

Treball realitzat per:

Clément Lemardelé

Dirigit per:

Riccardo Rossi
Rubén Zorrilla Martínez

Màster en:

Enginyeria de Camins, Canals y Ports

Barcelona, 08/09/2019

Departament d’Enginyeria Civil i Ambiental

 T
R

EB
A

LL
 F

IN
A

L
D

E
M

À
ST

ER

Fast Octree pseudo-compressible
solver for wind engineering
application

Abstract

Nowadays, the resolution of the Navier-Stokes equations in the case of quasi-incompressible
fluids using standard methods requires powerful computers because of the too huge computa-
tional cost of the numerical simulation. The main objective of this work is to tackle this issue by
developing a Proof of Concept of a new, faster and more optimised solver which will associate
Q1P0 finite elements, the Shifted Boundary method, the Back and Forth Error Compensation
and Correction method as well as a Fractional Step splitting.

Q1P0 finite elements have been developed in the late 1970’s and have shown interesting results
in structural mechanics, particularly in the case of incompressible material, but their utilisation
in Computational Fluid Dynamics (CFD) problems is way-less documented. This type of finite
element combines a good precision and a reasonable computational cost. However, they show
very poor results when used in unstructured meshes and that is why the implementation of
the Shifted Boundary method is needed to guarantee the consistence of the applied boundary
conditions in a structured mesh. The equations one obtains after the Galerkin discretisation
cannot be solved with a standard Forward Euler scheme because of the numerical instability
induced by the high value of quasi-incompressible fluids bulk modulus. In this context, the
Fractional Step splitting scheme makes the simulation stable for a larger range of time steps
values, which considerably betters the computational cost of the overall simulation because
bigger time steps (in comparison with the Forward Euler scheme) can be used. Finally, the Back
and Forth Error Compensation and Correction method is a very robust and unconditionally
stable way to deal with the convective term of the Navier-Stokes equations.

All these numerical methods are implemented in a Python application which enables the user
to check the performance of this newly-designed solver when dealing with simple and well-
documented problems. First of all, the Couette one is analysed in order to show the accuracy
of the results when only considering viscous effects. The solver shows good convergence when
refining the mesh. Then, the flow in a channel is simulated to highlight the behaviour in the
incompressible limit. Finally, various simulations of the Von Karman problem, with Reynolds
numbers between 10 and 2 000, have been done using different meshes. In spite of what one
could expected, vortices could not be observed. Because of the limited capacity of the author’s
personal computer capacity, a quite coarse mesh had to be used and this may explain the failure
because too big elements are not able to represent the competition between viscosity and the
convective term that occurs in the boundary layer of the cylinder.

Abstract

Hoy en día, la resolución de las ecuaciones de Navier Stokes en el caso de fluidos casi incom-
presibles mediante métodos usuales requiere ordenadores muy potentes por culpa de un coste
computacional demasiado importante. El objetivo principal de ese trabajo final de Master es
resolver este problema haciendo la demostración conceptual de un solver nuevo, optimizado
y más rápido que asocia elementos finitos Q1P0 y los método numéricos "Shifted Boundary
conditions", "Back and Forth Error Compensation and Correction" y "Fractional Step Splitting".

Los elementos finitos Q1P0 fueron desarrollados en los años 1970 y permiten obtener resulta-
dos representativos en mecánica estructural, en particular en el caso de material incompresible,
pero su utilización en problemas de Computational Fluid Dynamics (CFD) es mucho menos
documentada. Este tipo de elemento combina una precisión aceptable con un coste computa-
cional razonable. Sin embargo, presentan resultados poco representativos cuando se trabaja
con mallas no estructuradas. Para garantizar la constitencia de las condiciones de contorno en
una malla estructurada, es necesario implementar el método "Shifted Boundary Conditions".
Las ecuaciones que uno obtiene después de la discretización no se pueden resolver con un es-
quema Forward Euler estandar por culpa del valor muy alto del módulo de compresibilidad.
En ese contexto, un esquema tipo "Fractional Step splitting" estabiliza la simulación numérica
y permite utilizar pasos de tiempo más largos. Finalmente, el método "Back and Forth Error
Compensation and Correction" es una manera muy robusta e incondicionalmente estable de
tratar el término convectivo de las ecuaciones de Navier Stokes.

Losmétodos numéricos citados anteriormente fueron implementados en un código Python que
permite al usuario comprobar el comportamiento de este solver nuevo al resolver casos de es-
tudio sencillos y bien documentados. Primero, el problema de Couette está analizado para
demostrar la precisión de los resultados cuando sólo se tiene en cuenta los efectos viscosos.
Luego, la simulación de un flujo dentro de un canal nos permite estudiar la robustez del solver
en el límite incompresible. Para terminar, varias simulaciones del problema de Von Karmann
con un número de Reynolds, entre 10 y 2 000, fueron desarrolladas utilizando varias mallas con
características distintas. A pesar de lo que se podía esperar, los vórtices de Von Karmann no
aparecieron. Por culpa de la capacidad limitada del ordenador del autor, se tuvo que utilizar
una malla con elementos bastante grandes que no pudieron captar la competición que existe
entre los efectos viscosos y el término convectivo en la capa límite del obstáculo.

Page 2 Master thesis

Contents

1 Solving very large engineering problems 7
1.1 The Finite Element Method . 7
1.2 The modelling process . 8
1.3 The Proof of Concept (PoC) . 10

1.3.1 The Q1P0 finite element . 10
1.3.2 The Fractional Step Method . 12

2 Linear algebra preliminaries 13
2.1 Matrix operations computational cost . 13

2.1.1 Matrices multiplication computational cost 13
2.1.2 Matrices summation computational cost . 13

2.2 Solving linear systems of equations . 14
2.2.1 Symmetric positive definite matrix . 14
2.2.2 Iterative methods for the resolution of linear systems of equations 14
2.2.3 The Steepest Descent method . 16
2.2.4 The Conjugate Gradient method . 17

2.3 Norm of a solution . 19

3 Formulation 21
3.1 Navier-Stokes problem . 21
3.2 Weak form . 23
3.3 Voigt notation . 25

4 Q1P0 Galerkin discretisation 26
4.1 Global discretisation . 26
4.2 Element-based discretisation . 27
4.3 Isoparametric element integration . 31
4.4 Numerical expression . 33
4.5 Assembly of a B-bar elements mesh . 34

4.5.1 Assembly of the stiffness and mass matrices 34
4.5.2 Discrete gradient operator assembly . 36
4.5.3 Pressure mass matrix assembly . 36
4.5.4 Global assembly . 36

4.6 Implementation optimisation . 37

5 Back and Forth Error Compensation and Correction method 40
5.1 First step forward . 40
5.2 Backward step . 41
5.3 Error compensation . 42
5.4 Second forward step . 42

