negative. However, RTG-PC has a less 
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negative NPV, which means that recovering this investment so that the NPV is equal to 0 or 

higher, would be easier than for the RTG –ETFE.  

Figure 32 shows how the costs are shared. It can be seen that the majority are associated to the 

production phase, and the lowest at the end of life represented by the transport of waste to the 

point of treatment. The parts that present more variation are the construction and the 

maintenance. It can be seen that RTG - PC cost of maintenance – 202.4 €/m2 – is higher than the 

cost of construction – 125.5 €/m2. On the one hand, the RTG - ETFE is inverse - 118.9 €/m2. On 

the other hand, the cost of building the first greenhouse is lower than the RTG with an ETFE cover: 

224.4 €/m2 for construction and 112.9 €/m2 for maintenance (see Table 13). This is mainly 

associated with the useful life of these materials and the need to replace them. 

 

 

 

 

 

Figure 32. Economic cost per square meter of greenhouse. Representation for RTG with polycarbonate (current 
scenario), RTG with polyethylene and RTG with ETFE. 
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8. DISCUSSION 

The aim of this thesis was to analyse  the environmental and economic performance of  

Greenhouses. As well as to analyse the different materials used for the construction of the 

structural elements and covering of these greenhouses and the results of the production process 

in comparison with conventional greenhouse systems. 

Based on the results obtained, it is determined that RTG is less environmentally friendly than CG 

in its current scenarios. Depending on the impact category evaluated, it is determined that the 

impact of the RTG, in its entire useful life, is between 1.3 to 2.7 times higher than that associated 

with the CG. 

These results are close to those obtained by Sanyé-Mengual et al.,(2015) with some nuances. 

Sanyé-Mengual et al. concludes in its work that the production of 1 kg of tomatoes produces 

0.216 kg of CO2 eq and a CED of 3.25 MJ. However, in this work, it has been obtained that for 

each kg of tomatoes, 0.43 kg of CO2 eq and a 5 MJ CED are produced.  

At this point, the results obtained are justified by the rainwater harvesting system, which has 

been contemplated as part of the structure of the RTG in this work and has not been taken into 

account in Sanyé-Mengual et al. study. Rainwater harvesting is made up of a fiberglass reinforced 

polyester tank. The high impact can be associated to the process of manufacture of silicon-based 

fiberglass and requires a very high energy demand to reach high temperatures (1500 - 2000°C) 

for its processing (Loewenstein, 1975). 

In this work, the evaluation of the stages of the life cycle of greenhouses was analysed, to 

determine in which stage most of the impact is concentrated. This analysis has only been carried 

out for cover materials. However, the results of Sanyé-Mengual et al. (2015) are assumed in this 

piece of work. In their study, it is reported that the materials represent most of the impact caused 

by the RTG. In particular, steel is the material with the largest environmental impact (69.5-96.4%), 

followed by polycarbonate (2.2-26.8%). With these results, it can be concluded that the impact 

of the conventional greenhouses is lower due to: (1) at structural level is formed by a very simple 

structure, with less amount of material and (2) the impact associated to polycarbonate is 

completely avoided.  

It should be taken into account that this impact is distributed throughout the life cycle of the 

greenhouses, depending on the lifespan of the materials used. For instance, the impact of the 

structure is concentrated in the construction phase, since the materials that form it - the steel or 

concrete - have a lifespan of 50 years, coinciding with the lifespan established by the 
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greenhouses. On the contrary, the impact of the auxiliary equipment or the cover material is 

reflected in the maintenance phase as a result of the lifespan of the materials that make them 

up. For example, most auxiliary equipment elements have a lifespan of 10 years, which means 

that in over 50 years, it would be necessary to renew all the equipment at least 5 times. 

Considering the different stages of the life cycle of greenhouses, it can be determined that the 

construction of the RTG has an important weight in terms of the overall impact of the RTG, as it 

represents an important investment in terms of resources - materials, energy and transportation. 

This weight is reflected on the majority of impact categories, in which structure and auxiliary 

equipment represent very high percentages. However, the MRS category stands out, which has 

values of up to 90% for RTG and 80% for CG as a result of the steel that forms the structure.  

At this point, it is interesting to see that the RTG, unlike the CG, has a complex structure with  high 

consumption of materials, mainly steel. Sanjuan (2017) collects in his work the need to consider 

the optimisation of this structure, which would reduce the associated environmental impacts 

notably. In addition, a very recent master thesis by Esteban Garballo (UPC) in the frame of the 

Fertilecity II project, in which the optimisation of the structure of the ICTA-ICP was studied, has 

allowed to determine the possibility of obtaining a structure approximately with 65% of the 

current steel. This optimisation would have a direct positive impact on RTG. 

Sanyé-Mengual also reported that maintenance stage is more impacting in those categories 

related to fossil resources, such as GWP, mainly due to the production of polycarbonate and 

consequent emissions of carbon dioxide and methane. With the change in covering that has been 

evaluated, this impact would drastically reduce for two reasons: (1) ETFE has a lower 

environmental impact in all phases of its life cycle, (2) the ETFE has a life of 50 years, which implies 

that it does not need maintenance. Therefore, the global impact of the maintenance phase would 

also be reduced. The results obtained from the evaluation of cover materials are discussed further 

in this study. 

The operation stage of greenhouses has also been evaluated. At this point, the impact of the RTG 

and the CG are the same since the CG only carried out an adaptation of the system used in the 

RTG. Based on this work, the only category in which production has been the higher impact, is in 

WC, since it is in the phase where more water is consumed for the crops. However, in categories 

such as GW or CED it also has an important weight. This impact is mainly associated with the use 

of fertilisers (Sanjuan Delmás, 2017). 

Regarding the analysis of the selected cover materials, the environmental impact of each 

material, and for each of the reference greenhouses, has been evaluated. Horticultural glass, 
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polycarbonate and polyethylene double-layer were discarded as optimal for RTG and CG. 

Horticultural glass is the material with the highest values in all impact categories. These values 

are associated to the process of producing glass, which requires a lot of energy to reach the right 

temperatures to be processed. It can be determined that the values of the rest of the covering 

materials are much lower than those obtained by the horticultural glass. For cover materials 

adapted to the RTG and, for all impact categories, the values are between 91.3% and 99.8% lower 

than the horticulture glass values. For CG, the values are between 81% and 99.8% lower than the 

horticulture glass values. 

Finally, it has been determined that polyethylene would be the material with which the 

environmental burdens of each greenhouse followed by ETFE would be further reduced. 

Polyethylene is the best material in terms of GW, FE and MRS and has the second best values of 

WC and CED. On the opposite, the ETFE represents the best material at the WC and CED level and 

has worse results compared to GW, FE and MRS. 

Despite the positive results of polyethylene, the use of ETFE has been valued as a substitute for 

polycarbonate. Although polyethylene is an extensively employed plastic in conventional 

greenhouses, the replacement of the current polycarbonate cover of the ICTA-ICP could not be 

made by a polyethylene cover, as this material does not meet the structural and safety 

requirements in buildings, for it is a simple film. At this point, the interest for the ETFE increases 

exponentially, since it is a material with environmental impact values very similar to polyethylene 

and, moreover, it can be used in construction. On a different scale, ETFE has been used as cover 

material in: the Media-TIC building in Barcelona, the Allianz Riviera stadium in Nice, or the 

restaurant Les Cols in Olot (Girona). 

According to the results, it is clear to see that there is the possibility of improving the 

environmental impact caused by the RTG by changing the current cover material for ETFE. The 

conventional greenhouse, in its current version, has the most optimal configuration. 

Consequently, the only change in coverage that could be made - from polyethylene to ETFE - 

would only mean an increase in environmental burdens and the cost of CG. 

Through the analysis of the results obtained for each of the selected materials, it was also worth 

analysing the materials according to their useful life. On the one hand, polycarbonate or 

polyethylene have been identified with relatively short lifespans, and therefore, they need to be 

renewed often. On the other hand, horticultural glass or ETFE with a much longer lifespan, do not 

require to be changed often. 
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Polycarbonate and polyethylene, which are plastics with a relatively short useful life (10 and 4 

years), need changing 5 times for polycarbonate, and 12.5 times for polyethylene within 50 years, 

which is the useful lifespan of greenhouses. Contrarily, both glass and ETFE, with useful lives of 

30 years and 50 years, mean a drastic reduction in the need to renew them. 

It is easy to see that the environmental impact associated with short life materials will be shared 

over time and concentrated in the maintenance phase. This is the case of polyethylene, with 92% 

of its environmental impact occuring in the maintenance phase, and only 8% in the construction 

phase. On the other hand, long-life materials will concentrate their impact on the construction 

phase, as in the case of the ETFE, with practically 100% of the environmental impact concentrated 

in it. 

It has been determined that, although it is not referenced in this work as an optimum material, 

polyethylene, with a short useful life, is the material with the least associated environmental 

impact. Whereas the ETFE, with a long useful life, has very similar results to the polyethylene, this 

last being slightly worse.  

At an economic level, the behaviour is identical. For short-term life materials, the economic 

investment is spread over time, unlike the long-life materials, in which the investment is 

concentrated in the construction phase. 

The initial cost of polyethylene - 1.1 €/m2 is lower than its maintenance price - 5.1 €/m2. In 

contrast, ETFE’s behaviour is the opposite with an initial investment of 122.1 €/m2 and a 

maintenance of 0 €. With these values, it is easy to determine that at the environmental and 

economic level the most optimal material is polyethylene. However, taking into account the 

impossibility of replacing the current polycarbonate cover with a new polyethylene cover, the 

same comparative exercise between polycarbonate and ETFE was performed. Continuing with 

the same dynamics as polyethylene, the initial cost of installing polycarbonate is 12.5 €/m2, much 

lower than the cost of installing ETFE. On contrary, the cost of maintenance of ETFE is 0€, while 

the maintenance cost of the polycarbonate is 72.6 €/m2. The cost of polycarbonate maintenance 

is clearly higher than that of ETFE. 

The sum of the material used in the installation and maintenance of polycarbonate is 

approximately 85.0 €/m2, 37.0 € less than the total cost of the ETFE. Therefore, although the 

option with ETFE is more expensive at a cost level, it can be considered that its substitution could 

be generally valued as positive, since it has an impact on the environment, less than the 

polycarbonate. 
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End of life stage was deemed negligible for all materials, in comparison with the other stages. This 

stage considers only energy for deconstruction and transport from site to the point of waste 

management disregarding waste treatment. 

Finally, the aim was to quantify the environmental improvement achieved globally throughout 

the RTG by substituting the polycarbonate cover for ETFE. In GW, the CO2 eq emissions resulted 

in a reduction of 7%, this implies a reduction of 0.05 kg of CO2 eq less, per kg of tomatoes 

produced. An important reduction is also detected in CED, which results in a 10% decrease, saving 

0.84 MJ per kg of tomato. For the rest of impact categories, the representation of the cover is 

almost insignificant. 

Regarding the functional requirements, it should be taken into account that the change of 

polycarbonate cover to ETFE coverage means an improvement in the transmissivity. The ETFE has 

values of 92-95% of the transmission unlike the polycarbonate that has values of 75-79% of the 

transmissivity. As for the U-value, the replacement of the cover implies a worsening of the 

isolation. It goes from a value of 3.5 (W/m2oC) to a value 5.6 (W/m2oC). 

At a cost level, the change of cover means a modification of the percentages in relative cost of 

the construction and the maintenance phase. With the polycarbonate cover, the construction 

phase was 11% of the total cost of the RTG life cycle - 125.5 €/m2. With the change of cover, the 

relative weight of the construction becomes 19% with a price of 224.4 € per square meter. The 

opposite effect occurs in the maintenance phase; it loses importance with the ETFE being 112.9 

€/m2 - 10% of the total price associated with the maintenance of the RTG without taking into 

account the cover, since it does not require maintenance. Polycarbonate’s cost, on the other 

hand, is 202.4 €/m2 - 17% - from which approximately 89.5€, are associated to the maintenance 

cost of the cover. Globally, the RTG price using polycarbonate is 1179.5 €/m2 and, the RTG price 

using ETFE per m2 is 1186.3 €. This means an approximate increase in the total RTG price per m2 

of 6.8 €. 
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9.  CONCLUSIONS AND FUTURE RESEARCH 

The conclusions were structured in relation to the approach of the initial objectives: 

The original aims of this thesis have been met.  

- RTG is less environmentally friendly than CG in its current scenarios. Depending on the 

impact category evaluated, it is determined that the impact of the RTG, in its entire useful 

life, is between 1.3 to 2.7 times higher than that associated with the CG.  

- The greenhouse  structure, cover material and auxiliary equipment represents between 

66% and 98% of the total impact for the RTG and for the CG between 60% and 83%.  

- Of all studied materials, polyethylene is the material with less environmental burdens 

followed by ETFE. Although polyethylene is a plastic used extensively in conventional 

greenhouses, the replacement of the current polycarbonate cover of the RTG could not 

be made by a polyethylene cover, since this material does not meet the structural and 

safety requirements in buildings polyethylene can be considered as optimal for 

conventional greenhouses or non-integrated RTG.  

- For the RTG the optimal cover material is the ETFE. 

- The environmental impact of a material is not associated to how extensive its lifespan is: 

polyethylene has a short useful life - 4 years, whereas ETFE has a long lifespan - 50 years. 

It is shown that both these materials have the least environmental impact. 

- The lifespan of a material is directly related to the distribution of environmental impact 

produced over time. The environmental impact associated with short lifespan materials 

is shared over time and concentrated in the maintenance phase. On the other hand, long-

lifespan materials concentrate their impact on the construction phase, as ETFE does, 

which practically concentrates 100% of the environmental impact. 

- The cover replacement causes a reduction in the overall impact of the greenhouse in 

contrast to RTG with polycarbonate. This can be seen in categories such as GW or CED. 

The first shows that the change of covering produces a 7% reduction of CO2 emissions, 

avoiding therefore the emission by a 0.05 kg of CO2 eq less per kg of tomatoes produced. 

An important reduction is also detected at a CED level, in which the change in coverage 

results in a 10% decrease, saving 0.84 MJ per kg of tomato. 

- The RTG price with polycarbonate is 1179.5 €/m2 and the RTG price with ETFE per m2 is 

1186.3 €. This means an approximate increase in the total RTG price per m2 of 6.8 €. 
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For further research, it would be interesting to continue with the guidelines provided as follows: 

Most recent studies focus on analysing the environmental and economic impact of greenhouses 

in their life cycle. For the sake of the research in the field, further studies could include the 

analysis of the logistics associated to each type of greenhouses: the impact caused by the 

recollection of production, logistics within greenhouses, transport, etc. 

Also, it would be interesting to conduct a study of other cover materials such as solar coverings. 

In this thesis, the possibility of using a solar cover with Sphelar® technology was taken into 

consideration. However, it was ruled out due to lack of information. 

Finally, I would suggest a similar work to the present, in which the RTG in the current scenario 

and the RTG in the optimised scenario at a structure level and coverage, are compared.  
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Table 15. Life Cycle Inventory (LCI) of RTG. 