6 Time integration of equations 43
6.1 Forward Euler (FE) . 44

6.1.1 Equations of Forward Euler . 44
6.1.2 Computational cost of the Forward Euler scheme 45
6.1.3 Stability of the Forward Euler scheme . 46

6.2 Backward Euler (BE) . 47

Fast Octree pseudo-compressible solver for wind engineering application Page 3

6.3 Fractional step (FS) splitting . 50
6.3.1 Fractional step equations . 50
6.3.2 Fractional step computational cost . 51
6.3.3 Fractional step stability . 54

6.4 Summary . 54

7 The Shifted Boundary method 56
7.1 Complex geometries and structured meshes. Implicit geometrey representation . 56

7.1.1 Detect inner nodes . 56
7.1.2 Detect inner elements . 57

7.2 Shifting the boundary conditions imposition . 60
7.2.1 Closest point search . 60
7.2.2 Velocity gradient approximation . 61
7.2.3 Integrals computation . 64
7.2.4 Apply boundary conditions . 64

8 Resolution of 2 calibration problems 66
8.1 Viscosity-driven problem / Couette flow . 66
8.2 Compressibility-driven problem . 68

9 Structure of the Python script 71
9.1 Code structure . 71
9.2 I/O (Input/Output) . 71

9.2.1 Input . 71
9.2.2 Output . 72

9.3 Inputs pre-process . 73
9.3.1 Mesh generation . 73
9.3.2 Inlet velocity . 74

9.4 Implementation summary . 75
9.5 Solution post-process . 75

9.5.1 Pressure post-process . 76

10 Practical case studies 77
10.1 Couette flow problem . 77

10.1.1 Simulation convergence . 79
10.2 The incompressible limit . 80
10.3 Flow around a cylinder . 82

10.3.1 Low Reynolds flow . 83
10.3.2 Higher Reynolds flow . 85

10.4 Impact of a city over the wind field . 88

11 Conclusion and perspectives 92

12 Appendix 95

Page 4 Master thesis

List of Figures

1 Modelling and resolution process of an engineering problem 8
2 Example of a meshed round domain . 8
3 Example of time discretisation with constant time step 8
4 Inputs/Outputs of the solver . 9
5 Project temporal development . 9
6 Examples of finite elements used for mixed formulation problems 11
7 The Q1P0 finite element . 11
8 Quadratic form associated with non-positive matrix 16
9 Quadratic form associated with singular matrix 16
10 Quadratic form associated with positive definite matrix 16
11 Iterations using the Steepest Descent method and x0 = [−3 , 0] 17
12 Iterations using the Steepest Descent method and x0 = [0.5 , −1.5] 17
13 Iterations using the Conjugate Gradient method and x0 = [−3 , 0] 18
14 Iterations using the Conjugate Gradient method and x0 = [0.5 , −1.5] 18
15 Example of interpolation function in a 1D mesh 26
16 Example of interpolation function in a 2D mesh 26
17 Q1P0 element DOF . 28
18 Reference Q1P0 element first shape function . 28
19 Reference Q1P0 element and Gauss integration points 28
20 Gauss integration points and weights . 28
21 Simple mesh example . 34
22 Block decomposition of local stiffness matrix . 34
23 Block decomposition of local gradient matrix . 34
24 First step of the stiffness matrix assembly process. Loop over the first element. . . 35
25 Second step of the stiffnessmatrix assembly process. Loop over the second element. 35
26 Third step of the stiffness matrix assembly process. Loop over the third element. 35
27 Fourth step of the stiffness matrix assembly process. Loop over the fourth element. 35
28 The 4 steps of the discrete gradient operator assembly process 36
29 The globally assembled mass matrices . 37
30 The globally assembled stiffness, gradient and divergence matrices 37
31 Memory space for standard and sparse matrices implementations 39
32 Follow-up of a fluid particle . 41
33 BFECC method summary . 41
34 Lumping process . 45
35 Example of a structured mesh using quadrilateral elements 56
36 Example of an unstructured mesh using quadrilateral elements 56
37 Geometry to be meshed . 57
38 Detection of inner points . 57
39 Different hole geometries . 57
40 A particular configuration . 57
41 Original structured mesh and detected inner elements 58
42 Final structured mesh . 58
43 Example of geometry simplification . 59
44 The closest point search . 60
45 Closest point on a circle . 60
46 Reference element forMΠ and Aj matrices integration 64
47 A viscosity-driven problem . 66

Fast Octree pseudo-compressible solver for wind engineering application Page 5

48 A compressibility-driven problem . 66
49 The Python script processes . 72
50 Global numbering of elements and nodes . 73
51 Space discretisation . 73
52 Mesher black box . 73
53 Time sigmoid inlet velocity . 74
54 Example of uniform inlet . 75
55 Example of parabolic inlet . 75
56 Example of logarithmic inlet . 75
57 Free Couette flow . 78
58 Stationary Couette solution . 78
59 Constrained Couette flow . 78
60 Couette flow results with FE and h = 0.2 . 78
61 Couette flow results with FE and h = 0.05 . 78
62 Mesh convergence for the Couette flow problem 79
63 Channel configuration . 80
64 Velocity at the end of the channel as a function of time 81
65 Pressure at the end of the channel as a function of time 81
66 Pressure field in the channel at t = 0.12 . 81
67 Velocity field in the channel at t = 0.12 . 81
68 Pressure field in the channel at t = 0.15 . 81
69 Velocity field in the channel at t = 0.15 . 81
70 Pressure field in the channel at t = 0.16 . 82
71 Velocity field in the channel at t = 0.16 . 82
72 Pressure field in the channel at t = 0.17 . 82
73 Velocity field in the channel at t = 0.17 . 82
74 Parameters of the small Reynolds simulation . 83
75 Inlet velocity for the low Re case . 83
76 Velocity field around a cylinder for a low value of the Reynolds number 83
77 Pressure field around a cylinder for a low value of the Reynolds number 83
78 Velocity field relative error for the low Reynolds problem 84
79 Pressure field relative error for the low Reynolds problem 84
80 Comparison between the BE and FS computational costs (in seconds) 85
81 Relative reduction of computational cost between the BE and FS schemes 85
82 Dimensions of the domain for high values of the Reynolds number 86
83 Mesh used for high Reynolds flows . 86
84 Velocity field at Re = 10 . 86
85 Velocity field at Re = 100 . 86
86 Velocity field at Re = 500 . 86
87 Velocity field at Re = 2000 . 86
88 Pressure field at Re = 10 . 87
89 Vorticity field at Re = 10 . 87
90 Pressure field at Re = 100 . 87
91 Vorticity field at Re = 100 . 87
92 Pressure field at Re = 500 . 87
93 Vorticity field at Re = 500 . 87
94 Pressure field at Re = 2000 . 87
95 Vorticity field at Re = 2000 . 87
96 Mesh of the city . 89

Page 6 Master thesis

97 Velocity field at t = 45 . 89
98 Velocity field at t = 90 . 89
99 Velocity field at t = 135 . 89
100 Velocity field at t = 180 . 89
101 Vorticity field at t = 45 . 90
102 Vorticity field at t = 90 . 90
103 Vorticity field at t = 135 . 90
104 Vorticity field at t = 180 . 91
105 Pressure field at t = 45 . 91
106 Pressure field at t = 90 . 91
107 Pressure field at t = 135 . 91
108 Pressure field at t = 180 . 91

Fast Octree pseudo-compressible solver for wind engineering application Page 7

1 Solving very large engineering problems

Engineers, nowadays, almost systematically need to use numerical simulation in order to solve
the problems they have to face. Numerical modelling is not only an extraordinary scientific tool,
it enables company better their competitiveness by reducing the cost of development, above all
prototyping.