LIFE CYCLE INVENTORY (LCI) - ROOFTOP GREENHOUSE 

STRUCTURE 

Construction 

Materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Galvanised Steel 85 5133,0 kg 41,8 0,8 50 Sanyé-Mengual 

Concrete 0,6 kg 0,0 0,2 50 Sanyé-Mengual 

LDPE 36,8 kg 0,3 0,0 4 Sanyé-Mengual 

Polyester 4,9 kg 0,0 0,0 5 Sanyé-Mengual 

Aluminium 4,9 Kg 0,0 0,0 5 Sanyé-Mengual 

Processes materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Metal working 5133,0 kg 41,8 0,8 50 Sanyé-Mengual 

Zinc coat, coils 182,3 m2 1,5 0,0 50 Calculated (Ecoinvent) 

Injection moulding  36,8 kg 0,3 0,0 4 Sanyé-Mengual 

Polar fleece production 4,9 kg 0,0 0,0 5 Sanyé-Mengual 

Sheet rolling, aluminium 4,9 kg 0,0 0,0 5 Sanyé-Mengual 

Transport materials 

Conecept Method of transport Origin Distance Units tkm Source 

Galvanised Steel Lorry 16-32t, EURO5 Martorell, Espanya 77 km 395,2 Sanyé-Mengual 

Concrete Lorry 16-32t, EURO6 Barcelona, Espanya 40 km 0,0 Sanyé-Mengual 

LDPE Lorry 16-32t, EURO7 Tarragona, Espanya 101 km 3,7 Sanyé-Mengual 

Polyester Lorry 16-32t, EURO8 
Hellevoetsluis, Països 

Baixos 
1487 km 7,3 Sanyé-Mengual 

Aluminium Lorry 16-32t, EURO9 
Hellevoetsluis, Països 

Baixos 
1487 km 7,3 Sanyé-Mengual 

Greenhouse Construction 

Machinery use Energy Units Unit/m2 Unit/m2·year Source 

Machinery 2,5 kWh 0,0 0,0 Sanyé-Mengual 

      

Maintenance 

Materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

LDPE 442,1 kg 3,6 0,1 4 Sanyé-Mengual 

Polyester 43,0 kg 0,4 0,0 5 Sanyé-Mengual 
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Aluminium  43,0 kg 0,4 0,0 5 Sanyé-Mengual 

Processes materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Injection moulding  442,1 kg 3,6 0,1 4 Sanyé-Mengual 

Polar fleece production 43,0 kg 0,4 0,0 5 Sanyé-Mengual 

Sheet rolling, aluminium 43,0 kg 0,4 0,0 5 Sanyé-Mengual 

Transport materials 

Conecept Method of transport Origin Distance Units tkm Source 

LDPE Lorry 16-32t, EURO5 Tarragona, Espanya 101 km 44,7 Sanyé-Mengual 

Polyester Lorry 16-32t, EURO6 
Hellevoetsluis, Països 

Baixos 
1487 km 63,9 Sanyé-Mengual 

Aluminium  Lorry 16-32t, EURO7 
Hellevoetsluis, Països 

Baixos 
1487 km 63,9 Sanyé-Mengual 

Maintenance 

Greenhouse Maintenance 

Machinery use Energy Units Unit/m2 Unit/m2·year Source 

Machinery 47054,2 kWh 941,1 7,7 Antón 

End of life 

Deconstruction 

Machinery use Energy Units Unit/m2 Unit/m2·year Source 

Machinery used to demolish 1,2 kWh 0,0 0,0 Ribas 

Waste treatment 

Concept Weight Units Unit/m2 Unit/m2·year Source 

Waste 5708,3 kg 46,5 0,9 
Calculated from Sanyé-Mengual 

excluding Polycarbonate 

Waste transport 

Conecept Method of transport Origin Distance Units tkm Source 

Waste  Transport, lorry 16-32t Bellaterra, Spain 30 km 171,2500174 Sanyé-Mengual 

RAINWATER HARVESTING (RH) 

Construction 

Materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Glass Fiber Reinforced Polymers 4051,7 kg 33,0 0,7 50 Sanjuan-Delmás 

Cast iron 65,8 kg 0,5 0,0 10 Sanjuan-Delmás 

Steel 7,7 kg 0,1 0,0 10 Sanjuan-Delmás 

HDPE 305,0 kg 2,5 0,0 10 Sanjuan-Delmás 

Processes materials 
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Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Injection moulding  4051,7 kg 33,0 0,7 50 Sanjuan-Delmás 

Extrusion, plastic pipes 305,0 kg 2,5 0,0 10 Sanjuan-Delmás 

Metal working 73,5 kg 0,6 0,0 10 Sanjuan-Delmás 

Transport materials 

Conecept Method of transport Origin Distance Units tkm Source 

Glass Fiber Reinforced Polymers Lorry 3.5-7.5 metric ton Unknown 60 km 486,2 Sanjuan-Delmás 

Cast iron + Steel + HDPE Light commercial vehicle Unknown 60 km 45,4 Sanjuan-Delmás 

RH Installation 

Machinery use Energy Units Unit/m2 Unit/m2·year Source 

Excavation, hydraulic digger 100,0 m3 0,8 0,0 Sanjuan-Delmás 

End of life 

Deconstruction 

Machinery use Energy Units Unit/m2 Unit/m2·year Source 

Machinery used to demolish 12,8 kWh 0,1 0,0 Sanjuan-Delmás 

Waste treatment 

Concept Weight Units Unit/m2 Unit/m2·year Source 

Municipal solid waste 305,0 kg 2,5 0,0 Sanjuan-Delmás 

Waste transport 

Conecept Method of transport Origin Distance Units tkm Source 

Waste  Lorry 3.5-7.5 metric ton Bellaterra, Spain 30 km 265,8 Sanjuan-Delmás 

AUXILIARY EQUIPMENT 

Installation 

Materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Cast iron 44,0 kg 0,4 0,0 10 Sanjuan-Delmás 

Steel 5,0 kg 0,0 0,0 10 Sanjuan-Delmás 

HDPE 2,5 kg 0,0 0,0 10 Sanjuan-Delmás 

PE 40,5 kg 0,3 0,0 10 Sanjuan-Delmás 

PE 75,0 kg 0,6 0,0 10 Sanjuan-Delmás 

Polypropylene 8,0 kg 0,1 0,0 10 Sanjuan-Delmás 

Cast iron 24,0 kg 0,2 0,0 10 Sanjuan-Delmás 

HDPE 1,5 kg 0,0 0,0 10 Sanjuan-Delmás 

HDPE 2,5 kg 0,0 0,0 10 Sanjuan-Delmás 

Electronics 0,0 kg 0,0 0,0 10 Sanjuan-Delmás 

PVC 41,0 kg 0,3 0,0 10 Sanjuan-Delmás 
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LDPE 27,5 kg 0,2 0,0 10 Sanjuan-Delmás 

PE 1,5 kg 0,0 0,0 10 Sanjuan-Delmás 

PVC 7,5 kg 0,1 0,0 10 Sanjuan-Delmás 

LDPE 35,0 kg 0,3 0,0 5 Sanjuan-Delmás 

EPS 482,0 kg 3,9 0,1 5 Sanjuan-Delmás 

HDPE 40,0 kg 0,3 0,0 5 Sanjuan-Delmás 

Steel 39,0 kg 0,3 0,0 5 Sanjuan-Delmás 

Polypropylene 38,0 kg 0,3 0,0 5 Sanjuan-Delmás 

Adhesive 1,0 mL 0,0 0,0 10 Sanjuan-Delmás 

Solvent 2,0 mL 0,0 0,0 10 Sanjuan-Delmás 

Processes materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Metal working 49,0 kg 0,4 0,1 10 Sanjuan-Delmás 

Wire drawing 39,0 kg 0,3 0,0 5 Sanjuan-Delmás 

Injection moulding 5,0 kg 0,0 0,0 10 Sanjuan-Delmás 

Injection moulding 40,0 kg 0,3 0,0 5 Sanjuan-Delmás 

Injection moulding 117,5 kg 1,0 0,2 10 Sanjuan-Delmás 

Injection moulding 8,0 kg 0,1 0,0 10 Sanjuan-Delmás 

Injection moulding 38,0 kg 0,3 0,0 5 Sanjuan-Delmás 

Extrusion, plastic pipes 24,5 kg 0,2 0,0 10 Sanjuan-Delmás 

Extrusion, plastic pipes 27,5 kg 0,2 0,0 10 Sanjuan-Delmás 

Injection moulding 24,0 kg 0,2 0,0 10 Sanjuan-Delmás 

Extrusion, plastic film 35,0 kg 0,3 0,0 5 Sanjuan-Delmás 

Injection moulding 482,0 kg 3,9 0,4 5 Sanjuan-Delmás 

Transport materials 

Conecept Method of transport Origin Distance Units tkm Source 

All materials Light commercial vehicle Unknown 30 kg 37,5 Sanjuan-Delmás 

End of life 

Waste treatment 

Concept Weight Units Unit/m2 Unit/m2·year Source 

Waste 372,5 kg 3,0 0,1 Sanjuan-Delmás 

Waste transport 

Conecept Method of transport Origin Distance Units tkm Source 

Waste  Light commercial vehicle Bellaterra, Spain 30 km 32,5 Sanjuan-Delmás 

PRODUCTION 

Installation 
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Materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

LDPE 39,9 kg 0,3 0,0 5 Sanjuan-Delmás 

Perlite 3420,0 kg 27,9 0,6 3 Sanjuan-Delmás 

N 1190,0 kg 9,7 0,2 1 Sanjuan-Delmás 

P2O5 255,0 kg 2,1 0,0 1 Sanjuan-Delmás 

K2O 2167,5 kg 17,7 0,4 1 Sanjuan-Delmás 

Insecticide 1,7 kg 0,0 0,0 1 Sanjuan-Delmás 

Fungicide 11,9 kg 0,1 0,0 1 Sanjuan-Delmás 

Water 2319,8 m3 0,5 0,4 1 Sanjuan-Delmás 

Processes materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Extrusion, plastic film 39,9 kg 0,3 0,0 5 Sanjuan-Delmás 

Transport materials 

Conecept Method of transport Origin Distance Units tkm Source 

All materials less perlite Light commercial vehicle Unknown 30 km 108,8 EUPHOROS 

Perlite bags Light commercial vehicle Almeria 850 km 2940,9 
EUPHOROS + (Llorach-Massana 

et al., 2017) 

End of life 

Waste treatment 

Concept Weight Units Unit/m2 Unit/m2·year Source 

Waste 47029,1 kg 383,0 7,7 Calculated 

Waste transport 

Conecept Method of transport Origin Distance Units tkm Source 

Waste  Light commercial vehicle Bellaterra, Spain 30 km 1410,9 Calculated 

 

The cover material is excluded for a specific LCI is relocated specifically for all cover materials in the study. 
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Table 16. Life Cycle Inventory (LCI) of Conventional Greenhouse. 

LIFE CYCLE INVENTORY (LCI) - ROOFTOP GREENHOUSE 

STRUCTURE 

Construction 

Materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Galvanised steel 4043,0 kg 16,8 0,8 50 Ribas 

Concrete 0,8 kg 0,0 0,0 50 Ribas 

Iron 24,0 kg 0,1 0,0 50 Ribas 

Processes materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Zinc coat, coils 143,7 m2 0,6 0,0 50,0 Calculated 

Metal working 4067,0 kg 16,9 0,3 50,0 Calculated 

Transport materials 

Conecept Method of transport Origin Distance Units tkm Source 

Galvanised steel Lorry 16-32t, EURO5 Almeria, Spain 813 km 3287,0 Calculated 

Concrete Lorry 16-32t, EURO6 Barcelona, Espanya 40 km 0,0 Calculated 

Iron Lorry 16-32t, EURO5 Almeria, Spain 813 km 19,5 Calculated 

Greenhouse Construction 

Machinery use Energy Units Unit/m2 Unit/m2·year Source 

Machinery use 2,5 kWh 0,0 0,0 Ribas 

Maintenance 

Greenhouse Maintenance 

Machinery use Energy Units Unit/m2 Unit/m2·year Source 

Machinery use 1,4 kWh 0,0 0,0 Antón 

End of life 

Deconstruction 

Machinery use Energy Units Unit/m2 Unit/m2·year Source 

Machinery used to demolish 0,6 kWh 0,0 0,0 Ribas 

Waste treatment 

Concept Weight Units Unit/m2 Unit/m2·year Source 

Recycling process 4067,8 kg 16,9 0,3 Own elaboration 

Waste transport 

Conecept Method of transport Origin Distance Units tkm Source 

Waste  Transport, lorry 16-32t Bellaterra, Spain 30 km 122,03 Own elaboration 

AUXILIARI EQUIPMENT 
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Installation 

Materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Cast iron 85,9 kg 0,4 0,0 10 Sanjuan-Delmás 

Steel 9,8 kg 0,0 0,0 10 Sanjuan-Delmás 

HDPE 4,9 kg 0,0 0,0 10 Sanjuan-Delmás 

PE 79,1 kg 0,3 0,0 10 Sanjuan-Delmás 

PE 146,5 kg 0,6 0,0 10 Sanjuan-Delmás 

Polypropylene 15,6 kg 0,1 0,0 10 Sanjuan-Delmás 

Cast iron 46,9 kg 0,2 0,0 10 Sanjuan-Delmás 

HDPE 2,9 kg 0,0 0,0 10 Sanjuan-Delmás 

HDPE 4,9 kg 0,0 0,0 10 Sanjuan-Delmás 

Electronics 0,0 kg 0,0 0,0 10 Sanjuan-Delmás 

PVC 80,1 kg 0,3 0,0 10 Sanjuan-Delmás 

LDPE 53,7 kg 0,2 0,0 10 Sanjuan-Delmás 

PE 2,9 kg 0,0 0,0 10 Sanjuan-Delmás 

PVC 14,6 kg 0,1 0,0 10 Sanjuan-Delmás 

LDPE 68,4 kg 0,3 0,0 5 Sanjuan-Delmás 

EPS 941,3 kg 3,9 0,1 5 Sanjuan-Delmás 

HDPE 78,1 kg 0,3 0,0 5 Sanjuan-Delmás 

Steel 76,2 kg 0,3 0,0 5 Sanjuan-Delmás 

Polypropylene 74,2 kg 0,3 0,0 5 Sanjuan-Delmás 

Adhesive 2,0 mL 0,0 0,0 10 Sanjuan-Delmás 

Solvent 3,9 mL 0,0 0,0 10 Sanjuan-Delmás 

Processes materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Metal working manufacturing 95,7 kg 0,4 0,0 10 Sanjuan-Delmás 

Wire drawing 76,2 kg 0,3 0,0 5 Sanjuan-Delmás 

Injection moulding 9,8 kg 0,0 0,0 10 Sanjuan-Delmás 

Injection moulding 78,1 kg 0,3 0,0 5 Sanjuan-Delmás 

Injection moulding 229,5 kg 1,0 0,0 10 Sanjuan-Delmás 

Injection moulding 15,6 kg 0,1 0,0 10 Sanjuan-Delmás 

Injection moulding 74,2 kg 0,3 0,0 5 Sanjuan-Delmás 

Extrusion, plastic pipes 47,8 kg 0,2 0,0 10 Sanjuan-Delmás 

Extrusion, plastic pipes 53,7 kg 0,2 0,0 10 Sanjuan-Delmás 

Injection moulding 46,9 kg 0,2 0,0 10 Sanjuan-Delmás 
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Extrusion, plastic film 68,4 kg 0,3 0,0 5 Sanjuan-Delmás 

Injection moulding 941,3 kg 3,9 0,1 5 Sanjuan-Delmás 

Transport materials 

Conecept Method of transport Origin Distance Units tkm Source 

All materials Light commercial vehicle Unknown 30 kg 9,0 Sanjuan-Delmás 

End of life 

Waste treatment 

Concept Weight Units Unit/m2 Unit/m2·year Source 

Sanitary landfill 1791,8 kg 7,5 0,1 Sanjuan-Delmás 

Waste transport 

Conecept Method of transport Origin Distance Units tkm Source 

Waste Light commercial vehicle Bellaterra, Spain 30 km 9,0 Sanjuan-Delmás 

PRODUCTION 

Installation 

Materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

LDPE 77,7 kg 0,3 0,0 5 
EUPHOROS + (Llorach-Massana et 

al., 2017) 

Perlite 6660,0 kg 27,8 0,6 3 
EUPHOROS + (Llorach-Massana et 

al., 2017) 

N 13,3 kg 0,1 0,0 1 
EUPHOROS + (Llorach-Massana et 

al., 2017) 

P2O5 415,0 kg 1,7 0,0 1 
EUPHOROS + (Llorach-Massana et 

al., 2017) 

K2O 1328,0 kg 5,5 0,1 1 
EUPHOROS + (Llorach-Massana et 

al., 2017) 

Insectiside 3,3 kg 0,0 0,0 1 
EUPHOROS + (Llorach-Massana et 

al., 2017) 

Fungicide 23,2 kg 0,1 0,0 1 
EUPHOROS + (Llorach-Massana et 

al., 2017) 

Water 3940,8 m3 0,5 0,3 1 Sanjuan-Delmás 

Processes materials 

Concept Weight Units Unit/m2 Unit/m2·year Lifespan Source 

Extrusion, plastic film 77,7 kg 0,3 0,0 5 EUPHOROS 

Transport materials 

Conecept Method of transport Origin Distance Units tkm Source 

All materials less perlite Light commercial vehicle Unknown 30,0 km 53,5 EUPHOROS 
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Perlite bags Light commercial vehicle Almeria 850,0 km 5727,0 EUPHOROS + Sanjuan 

End of life 

Waste treatment 

Concept Weight Units Unit/m2 Unit/m2·year Source 

Sanitary landfill 62306,9 kg 259,6 5,2 Calculated 

Waste transport 

Conecept Method of transport Origin Distance Units tkm Source 

Waste Light commercial vehicle Bellaterra, Spain 30 km 1869,2 Calculated 

 

The cover material is excluded for a specific LCI is relocated specifically for all cover materials in the study 
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Table 17. Life Cycle Inventory (LCI) adapted from Table 15 and Table 16 and used for this thesis. 

STRUCTURE  RTG CONVENTIONAL GREENHOUSE 

 CONSTRUCTION + MAINTENENCE 

Materials/assemblies - STRUCTURE (Rainwater Harvesting only for RTG) Unit  Value Value 

Steel, low-alloyed {GLO}| market for | APOS, U kg 5140,7 4043,0 

Concrete, normal {CH}| unreinforced concrete production, with cement CEM 
II/A | APOS, U 

m3 0,6 0,8 

Polyethylene, low density, granulate {RER}| production | APOS, U kg 478,9 0,0 

Polyester resin, unsaturated {RER}| production | APOS, U kg 47,9 0,0 

Aluminium, primary, ingot {IAI Area, EU27 & EFTA}| production | APOS, U kg 47,9 0,0 

Glass fibre {RER}| production | APOS, U kg 4051,7 0,0 

Cast iron {RER}| production | APOS, U kg 65,8 0,0 

Polyethylene, high density, granulate {RER}| production | APOS, U kg 305,0 0,0 

Steel, unalloyed {RER}| steel production, converter, unalloyed | APOS, U kg 0,0 24,0 

Processes - STRUCTURE (Rainwater Harvesting only for RTG) Unit  Value Value 

Metal working, average for metal product manufacturing {RER}| processing | 
APOS, U 

kg 5206,5 4067,0 

Zinc coat, coils {GLO}| market for | APOS, U m2 182,3 143,7 

Sheet rolling, aluminium {RER}| processing | APOS, U kg 47,9 0,0 

Polar fleece production, energy use only {RER}| production | APOS, U kg 47,9 0,0 
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Injection moulding {RER}| processing | APOS, U kg 4530,6 0,0 

Extrusion, plastic pipes {RER}| extrusion, plastic pipes | APOS, U kg 305,0 0,0 

Electricity grid mix, AC, consumption mix, at consumer, 230V ES S MJ (construction) 2,5 2,5 

Electricity grid mix, AC, consumption mix, at consumer, 230V ES S MJ (maintenence) 47054,2 1,4 

Electricity grid mix, AC, consumption mix, at consumer, 230V ES S MJ (demolish) 14,0 0,6 

Excavation, hydraulic digger {RER}| processing | APOS, U m3 100,0 0,0 

Transport, freight, lorry 16-32 metric ton, EURO5 {RER}| transport, freight, lorry 
16-32 metric ton, EURO5 | APOS, U 

tkm 750,0 3428,5 

Transport, freight, lorry 3.5-7.5 metric ton, EURO5 {RER}| transport, freight, 
lorry 3.5-7.5 metric ton, EURO5 | APOS, U 

tkm 752,0 0,0 

Transport, freight, light commercial vehicle {Europe without Switzerland}| 
processing | APOS, U 

tkm 45,4 0,0 

INSTALLATION + MAINTENANCE 

Materials/assemblies - AUXILIARY EQUIPMENT Unit  Value Value 

Cast iron {RER}| production | APOS, U kg 68,0 132,8 

Steel, low-alloyed {GLO}| market for | APOS, U kg 44,0 85,9 

Polyethylene, high density, granulate {RER}| production | APOS, U kg 46,5 90,8 

Polyethylene, low density, granulate {RER}| production | APOS, U kg 62,5 122,1 

Polyethylene terephthalate, granulate, amorphous {RoW}| production | APOS, 
U 

kg 117,0 228,5 

Polypropylene, granulate {RER}| production | APOS, U kg 46,0 89,8 

Electronics, for control units {RER}| production | APOS, U kg 0,0 0,0 

Polyvinylchloride, bulk polymerised {RER}| polyvinylchloride production, bulk 
polymerisation | APOS, U 

kg 48,5 94,7 

Polystyrene, expandable {RER}| production | APOS, U kg 482,0 941,3 

Epoxy resin, liquid {RER}| production | APOS, U kg 1,0 2,0 

1-propanol {RER}| production | APOS, U kg 2,0 3,9 
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Processes - AUXILIARY EQUIPMENT Unit  Value Value 

Metal working, average for metal product manufacturing {RER}| processing | 
APOS, U 

kg 49,0 95,7 

Wire drawing, steel {RER}| processing | APOS, U kg 39,0 76,2 

Injection moulding {RER}| processing | APOS, U kg 714,5 1395,4 

Extrusion, plastic pipes {RER}| extrusion, plastic pipes | APOS, U kg 52,0 101,6 

Extrusion, plastic film {RER}| production | APOS, U kg 35,0 68,4 

Transport, freight, light commercial vehicle {Europe without Switzerland}| 
processing | APOS, U 

tkm 70,0 17,9 

PRODUCTIVITY RTG CONVENTIONAL GREENHOUSE 

OPERATION 

Materials/assemblies - PRODUCTIVITY Unit  Value Value 

Polyethylene, low density, granulate {RER}| production | APOS, U kg 39,9 78 

Expanded perlite {CH}| production | APOS, U kg 3420,0 6660 

Nitrogen fertiliser, as N {GLO}| nutrient supply from manure, solid, cattle | 
APOS, U 

kg 1190,0 13 

Phosphate fertiliser, as P2O5 {GLO}| nutrient supply from poultry manure, 
dried | APOS, U 

kg 255,0 415 

Potassium fertiliser, as K2O {GLO}| nutrient supply from poultry manure, dried 
| APOS, U 

kg 2167,5 1328 

Application mix, pesticides/kg/CH U kg 2331,7 27 

Processes - PRODUCTIVITY Unit  Value Value 

Extrusion, plastic film {RER}| production | APOS, U kg 39,9 78 

Transport, freight, light commercial vehicle {Europe without Switzerland}| 
processing | APOS, U 

tkm 4460,6 7650 

Irrigation {ES}| processing | APOS, U m3 2319,8 3941 
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Table 18. LCI of the cover materials studied adapted to the RTG 

RTG 

C
O

V
ER

IN
G

 M
A

TE
R

IA
LS

 

INSTALLATION 

Materials/assemblies - COVERING 
MATERIAL 

Weight 
Extrusion, plastic film 
{RER}| production | 

APOS, U 

Electricity grid mix, AC, consumption 
mix, at consumer, 230V ES S 

Transport, freight, lorry 16-32 
metric ton, EURO5 {RER}| 

transport, freight, lorry 16-32 
metric ton, EURO5 | APOS, U 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 

 kg kg MJ tkm tkm 

Polycarbonate {RER}| production 
| APOS, U 

204,8 204,8 

Assuming energy to collocate the 
envelope in the energy to build the 

greenhouse 

203,1 206,5 

Polyethylene, low density, 
granulate {RER}| production | 

APOS, U 
42,1 42,1 4,3 - 

Polyethylene, low density, 
granulate {RER}| production | 

APOS, U 
84,3 84,3 8,5 - 

Glazing, double, U<1.1 W/m2K, 
laminated safety glass {GLO}| 

market for | APOS, U 
1491,3 - 1816,4 - 

Ethylene-tetrafluoroethylene 
copolymers (ETFE), at plant 

49,1 49,1 75,4 - 

MAINTENANCE 

Materials/assemblies - COVERING 
MATERIAL 

Weight 
Extrusion, plastic film 
{RER}| production | 

APOS, U 

Electricity grid mix, AC, consumption 
mix, at consumer, 230V ES S 

Transport, freight, lorry 16-32 
metric ton, EURO5 {RER}| 

transport, freight, lorry 16-32 
metric ton, EURO5 | APOS, U 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 

 kg kg MJ tkm tkm 

Polycarbonate {RER}| production 
| APOS, U 

819,2 819,2 31,5 812,4 826,1 

Polyethylene, low density, 
granulate {RER}| production | 

APOS, U 
484,5 484,5 13,7 48,9 - 

Polyethylene, low density, 
granulate {RER}| production | 

APOS, U 
968,9 968,9 13,7 97,9 - 
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Glazing, double, U<1.1 W/m2K, 
laminated safety glass {GLO}| 

market for | APOS, U 
984,3 - 6,3 1198,8 - 

Ethylene-tetrafluoroethylene 
copolymers (ETFE), at plant 

0,0 0,0 0,0 0,0 - 

END OF LIFE (DEMOLITION + TRANSPORT TO WASTE TREATMENT) 

Materials/assemblies - COVERING 
MATERIAL 

Weight 
Electricity grid mix, AC, consumption mix, at consumer, 230V ES 

S 
Transport, freight, lorry 16-32 metric ton, EURO5 {RER}| 

transport, freight, lorry 16-32 metric ton, EURO5 | APOS, U 

 kg MJ tkm 

Polycarbonate {RER}| production 
| APOS, U 

1024,0 

Assuming energy to demolish the envelope in the RTG LCI  

30,7 

Polyethylene, low density, 
granulate {RER}| production | 

APOS, U 
526,6 15,8 

Polyethylene, low density, 
granulate {RER}| production | 

APOS, U 
1053,2 31,6 

Glazing, double, U<1.1 W/m2K, 
laminated safety glass {GLO}| 

market for | APOS, U 
2475,6 74,3 

Ethylene-tetrafluoroethylene 
copolymers (ETFE), at plant 

49,1 1,5 
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Table 19. LCI of the cover materials studied adapted to the CG 

CONVENTIONAL GREENHOUSE 

C
O

V
ER

IN
G

 M
A

TE
R

IA
LS

 

 INSATLLATION 

Materials/assemblies - COVERING 
MATERIAL 

Weight 

Extrusion, plastic 
film {RER}| 

production | APOS, 
U 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

Transport, freight, lorry 16-32 
metric ton, EURO5 {RER}| 

transport, freight, lorry 16-32 
metric ton, EURO5 | APOS, U 

Transport, freight, sea, transoceanic ship 
{GLO}| processing | APOS, U 

  kg kg MJ tkm tkm 

Polycarbonate {RER}| production | 
APOS, U 

822,4 822,4 

Assuming energy to 
collocate the envelope in 
the energy to build the 

greenhouse 

815,6 829,3 

Polyethylene, low density, granulate 
{RER}| production | APOS, U 

77,1 77,1 7,8 - 

Polyethylene, low density, granulate 
{RER}| production | APOS, U 

154,2 154,2 15,6 - 

Glazing, double, U<1.1 W/m2K, 
laminated safety glass {GLO}| market 

for | APOS, U 
2729,3 - 3324,3 - 

Ethylene-tetrafluoroethylene 
copolymers (ETFE), at plant 

90,0 90,0 138,1 - 

 MAINTENANCE 

Materials/assemblies - COVERING 
MATERIAL 

Weight 

Extrusion, plastic 
film {RER}| 

production | APOS, 
U 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

Transport, freight, lorry 16-32 
metric ton, EURO5 {RER}| 

transport, freight, lorry 16-32 
metric ton, EURO5 | APOS, U 

Transport, freight, sea, transoceanic ship 
{GLO}| processing | APOS, U 

  kg kg MJ tkm tkm 

Polycarbonate {RER}| production | 
APOS, U 

3289,6 3289,6 31,5 3262,3 3317,2 

Polyethylene, low density, granulate 
{RER}| production | APOS, U 

886,7 886,7 13,7 89,6 - 
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Polyethylene, low density, granulate 
{RER}| production | APOS, U 

1773,3 1773,3 8,4 179,1 - 

Glazing, double, U<1.1 W/m2K, 
laminated safety glass {GLO}| market 

for | APOS, U 
1801,4 - 6,3 2194,1 - 

Ethylene-tetrafluoroethylene 
copolymers (ETFE), at plant 

0,0 0,0 0,0 138,1 - 

 END OF LIFE (DEMOLITION + TRANSPORT TO WASTE TREATMENT) 

Materials/assemblies - COVERING 
MATERIAL 

Weight 
Electricity grid mix, AC, consumption mix, at 

consumer, 230V ES S 
Transport, freight, lorry 16-32 metric ton, EURO5 {RER}| transport, freight, 

lorry 16-32 metric ton, EURO5 | APOS, U 

  kg MJ tkm 

Polycarbonate {RER}| production | 
APOS, U 

822,4 

Assuming energy to demolish the envelope in 
the energy to demolish the greenhouse 

24,7 

Polyethylene, low density, granulate 
{RER}| production | APOS, U 

963,8 28,9 

Polyethylene, low density, granulate 
{RER}| production | APOS, U 

1927,5 57,8 

Glazing, double, U<1.1 W/m2K, 
laminated safety glass {GLO}| market 

for | APOS, U 
4530,7 135,9 

Ethylene-tetrafluoroethylene 
copolymers (ETFE), at plant 

90,0 2,7 
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Table 20. Characterization values for all impact categories ReCiPe (hierarchical, midpoint). Calculated with SimaPro 9.0. 

IMPACT CATEGORIES + CED 
Unit 

GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

kg CO2 
eq 

kg CFC11 
eq 

kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx 
eq 

kg SO2 
eq 

kg P eq kg N eq 
kg 1,4-

DCB 
kg 1,4-

DCB 
kg 1,4-

DCB 
kg 1,4-

DCB 
kg 1,4-

DCB 
m2a 

crop eq 
kg Cu eq kg oil eq m3 MJ 

Total 3,43E+02 1,42E-04 2,45E+01 7,59E-01 1,26E-01 7,80E-01 1,06E+00 1,78E-01 2,17E-02 2,57E+03 2,80E+01 9,93E+00 1,31E-01 7,74E+00 1,30E+01 2,19E+00 6,17E+01 7,14E+00 2,96E+03 

Steel, low-alloyed {GLO}| market for | APOS, U 2,04E+00 3,76E-07 6,29E-02 4,76E-03 2,45E-03 4,94E-03 6,05E-03 1,62E-03 5,01E-05 5,45E+00 2,33E-01 7,91E-02 1,53E-03 9,91E-02 3,39E-02 6,16E-02 3,69E-01 1,33E-02 1,70E+01 

Polyethylene, low density, granulate {RER}| production | 
APOS, U 

3,08E+00 3,83E-09 4,06E-04 4,67E-03 1,76E-04 5,21E-03 6,42E-03 3,65E-05 1,83E-06 1,05E-02 5,38E-03 1,78E-03 1,96E-05 6,44E-04 2,34E-04 5,42E-04 1,55E+00 1,76E-02 7,07E+01 

Polyester resin, unsaturated {RER}| production | APOS, U 6,80E+00 3,54E-05 2,92E-01 1,04E-02 2,32E-03 1,12E-02 1,66E-02 1,49E-03 1,55E-04 5,16E+00 1,08E-01 3,62E-02 2,69E-03 9,90E-02 9,76E-02 9,51E-03 2,18E+00 9,16E-02 9,99E+01 

Aluminium, primary, ingot {IAI Area, EU27 & EFTA}| 
production | APOS, U 

8,89E+00 2,36E-06 1,95E+00 1,84E-02 3,59E-03 1,86E-02 4,41E-02 4,90E-03 4,42E-04 4,78E+00 3,52E-01 1,28E-01 4,37E-03 9,08E-02 1,25E-01 1,19E-01 1,69E+00 3,12E-01 7,76E+01 

Glass fibre {RER}| production | APOS, U 2,48E+00 2,38E-06 3,88E-01 8,26E-03 7,28E-04 8,37E-03 1,14E-02 9,29E-04 7,86E-05 1,95E+00 5,01E-02 1,69E-02 1,83E-03 2,43E-02 4,25E-02 7,49E-03 6,79E-01 2,27E-02 3,10E+01 

Cast iron {RER}| production | APOS, U 2,02E+00 3,17E-07 1,28E-01 4,11E-03 1,55E-03 4,33E-03 5,36E-03 6,73E-04 4,32E-05 3,85E+00 7,53E-02 2,90E-02 8,31E-04 3,57E-02 2,71E-02 3,34E-02 3,53E-01 1,12E-02 1,63E+01 

Polyethylene, high density, granulate {RER}| production | 
APOS, U 

2,78E+00 4,62E-09 3,70E-04 4,04E-03 1,64E-04 4,52E-03 5,27E-03 2,78E-05 2,16E-06 8,73E-03 4,45E-03 1,45E-03 2,57E-05 5,87E-04 2,12E-04 3,28E-04 1,57E+00 1,36E-02 7,16E+01 

Polyethylene terephthalate, granulate, amorphous 
{RoW}| production | APOS, U 

3,92E+00 4,90E-07 1,32E-01 6,43E-03 1,55E-03 6,74E-03 9,85E-03 8,67E-04 5,58E-05 4,02E+00 6,85E-02 2,33E-02 8,91E-04 2,78E-02 4,64E-02 5,62E-03 1,60E+00 3,64E-02 7,32E+01 

Polypropylene, granulate {RER}| production | APOS, U 2,69E+00 3,60E-09 2,87E-04 3,96E-03 1,51E-04 4,36E-03 4,99E-03 6,50E-05 1,00E-05 6,93E-03 3,95E-03 1,28E-03 2,63E-05 5,31E-04 1,67E-04 2,94E-04 1,54E+00 1,56E-02 7,04E+01 

Electronics, for control units {RER}| production | APOS, U 3,93E+01 1,56E-05 3,37E+00 1,14E-01 3,74E-02 1,17E-01 1,88E-01 1,10E-01 3,29E-03 2,27E+02 1,77E+01 5,92E+00 2,36E-02 3,05E+00 1,50E+00 1,33E+00 9,37E+00 3,24E-01 4,30E+02 

Polyvinylchloride, bulk polymerised {RER}| 
polyvinylchloride production, bulk polymerisation | 

APOS, U 
2,33E+00 4,00E-07 2,16E-03 5,35E-03 1,86E-04 5,95E-03 4,56E-03 7,02E-05 3,24E-05 8,43E-01 1,33E-02 4,46E-03 2,67E-03 7,36E-03 4,18E-03 1,03E-03 1,07E+00 1,86E-01 4,89E+01 

Polystyrene, expandable {RER}| production | APOS, U 5,28E+00 1,20E-07 7,73E-04 5,83E-03 2,30E-04 6,40E-03 8,81E-03 1,13E-04 1,47E-05 4,90E-01 1,48E-02 4,72E-03 3,04E-04 2,38E-03 4,73E-04 5,34E-04 1,87E+00 6,48E-02 8,55E+01 

Epoxy resin, liquid {RER}| production | APOS, U 4,61E+00 1,06E-06 2,62E-01 7,87E-03 2,33E-03 8,51E-03 1,12E-02 1,36E-03 9,43E-05 4,00E+00 1,68E-01 3,50E-02 5,69E-03 5,96E-02 5,93E-02 7,53E-03 1,57E+00 4,74E-02 7,18E+01 

1-propanol {RER}| production | APOS, U 3,97E+00 1,03E-06 5,55E-01 1,34E-02 9,58E-04 1,75E-02 1,41E-02 1,59E-03 1,11E-04 3,73E+00 8,96E-02 3,02E-02 8,73E-04 3,43E-02 1,71E-01 6,80E-03 1,84E+00 8,92E-02 8,41E+01 