Even if computational mechanics has made great improvements in the last decades (consider-
ing the number of applications and their complexity), some particular types of problems remain
very difficult to solve with current techniques. Let us imagine one wants to solve a huge prob-
lem, for instance, modelling the wind field within a city like Barcelona for several days in order
to study the pollution evolution depending on atmospheric conditions. Current technology is
not able to provide engineers with a cheap solution: one may need to use a supercomputer,
because personal computers lack computation power, which would cost lots of money. The fi-
nal objective of this work is to solve this kind of problem, i.e. reduce the computational cost
of the simulation and find a way to rapidly solve huge problems. They are nowadays solved
using standard Computational Fluid Dynamics (CFD) techniques which are too slow and not
optimised enough.

We will need to find a trade-off between quickness and precision. More precise numerical
schemes generate longer simulations because more equations are to be solved by the computer
and, of course, this process takes more time. If we are to find any possible means to make the
simulation faster, this may imply using less precise technology.

However, this is not really a problem from an engineering point of view. Let us come back to
the example of the wind distribution within a city. Having a very precise numerical simulation
would not make any sense at all. In such a complicated analysis which would couple thermal,
mechanical and maybe chemical problems (because of air contamination reactions), there are
many sources of uncertainty in the mathematical model itself. Only for the geometry, many
models are to be tackled. Should one model the trees which are in the streets of the city? Which
precision does one have when considering the dimensions of the buildings? The boundary
conditions are even more complicated to determine because it is impossible to precisely know
thewinddirection, its velocity or the turbulence index of the atmosphere. In this context, having
a too precise numerical simulation does not make any sense because the inputs of the model
themselves would have a too important variability. In a nutshell, it is reasonable to loose some
precision in order to make the simulation faster.

1.1 The Finite Element Method

When dealing with complex multi-disciplinary engineering problems, most of the time it is
impossible to find an analytical solution to the Partial Derivatives Equations (PDE) which gov-
ern the behaviour of the system. Nevertheless, many mathematical tools, such as the Finite
Element Method (FEM), enable engineers to find a numerical approximation of the solution.
Since some problems are too complex to be solved globally, they are divided into much smaller
ones, where it is much easier to approximate the analytical solution. The FEM is nowadays a
wide-spread technique which has many applications, from the numerical simulation of electro-
magnetic fields to the computation of the pressure field into some arteries of the human body.

Page 8 Master thesis

Figure 1: Modelling and resolution process of an engineering problem

Figure 2: Example of ameshed round domain

Figure 3: Example of time discretisation with
constant time step

However, the FEM has some limitations. On the one hand, the precision of the numerical ap-
proximation depends on the mesh resolution. The more finite elements there are in the model,
the more precise will be the numerical simulation. On the other hand, the time needed to carry
out the numerical operations depends on the number of elements too. The more elements in
the mesh, the longer will be the simulation. If one does not have access to a supercomputer, it
is almost impossible to run huge simulations because the number of elements is too important
and the computational cost to carry out the calculation is too high for a standard PC. In this
context, we need to adapt and optimise the FEM in order to find a trade-off and achieve our
particular goal.

1.2 The modelling process

Most of the time, engineers follow the process described in Figure 1 to solve the problems they
are facing. The starting point is the physical problem itself (the wind field in a city). To use a
FEM code, this problem has to be mathematically modelled, i.e. one has to write mathematical
equations to represent the geometry of the problem (city geometry, ...), describe the behaviour of
the system (constitutive equations of the fluid, Newton second law of mechanics, mass conser-
vation, ...) and the boundary conditions (mostly the wind field far away from the city). Finally,
these data are introduced in a FEM code which will solve the problem and, almost magically,
display the results of the simulation on the screen.

Within the proper FEM code, if ones looks at it with more attention, three main operations are
performed.

First, the mathematical problem is pre-processed. The geometrical domain is divided into

Fast Octree pseudo-compressible solver for wind engineering application Page 9

Figure 4: Inputs/Outputs of the solver Figure 5: Project temporal development

smaller parts and meshed with finite elements (see Figure 2). The output of this process is a
set of nodes and edges, which form the mesh of the domain. In addition, PDEs are discretised
as well as time.

Once all the pre-process has been done, the solver can integrate the discrete problem over time
to obtain the values of each nodal variables at each time step. At this stage, it is impossible to
interpret the raw results given by the solver. So that they are useful to the user of the FEM code,
they have to be post-processed, i.e. transformed into visual results, such as graph or contour
lines.

The object of this master thesis is essentially the solver part. We will not focus on the domain
meshing process for instance, even if it is one of the most important part of the modeling work,
or the post-process of the solution. Schematically, we are to create a black box which takes into
account some given inputs with a predefined structure and return the discrete solution of the
problem. The inputs of FEM solvers are (see Figure 4):

• The mesh information. To entirely describe a mesh, one needs two different pieces of
information: the nodes coordinates and the connectivity matrix, which contains infor-
mation about the nodes which are associated to form a given element (the details of its
implementation will be explained later on).

• Thematerial characteristics. This part obviously depends on the type of engineering prob-
lem one is solving. For instance, in the case of an isotropic elastic problem, the behaviour
of the material is completely defined by the Young modulus E and the Poisson ratio ν.
For more complex materials, more parameters are needed.

• The time discretisation (see Figure 3). We are looking for the approximate solution for a
discrete series of times ti because it is impossible to solve the transient continuous prob-
lem. Most of the time, a constant time δt is adopted but considering a variable one could
be possible.

• An initial condition which describes what the state of the system is before the simulation
begins.

• Some boundary conditions which describe the interaction of the system with its environ-
ment.

Page 10 Master thesis

1.3 The Proof of Concept (PoC)

The objective of the master thesis is to design a new solver which would be optimised for very
large problems. At this stage of the project, it is impossible to say if this optimised solver will
effectively give representative results in a practical engineering case. One could think about
directly implementing it in a FEM code and see what happens. However, it would be a loss
of time if the idea, in the end, is not good enough and does not work. To avoid this, what is
generally done in the development of such projects is a Proof of Concept.

The main idea is to test the new solver for small and simplified problems for which there is
bibliography and whose solutions (sometimes analytical ones) are well-known. By comparing
the results of literature and the results of the new solver, we will know if it could potentially
be efficient for more complex problems. To solve these simplified problems, we are to develop
from scratch an application using the Python language. This application will not contain all the
functionalities of a standard production-ready FEM code but this is not a problem because its
only goal is to preliminary test the results ones gets from the new solver.

Once it is done and we get consistent results from the simple cases of study, we can assume that
the idea we had is good enough, that this new solver will correctly work and we can pass to the
next step, which would be the implementation directly in an alternative FEM code (see Figure
5).

To sum up, the objective of this master thesis is to do the Proof of Concept of a fast solver that
could be used to deal with very large problems. To do that, we will use:

• Q1P0 finite elements technology to discretise PDEs

• A first-order Fractional Step Method to integrate PDEs over time

• A Shifted Boundary Conditions method to apply boundary conditions

• The Back and Forth Error Compensation and Correction Method to deal with the convec-
tive term of the Navier-Stokes equation

All these concepts as well as their numerical implementation will be detailed later on. These
technologies have already been separately implemented and the objective of the thesis is to
prove their robustness and efficiency when associated all together.

1.3.1 The Q1P0 finite element

In structural mechanics, low-order displacement-based elements are subject to locking when
dealing with problems involving bending or incompressibility (see [CCCdS03] and [VdO05]),
which are quite common restrictions. For instance, in geotechnical engineering, under certain
conditions, the soil has to be modelled as an incompressible material. When locked, the finite
element mesh happens to be much stiffer than it should be, which gives non-representative
results.

Q1P0 elements were especially developed in the 1970’s as a response to this problem. They are

Fast Octree pseudo-compressible solver for wind engineering application Page 11

Figure 6: Examples of finite elements used for mixed for-
mulation problems

Figure 7: The Q1P0 finite element

based on a mixed formulation, i.e. the mechanical equations are expressed in terms of the dis-
placement u and the isotropic pressure p, which is a new unknown of the problem. In the case
of displacement-based elements, the whole formulation of equations is only done in terms of
the displacement u. Displacement-based formulation are easier to discretise and their compu-
tational cost is lower but it is subject to locking.

Displacement-based formulation Mixed u-p formulation
Variables Velocity u Velocity u, pressure p
Locking Yes No

Computational cost High Low

Table 1: Comparison between displacement-based and mixed u-p formulations

Figure 6 presents examples of finite elements used to discretise mixed u-p formulations. The
displacement and pressure nodes are respectively represented by • and ◦. Their number and
positions1 have a great impact on the element efficiency, as described in [VJP08]. TheQ1P0 finite
element is a quadrilateral one characterised by four displacement nodes (at the four corners of
the element) and one pressure node in the centre of the element (see Figure 7).

Not all mixed elements provide representative results. One criterion to prove the mathemat-
ical convergence of mixed elements is the Ladyzhenska-Babuska-Brezzi (LBB) condition (see
[CCCdS03] and [Hug12]). The idea is that, to work well, the element needs to have a "good bal-
ance" between the velocity unknowns and the pressure ones. In incompressible problems, the
mass balance equation (∇ · u∇ · u∇ · u = 0) represents an additional constraint for the displacement field
u which already has to satisfy the momentum balance equation. In the case of displacement-
based formulations, the element does not manage to satisfy all the restrictions only with the
displacement unknowns and that is the reason why it locks: there are too many constraints to
be satisfied. Using a mixed u-p formulation makes the element less stiff because we introduce
the nodal pressure values, which are new DOFs of the system. Schematically, the element has
more variables to adapt itself to all the constraints.

However, if there are too many pressure DOFs, the elements looses too much stiffness because,
in a sense, there are more variables than constraints. This is the main idea which is behind

1Let us remark that they are not necessarily located at the same place in the element

Page 12 Master thesis

the LBB condition. Of course, the previous development cannot be considered as a rigorous
mathematical demonstration. For more information, the reader can refer to [CCCdS03]. As for
the Q1P0 element, it has been proven in literature that it satisfies the LBB condition and show
good results2.

In a nutshell, the Q1P0 element technology has been developed for structural mechanics to
model incompressible problems. As a consequence, it makes sense to think that this kind of
elements could work in Computational Fluid Dynamics (CFD) since most of the time we have
to deal with quasi-incompressible material such as air or water. It is worth it to try to develop a
CFD solver with this type of finite elements.

1.3.2 The Fractional Step Method

One has to distinguish between stationary problems and transient ones. In the first case, the
variables (displacement u and pressure p for instance) do not depend on time whereas they
do in transient ones. The objective of the new solver we want to develop is to deal with tran-
sient problems; we need to define a time integration strategy from the initial conditions of the
problem.

The Fractional Step Mehtod (FSM) is widely-used in CFD to find the numerical solution of in-
compressible flows. It is based on a mixed u-p formulation. At each time step, the main idea
is to find a first approximation of the velocity field u which satisfies the momentum balance
equation but which does not take into account the mass balance equation3. Then, the pressure
field p is computed such that the mass balance equation is satisfied. The final operation is to
update the first approximation of uwe previously computed, taking into account this pressure
field. For more details, the reader can refer to [Cod01a], [Cod01b], [BCH98], [FP02], or [MR18].
The main advantage of the FSMwhen compared to a standard monolithic scheme is that u and
p are decoupled, which considerably lowers the computational cost.

2The Q1P0 element shows really good results in structuredmeshes. This is not always the case with unstructured
ones

3This first approximation of u thus does not necessarily complies with the mass balance equation

Fast Octree pseudo-compressible solver for wind engineering application Page 13

2 Linear algebra preliminaries

Before beginning the formulation of the Navier-Stokes equations for a Q1P0 element, it is worth
it to introduce some mathematical concepts that we will use later on in this work.

Analysing the computational cost of a simulation is one of the most important point in compu-
tational engineering. An interesting code can be completely useless in the practice if the time
one needs to run it is too huge.

We are to determine the computational cost of some basic matrices operations, which are af-
terwards combined to create much more complicated functions. In our code, the most used
matrices operations are basically the matrices multiplication and the resolution of linear sys-
tems of equations. Most of the time, the computational cost of some operations is expressed in
terms of evenmore basic operations, such as scalar product, scalar addition or variable assigna-
tion. In thewholework, the capital letterC refers to the computational cost of a certain sequence
of operations.

2.1 Matrix operations computational cost

2.1.1 Matrices multiplication computational cost

Let us consider two matrices A and B of size (nA,m) and (m,nB) respectively. The product of
A and B is a (nA, nB) second-order tensorD, defined as:

Definition 1. ∀i ∈
[
|1, nA|

]
, ∀j ∈

[
|1, nB

∣∣], Dij =
∑m

k=1 AikBkj

where Dij is the term of D at line i and column j.