Polycarbonate {RER}| production | APOS, U 1,19E+01 5,41E-06 1,16E-03 1,29E-02 2,04E-03 1,34E-02 2,01E-02 2,14E-04 4,88E-06 6,92E-01 1,63E-02 5,44E-03 3,55E-03 2,49E-02 6,72E-04 5,39E-04 2,19E+00 5,26E-02 9,99E+01 

Steel, unalloyed {RER}| steel production, converter, 
unalloyed | APOS, U 

2,31E+00 2,80E-07 4,74E-02 4,35E-03 1,71E-03 4,61E-03 5,56E-03 7,92E-04 3,59E-05 1,59E+00 3,21E-02 1,10E-02 7,41E-04 1,50E-02 2,37E-02 4,69E-02 3,39E-01 1,40E-02 1,56E+01 

Ethylene-tetrafluoroethylene copolymers (ETFE), at plant 1,31E+02 3,96E-03 1,06E+00 1,39E-02 2,39E-03 1,45E-02 3,59E-02 3,47E-03 2,66E-04 1,30E+01 2,78E-01 9,67E-02 5,94E-01 7,21E+00 1,81E-01 2,62E-02 2,91E+00 1,81E-01 1,34E+02 

Expanded perlite {CH}| production | APOS, U 4,23E-01 4,66E-07 4,86E-02 1,32E-03 2,25E-04 1,36E-03 1,85E-03 1,24E-04 5,75E-05 5,37E-01 1,19E-02 3,87E-03 1,96E-04 4,91E-03 6,15E-02 6,89E-03 1,29E-01 9,99E-03 5,88E+00 

Nitrogen fertiliser, as N {GLO}| nutrient supply from 
manure, solid, cattle | APOS, U 

6,04E+00 1,55E-05 5,72E-02 6,47E-03 1,70E-03 6,66E-03 1,89E-02 5,54E-04 4,76E-03 4,20E+00 5,00E-02 1,71E-02 2,17E-03 2,81E-02 2,78E+00 4,48E-03 3,62E-01 7,11E-02 1,66E+01 

Phosphate fertiliser, as P2O5 {GLO}| nutrient supply 
from poultry manure, dried | APOS, U 

3,71E+00 1,45E-05 1,51E-01 6,38E-03 2,41E-03 6,55E-03 4,05E-02 1,20E-03 4,71E-03 2,19E+00 7,04E-02 2,19E-02 1,40E-03 3,31E-02 2,29E+00 4,22E-03 5,61E-01 2,61E-01 2,58E+01 

Potassium fertiliser, as K2O {GLO}| nutrient supply from 
poultry manure, dried | APOS, U 

2,89E+00 1,13E-05 1,18E-01 4,98E-03 1,88E-03 5,11E-03 3,16E-02 9,37E-04 3,67E-03 1,71E+00 5,50E-02 1,71E-02 1,09E-03 2,58E-02 1,78E+00 3,29E-03 4,38E-01 2,04E-01 2,01E+01 

Application mix, pesticides/kg/CH U 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 2,09E+03 5,06E+00 2,25E+00 4,46E-04 2,50E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Metal working, average for metal product manufacturing 
{RER}| processing | APOS, U 

2,43E+00 8,81E-07 3,69E-01 4,84E-03 1,72E-03 4,97E-03 1,48E-02 3,33E-03 3,01E-04 2,87E+01 5,53E-01 1,84E-01 2,19E-03 2,21E-01 8,31E-02 4,81E-02 5,14E-01 2,12E-02 2,35E+01 

Sheet rolling, aluminium {RER}| processing | APOS, U 5,60E-01 1,65E-07 1,30E-01 1,03E-03 2,22E-04 1,10E-03 1,80E-03 3,03E-04 2,39E-05 2,46E-01 1,58E-02 5,15E-03 1,40E-04 3,54E-03 1,30E-02 1,67E-03 1,40E-01 6,45E-03 6,41E+00 

Polar fleece production, energy use only {RER}| 
production | APOS, U 

4,94E+00 1,61E-06 1,89E+00 9,64E-03 1,84E-03 9,73E-03 2,16E-02 4,10E-03 2,94E-04 2,74E+00 1,46E-01 4,68E-02 1,57E-03 3,53E-02 2,67E-01 5,29E-03 1,17E+00 6,76E-02 5,37E+01 

Injection moulding {RER}| processing | APOS, U 1,11E+00 3,97E-07 3,41E-01 1,85E-03 3,54E-04 1,93E-03 3,63E-03 7,13E-04 5,38E-05 4,66E-01 2,85E-02 9,17E-03 3,37E-04 6,70E-03 8,01E-02 2,00E-03 3,56E-01 1,71E-02 1,63E+01 

Extrusion, plastic pipes {RER}| extrusion, plastic pipes | 
APOS, U 

3,37E-01 1,07E-07 1,16E-01 6,64E-04 1,38E-04 6,74E-04 1,39E-03 2,57E-04 1,93E-05 2,30E-01 1,04E-02 3,36E-03 1,42E-04 2,63E-03 5,51E-02 7,26E-04 8,22E-02 1,19E-02 3,76E+00 

Extrusion, plastic film {RER}| production | APOS, U 4,45E-01 1,45E-07 1,77E-01 7,98E-04 1,76E-04 8,14E-04 1,57E-03 3,20E-04 2,69E-05 3,03E-01 1,42E-02 4,54E-03 2,05E-04 3,46E-03 7,45E-02 9,72E-04 1,12E-01 2,33E-02 5,14E+00 

Wire drawing, steel {RER}| processing | APOS, U 3,62E-01 9,02E-08 3,82E-02 4,64E-04 1,32E-04 4,86E-04 7,76E-04 1,52E-04 2,22E-05 1,86E-01 1,26E-02 4,38E-03 2,97E-04 2,62E-03 1,47E-02 2,46E-03 5,33E-02 1,66E-02 2,44E+00 
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Transport, freight, lorry 16-32 metric ton, EURO5 {RER}| 
transport, freight, lorry 16-32 metric ton, EURO5 | APOS, 

U 
1,72E-01 8,48E-08 2,73E-03 5,26E-04 6,15E-05 5,39E-04 4,12E-04 1,31E-05 1,06E-06 9,53E-01 2,36E-03 9,96E-04 3,41E-05 2,23E-03 6,92E-03 2,16E-04 5,77E-02 4,70E-04 2,64E+00 

Transport, freight, lorry 3.5-7.5 metric ton, EURO5 {RER}| 
transport, freight, lorry 3.5-7.5 metric ton, EURO5 | 

APOS, U 
5,34E-01 2,37E-07 9,36E-03 1,41E-03 1,67E-04 1,44E-03 1,25E-03 5,56E-05 4,26E-06 1,91E+00 1,12E-02 4,18E-03 1,01E-04 6,64E-03 1,46E-02 1,04E-03 1,72E-01 1,53E-03 7,87E+00 

Transport, freight, sea, transoceanic ship {GLO}| 
processing | APOS, U 

1,18E-02 3,86E-09 4,17E-04 1,47E-04 6,72E-06 1,48E-04 1,90E-04 1,53E-06 1,07E-07 9,39E-03 7,37E-05 2,78E-05 1,53E-06 3,86E-05 7,62E-05 9,38E-06 3,60E-03 3,37E-05 1,65E-01 

Electricity grid mix, AC, consumption mix, at consumer, 
230V ES S 

1,45E-01 1,85E-08 2,56E-03 5,67E-06 1,62E-05 9,13E-06 4,98E-04 6,04E-09 2,11E-07 1,12E-02 5,41E-06 7,66E-06 2,79E-05 3,09E-04 7,61E-05 1,68E-04 3,39E-02 1,21E-02 1,72E+00 

Excavation, hydraulic digger {RER}| processing | APOS, U 5,58E-01 2,20E-07 7,59E-03 6,26E-03 6,04E-04 6,36E-03 2,96E-03 3,66E-05 2,38E-06 2,39E-01 3,27E-03 1,19E-03 5,22E-05 2,23E-03 1,65E-03 9,64E-04 1,77E-01 1,26E-03 8,09E+00 

Transport, freight, light commercial vehicle {Europe 
without Switzerland}| processing | APOS, U 

1,93E+00 7,87E-07 8,57E-02 8,28E-03 9,86E-04 8,55E-03 6,29E-03 4,01E-04 2,76E-05 4,37E+00 9,61E-02 3,27E-02 9,29E-03 2,86E-02 5,37E-02 5,28E-03 6,24E-01 7,26E-03 2,86E+01 

Irrigation {ES}| processing | APOS, U 3,17E-01 6,93E-08 5,56E-02 8,87E-04 2,02E-04 9,27E-04 1,23E-03 1,08E-04 8,07E-06 3,83E-01 1,23E-02 3,63E-03 9,81E-05 3,15E-03 2,50E-02 2,09E-03 8,77E-02 1,00E+00 4,02E+00 

Concrete, normal {CH}| unreinforced concrete 
production, with cement CEM II/A | APOS, U 

1,52E+02 1,35E-05 1,06E+01 2,88E-01 2,14E-02 2,91E-01 2,54E-01 2,52E-02 1,84E-03 1,06E+02 1,63E+00 5,49E-01 2,19E-02 7,29E-01 2,07E+00 2,59E-01 1,22E+01 3,45E+00 5,62E+02 

Glazing, double, U<1.1 W/m2K, laminated safety glass 
{GLO}| market for | APOS, U 

5,96E+01 1,72E-05 3,12E+00 1,87E-01 3,42E-02 1,90E-01 2,92E-01 1,59E-02 1,42E-03 6,64E+01 1,28E+00 4,43E-01 3,95E-02 5,36E-01 1,19E+00 2,07E-01 1,47E+01 6,36E-01 6,71E+02 

Zinc coat, coils {GLO}| market for | APOS, U 5,66E+00 2,13E-06 2,18E-01 1,68E-02 3,80E-03 1,71E-02 2,45E-01 4,14E-03 1,69E-04 1,22E+02 5,65E-01 2,30E-01 1,34E-03 5,26E-01 8,83E-02 2,80E-01 1,35E+00 5,39E-02 6,21E+01 

Section bar rolling, steel {RER}| processing | APOS, U 1,81E-01 4,51E-08 1,91E-02 2,32E-04 6,58E-05 2,43E-04 3,88E-04 7,59E-05 1,11E-05 9,29E-02 6,30E-03 2,19E-03 1,49E-04 1,31E-03 7,36E-03 1,23E-03 2,66E-02 8,32E-03 1,22E+00 
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Table 21. Values for current scenario RTG per functional unit (kg of tomatoes produced in one year) for each category of impact and CED. 

RTG – CURRENT SCENARIO 
Functional unit: kg tomatoes produced over 1 year 

GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

kg CO2 eq kg CFC11 eq kBq Co-60 eq kg NOx eq kg PM2.5 eq kg NOx eq kg SO2 eq kg P eq kg N eq kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB m2a crop eq kg Cu eq kg oil eq m3 MJ 

STRUCTURE + 
RAINWATER 
HARVESTING 

Materials/assemblies - 
STRUCTURE + RH 

2,05E-01 1,15E-07 1,73E-02 5,43E-04 1,38E-04 5,59E-04 7,34E-04 1,07E-04 5,24E-06 3,15E-01 1,23E-02 4,18E-03 1,35E-04 5,33E-03 3,10E-03 3,06E-03 5,22E-02 1,68E-03 2,39E+00 

Processes - STRUCTURE + 
RH 

2,28E-01 6,92E-08 3,24E-02 3,44E-04 1,07E-04 3,56E-04 1,42E-03 1,86E-04 1,61E-05 1,52E+00 2,70E-02 9,01E-03 1,30E-04 1,12E-02 7,42E-03 2,75E-03 5,53E-02 6,65E-03 2,60E+00 

TOTAL STRUCTURE + 
RAINWATER HARVESTING 

4,33E-01 1,84E-07 4,97E-02 8,87E-04 2,44E-04 9,15E-04 2,15E-03 2,94E-04 2,14E-05 1,83E+00 3,92E-02 1,32E-02 2,65E-04 1,65E-02 1,05E-02 5,81E-03 1,08E-01 8,33E-03 4,99E+00 

AUXILIARY 
EQUIPMENT 

Materials/assemblies - 
AUXILIARY EQUIPMENT 

3,27E-02 1,51E-09 2,48E-04 4,30E-05 4,67E-06 4,68E-05 6,15E-05 2,47E-06 1,83E-07 1,08E-02 2,77E-04 9,45E-05 4,42E-06 1,01E-04 8,27E-05 5,18E-05 1,22E-02 4,17E-04 5,60E-01 

Processes - AUXILIARY 
EQUIPMENT 

9,39E-03 3,40E-09 2,42E-03 1,91E-05 3,64E-06 1,98E-05 3,36E-05 6,28E-06 4,98E-07 1,78E-02 4,79E-04 1,57E-04 8,80E-06 1,54E-04 6,11E-04 3,71E-05 2,87E-03 1,36E-04 1,31E-01 

TOTAL AUXILIARY 
EQUIPMENT 

4,20E-02 4,92E-09 2,66E-03 6,20E-05 8,31E-06 6,66E-05 9,52E-05 8,75E-06 6,80E-07 2,86E-02 7,55E-04 2,52E-04 1,32E-05 2,55E-04 6,93E-04 8,89E-05 1,51E-02 5,53E-04 6,91E-01 

PRODUCTION 

Materials/assemblies - 
PRODUCTION 

1,37E-01 4,14E-07 4,54E-03 2,13E-04 6,44E-05 2,19E-04 9,27E-04 2,94E-05 1,29E-04 3,39E-01 2,63E-03 9,18E-04 5,13E-05 1,28E-03 6,84E-02 3,19E-04 1,74E-02 5,39E-03 7,97E-01 

Processes - PRODUCTION 8,03E-02 3,16E-08 4,45E-03 3,35E-04 4,18E-05 3,46E-04 2,66E-04 1,76E-05 1,23E-06 1,75E-01 3,93E-03 1,32E-03 3,58E-04 1,16E-03 2,58E-03 2,44E-04 2,57E-02 2,03E-02 1,18E+00 

TOTALPRODUCTION 2,17E-01 4,46E-07 8,99E-03 5,48E-04 1,06E-04 5,65E-04 1,19E-03 4,70E-05 1,30E-04 5,14E-01 6,56E-03 2,24E-03 4,09E-04 2,43E-03 7,09E-02 5,63E-04 4,31E-02 2,56E-02 1,97E+00 

CURRENT COVERING - 
POLYCARBONATE 

Materials/assemblies - 
COVERING 

1,05E-01 4,75E-08 1,02E-05 1,13E-04 1,80E-05 1,18E-04 1,76E-04 1,88E-06 4,29E-08 6,08E-03 1,43E-04 4,78E-05 3,12E-05 2,19E-04 5,91E-06 4,74E-06 1,92E-02 4,62E-04 8,78E-01 

Processes - COVERING 5,56E-03 2,05E-09 1,59E-03 1,29E-05 2,15E-06 1,32E-05 1,92E-05 2,94E-06 2,47E-07 1,11E-02 1,46E-04 4,89E-05 2,12E-06 5,03E-05 7,16E-04 1,06E-05 1,53E-03 2,13E-04 7,02E-02 

TOTAL COVERING 1,10E-01 4,96E-08 1,60E-03 1,26E-04 2,01E-05 1,31E-04 1,96E-04 4,82E-06 2,90E-07 1,71E-02 2,89E-04 9,67E-05 3,33E-05 2,69E-04 7,22E-04 1,53E-05 2,08E-02 6,75E-04 9,48E-01 

 

TOTAL 8,02E-01 6,85E-07 6,30E-02 1,62E-03 3,79E-04 1,68E-03 3,63E-03 3,54E-04 1,53E-04 2,39E+00 4,69E-02 1,58E-02 7,20E-04 1,95E-02 8,29E-02 6,47E-03 1,86E-01 3,52E-02 8,60E+00 
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Table 22.  Values for current scenario CG per functional unit (kg of tomatoes produced in one year) for each category of impact and CED. 