Now let us count the number of scalar productsAikBkj the computer has to do computeD. For
each Dij , we have to computem scalar products (see the summation indices in Definition 1).D
contains nA · nB terms. As a consequence, the standard matrices product has a computational
cost of m · nA · nB because the computer needs to do nA · nB times m scalar multiplications,
which are unitary operations.

2.1.2 Matrices summation computational cost

Let it beA and B two (n,m) second-order tensors and E = A + B.

Definition 2. ∀i ∈
[
|1, n|

]
, ∀j ∈

[
|1,m

∣∣], Eij = Aij + Bij

For each termEij , it is necessary to do one basic scalar addition. There are n ·m terms in matrix
E. The total computational cost of a matrix summation is n ·m because the computer needs to
compute n ·m times one basic scalar addition. To have a fast simulation, one should limit the
number of matrices multiplication because this operation as a much bigger computational cost.

Page 14 Master thesis

2.2 Solving linear systems of equations

2.2.1 Symmetric positive definite matrix

Symmetric positive definite matrices are fundamental when dealing with FEM codes because
they naturally appear in the formulation of discretised PDEs. Moreover, their main features
make it possible to introduce some optimisations in the code.

Let us introduce some useful definitions.

Definition 3. A is symmetric ⇐⇒ AT = A

whereAT refers to the standard transposed matrix ofA.

The positive definite concept is a bit more complicated to define.

Definition 4. A is definite positive ⇐⇒ ∀x 6= 0, xTAx > 0

If a matrix is positive definite, it does not necessarily mean that all the terms of the matrix are
positive. Moreover, a matrix containing only positive terms can be positive definite, or not. Let
us study a numerical example.

Example 1. N =

(
1 2
2 1

)
x =

(
−3
1

)
6= 0

All the terms of N are positive. However, xTNx = −2, which means that N is not positive
definite even if all its terms are positive. Even though the definition of a positive definite matrix
is not really intuitive, later on we will see that it can be geometrically interpreted.

2.2.2 Iterative methods for the resolution of linear systems of equations

Solving a system of linear equations is one of themost basic problem of linear algebra. However,
it is one of the most time-consuming one too. The main objective here is to find a way to speed
up the resolution of a linear system of equations, based on the Conjugate Gradient method.

We will not explain the entire theory behind this algorithm but just give some clue concepts.
Deeply understand what it is at stake with the Conjugate Gradient algorithm is not the object of
the work we are doing and we just consider it as a useful tool. For more information, the reader
can refer to [S+94].

Let A be a symmetric positive definite second-order tensor of size (n, n). We are to find the
solution of the linear system of equations

Ax = b

where b is a known vector and x the unknown of the problem.

Fast Octree pseudo-compressible solver for wind engineering application Page 15

All the iterative methods one can use to solve this kind of linear systems of equations rely on
the following lemma.

Lemma 1. Find x∗ such that Ax∗ = b ⇐⇒ x∗ = arg
(

min f(x) = 1
2x

TAx− bTx + c
)

Finding the solution of the system Ax = b and finding the value of x which minimises the
quadratic form f(x) = 0.5xTAx − bTx + c are strictly equivalent problems. In the following,
the proof of this statement is developed.

Let it be x = A−1b the solution of the linear system and p a given point of the domain.

Proof.

f(x) +
1

2
(p− x)TA(p− x)

=
1

2
xTAx− bTx + c+

1

2
(p− x)TA(p− x) by definition of f(x)

=
1

2
xTAx− bTx + c+

1

2
pTAp− 1

2
pTAx− 1

2
xTAp +

1

2
xTAx

= xTAx− bTx + c+
1

2
pTAp− 1

2
pT(Ax)− 1

2
(Ax)Tp , becauseAT = A

= xTb− bTx + c+
1

2
pTAp− 1

2
pTb− 1

2
bTp , becauseAx = b

=
1

2
pTAp− bTp + c , because xTb = bxT and pTb = bpT

= f(p) , by definition of f

Finally, the result of this development is that

f(p) = f(x) +
1

2
(p− x)T A (p− x) (1)

Since A is definite positive,

∀p 6= x, (p− x)T A (p− x) > 0 (2)

Equations 1 and 2 prove that x = A−1b is a global minimum of f because for all p 6= x, f(p) >
f(x), which is the definition itself of a global minimum.

We just proved that, if x is a solution of the linear system Ax = b, then it is a global minimum
of the quadratic form f . To completely prove Lemma 1, we need to show that the reciprocal is
true. In other words, if x is a global minimum of the quadratic form f , then it is a solution of
the linear system Ax = b.

The main idea is to compute the gradient of f :

Page 16 Master thesis

Figure 8: Quadratic form asso-
ciated with non-positive ma-
trix

Figure 9: Quadratic form asso-
ciated with singular matrix

Figure 10: Quadratic form as-
sociated with positive definite
matrix

f ′(x) =
1

2
ATx +

1

2
Ax− b

= Ax− b since A is symmetric

Then, if x is a global minimum of f , the theory tells us that the gradient is null in x

f ′(x) = 0 ⇐⇒ Ax = b (3)

and x is a solution of the linear system Ax = b, which proves the reciprocal of Lemma 1. For
more details and a more rigorous demonstration, the reader can refer to [S+94].

Actually, the features of matrix A have a direct impact on the shape of f . Figures 8, 9 and 10
present the shapes of the quadratic form considering different types of matrices A. When A is
positive and definite (see Figure 10), there is clearly a unique global minimum. For a singular
matrix A, the set of global minima is infinite. Ultimately, if A is definite but not positive (see
Figure 8), the presence of a global minimum is not ensured. A good understanding of the
features of matrix A is mandatory.

2.2.3 The Steepest Descent method

Now that we know that solving a linear system of equations is, in some cases, equivalent to
finding the minimum of a quadratic function, we should look for an efficient way to do it.

The first idea one can have when dealing with the minimisation of a certain function is the
Steepest Descent method. At each iteration, we compute the gradient of f and we look for the
minimum of the function in the direction given by this gradient4. The process is repeated until
a convergence criterion is satisfied. The equations of the Steepest Descent method will not be
detailed here because this is not the object of this work. For more details about the algorithm,
one can refer to [S+94].

4The gradient of a scalar function f is a first-order tensor which points in the direction of the mayor values of f

Fast Octree pseudo-compressible solver for wind engineering application Page 17

Figure 11: Iterations using the Steepest De-
scent method and x0 = [−3 , 0]

Figure 12: Iterations using the Steepest De-
scent method and x0 = [0.5 , −1.5]

Figure 11 presents the results of the iteration with:

Example 2. A =

(
1 0
0 4

)
b =

(
1
2

)
x0 =

(
−3
0

)

The blue points represent the approximations xi of the solution that are computed at each iter-
ation. For the sake of clarity, we plotted the contours of the quadratic form f . The convergence
up to the minimum of f is quite clear.