CG – CURRENT SECENARIO 
Functional unit: kg tomatos produced over 1 year 

GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

kg CO2 eq kg CFC11 eq kBq Co-60 eq kg NOx eq kg PM2.5 eq kg NOx eq kg SO2 eq kg P eq kg N eq kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB m2a crop eq kg Cu eq kg oil eq m3 MJ 

STRUCTURE 

Materials/assemblies - 
STRUCTURE 

4,43E-02 8,09E-09 1,39E-03 1,03E-04 5,23E-05 1,07E-04 1,30E-04 3,47E-05 1,08E-06 1,17E-01 4,96E-03 1,69E-03 3,27E-05 2,11E-03 7,33E-04 1,32E-03 7,94E-03 2,99E-04 3,65E-01 

Processes - STRUCTURE 5,93E-02 2,20E-08 8,12E-03 1,26E-04 4,07E-05 1,29E-04 5,10E-04 7,47E-05 6,59E-06 7,23E-01 1,23E-02 4,12E-03 4,86E-05 5,16E-03 1,97E-03 1,24E-03 1,31E-02 5,03E-04 5,98E-01 

TOTAL STRUCTURE 1,04E-01 3,01E-08 9,50E-03 2,29E-04 9,30E-05 2,36E-04 6,40E-04 1,09E-04 7,66E-06 8,40E-01 1,73E-02 5,81E-03 8,12E-05 7,28E-03 2,70E-03 2,56E-03 2,10E-02 8,01E-04 9,64E-01 

AUXILIARY 
EQUIPMENT 

Materials/assemblies - 
AUXILIARY EQUIPMENT 

3,91E-02 1,81E-09 2,96E-04 5,14E-05 5,59E-06 5,61E-05 7,36E-05 2,96E-06 2,19E-07 1,30E-02 3,31E-04 1,13E-04 5,29E-06 1,21E-04 9,90E-05 6,20E-05 1,47E-02 4,99E-04 6,70E-01 

Processes - AUXILIARY 
EQUIPMENT 

1,00E-02 3,58E-09 2,84E-03 1,76E-05 3,74E-06 1,83E-05 3,63E-05 7,27E-06 5,78E-07 1,86E-02 5,13E-04 1,68E-04 4,72E-06 1,67E-04 6,97E-04 4,11E-05 3,04E-03 1,58E-04 1,39E-01 

AUXILIARY EQUIPMENT 4,91E-02 5,39E-09 3,13E-03 6,91E-05 9,33E-06 7,44E-05 1,10E-04 1,02E-05 7,97E-07 3,15E-02 8,44E-04 2,81E-04 1,00E-05 2,88E-04 7,96E-04 1,03E-04 1,77E-02 6,57E-04 8,09E-01 

PRODUCTION 

Materials/assemblies - 
PRODUCTIVITY 

4,48E-02 1,28E-07 4,54E-02 9,74E-05 2,65E-05 1,00E-04 3,78E-04 1,35E-05 3,83E-05 3,27E-01 1,67E-03 6,19E-04 1,77E-05 7,76E-04 1,98E-02 2,74E-04 9,44E-03 2,36E-03 4,33E-01 

Processes - PRODUCTIVITY 8,44E-02 3,32E-08 4,67E-03 3,52E-04 4,39E-05 3,64E-04 2,79E-04 1,85E-05 1,29E-06 1,84E-01 4,13E-03 1,39E-03 3,76E-04 1,22E-03 2,71E-03 2,56E-04 2,70E-02 2,11E-02 1,24E+00 

PRODUCTIVITY 1,29E-01 1,61E-07 4,67E-03 4,50E-04 7,05E-05 4,64E-04 6,57E-04 3,20E-05 3,96E-05 5,11E-01 5,80E-03 2,01E-03 3,94E-04 1,99E-03 2,25E-02 5,30E-04 3,64E-02 2,34E-02 1,67E+00 

CURRENT 
COVERING - 

POLYETHYLENE 

Materials/assemblies - 
COVERING 

1,56E-02 9,02E-06 3,31E-06 5,69E-06 2,34E-06 4,63E-06 9,34E-06 7,05E-07 4,33E-08 3,39E-05 4,21E-05 5,05E-06 1,36E-03 8,87E-04 8,00E-05 1,35E-06 6,33E-04 7,15E-06 2,87E-02 

Processes - COVERING 2,38E-03 7,91E-10 9,01E-04 4,39E-06 9,36E-07 4,48E-06 8,25E-06 1,63E-06 1,37E-07 2,17E-03 7,34E-05 2,37E-05 1,07E-06 1,91E-05 3,82E-04 5,08E-06 6,11E-04 1,19E-04 2,80E-02 

TOTAL COVERING 1,80E-02 9,02E-06 9,05E-04 1,01E-05 3,27E-06 9,11E-06 1,76E-05 2,34E-06 1,80E-07 2,20E-03 1,15E-04 2,87E-05 1,36E-03 9,06E-04 4,62E-04 6,44E-06 1,24E-03 1,27E-04 5,66E-02 

 

TOTAL 3,00E-01 9,21E-06 3,29E-01 7,57E-04 1,76E-04 7,83E-04 1,43E-03 1,54E-04 4,82E-05 1,38E+00 2,40E-02 8,13E-03 1,85E-03 1,05E-02 2,65E-02 3,20E-03 7,64E-02 2,50E-02 3,50E+00 
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Table 23. Values per functional unit (kg of tomatoes produced in one year) for each covering material. Adapted to RTG. 

RTG 

POLYCARBONATE IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx 
eq 

kg SO2 
eq 

kg P eq kg N eq 
kg 1,4-

DCB 
kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB m2a crop eq kg Cu eq kg oil eq m3 MJ 

Polycarbonate {RER}| 
production | APOS, U 

2,05E+02 kg 2,09E-02 9,51E-09 2,04E-06 2,27E-05 3,60E-06 2,35E-05 3,53E-05 3,76E-07 8,58E-09 1,22E-03 2,87E-05 9,56E-06 6,24E-06 4,38E-05 1,18E-06 9,47E-07 3,85E-03 9,25E-05 1,76E-01 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
2,05E+02 kg 7,83E-04 2,54E-10 3,12E-04 1,40E-06 3,10E-07 1,43E-06 2,75E-06 5,63E-07 4,73E-08 5,32E-04 2,49E-05 7,99E-06 3,61E-07 6,09E-06 1,31E-04 1,71E-06 1,98E-04 4,10E-05 9,04E-03 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

2,03E+02 tkm 3,00E-04 1,48E-10 4,76E-06 9,16E-07 1,07E-07 9,41E-07 7,19E-07 2,29E-08 1,85E-09 1,66E-03 4,11E-06 1,74E-06 5,95E-08 3,88E-06 1,21E-05 3,76E-07 1,01E-04 8,20E-07 4,61E-03 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
2,07E+02 tkm 2,10E-05 6,84E-12 7,39E-07 2,60E-07 1,19E-08 2,63E-07 3,36E-07 2,71E-09 1,89E-10 1,66E-05 1,31E-07 4,93E-08 2,71E-09 6,85E-08 1,35E-07 1,66E-08 6,39E-06 5,97E-08 2,93E-04 

TOTAL 2,20E-02 9,92E-09 3,19E-04 2,52E-05 4,03E-06 2,61E-05 3,91E-05 9,65E-07 5,79E-08 3,43E-03 5,78E-05 1,93E-05 6,66E-06 5,38E-05 1,44E-04 3,05E-06 4,15E-03 1,34E-04 1,90E-01 

MAINTENANCE  

Materials/assemblies Value Unit  

Polycarbonate {RER}| 
production | APOS, U 

8,19E+02 kg 8,37E-02 3,80E-08 8,15E-06 9,06E-05 1,44E-05 9,40E-05 1,41E-04 1,51E-06 3,43E-08 4,87E-03 1,15E-04 3,82E-05 2,50E-05 1,75E-04 4,72E-06 3,79E-06 1,54E-02 3,70E-04 7,02E-01 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
8,19E+02 kg 3,13E-03 1,02E-09 1,25E-03 5,61E-06 1,24E-06 5,72E-06 1,10E-05 2,25E-06 1,89E-07 2,13E-03 9,96E-05 3,19E-05 1,44E-06 2,44E-05 5,24E-04 6,84E-06 7,91E-04 1,64E-04 3,62E-02 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

3,15E+01 MJ 3,92E-05 2,44E-11 1,03E-05 1,26E-07 3,56E-08 1,32E-07 2,10E-07 4,11E-08 6,02E-09 5,03E-05 3,41E-06 1,18E-06 8,04E-08 7,10E-07 3,98E-06 6,65E-07 1,44E-05 4,50E-06 6,61E-04 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

8,12E+02 tkm 1,20E-03 5,91E-10 1,91E-05 3,67E-06 4,29E-07 3,76E-06 2,87E-06 9,16E-08 7,39E-09 6,65E-03 1,65E-05 6,95E-06 2,38E-07 1,55E-05 4,83E-05 1,51E-06 4,03E-04 3,28E-06 1,84E-02 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
8,26E+02 tkm 8,40E-05 2,74E-11 2,96E-06 1,04E-06 4,76E-08 1,05E-06 1,35E-06 1,08E-08 7,57E-10 6,66E-05 5,23E-07 1,97E-07 1,08E-08 2,74E-07 5,41E-07 6,65E-08 2,56E-05 2,39E-07 1,17E-03 

TOTAL 8,82E-02 3,97E-08 1,29E-03 1,01E-04 1,61E-05 1,05E-04 1,57E-04 3,90E-06 2,38E-07 1,38E-02 2,35E-04 7,85E-05 2,67E-05 2,16E-04 5,82E-04 1,29E-05 1,66E-02 5,42E-04 7,59E-01 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 

Materials/assemblies Value Unit  

Polycarbonate {RER}| 
production | APOS, U 

1,02E+03 kg 1,05E-01 4,75E-08 1,02E-05 1,13E-04 1,80E-05 1,18E-04 1,76E-04 1,88E-06 4,29E-08 6,08E-03 1,43E-04 4,78E-05 3,12E-05 2,19E-04 5,91E-06 4,74E-06 1,92E-02 4,62E-04 8,78E-01 

Processes Value Unit  

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

3,07E+01 tkm 4,53E-05 2,24E-11 7,21E-07 1,39E-07 1,62E-08 1,42E-07 1,09E-07 3,46E-09 2,79E-10 2,51E-04 6,22E-07 2,63E-07 9,00E-09 5,87E-07 1,82E-06 5,69E-08 1,52E-05 1,24E-07 6,97E-04 



 

xi 
 

TOTAL 4,53E-05 2,24E-11 7,21E-07 1,39E-07 1,62E-08 1,42E-07 1,09E-07 3,46E-09 2,79E-10 2,51E-04 6,22E-07 2,63E-07 9,00E-09 5,87E-07 1,82E-06 5,69E-08 1,52E-05 1,24E-07 6,97E-04 

TOTAL GLOBAL 1,10E-01 4,96E-08 1,61E-03 1,26E-04 2,02E-05 1,31E-04 1,96E-04 4,87E-06 2,96E-07 1,74E-02 2,93E-04 9,81E-05 3,34E-05 2,70E-04 7,28E-04 1,60E-05 2,08E-02 6,76E-04 9,49E-01 

                      

POLYETHYLENE IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx 
eq 

kg SO2 
eq 

kg P eq kg N eq 
kg 1,4-

DCB 
kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB m2a crop eq kg Cu eq kg oil eq m3 MJ 

Polyethylene, low density, 
granulate {RER}| 

production | APOS, U 
4,21E+01 kg 1,11E-03 1,38E-12 1,47E-07 1,69E-06 6,38E-08 1,88E-06 2,32E-06 1,32E-08 6,62E-10 3,78E-06 1,94E-06 6,43E-07 7,07E-09 2,33E-07 8,45E-08 1,96E-07 5,59E-04 6,38E-06 2,56E-02 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
4,21E+01 kg 1,61E-04 5,23E-11 6,42E-05 2,89E-07 6,38E-08 2,94E-07 5,66E-07 1,16E-07 9,73E-09 1,09E-04 5,12E-06 1,64E-06 7,43E-08 1,25E-06 2,70E-05 3,52E-07 4,07E-05 8,43E-06 1,86E-03 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

4,25E+00 tkm 6,28E-06 3,10E-12 9,98E-08 1,92E-08 2,25E-09 1,97E-08 1,51E-08 4,80E-10 3,87E-11 3,48E-05 8,62E-08 3,64E-08 1,25E-09 8,14E-08 2,53E-07 7,88E-09 2,11E-06 1,72E-08 9,66E-05 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 1,28E-03 5,68E-11 6,44E-05 2,00E-06 1,30E-07 2,20E-06 2,90E-06 1,29E-07 1,04E-08 1,48E-04 7,15E-06 2,32E-06 8,26E-08 1,57E-06 2,73E-05 5,56E-07 6,02E-04 1,48E-05 2,75E-02 

MAINTENANCE  

Materials/assemblies Value Unit  

Polyethylene, low density, 
granulate {RER}| 

production | APOS, U 
4,84E+02 kg 1,28E-02 1,59E-11 1,69E-06 1,94E-05 7,34E-07 2,17E-05 2,67E-05 1,52E-07 7,62E-09 4,35E-05 2,24E-05 7,39E-06 8,13E-08 2,68E-06 9,72E-07 2,26E-06 6,43E-03 7,33E-05 2,94E-01 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
4,84E+02 kg 1,85E-03 6,02E-10 7,38E-04 3,32E-06 7,34E-07 3,38E-06 6,51E-06 1,33E-06 1,12E-07 1,26E-03 5,89E-05 1,89E-05 8,54E-07 1,44E-05 3,10E-04 4,04E-06 4,68E-04 9,70E-05 2,14E-02 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

1,37E+01 MJ 1,70E-05 2,17E-12 3,00E-07 6,65E-10 1,90E-09 1,07E-09 5,84E-08 7,08E-13 2,48E-11 1,31E-06 6,34E-10 8,99E-10 3,27E-09 3,62E-08 8,92E-09 1,97E-08 3,98E-06 1,42E-06 2,01E-04 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

4,89E+01 tkm 7,22E-05 3,56E-11 1,15E-06 2,21E-07 2,58E-08 2,27E-07 1,73E-07 5,52E-09 4,45E-10 4,00E-04 9,91E-07 4,18E-07 1,43E-08 9,36E-07 2,91E-06 9,06E-08 2,43E-05 1,98E-07 1,11E-03 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 1,47E-02 6,55E-10 7,41E-04 2,30E-05 1,49E-06 2,53E-05 3,35E-05 1,49E-06 1,20E-07 1,70E-03 8,22E-05 2,67E-05 9,53E-07 1,81E-05 3,14E-04 6,41E-06 6,93E-03 1,72E-04 3,17E-01 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 

Materials/assemblies Value Unit  

Polyethylene, low density, 
granulate {RER}| 

production | APOS, U 
5,27E+02 kg 1,39E-02 1,73E-11 1,84E-06 2,11E-05 7,98E-07 2,35E-05 2,90E-05 1,65E-07 8,28E-09 4,73E-05 2,43E-05 8,03E-06 8,84E-08 2,91E-06 1,06E-06 2,45E-06 6,99E-03 7,97E-05 3,19E-01 

Processes Value Unit  

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 

1,58E+01 tkm 2,33E-05 1,15E-11 3,71E-07 7,13E-08 8,34E-09 7,32E-08 5,59E-08 1,78E-09 1,44E-10 1,29E-04 3,20E-07 1,35E-07 4,63E-09 3,02E-07 9,38E-07 2,93E-08 7,83E-06 6,38E-08 3,59E-04 



 

xii 
 

lorry 16-32 metric ton, 
EURO5 | APOS, U 

TOTAL 2,33E-05 1,15E-11 3,71E-07 7,13E-08 8,34E-09 7,32E-08 5,59E-08 1,78E-09 1,44E-10 1,29E-04 3,20E-07 1,35E-07 4,63E-09 3,02E-07 9,38E-07 2,93E-08 7,83E-06 6,38E-08 3,59E-04 

TOTAL GLOBAL 1,61E-02 7,24E-10 8,06E-04 2,51E-05 1,63E-06 2,75E-05 3,64E-05 1,62E-06 1,30E-07 1,98E-03 8,97E-05 2,92E-05 1,04E-06 1,99E-05 3,42E-04 6,99E-06 7,54E-03 1,87E-04 3,45E-01 

                      

POLYETHYLENE DOUBLE-LAYER IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx 
eq 

kg SO2 
eq 

kg P eq kg N eq 
kg 1,4-

DCB 
kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB m2a crop eq kg Cu eq kg oil eq m3 MJ 

Polyethylene, low density, 
granulate {RER}| 

production | APOS, U 
8,43E+01 kg 2,23E-03 2,77E-12 2,94E-07 3,38E-06 1,28E-07 3,77E-06 4,65E-06 2,64E-08 1,32E-09 7,57E-06 3,89E-06 1,29E-06 1,41E-08 4,66E-07 1,69E-07 3,92E-07 1,12E-03 1,28E-05 5,11E-02 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
8,43E+01 kg 3,22E-04 1,05E-10 1,28E-04 5,77E-07 1,28E-07 5,89E-07 1,13E-06 2,31E-07 1,95E-08 2,19E-04 1,02E-05 3,29E-06 1,49E-07 2,51E-06 5,39E-05 7,03E-07 8,14E-05 1,69E-05 3,72E-03 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

8,51E+00 tkm 1,26E-05 6,19E-12 2,00E-07 3,84E-08 4,49E-09 3,94E-08 3,01E-08 9,59E-10 7,74E-11 6,96E-05 1,72E-07 7,28E-08 2,49E-09 1,63E-07 5,06E-07 1,58E-08 4,22E-06 3,44E-08 1,93E-04 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 2,56E-03 1,14E-10 1,29E-04 4,00E-06 2,60E-07 4,39E-06 5,81E-06 2,59E-07 2,09E-08 2,96E-04 1,43E-05 4,64E-06 1,65E-07 3,14E-06 5,46E-05 1,11E-06 1,20E-03 2,97E-05 5,50E-02 

MAINTENANCE  

Materials/assemblies Value Unit  

Polyethylene, low density, 
granulate {RER}| 

production | APOS, U 
9,69E+02 kg 2,56E-02 3,18E-11 3,38E-06 3,89E-05 1,47E-06 4,33E-05 5,34E-05 3,03E-07 1,52E-08 8,70E-05 4,47E-05 1,48E-05 1,63E-07 5,36E-06 1,94E-06 4,51E-06 1,29E-02 1,47E-04 5,88E-01 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
9,69E+02 kg 3,71E-03 1,20E-09 1,48E-03 6,64E-06 1,47E-06 6,77E-06 1,30E-05 2,66E-06 2,24E-07 2,52E-03 1,18E-04 3,78E-05 1,71E-06 2,88E-05 6,20E-04 8,08E-06 9,36E-04 1,94E-04 4,28E-02 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

1,37E+01 MJ 1,70E-05 2,17E-12 3,00E-07 6,65E-10 1,90E-09 1,07E-09 5,84E-08 7,08E-13 2,48E-11 1,31E-06 6,34E-10 8,99E-10 3,27E-09 3,62E-08 8,92E-09 1,97E-08 3,98E-06 1,42E-06 2,01E-04 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

9,79E+01 tkm 1,44E-04 7,12E-11 2,30E-06 4,42E-07 5,16E-08 4,53E-07 3,46E-07 1,10E-08 8,90E-10 8,01E-04 1,98E-06 8,37E-07 2,87E-08 1,87E-06 5,81E-06 1,81E-07 4,85E-05 3,95E-07 2,22E-03 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 2,95E-02 1,31E-09 1,48E-03 4,60E-05 2,99E-06 5,05E-05 6,69E-05 2,98E-06 2,40E-07 3,41E-03 1,64E-04 5,34E-05 1,90E-06 3,61E-05 6,28E-04 1,28E-05 1,39E-02 3,42E-04 6,33E-01 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 

Materials/assemblies Value Unit  

Polyethylene, low density, 
granulate {RER}| 

production | APOS, U 
1,05E+03 kg 2,78E-02 3,46E-11 3,67E-06 4,23E-05 1,60E-06 4,71E-05 5,81E-05 3,30E-07 1,66E-08 9,46E-05 4,86E-05 1,61E-05 1,77E-07 5,82E-06 2,11E-06 4,91E-06 1,40E-02 1,59E-04 6,39E-01 

Processes Value Unit  



 

xiii 
 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

3,16E+01 tkm 4,66E-05 2,30E-11 7,41E-07 1,43E-07 1,67E-08 1,46E-07 1,12E-07 3,56E-09 2,87E-10 2,58E-04 6,40E-07 2,70E-07 9,26E-09 6,04E-07 1,88E-06 5,85E-08 1,57E-05 1,28E-07 7,17E-04 

TOTAL 4,66E-05 2,30E-11 7,41E-07 1,43E-07 1,67E-08 1,46E-07 1,12E-07 3,56E-09 2,87E-10 2,58E-04 6,40E-07 2,70E-07 9,26E-09 6,04E-07 1,88E-06 5,85E-08 1,57E-05 1,28E-07 7,17E-04 

TOTAL GLOBAL 3,21E-02 1,45E-09 1,61E-03 5,01E-05 3,26E-06 5,51E-05 7,28E-05 3,24E-06 2,61E-07 3,96E-03 1,79E-04 5,83E-05 2,08E-06 3,98E-05 6,84E-04 1,40E-05 1,51E-02 3,72E-04 6,89E-01 

                      

HORTICULTURE GLASS IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx 
eq 

kg SO2 
eq 

kg P eq kg N eq 
kg 1,4-

DCB 
kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB m2a crop eq kg Cu eq kg oil eq m3 MJ 

Glazing, double, U<1.1 
W/m2K, laminated safety 
glass {GLO}| market for | 

APOS, U 

1,49E+03 kg 7,63E-01 2,20E-07 4,00E-02 2,40E-03 4,38E-04 2,43E-03 3,75E-03 2,04E-04 1,82E-05 8,50E-01 1,64E-02 5,68E-03 5,06E-04 6,86E-03 1,52E-02 2,65E-03 1,88E-01 8,15E-03 8,59E+00 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
0,00E+00 kg 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

1,82E+03 tkm 2,68E-03 1,32E-09 4,26E-05 8,20E-06 9,59E-07 8,41E-06 6,43E-06 2,05E-07 1,65E-08 1,49E-02 3,68E-05 1,55E-05 5,32E-07 3,47E-05 1,08E-04 3,37E-06 9,00E-04 7,33E-06 4,12E-02 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 7,66E-01 2,21E-07 4,00E-02 2,41E-03 4,39E-04 2,44E-03 3,75E-03 2,04E-04 1,82E-05 8,65E-01 1,65E-02 5,69E-03 5,07E-04 6,89E-03 1,53E-02 2,65E-03 1,89E-01 8,15E-03 8,64E+00 

MAINTENANCE  

Materials/assemblies Value Unit  

Glazing, double, U<1.1 
W/m2K, laminated safety 
glass {GLO}| market for | 

APOS, U 

9,84E+02 kg 5,04E-01 1,45E-07 2,64E-02 1,58E-03 2,89E-04 1,61E-03 2,47E-03 1,34E-04 1,20E-05 5,61E-01 1,08E-02 3,75E-03 3,34E-04 4,53E-03 1,00E-02 1,75E-03 1,24E-01 5,38E-03 5,67E+00 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
0,00E+00 kg 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

6,30E+00 MJ 7,84E-06 1,00E-12 1,39E-07 3,07E-10 8,76E-10 4,94E-10 2,69E-08 3,27E-13 1,14E-11 6,06E-07 2,93E-10 4,15E-10 1,51E-09 1,67E-08 4,12E-09 9,08E-09 1,83E-06 6,54E-07 9,29E-05 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

1,20E+03 tkm 1,77E-03 8,72E-10 2,81E-05 5,41E-06 6,33E-07 5,55E-06 4,24E-06 1,35E-07 1,09E-08 9,81E-03 2,43E-05 1,02E-05 3,51E-07 2,29E-05 7,12E-05 2,22E-06 5,94E-04 4,84E-06 2,72E-02 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 5,06E-01 1,46E-07 2,64E-02 1,59E-03 2,90E-04 1,61E-03 2,48E-03 1,35E-04 1,20E-05 5,71E-01 1,09E-02 3,76E-03 3,34E-04 4,55E-03 1,01E-02 1,75E-03 1,24E-01 5,38E-03 5,70E+00 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 

Materials/assemblies Value Unit  



 

xiv 
 

Glazing, double, U<1.1 
W/m2K, laminated safety 
glass {GLO}| market for | 

APOS, U 

2,48E+03 kg 1,27E+00 3,65E-07 6,64E-02 3,98E-03 7,27E-04 4,04E-03 6,22E-03 3,38E-04 3,01E-05 1,41E+00 2,73E-02 9,42E-03 8,40E-04 1,14E-02 2,53E-02 4,40E-03 3,11E-01 1,35E-02 1,43E+01 

Processes Value Unit  

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

7,43E+01 tkm 1,10E-04 5,40E-11 1,74E-06 3,35E-07 3,92E-08 3,44E-07 2,63E-07 8,37E-09 6,75E-10 6,08E-04 1,50E-06 6,35E-07 2,18E-08 1,42E-06 4,41E-06 1,38E-07 3,68E-05 3,00E-07 1,69E-03 

TOTAL 1,10E-04 5,40E-11 1,74E-06 3,35E-07 3,92E-08 3,44E-07 2,63E-07 8,37E-09 6,75E-10 6,08E-04 1,50E-06 6,35E-07 2,18E-08 1,42E-06 4,41E-06 1,38E-07 3,68E-05 3,00E-07 1,69E-03 

TOTAL GLOBAL 1,27E+00 3,67E-07 6,65E-02 4,00E-03 7,28E-04 4,05E-03 6,23E-03 3,39E-04 3,02E-05 1,44E+00 2,73E-02 9,45E-03 8,41E-04 1,14E-02 2,55E-02 4,40E-03 3,13E-01 1,35E-02 1,43E+01 

                      

ETFE IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx 
eq 

kg SO2 
eq 

kg P eq kg N eq 
kg 1,4-

DCB 
kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB m2a crop eq kg Cu eq kg oil eq m3 MJ 

Ethylene-
tetrafluoroethylene 

copolymers (ETFE), at 
plant 

4,91E+01 kg 5,51E-02 1,67E-06 4,46E-04 5,86E-06 1,01E-06 6,12E-06 1,52E-05 1,47E-06 1,12E-07 5,50E-03 1,17E-04 4,08E-05 2,50E-04 3,04E-03 7,66E-05 1,11E-05 1,23E-03 7,64E-05 5,64E-02 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
4,91E+01 kg 1,88E-04 6,10E-11 7,49E-05 3,37E-07 7,44E-08 3,43E-07 6,61E-07 1,35E-07 1,13E-08 1,28E-04 5,97E-06 1,92E-06 8,67E-08 1,46E-06 3,14E-05 4,10E-07 4,75E-05 9,84E-06 2,17E-03 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

7,54E+01 tkm 1,11E-04 5,49E-11 1,77E-06 3,40E-07 3,98E-08 3,49E-07 2,67E-07 8,51E-09 6,86E-10 6,17E-04 1,53E-06 6,45E-07 2,21E-08 1,44E-06 4,48E-06 1,40E-07 3,74E-05 3,05E-07 1,71E-03 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 5,54E-02 1,67E-06 5,22E-04 6,53E-06 1,12E-06 6,81E-06 1,61E-05 1,61E-06 1,24E-07 6,25E-03 1,25E-04 4,34E-05 2,51E-04 3,04E-03 1,12E-04 1,16E-05 1,31E-03 8,65E-05 6,03E-02 

MAINTENANCE  

Materials/assemblies Value Unit  

Ethylene-
tetrafluoroethylene 

copolymers (ETFE), at 
plant 

0,00E+00 kg 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | APOS, 

U 
0,00E+00 kg 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

0,00E+00 MJ 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 



 

xv 
 

TOTAL 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 

Materials/assemblies Value Unit  

Ethylene-
tetrafluoroethylene 

copolymers (ETFE), at 
plant 

4,91E+01 kg 5,51E-02 1,67E-06 4,46E-04 5,86E-06 1,01E-06 6,12E-06 1,52E-05 1,47E-06 1,12E-07 5,50E-03 1,17E-04 4,08E-05 2,50E-04 3,04E-03 7,66E-05 1,11E-05 1,23E-03 7,64E-05 5,64E-02 

Processes Value Unit  

Transport, freight, lorry 
16-32 metric ton, EURO5 
{RER}| transport, freight, 
lorry 16-32 metric ton, 

EURO5 | APOS, U 

1,47E+00 tkm 2,18E-06 1,07E-12 3,46E-08 6,65E-09 7,78E-10 6,83E-09 5,22E-09 1,66E-10 1,34E-11 1,21E-05 2,99E-08 1,26E-08 4,32E-10 2,82E-08 8,76E-08 2,73E-09 7,31E-07 5,95E-09 3,35E-05 

TOTAL 2,18E-06 1,07E-12 3,46E-08 6,65E-09 7,78E-10 6,83E-09 5,22E-09 1,66E-10 1,34E-11 1,21E-05 2,99E-08 1,26E-08 4,32E-10 2,82E-08 8,76E-08 2,73E-09 7,31E-07 5,95E-09 3,35E-05 

TOTAL GLOBAL 5,54E-02 1,67E-06 5,22E-04 6,54E-06 1,12E-06 6,82E-06 1,61E-05 1,61E-06 1,24E-07 6,26E-03 1,25E-04 4,34E-05 2,51E-04 3,04E-03 1,13E-04 1,16E-05 1,32E-03 8,66E-05 6,04E-02 
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Table 24.Values per functional unit (kg of tomatoes produced in one year) for each covering material. Adapted to CG. 

CG 

POLYCARBONATE IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx eq kg SO2 eq kg P eq kg N eq kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB 
kg 1,4-

DCB 
kg 1,4-DCB 

m2a crop 
eq 

kg Cu eq kg oil eq m3 MJ 

Polycarbonate {RER}| 
production | APOS, U 

8,22E+02 kg 5,15E-02 2,34E-08 5,01E-06 5,58E-05 8,85E-06 5,78E-05 8,68E-05 9,26E-07 2,11E-08 2,99E-03 7,06E-05 2,35E-05 1,53E-05 1,08E-04 2,91E-06 2,33E-06 9,47E-03 2,28E-04 4,32E-01 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | 

APOS, U 
8,22E+02 kg 1,93E-03 6,26E-10 7,67E-04 3,45E-06 7,63E-07 3,52E-06 6,78E-06 1,38E-06 1,16E-07 1,31E-03 6,13E-05 1,97E-05 8,89E-07 1,50E-05 3,22E-04 4,20E-06 4,87E-04 1,01E-04 2,23E-02 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

8,16E+02 tkm 7,37E-04 3,64E-10 1,17E-05 2,26E-06 2,64E-07 2,31E-06 1,77E-06 5,63E-08 4,54E-09 4,09E-03 1,01E-05 4,27E-06 1,46E-07 9,56E-06 2,97E-05 9,26E-07 2,48E-04 2,02E-06 1,13E-02 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
8,29E+02 tkm 5,17E-05 1,68E-11 1,82E-06 6,41E-07 2,93E-08 6,46E-07 8,27E-07 6,67E-09 4,66E-10 4,10E-05 3,21E-07 1,21E-07 6,67E-09 1,68E-07 3,33E-07 4,09E-08 1,57E-05 1,47E-07 7,20E-04 

TOTAL 5,42E-02 2,44E-08 7,86E-04 6,21E-05 9,90E-06 6,43E-05 9,62E-05 2,37E-06 1,42E-07 8,43E-03 1,42E-04 4,76E-05 1,64E-05 1,32E-04 3,55E-04 7,50E-06 1,02E-02 3,31E-04 4,66E-01 

MAINTENANCE  

Materials/assemblies Value Unit  

Polycarbonate {RER}| 
production | APOS, U 

3,29E+03 kg 2,06E-01 9,36E-08 2,00E-05 2,23E-04 3,54E-05 2,31E-04 3,47E-04 3,70E-06 8,44E-08 1,20E-02 2,82E-04 9,41E-05 6,14E-05 4,31E-04 1,16E-05 9,32E-06 3,79E-02 9,10E-04 1,73E+00 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | 

APOS, U 
3,29E+03 kg 7,71E-03 2,50E-09 3,07E-03 1,38E-05 3,05E-06 1,41E-05 2,71E-05 5,54E-06 4,65E-07 5,24E-03 2,45E-04 7,86E-05 3,55E-06 6,00E-05 1,29E-03 1,68E-05 1,95E-03 4,03E-04 8,90E-02 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

3,15E+01 MJ 2,40E-05 3,06E-12 4,25E-07 9,40E-10 2,69E-09 1,51E-09 8,26E-08 1,00E-12 3,50E-11 1,86E-06 8,97E-10 1,27E-09 4,62E-09 5,12E-08 1,26E-08 2,78E-08 5,62E-06 2,00E-06 2,85E-04 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

3,26E+03 tkm 2,95E-03 1,45E-09 4,69E-05 9,02E-06 1,06E-06 9,26E-06 7,07E-06 2,25E-07 1,82E-08 1,64E-02 4,05E-05 1,71E-05 5,86E-07 3,82E-05 1,19E-04 3,70E-06 9,91E-04 8,07E-06 4,54E-02 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
3,32E+03 tkm 2,07E-04 6,73E-11 7,28E-06 2,56E-06 1,17E-07 2,58E-06 3,31E-06 2,67E-08 1,86E-09 1,64E-04 1,29E-06 4,86E-07 2,67E-08 6,74E-07 1,33E-06 1,64E-07 6,29E-05 5,88E-07 2,88E-03 

  TOTAL 2,17E-01 9,76E-08 3,14E-03 2,48E-04 3,96E-05 2,57E-04 3,85E-04 9,49E-06 5,70E-07 3,37E-02 5,69E-04 1,90E-04 6,56E-05 5,30E-04 1,42E-03 3,00E-05 4,09E-02 1,32E-03 1,87E+00 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 

Materials/assemblies Value Unit  

Polycarbonate {RER}| 
production | APOS, U 

8,22E+02 kg 5,15E-02 2,34E-08 5,01E-06 5,58E-05 8,85E-06 5,78E-05 8,68E-05 9,26E-07 2,11E-08 2,99E-03 7,06E-05 2,35E-05 1,53E-05 1,08E-04 2,91E-06 2,33E-06 9,47E-03 2,28E-04 4,32E-01 

Processes Value Unit  



 

xvii 
 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

2,47E+01 tkm 2,23E-05 5,01E-13 5,41E-08 1,91E-08 8,72E-10 1,92E-08 2,46E-08 1,98E-10 1,39E-11 1,22E-06 9,56E-09 3,61E-09 1,99E-10 5,01E-09 9,90E-09 1,22E-09 4,68E-07 4,37E-09 2,14E-05 

TOTAL 2,23E-05 5,01E-13 5,41E-08 1,91E-08 8,72E-10 1,92E-08 2,46E-08 1,98E-10 1,39E-11 1,22E-06 9,56E-09 3,61E-09 1,99E-10 5,01E-09 9,90E-09 1,22E-09 4,68E-07 4,37E-09 2,14E-05 

TOTAL GLOBAL 2,71E-01 1,22E-07 3,93E-03 3,11E-04 4,95E-05 3,22E-04 4,81E-04 1,19E-05 7,12E-07 4,22E-02 7,11E-04 2,38E-04 8,20E-05 6,62E-04 1,78E-03 3,75E-05 5,11E-02 1,65E-03 2,33E+00 

                      

POLYETHYLENE IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx eq kg SO2 eq kg P eq kg N eq kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB 
kg 1,4-

DCB 
kg 1,4-DCB 

m2a crop 
eq 

kg Cu eq kg oil eq m3 MJ 

Polyethylene, low 
density, granulate 

{RER}| production | 
APOS, U 

7,71E+01 kg 1,25E-03 1,55E-12 1,65E-07 1,90E-06 7,16E-08 2,11E-06 2,60E-06 1,48E-08 7,43E-10 4,24E-06 2,18E-06 7,21E-07 7,93E-09 2,61E-07 9,48E-08 2,20E-07 6,27E-04 7,15E-06 2,87E-02 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | 