Nevertheless, the Steepest Descent algorithm is a really inefficient way to look for the minimum
of a function because the different search directions at each iteration are orthogonal (see Figure
11), which means we search several times in the same direction. Moreover, the convergence
depends a lot on the matrix A and the initial point x0. Figure 12 presents the results we get
when taking as initial point x0 = [0.5 , −1.5]. In this case, the convergence is much faster than
previously.

The Steepest Descent method does not take into account all the information we have about
matrix A (we know it is symmetric, definite and positive). More generally, this algorithm can
be used to look for the minimum of any function f(x), and not only quadratic forms. In a
nutshell, the Steepest Descent method is not optimal and it can be optimised.

2.2.4 The Conjugate Gradient method

The idea behind the Conjugate Gradient method is to look for the minimum of the quadratic
form f using independentA-orthogonal directions.

Definition 5. x and y are A-orthogonal ⇐⇒ xTAy = 0

At each iteration of the Conjugate Gradient algorithm, we look for a new search direction which
has not been explored yet5. This way, the search directions are not repeated such as in the Steep-

5This is the key point of this numerical scheme

Page 18 Master thesis

Figure 13: Iterations using the Conjugate
Gradient method and x0 = [−3 , 0]

Figure 14: Iterations using the Conjugate
Gradient method and x0 = [0.5 , −1.5]

est Descent method (see Figure 11). A being positive definitive, there are at most n independent
A-orthogonal directions6. The Conjugate Gradient algorithm thus converges to the exact solu-
tion with at most n iterations. Figures 13 and 14 prove that the Conjugate Gradient method
exactly converges in 2 iterations whatever the iteration starting point is. This highlights the
robustness of this minimisation algorithm.

Algorithm 1 Conjugate Gradient iterative method
Require: A, b, x0, maxiter, tol

d0 = r0 = b−Ax0

count = 0
while count < maxiter and ||ri|| > tol do
αi =

rTi ri
dT
i Adi

xi+1 = xi + αidi

ri+1 − αiAdi

βi+1 =
rTi+1ri+1

rTi ri

di+1 = ri+1 + βi+1di

count = count+ 1
end while
if count = maxiter then
print “The algorithm has not converged"

end if
return xi

Algorithm 1 presents the different operations one has to do within each iteration. For the sake
of clarity, the details and interpretation of each operation are not described here. The output of
the algorithm is the approximation xn of the coordinates global minimum position.

We know that it would converge to the exact solution in n iterations. However, this would
be too long if matrix A is huge (let us remember we are looking for the fastest way to solve a
linear system of equations). As a consequence, we impose a maximum number of iterations

6This is a direct consequence of the spectral theorem

Fast Octree pseudo-compressible solver for wind engineering application Page 19

maxiter. Moreover, if the norm of the residual ri is close enough to zero, one can assume that
the approximation has reached a certain level of precision (defined through the variable tol) and
stops the algorithm. The variable count contains information about the number of iterations.
If this number of iterations is equal to maxiter, this means the algorithm has not converged
becausewe did not reach the level of precision imposed by tol. Wewent out off the loop because
we had reached the maximum allowed number of iterations.

Let us say that A is a matrix of size (n, n). The most time-consuming operation of Algorithm 1
is the computation ofAdi. It has a computational cost of n2. For instance, computing the scalar
product rT

i ri only requires n scalar operations, which is negligible when considering very large
problems (n >> 1). As we are imposing a maximum number of iterations (we do not let the
algorithm go up to the exact solution), the computational cost CCG of the Conjugate Gradient
method is O(n2).

Proposition 2. CCG = O
(
n2
)

Taking into account that the computational cost of the Gauss-Jordan elimination7 is O(n3), this
is a great improvement. The resolution of a linear system of equations where A is definite
positive is much faster using the Conjugate Gradient method.

2.3 Norm of a solution

To prove the convergence of the solverwe are to design, wewill need to define a quality criterion
for the numerical simulation. To do that, we will use the L2-norm.

Let it be a scalar function f (x, t) which depends on the space variable x ∈ Ω and time t ∈
[0, tmax]. We can define the L2-norm of f by

||f ||2 =

√∫
Ω

∫ tmax

0

∣∣f (x, t)
∣∣2 dt dΩ (4)

This norm is very useful for continuous (in time and space) functions. However, in the FEM,
one deals with the nodal values of the function (space discretisation) at discrete times ti. As a
consequence, it is necessary to change and adapt the previous definition.

Let us consider a set of discrete times T =
{
ti ∈ [0, tmax]

}
aswell as a set of pointsX = {xi ∈ Ω}.

We are now able to define a discrete version of the L2-norm as

||f ||2 =

√∑
xi∈X

∑
ti∈T

∣∣f (xi, ti)
∣∣2 (5)

In a sense, this is an approximation of the continuous integral. From our point of view, it is
much more useful because we are only interested in the nodal values of the function at some

7Other numerical technique for solving linear system of equations

Page 20 Master thesis

predefined times.

Fast Octree pseudo-compressible solver for wind engineering application Page 21

3 Formulation

The first part of this section is dedicated to the formulation of the Navier-Stokes problem. Then,
the weak form, which will be solved afterwards using FEM, is presented.

3.1 Navier-Stokes problem

First of all, we need to define some useful notations. The velocity field in the fluid domain
u
[
m.s−1

]
is described by a first-order tensor which a priori depends on all the space variables

as well as time.

u =
(
u(x, y, z, t) v(x, y, z, t) w(x, y, z, t)

)T
Then, we introduce the strain-rate tensor∇∇∇Su

[
s−1
]
, also known as symmetric gradient of u

∇∇∇Su =
1

2

(
∇∇∇u +∇∇∇uT

)
and express the constitutive equation of Newtonian fluids.

σσσ =

(
σx τxy
τyx σy

)
= −pI + 2µ∇∇∇Su (6)

where σσσ [Pa] is the stress tensor, p[Pa] the pressure in the fluid, µ [Pa.s] the fluid viscosity and
I the identity matrix. Equation 6 relates the rate of change of velocity, expressed through∇∇∇Su,
to the internal stresses in the fluid. Assuming that we are dealing with a Newtonian fluid, µ is
assumed to be constant. Using all previous notations, it is possible to write the Navier-Stokes
equations for a quasi-incompressible fluid

∇∇∇ · σσσ + ρb = ρ
∂u

∂t
+ ρu · ∇∇∇u (7a)

∂ρ

∂t
+∇∇∇ · (ρu) = 0 (7b)

where ρ
[
kg.m−3

]
refers to the fluid density. The formulation of the Navier-Stokes equations

relies on two very simple physical concepts: the momentum balance equation 7a and the mass
conservation equation 7b. The momentum balance equation is valid for every type of fluid; this
is not the case for the mass balance equation. For an incompressible fluid, since ∂tρ = 0 and
∇∇∇ρ = 0, we directly get∇∇∇ · u = 0.

The mayor difficulty in Equation 7a is given by the convective term u · ∇∇∇u. It introduces non-
linearity in the Partial Differential Equation (PDE),which complicates the resolution of the prob-

Page 22 Master thesis

lem, makes the numerical simulation unstable and greatly increases its computational cost. One
way to efficiently deal with this problem is to split the PDE.

ρ
∂u− ũ

∂t
=∇∇∇ · σσσ + ρb (8a)

ρ
∂ũ

∂t
+ ρu · ∇∇∇u = 0 (8b)

The sum of Equations 8a and 8b gives back Equation 7a. This way, the convective term has been
insulated into Equation 8b. In addition, we make the assumption that u · ∇∇∇u ≈ ũ · ∇∇∇ũ, so that
the equations to be solved are:

ρ
∂u

∂t
=∇∇∇ · σσσ + ρb + ρ

∂ũ

∂t
(9a)

∂ũ

∂t
+ ũ · ∇∇∇ũ = 0 (9b)

The idea is to compute the term ∂ũ/∂t using Equation 9b and then inject it in Equation 9a. In this
formulation, the increment of ũ can be interpreted as a body force such as the gravity, which is
very comfortable. Some very efficient techniques can be used to solve Equation 9b. In this work,
we decided to implement the "Back and Forth error compensation and correction" method; it
will be detailed later on.

As for themass balance, Equation 7b has to bemodified to be expressed in terms of the pressure
p. The objective being to develop a u-p formulation to use Q1P0 finite elements, we need to
eliminate the density ρ. For that, we introduce the bulk modulus K [Pa], a new parameter of
the fluid, whom expression is:

K = ρ
∂p

∂ρ
(10)

This is a very useful parameter to quantify the variation of the density fluid ∂ρwhen there is a
change of the isotropic pressure ∂p. Wemake the assumption that the bulkmodulus is constant.
∂tρ is expressed as a function of ∂tp using Equation 10.

∂tρ =
∂ρ

∂p

∂p

∂t
=

ρ

K
∂tp (11)

Considering Equations 10 and 11, we can derive the mass conservation equation in terms of the
pressure p.

ρ
∂p

∂t
+K∇∇∇ · (ρu) = 0 (12)

There we make the assumption that the density ρ uniform, which means that∇∇∇· (ρu) = ρ∇∇∇·u.

Fast Octree pseudo-compressible solver for wind engineering application Page 23

To determine the range of value of the bulk modulus K for which this assumption is valid, let
us rearrange Equation 10 as

K

∂p
=

ρ

∂ρ
(13)

If we assume that the variation of density ∂ρ is negligible compared to the density ρ, it means
that

ρ

∂ρ
>> 1 ⇐⇒ K

∂p
>> 1 (14)

To sum up, the assumption ∂ρ ≈ 0 is valid if and only ifK >> ∂p. The pressure variations need
to bemuch smaller than the bulkmodulus. For instance, water has a bulkmodulus of 2.2 GPa. If
wewant the assumption of quasi-incompressible fluid to be valid, we cannot simulate a pressure
field superior, in absolute value, than approximately 2.2 · 107 Pa ≈ 200 bar. In the practice, it
is important to check, for each simulation we are to do, that the pressure variations respect
this assumption because, for higher values of the pressure, the fluid cannot be considered as
incompressible and the formulation we are doing is not representative of the fluid behaviour.

In a nutshell, the whole set of equations which defines the Navier-Stokes problem we have to
solve is the following.

∇∇∇Su = 1
2

(
∇∇∇u +∇∇∇uT

)
σσσ = −pI + 2µ∇∇∇Su

∇∇∇ · σσσ + ρb + ρ∂ũ
∂t = ρ∂u

∂t

∂ũ
∂t + ũ · ∇∇∇ũ = 0

∂p
∂t +K∇∇∇ · u = 0

∀x ∈ Γu,u = u0

(15)

Γu refers to the part of the domain boundary where Dirichlet boundary conditions are defined.
The unknowns of the problem are the pressure p (scalar function), the velocity field u (first-
order tensor) and the convective velocity field ũ (first-order tensor) for a total of 7 unknowns.
As for the number of equations, we have 3 from the momentum balance equation, 3 from the
convective equations and 1 from the mass balance equation. There are as many unknowns as
equations, so we can assume the problem is well-posed and has a solution.

3.2 Weak form

Wenowneed to derive theweak formof the problem in order to implement it in a FEM code. Let
us assume that δuδuδu is the test function for velocities and δp for pressure. δuδuδu is null over the part
of the boundary where velocity Dirichlet boundary conditions are defined. To obtain the weak
form of the problem, we multiply each term by the corresponding test function and integrate

Page 24 Master thesis

by part. The idea behind deriving the weak form of the problem is to relax the constraints we
have on the velocity field u. If we only consider the Navier-Stokes Problem 15, the velocity
field u(x, y, z, t) needs to be C2 with respect to space variables since we need to compute its
second derivative. First, we compute∇∇∇Su (first spatial derivation) and then σσσ (second spatial
derivation). By integrating by parts over the fluid domain, we will relax this constraint.

Let us consider Equation 9a

∇∇∇ · σσσ + ρb + ρ
∂ũ

∂t
= ρ

∂u

∂t

It is to be multiplied by a test function δuδuδu and integrated over the domain Ω.

∫
Ω

(∇∇∇ · σσσ) · δuδuδu dΩ +

∫
Ω
ρb · δuδuδu dΩ +

∫
Ω
ρ
∂ũ

∂t
· δuδuδu dΩ =

∫
Ω
ρ
∂u

∂t
· δuδuδu dΩ

Now, to relax the C2 constraint we have on u, we integrate by parts. For a 2D domain Ω, it reads

∫
Ω

(∇∇∇ · σσσ) · δuδuδu dΩ =

∫
Ω
∇∇∇ · (σσσ · δuδuδu) dΩ−

∫
Ω
σσσ :∇Sδu∇Sδu∇Sδu dΩ (16)

Then, we apply the Divergence Theorem to pass from an integral over the domain to an integral
over the border of the domain, which would enable us to include potential Neumann boundary
conditions in the weak form formulation.

∫
Ω
∇∇∇ · (σσσ · δuδuδu) dΩ =

∫
∂Ω
σσσ · δuδuδu · n dΓ (17)

where n stands for the normal of the domain border.

By definition, we know that δuδuδu|Γu
= 0, which means that:

∫
∂Ω
σσσ · δuδuδu · n dΓ =

∫
∂Ω\Γu

σσσ · δuδuδu · n dΓ

It is not necessary anymore to integrate over the part of the boundarywhereDirichlet boundary
conditions are applied.