APOS, U 
7,71E+01 kg 1,81E-04 5,87E-11 7,19E-05 3,24E-07 7,15E-08 3,30E-07 6,35E-07 1,30E-07 1,09E-08 1,23E-04 5,74E-06 1,84E-06 8,33E-08 1,41E-06 3,02E-05 3,94E-07 4,56E-05 9,46E-06 2,09E-03 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

7,79E+00 tkm 7,04E-06 3,47E-12 1,12E-07 2,15E-08 2,52E-09 2,21E-08 1,69E-08 5,38E-10 4,34E-11 3,90E-05 9,66E-08 4,08E-08 1,40E-09 9,12E-08 2,83E-07 8,84E-09 2,37E-06 1,93E-08 1,08E-04 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 1,44E-03 6,37E-11 7,22E-05 2,24E-06 1,46E-07 2,46E-06 3,26E-06 1,45E-07 1,17E-08 1,66E-04 8,02E-06 2,60E-06 9,26E-08 1,76E-06 3,06E-05 6,23E-07 6,75E-04 1,66E-05 3,09E-02 

MAINTENANCE                    

Materials/assemblies Value Unit                    

Polyethylene, low 
density, granulate 

{RER}| production | 
APOS, U 

8,87E+02 kg 1,44E-02 1,78E-11 1,89E-06 2,18E-05 8,23E-07 2,43E-05 3,00E-05 1,70E-07 8,54E-09 4,88E-05 2,51E-05 8,29E-06 9,12E-08 3,00E-06 1,09E-06 2,53E-06 7,21E-03 8,22E-05 3,30E-01 

Processes Value Unit                    

Extrusion, plastic film 
{RER}| production | 

APOS, U 
8,87E+02 kg 2,08E-03 6,75E-10 8,27E-04 3,72E-06 8,23E-07 3,80E-06 7,31E-06 1,49E-06 1,25E-07 1,41E-03 6,60E-05 2,12E-05 9,58E-07 1,62E-05 3,48E-04 4,53E-06 5,25E-04 1,09E-04 2,40E-02 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

1,37E+01 MJ 1,04E-05 1,33E-12 1,84E-07 4,07E-10 1,16E-09 6,56E-10 3,58E-08 4,34E-13 1,52E-11 8,05E-07 3,89E-10 5,51E-10 2,00E-09 2,22E-08 5,47E-09 1,21E-08 2,44E-06 8,68E-07 1,23E-04 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

8,96E+01 tkm 8,10E-05 3,99E-11 1,29E-06 2,48E-07 2,90E-08 2,54E-07 1,94E-07 6,19E-09 4,99E-10 4,49E-04 1,11E-06 4,69E-07 1,61E-08 1,05E-06 3,26E-06 1,02E-07 2,72E-05 2,21E-07 1,25E-03 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

  TOTAL 1,65E-02 7,34E-10 8,31E-04 2,58E-05 1,68E-06 2,83E-05 3,75E-05 1,67E-06 1,34E-07 1,91E-03 9,22E-05 2,99E-05 1,07E-06 2,02E-05 3,52E-04 7,18E-06 7,77E-03 1,92E-04 3,55E-01 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 



 

xviii 
 

Materials/assemblies Value Unit  

Polyethylene, low 
density, granulate 

{RER}| production | 
APOS, U 

9,64E+02 kg 1,56E-02 1,94E-11 2,06E-06 2,37E-05 8,94E-07 2,64E-05 3,26E-05 1,85E-07 9,29E-09 5,31E-05 2,73E-05 9,01E-06 9,91E-08 3,26E-06 1,18E-06 2,75E-06 7,84E-03 8,94E-05 3,58E-01 

Processes Value Unit  

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

2,89E+01 tkm 2,61E-05 1,29E-11 4,16E-07 7,99E-08 9,35E-09 8,20E-08 6,27E-08 2,00E-09 1,61E-10 1,45E-04 3,59E-07 1,51E-07 5,19E-09 3,39E-07 1,05E-06 3,28E-08 8,78E-06 7,15E-08 4,02E-04 

TOTAL 2,61E-05 1,29E-11 4,16E-07 7,99E-08 9,35E-09 8,20E-08 6,27E-08 2,00E-09 1,61E-10 1,45E-04 3,59E-07 1,51E-07 5,19E-09 3,39E-07 1,05E-06 3,28E-08 8,78E-06 7,15E-08 4,02E-04 

TOTAL GLOBAL 1,80E-02 8,10E-10 9,03E-04 2,81E-05 1,83E-06 3,09E-05 4,08E-05 1,82E-06 1,46E-07 2,22E-03 1,01E-04 3,27E-05 1,17E-06 2,23E-05 3,84E-04 7,83E-06 8,45E-03 2,09E-04 3,86E-01 

                      

POLYETHYLENE DOUBLE-LAYER IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx eq kg SO2 eq kg P eq kg N eq kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB 
kg 1,4-

DCB 
kg 1,4-DCB 

m2a crop 
eq 

kg Cu eq kg oil eq m3 MJ 

Polyethylene, low 
density, granulate 

{RER}| production | 
APOS, U 

1,54E+02 kg 2,50E-03 3,10E-12 3,30E-07 3,79E-06 1,43E-07 4,22E-06 5,21E-06 2,96E-08 1,49E-09 8,49E-06 4,36E-06 1,44E-06 1,59E-08 5,22E-07 1,90E-07 4,40E-07 1,25E-03 1,43E-05 5,73E-02 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | 

APOS, U 
1,54E+02 kg 3,61E-04 1,17E-10 1,44E-04 6,47E-07 1,43E-07 6,60E-07 1,27E-06 2,60E-07 2,18E-08 2,46E-04 1,15E-05 3,68E-06 1,67E-07 2,81E-06 6,04E-05 7,88E-07 9,12E-05 1,89E-05 4,17E-03 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

1,56E+01 tkm 1,41E-05 6,94E-12 2,24E-07 4,31E-08 5,04E-09 4,42E-08 3,38E-08 1,08E-09 8,68E-11 7,81E-05 1,93E-07 8,16E-08 2,80E-09 1,82E-07 5,67E-07 1,77E-08 4,73E-06 3,85E-08 2,17E-04 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 2,87E-03 1,27E-10 1,44E-04 4,48E-06 2,91E-07 4,93E-06 6,51E-06 2,90E-07 2,34E-08 3,32E-04 1,60E-05 5,21E-06 1,85E-07 3,52E-06 6,12E-05 1,25E-06 1,35E-03 3,33E-05 6,17E-02 

MAINTENANCE  

Materials/assemblies Value Unit  

Polyethylene, low 
density, granulate 

{RER}| production | 
APOS, U 

1,77E+03 kg 2,87E-02 3,57E-11 3,79E-06 4,36E-05 1,65E-06 4,86E-05 5,99E-05 3,40E-07 1,71E-08 9,76E-05 5,02E-05 1,66E-05 1,82E-07 6,01E-06 2,18E-06 5,06E-06 1,44E-02 1,64E-04 6,59E-01 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | 

APOS, U 
1,77E+03 kg 4,15E-03 1,35E-09 1,65E-03 7,44E-06 1,65E-06 7,59E-06 1,46E-05 2,99E-06 2,51E-07 2,82E-03 1,32E-04 4,24E-05 1,92E-06 3,23E-05 6,95E-04 9,07E-06 1,05E-03 2,17E-04 4,80E-02 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

8,41E+00 MJ 6,40E-06 8,17E-13 1,13E-07 2,51E-10 7,16E-10 4,04E-10 2,20E-08 2,67E-13 9,34E-12 4,95E-07 2,39E-10 3,39E-10 1,23E-09 1,37E-08 3,37E-09 7,42E-09 1,50E-06 5,34E-07 7,59E-05 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

1,79E+02 tkm 1,62E-04 7,99E-11 2,57E-06 4,95E-07 5,79E-08 5,08E-07 3,88E-07 1,24E-08 9,98E-10 8,98E-04 2,22E-06 9,38E-07 3,22E-08 2,10E-06 6,52E-06 2,03E-07 5,44E-05 4,43E-07 2,49E-03 
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metric ton, EURO5 | 
APOS, U 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 3,30E-02 1,47E-09 1,66E-03 5,15E-05 3,35E-06 5,67E-05 7,49E-05 3,34E-06 2,69E-07 3,82E-03 1,84E-04 5,99E-05 2,13E-06 4,04E-05 7,04E-04 1,43E-05 1,55E-02 3,83E-04 7,10E-01 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 

Materials/assemblies Value Unit  

Polyethylene, low 
density, granulate 

{RER}| production | 
APOS, U 

1,93E+03 kg 3,12E-02 3,88E-11 4,12E-06 4,74E-05 1,79E-06 5,28E-05 6,51E-05 3,70E-07 1,86E-08 1,06E-04 5,45E-05 1,80E-05 1,98E-07 6,53E-06 2,37E-06 5,50E-06 1,57E-02 1,79E-04 7,17E-01 

Processes Value Unit  

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

5,78E+01 tkm 5,23E-05 2,58E-11 8,31E-07 1,60E-07 1,87E-08 1,64E-07 1,25E-07 3,99E-09 3,22E-10 2,90E-04 7,18E-07 3,03E-07 1,04E-08 6,78E-07 2,10E-06 6,56E-08 1,76E-05 1,43E-07 8,04E-04 

TOTAL 5,23E-05 2,58E-11 8,31E-07 1,60E-07 1,87E-08 1,64E-07 1,25E-07 3,99E-09 3,22E-10 2,90E-04 7,18E-07 3,03E-07 1,04E-08 6,78E-07 2,10E-06 6,56E-08 1,76E-05 1,43E-07 8,04E-04 

TOTAL GLOBAL 3,60E-02 1,62E-09 1,81E-03 5,62E-05 3,66E-06 6,18E-05 8,16E-05 3,63E-06 2,93E-07 4,44E-03 2,01E-04 6,54E-05 2,33E-06 4,46E-05 7,67E-04 1,56E-05 1,69E-02 4,16E-04 7,72E-01 

                      

HORTICULTURE GLASS IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx eq kg SO2 eq kg P eq kg N eq kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB 
kg 1,4-

DCB 
kg 1,4-DCB 

m2a crop 
eq 

kg Cu eq kg oil eq m3 MJ 

Glazing, double, U<1.1 
W/m2K, laminated 
safety glass {GLO}| 

market for | APOS, U 

2,73E+03 kg 8,56E-01 2,47E-07 4,49E-02 2,69E-03 4,91E-04 2,73E-03 4,20E-03 2,29E-04 2,04E-05 9,53E-01 1,84E-02 6,37E-03 5,68E-04 7,69E-03 1,71E-02 2,97E-03 2,10E-01 9,13E-03 9,64E+00 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | 

APOS, U 
0,00E+00 kg 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

3,32E+03 tkm 3,01E-03 1,48E-09 4,78E-05 9,19E-06 1,08E-06 9,43E-06 7,21E-06 2,30E-07 1,85E-08 1,67E-02 4,13E-05 1,74E-05 5,97E-07 3,90E-05 1,21E-04 3,77E-06 1,01E-03 8,22E-06 4,62E-02 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 8,59E-01 2,48E-07 4,49E-02 2,70E-03 4,92E-04 2,74E-03 4,21E-03 2,29E-04 2,04E-05 9,70E-01 1,85E-02 6,38E-03 5,68E-04 7,73E-03 1,72E-02 2,98E-03 2,11E-01 9,14E-03 9,68E+00 

MAINTENANCE  

Materials/assemblies Value Unit  

Glazing, double, U<1.1 
W/m2K, laminated 
safety glass {GLO}| 

market for | APOS, U 

1,80E+03 kg 5,65E-01 1,63E-07 2,96E-02 1,78E-03 3,24E-04 1,80E-03 2,77E-03 1,51E-04 1,34E-05 6,29E-01 1,22E-02 4,20E-03 3,75E-04 5,08E-03 1,13E-02 1,96E-03 1,39E-01 6,03E-03 6,36E+00 

Processes Value Unit  
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Extrusion, plastic film 
{RER}| production | 

APOS, U 
0,00E+00 kg 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

6,30E+00 MJ 4,80E-06 6,13E-13 8,49E-08 1,88E-10 5,37E-10 3,03E-10 1,65E-08 2,00E-13 7,00E-12 3,71E-07 1,79E-10 2,54E-10 9,25E-10 1,02E-08 2,52E-09 5,56E-09 1,12E-06 4,00E-07 5,69E-05 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

2,19E+03 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 5,65E-01 1,63E-07 2,96E-02 1,78E-03 3,24E-04 1,80E-03 2,77E-03 1,51E-04 1,34E-05 6,29E-01 1,22E-02 4,20E-03 3,75E-04 5,08E-03 1,13E-02 1,96E-03 1,39E-01 6,03E-03 6,36E+00 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 

Materials/assemblies Value Unit  

Glazing, double, U<1.1 
W/m2K, laminated 
safety glass {GLO}| 

market for | APOS, U 

4,53E+03 kg 1,42E+00 4,10E-07 7,45E-02 4,47E-03 8,15E-04 4,53E-03 6,97E-03 3,79E-04 3,38E-05 1,58E+00 3,06E-02 1,06E-02 9,42E-04 1,28E-02 2,83E-02 4,93E-03 3,49E-01 1,52E-02 1,60E+01 

Processes Value Unit  

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

1,36E+02 tkm 1,23E-04 6,06E-11 1,95E-06 3,76E-07 4,40E-08 3,86E-07 2,95E-07 9,39E-09 7,57E-10 6,81E-04 1,69E-06 7,12E-07 2,44E-08 1,59E-06 4,95E-06 1,54E-07 4,13E-05 3,36E-07 1,89E-03 

TOTAL 1,23E-04 6,06E-11 1,95E-06 3,76E-07 4,40E-08 3,86E-07 2,95E-07 9,39E-09 7,57E-10 6,81E-04 1,69E-06 7,12E-07 2,44E-08 1,59E-06 4,95E-06 1,54E-07 4,13E-05 3,36E-07 1,89E-03 

TOTAL GLOBAL 1,42E+00 4,11E-07 7,45E-02 4,48E-03 8,16E-04 4,54E-03 6,98E-03 3,80E-04 3,38E-05 1,60E+00 3,06E-02 1,06E-02 9,43E-04 1,28E-02 2,85E-02 4,94E-03 3,50E-01 1,52E-02 1,60E+01 

                      

ETFE IMPACT CATEGORIES 

INSTALLATION GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

Materials/assemblies Value Unit 
kg CO2 

eq 
kg CFC11 

eq 
kBq Co-
60 eq 

kg NOx 
eq 

kg PM2.5 
eq 

kg NOx eq kg SO2 eq kg P eq kg N eq kg 1,4-DCB kg 1,4-DCB kg 1,4-DCB 
kg 1,4-

DCB 
kg 1,4-DCB 

m2a crop 
eq 

kg Cu eq kg oil eq m3 MJ 

Ethylene-
tetrafluoroethylene 

copolymers (ETFE), at 
plant 

9,00E+01 kg 6,18E-02 1,87E-06 5,00E-04 6,57E-06 1,13E-06 6,86E-06 1,70E-05 1,64E-06 1,26E-07 6,17E-03 1,32E-04 4,58E-05 2,81E-04 3,41E-03 8,58E-05 1,24E-05 1,38E-03 8,57E-05 6,33E-02 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | 

APOS, U 
9,00E+01 kg 2,11E-04 6,84E-11 8,39E-05 3,78E-07 8,35E-08 3,85E-07 7,41E-07 1,51E-07 1,27E-08 1,43E-04 6,70E-06 2,15E-06 9,72E-08 1,64E-06 3,53E-05 4,60E-07 5,32E-05 1,10E-05 2,43E-03 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

1,38E+02 tkm 1,25E-04 6,16E-11 1,98E-06 3,82E-07 4,47E-08 3,92E-07 2,99E-07 9,54E-09 7,69E-10 6,92E-04 1,71E-06 7,23E-07 2,48E-08 1,62E-06 5,03E-06 1,57E-07 4,19E-05 3,42E-07 1,92E-03 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 6,21E-02 1,87E-06 5,86E-04 7,33E-06 1,26E-06 7,64E-06 1,80E-05 1,81E-06 1,39E-07 7,01E-03 1,40E-04 4,86E-05 2,81E-04 3,41E-03 1,26E-04 1,30E-05 1,47E-03 9,71E-05 6,76E-02 
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MAINTENANCE  

Materials/assemblies Value Unit  

Ethylene-
tetrafluoroethylene 

copolymers (ETFE), at 
plant 

0,00E+00 kg 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Processes Value Unit  

Extrusion, plastic film 
{RER}| production | 

APOS, U 
0,00E+00 kg 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Electricity grid mix, AC, 
consumption mix, at 
consumer, 230V ES S 

0,00E+00 MJ 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

Transport, freight, sea, 
transoceanic ship {GLO}| 

processing | APOS, U 
0,00E+00 tkm 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

TOTAL 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 

END OF LIFE (DEMOLITION + TRANSPORT TO 
WASTE TREATMENT) 

 

Materials/assemblies Value Unit  

Ethylene-
tetrafluoroethylene 

copolymers (ETFE), at 
plant 

9,00E+01 kg 6,18E-02 1,87E-06 5,00E-04 6,57E-06 1,13E-06 6,86E-06 1,70E-05 1,64E-06 1,26E-07 6,17E-03 1,32E-04 4,58E-05 2,81E-04 3,41E-03 8,58E-05 1,24E-05 1,38E-03 8,57E-05 6,33E-02 

Processes Value Unit  

Transport, freight, lorry 
16-32 metric ton, 

EURO5 {RER}| transport, 
freight, lorry 16-32 

metric ton, EURO5 | 
APOS, U 

2,70E+00 tkm 2,44E-06 1,20E-12 3,88E-08 7,46E-09 8,73E-10 7,66E-09 5,85E-09 1,86E-10 1,50E-11 1,35E-05 3,35E-08 1,41E-08 4,85E-10 3,16E-08 9,82E-08 3,06E-09 8,20E-07 6,67E-09 3,75E-05 

TOTAL 2,44E-06 1,20E-12 3,88E-08 7,46E-09 8,73E-10 7,66E-09 5,85E-09 1,86E-10 1,50E-11 1,35E-05 3,35E-08 1,41E-08 4,85E-10 3,16E-08 9,82E-08 3,06E-09 8,20E-07 6,67E-09 3,75E-05 

TOTAL GLOBAL 6,21E-02 1,87E-06 5,86E-04 7,33E-06 1,26E-06 7,64E-06 1,81E-05 1,81E-06 1,39E-07 7,02E-03 1,40E-04 4,86E-05 2,81E-04 3,41E-03 1,26E-04 1,30E-05 1,47E-03 9,71E-05 6,77E-02 



 

vi 
 

 

Figure 33. Representation of the impact of the polycarbonate life cycle for each stage of the life cycle, distinguishing 
between greenhouses and for all impact categories. 

 

 

Figure 34. Representation of the impact of the polyethylene doble-layer life cycle for each stage of the life cycle, 
distinguishing between greenhouses and for all impact categories. 
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Figure 35. Representation of the impact of the horticulture glass life cycle for each stage of the life cycle, 
distinguishing between greenhouses and for all impact categories. 
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Table 25. Values for the optimal scenario RTG with ETFE per Functional unit (kg of tomatoes produced in one year) for each category of impact and CED. 

RTG – OPTIMAL SCENARIO 
Functional unit: kg tomatoes produced over 1 year 

GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

kg CO2 eq kg CFC11 eq 
kBq Co-60 

eq 
kg NOx eq 

kg PM2.5 
eq 

kg NOx 
eq 

kg SO2 eq kg P eq kg N eq 
kg 1,4-

DCB 
kg 1,4-

DCB 
kg 1,4-

DCB 
kg 1,4-

DCB 
kg 1,4-

DCB 
m2a crop 

eq 
kg Cu eq kg oil eq m3 MJ 

STRUCTURE + 
RAINWATER 
HARVESTING 

Materials/assemblies - 
STRUCTURE + RH 

2,05E-01 1,15E-07 1,73E-02 5,43E-04 1,38E-04 5,59E-04 7,34E-04 1,07E-04 5,24E-06 3,15E-01 1,23E-02 4,18E-03 1,35E-04 5,33E-03 3,10E-03 3,06E-03 5,22E-02 1,68E-03 2,39E+00 

Processes - STRUCTURE + 
RH 

2,28E-01 6,92E-08 3,24E-02 3,44E-04 1,07E-04 3,56E-04 1,42E-03 1,86E-04 1,61E-05 1,52E+00 2,70E-02 9,01E-03 1,30E-04 1,12E-02 7,42E-03 2,75E-03 5,53E-02 6,65E-03 2,60E+00 

TOTAL STRUCTURE + 
RAINWATER HARVESTING 

4,33E-01 1,84E-07 4,97E-02 8,87E-04 2,44E-04 9,15E-04 2,15E-03 2,94E-04 2,14E-05 1,83E+00 3,92E-02 1,32E-02 2,65E-04 1,65E-02 1,05E-02 5,81E-03 1,08E-01 8,33E-03 4,99E+00 

AUXILIARY EQUIPMENT 

Materials/assemblies - 
AUXILIARY EQUIPMENT 

3,27E-02 1,51E-09 2,48E-04 4,30E-05 4,67E-06 4,68E-05 6,15E-05 2,47E-06 1,83E-07 1,08E-02 2,77E-04 9,45E-05 4,42E-06 1,01E-04 8,27E-05 5,18E-05 1,22E-02 4,17E-04 5,60E-01 

Processes - AUXILIARY 
EQUIPMENT 

9,39E-03 3,40E-09 2,42E-03 1,91E-05 3,64E-06 1,98E-05 3,36E-05 6,28E-06 4,98E-07 1,78E-02 4,79E-04 1,57E-04 8,80E-06 1,54E-04 6,11E-04 3,71E-05 2,87E-03 1,36E-04 1,31E-01 

TOTAL AUXILIARY 
EQUIPMENT 

4,20E-02 4,92E-09 2,66E-03 6,20E-05 8,31E-06 6,66E-05 9,52E-05 8,75E-06 6,80E-07 2,86E-02 7,55E-04 2,52E-04 1,32E-05 2,55E-04 6,93E-04 8,89E-05 1,51E-02 5,53E-04 6,91E-01 

PRODUCTION 

Materials/assemblies - 
PRODUCTION 

1,37E-01 4,14E-07 4,54E-03 2,13E-04 6,44E-05 2,19E-04 9,27E-04 2,94E-05 1,29E-04 3,39E-01 2,63E-03 9,18E-04 5,13E-05 1,28E-03 6,84E-02 3,19E-04 1,74E-02 5,39E-03 7,97E-01 

Processes - PRODUCTION 8,03E-02 3,16E-08 4,45E-03 3,35E-04 4,18E-05 3,46E-04 2,66E-04 1,76E-05 1,23E-06 1,75E-01 3,93E-03 1,32E-03 3,58E-04 1,16E-03 2,58E-03 2,44E-04 2,57E-02 2,03E-02 1,18E+00 

TOTALPRODUCTION 2,17E-01 4,46E-07 8,99E-03 5,48E-04 1,06E-04 5,65E-04 1,19E-03 4,70E-05 1,30E-04 5,14E-01 6,56E-03 2,24E-03 4,09E-04 2,43E-03 7,09E-02 5,63E-04 4,31E-02 2,56E-02 1,97E+00 

OPTIM COVERING - 
ETFE 

Materials/assemblies - 
COVERING 

1,04E+00 3,17E-05 8,45E-03 1,11E-04 1,92E-05 1,16E-04 2,88E-04 2,78E-05 2,13E-06 1,04E-01 2,22E-03 7,74E-04 4,75E-03 5,77E-02 1,45E-03 2,10E-04 2,33E-02 1,45E-03 1,07E+00 

Processes - COVERING 5,72E-03 2,22E-09 1,45E-03 1,30E-05 2,18E-06 1,33E-05 1,77E-05 2,73E-06 2,28E-07 1,44E-02 1,43E-04 4,88E-05 2,07E-06 5,56E-05 6,83E-04 1,05E-05 1,62E-03 1,92E-04 7,43E-02 

TOTAL COVERING 5,54E-02 1,67E-06 5,22E-04 6,54E-06 1,12E-06 6,82E-06 1,61E-05 1,61E-06 1,24E-07 6,26E-03 1,25E-04 4,34E-05 2,51E-04 3,04E-03 1,13E-04 1,16E-05 1,32E-03 8,66E-05 6,04E-02 

 

TOTAL 7,48E-01 2,31E-06 6,19E-02 1,50E-03 3,60E-04 1,55E-03 3,46E-03 3,51E-04 1,52E-04 2,38E+00 4,67E-02 1,57E-02 9,38E-04 2,22E-02 8,23E-02 6,47E-03 1,67E-01 3,46E-02 7,71E+00 

 

  



 

vii 
 

Table 26.  Values for the optimal scenario (discarded) – CG with ETFE -  per Functional unit (kg of tomatoes produced in one year) for each category of impact and CED. 

CG – OPTIMAL SCENARIO (DISCARDED) 
Functional unit: kg tomatoes produced over 1 year 

GW SOD IR OF, HH FP OF, TE TA FE ME TEcotox FEcotox MEcotox HCT HnCT LU MRS FRS WC CED 

kg CO2 eq kg CFC11 eq 
kBq Co-60 

eq 
kg NOx eq 

kg PM2.5 
eq 

kg NOx 
eq 

kg SO2 eq kg P eq kg N eq 
kg 1,4-

DCB 
kg 1,4-

DCB 
kg 1,4-

DCB 
kg 1,4-

DCB 
kg 1,4-

DCB 
m2a crop 

eq 
kg Cu eq kg oil eq m3 MJ 

STRUCTURE 

Materials/assemblies - 
STRUCTURE + RH 

4,43E-02 8,09E-09 1,39E-03 1,03E-04 5,23E-05 1,07E-04 1,30E-04 3,47E-05 1,08E-06 1,17E-01 4,96E-03 1,69E-03 3,27E-05 2,11E-03 7,33E-04 1,32E-03 7,94E-03 2,99E-04 3,65E-01 

Processes - STRUCTURE + 
RH 

5,93E-02 2,20E-08 8,12E-03 1,26E-04 4,07E-05 1,29E-04 5,10E-04 7,47E-05 6,59E-06 7,23E-01 1,23E-02 4,12E-03 4,86E-05 5,16E-03 1,97E-03 1,24E-03 1,31E-02 5,03E-04 5,98E-01 

TOTAL STRUCTURE + 
RAINWATER HARVESTING 

1,04E-01 3,01E-08 9,50E-03 2,29E-04 9,30E-05 2,36E-04 6,40E-04 1,09E-04 7,66E-06 8,40E-01 1,73E-02 5,81E-03 8,12E-05 7,28E-03 2,70E-03 2,56E-03 2,10E-02 8,01E-04 9,64E-01 

AUXILIARY EQUIPMENT 

Materials/assemblies - 
AUXILIARY EQUIPMENT 

3,91E-02 1,81E-09 2,96E-04 5,14E-05 5,59E-06 5,61E-05 7,36E-05 2,96E-06 2,19E-07 1,30E-02 3,31E-04 1,13E-04 5,29E-06 1,21E-04 9,90E-05 6,20E-05 1,47E-02 4,99E-04 6,70E-01 

Processes - AUXILIARY 
EQUIPMENT 

1,00E-02 3,58E-09 2,84E-03 1,76E-05 3,74E-06 1,83E-05 3,63E-05 7,27E-06 5,78E-07 1,86E-02 5,13E-04 1,68E-04 4,72E-06 1,67E-04 6,97E-04 4,11E-05 3,04E-03 1,58E-04 1,39E-01 

TOTAL AUXILIARY 
EQUIPMENT 

4,91E-02 5,39E-09 3,13E-03 6,91E-05 9,33E-06 7,44E-05 1,10E-04 1,02E-05 7,97E-07 3,15E-02 8,44E-04 2,81E-04 1,00E-05 2,88E-04 7,96E-04 1,03E-04 1,77E-02 6,57E-04 8,09E-01 

PRODUCTION 

Materials/assemblies - 
PRODUCTION 

4,48E-02 1,28E-07 0,00E+00 9,74E-05 2,65E-05 1,00E-04 3,78E-04 1,35E-05 3,83E-05 3,27E-01 1,67E-03 6,19E-04 1,77E-05 7,76E-04 1,98E-02 2,74E-04 9,44E-03 2,36E-03 4,33E-01 

Processes - PRODUCTION 8,44E-02 3,32E-08 4,67E-03 3,52E-04 4,39E-05 3,64E-04 2,79E-04 1,85E-05 1,29E-06 1,84E-01 4,13E-03 1,39E-03 3,76E-04 1,22E-03 2,71E-03 2,56E-04 2,70E-02 2,11E-02 1,24E+00 

TOTALPRODUCTION 1,29E-01 1,61E-07 4,67E-03 4,50E-04 7,05E-05 4,64E-04 6,57E-04 3,20E-05 3,96E-05 5,11E-01 5,80E-03 2,01E-03 3,94E-04 1,99E-03 2,25E-02 5,30E-04 3,64E-02 2,34E-02 1,67E+00 

OPTIM COVERING - 
ETFE 

Materials/assemblies - 
COVERING 

6,18E-02 1,87E-06 5,00E-04 6,57E-06 1,13E-06 6,86E-06 1,70E-05 1,64E-06 1,26E-07 6,17E-03 1,32E-04 4,58E-05 2,81E-04 3,41E-03 8,58E-05 1,24E-05 1,38E-03 8,57E-05 6,33E-02 

Processes - COVERING 4,63E-04 1,93E-10 8,79E-05 1,15E-06 1,74E-07 1,18E-06 1,35E-06 1,71E-07 1,43E-08 1,54E-03 1,02E-05 3,61E-06 1,47E-07 4,91E-06 4,54E-05 7,76E-07 1,38E-04 1,17E-05 6,31E-03 

TOTAL COVERING 6,22E-02 1,87E-06 5,88E-04 7,71E-06 1,31E-06 8,03E-06 1,84E-05 1,81E-06 1,40E-07 7,71E-03 1,42E-04 4,94E-05 2,81E-04 3,42E-03 1,31E-04 1,32E-05 1,52E-03 9,74E-05 6,96E-02 

 

TOTAL 3,44E-01 2,07E-06 1,79E-02 7,55E-04 1,74E-04 7,82E-04 1,43E-03 1,53E-04 4,82E-05 1,39E+00 2,41E-02 8,15E-03 7,66E-04 1,30E-02 2,61E-02 3,21E-03 7,66E-02 2,50E-02 3,51E+00 
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Table 27. Economic data for current RTG with polycarbonate and optimal RTG with ETFE. 

 Unit 
RTG POLYCARBONATE RTG ETFE 

Unit per m2 Price (€) €/m2 Unit per m2 Price (€) €/m2 

Materials 

Structure  

Galvanised steel kg 0,87 3,12 2,70 0,87 3,12 2,70 

Concrete m3 0,00 60,56 0,01 0,00 60,56 0,01 

Polyethylene kg 0,08 2,87 0,22 0,08 2,87 0,22 

Covering kg 1,67 7,47 12,46 0,40 280,00 112,07 

Polyesther Kg 0,01 0,39 0,00 0,01 0,39 0,00 

Aluminium Kg 0,01 23,61 0,18 0,01 23,61 0,18 

Rainwater system Unit 0,01 1447,81 11,79 0,01 1447,81 11,79 

Pump Unit 0,01 422,56 3,44 0,01 422,56 3,44 

Auxiliary equipment  

Pump + pressure switch Unit 0,01 423,56 3,45 0,01 423,56 3,45 

Nutrient tanks Unit 0,02 32,00 0,52 0,02 32,00 0,52 

Water tanks Unit 0,02 32,00 0,52 0,02 32,00 0,52 

DOSATRON Unit 0,02 552,70 9,00 0,02 552,70 9,00 

Flow meter Unit 0,01 124,00 1,01 0,01 124,00 1,01 

Digital timer Unit 0,01 275,00 2,24 0,01 275,00 2,24 

Pipes and joints – headboard m 0,07 2,47 0,16 0,07 2,47 0,16 

Pipes - distribution m 0,02 13,13 0,28 0,02 13,13 0,28 

Drippers + tubes m 0,00 2,47 0,00 0,00 2,47 0,00 

Leachate trays m2 0,15 1,07 0,17 0,15 1,07 0,17 

Production 

LDPE Kg 0,01 13,13 0,09 0,01 13,13 0,09 

Expanded perlite Kg 0,46 69,32 32,18 0,46 69,32 32,18 

Fertiliser Kg 0,59 6,63 3,90 0,59 6,63 3,90 

Pesticides kg 0,00 70,89 0,16 0,00 70,89 0,16 

Construction 

Top official h 96,00 21,49 16,80 96,00 21,49 16,80 

Workman h 192,00 11,72 18,32 192,00 11,72 18,32 

Machinery   

Forklift h 96,00 39,24 30,68 96,00 39,24 30,68 

Tower crane h 96,00 2,43 1,90 96,00 2,43 1,90 

Concrete mixer h 3,00 1,42 0,03 3,00 1,42 0,03 

Electricity kWh 0,00 0,12 0,00 0,00 0,12 0,00 

Transport Km 32,90 0,19 0,05 33,50 0,19 8,91 

Maintenance 

Aluminum + Polyester  

Top official h 16,00 21,49 0,00 16,00 21,49 0,00 

Workman h 16,00 11,72 1,53 16,00 11,72 1,53 

Machinery h 0,00 0,00 0,00 0,00 0,00 0,00 

Transport km 0,52 0,19 0,00 0,52 0,19 0,02 

Covering material  

Top official h 8,00 21,49 1,40 0,00 21,49 0,00 

Workman h 24,00 11,72 2,29 0,00 11,72 0,00 

Machinery h 0,00 0,12 0,00 0,00 0,12 0,00 

Transport km 13,34 0,19 2,54 0,00 0,19 0,00 

Electricity kWh 2,13 0,12 0,00 2,13 0,12 0,00 

Deconstruction 

Top official h 48,00 21,49 8,40 48,00 21,49 8,40 € 

Workman h 96,00 11,72 9,16 96,00 11,72 9,16 € 

Transport h 15,44 0,19 0,02 15,32 0,19 0,05 

Electricity kWh 0,00 0,12 0,00 0,00 0,12 0,00 

Machinery  

Forklift h 48,00 39,24 15,34 48,00 39,24 15,34 
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