Combining all the equations, we finally get the weak form of the momentum balance equation.

∫
∂Ω\Γu

σσσ · δuδuδu · n dΓ−
∫

Ω
σσσ :∇Su∇Su∇Su dΩ +

∫
Ω
ρb · δuδuδu dΩ +

∫
Ω
ρ
∂ũ

∂t
· δuδuδu dΩ =

∫
Ω
ρ
∂u

∂t
· δuδuδu dΩ

Fast Octree pseudo-compressible solver for wind engineering application Page 25

The weak form of the mass balance equation is much easier to obtain since we just need to
multiply by the pressure test function and integrate over the whole domain Ω. Finally, the weak
formulation of the Navier-Stokes problem is stated as:

Find u and p, such that for all δuδuδu and δpwith δuδuδu|Γu
= 0,∫

Ω
σσσ :∇Sδu∇Sδu∇Sδu dΩ +

∫
Ω
ρ
∂u

∂t
· δuδuδu dΩ =

∫
Ω
ρb · δuδuδu dΩ +

∫
∂Ω\Γu

σσσ · δuδuδu · n dΓ +

∫
Ω
ρ
∂ũ

∂t
·δuδuδu dΩ (18a)∫

Ω
δp
∂p

∂t
dΩ +

∫
Ω
Kδp∇ · u dΩ = 0 (18b)

u|Γu
= u0 (18c)

Only the first spatial derivative of the velocity field appears in this weak form, which means the
constraints on the function u(x, y, z, t) we look for are not as strong as before. We do not need to
derive a weak form for the convective equation 9b since it will be solved using another method.

3.3 Voigt notation

We introduce the "engineering" Voigt notation and rewrite the 2 previous equations using these
new variables. This formulation is much more comfortable because it only deals with vectors,
which are much easier to implement in a FEM code.

From now on, we make the assumption of a 2D problem, the main idea being to make the
numerical implementation easier later on. As we will need to perform many test cases with
the solver (main objective of this Proof of Concept), it is really worth it to have a fast code and,
working in 2D will considerably lower the computational cost of the simulation. However, all
what we set out in this section can be easily extended to the 3D case.

∇Su∇Su∇Su =
(
∂u
∂x

∂v
∂y

∂u
∂y + ∂v

∂x

)T

σσσ =
(
σx σy γxy

)T
It is necessary to rewrite the momentum balance equation in terms of these new variables. We
do not need to compute any more the double dot product as in σσσ : ∇Sδu∇Sδu∇Sδu. This notation only
requires vector multiplication, which has a lower computational cost too.

The Weak Form of the Navier-Stokes problem in Voigt notation is:

Find u and p, such that for all δuδuδu and δpwith δuδuδu|Γu
= 0,∫

Ω

(
∇Sδu∇Sδu∇Sδu

)T
σσσ dΩ+

∫
Ω
ρδuδuδuT

∂u

∂t
dΩ =

∫
Ω
ρδuδuδuT b dΩ+

∫
∂Ω\Γu

δuδuδuT t dΓ+

∫
Ω
ρδuδuδuT

∂ũ

∂t
dΩ (19a)∫

Ω
δp
∂p

∂t
dΩ +

∫
Ω
Kδp∇T∇T∇Tu dΩ = 0 (19b)

u|Γu
= u0 (19c)

Page 26 Master thesis

4 Q1P0 Galerkin discretisation

In common engineering problems, analytical solutions for the Navier-Stokes problem can be
hardly found. This difficulty is likely overcome by simplifying the problem to find an approxi-
mation of the analytical solution. Hence, we are going to interpolate the analytical solution us-
ing a certain number of points in the domain. This implies to pass from a continuous problem
(find the expressions of continuous functions), which is really hard, to a discrete problem (find
the value of the analytical solution at certain points), much easier to solve. Furthermore, one
needs to define the expression of the test functions δuδuδu and δpδpδp. The main idea behind Galerkin
discretisation is to use the interpolation functions of u and p as test functions.

4.1 Global discretisation

Let us consider a set of Nnode points, characterised by their coordinates
{
xi| i ∈

[
|1;Nnode|

]}
,

and a set ofNnode interpolation functions
{
Ni| i ∈

[
|1;Nnode|

]}
, each one associated to one par-

ticular node (there are as many interpolation functions as points). We approximate the analyt-
ical solution of the Navier-Stokes weak form problem using the interpolation functions Ni.

u(x, t) ≈ uh(x, t) =

Nnode∑
i=1

ui(t)Ni(x)

p(x, t) ≈ ph(x, t) =

Nnode∑
i=1

pi(t)Ni(x)

where uh, ph are the approximation of the continuous solution and ui, pi the nodal values of
the approximated solution at point xi.

Figures 15 and 16 present examples of interpolation functions in 1D and 2D meshes. They are
piece-wise linear functions (for 2D triangular meshes) with Ni(xi) = 1. For instance, in Figure
15, N1(x0) = N1(x2) = 0 and N1(x1) = 1.

Figure 15: Example of interpolation func-
tion in a 1D mesh

Figure 16: Example of interpolation func-
tion in a 2D mesh

Fast Octree pseudo-compressible solver for wind engineering application Page 27

The next step is to distinguish between the points which are on the surface of the domain where
a Dirichlet boundary condition is applied and those which are not. Let us define a set D such
as:

D = {i,xi ∈ Γu}

The setD contains the indices of the pointswhich are on a boundarywhere aDirichlet boundary
condition is applied. As a consequence, we have:

uh =
∑
i∈D

ui(t)Ni(x) +
∑
i/∈D

ui(t)Ni(x)

To finally discretise Equations 19a and 19b, we use the interpolation functions Ni as test func-
tions (Galerkin approach) andwe substitute the values ofuh and ph into theNavier-Stokes prob-
lemweak form. This would lead to a linear system of equations, which we would have to solve.
These are the basics of the Galerkin discretisation method.

However this point-based vision is not very easy tomanipulate because, within this framework,
it is hard to define the expression of the interpolation function. For instance, if we consider
Figures 15 and 16, we have to deal with piece-wise linear functions, which have different ex-
pressions depending on the area of the mesh we are working in. For instance, in Figure 15, let
us say that, for a given x, we want to compute N1(x). We have to distinguish between x < x0,
x0 < x < x1, x1 < x < x2 and x > x2, i.e. we have four different cases and four different ex-
pressions forN1. Moreover, to find the expression of such a hat function, we need to determine
the neighbours of the associated point. For an unstructured mesh, this can be very difficult.

For all these reasons, to make the discretisation easier, most of the time, we adopt an element-
oriented vision, also known as local discretisation. In other words, we divide the original do-
mains into sub-domains (the so called elements of the mesh), we derive the linear system of
equations for one element and, through an assembly process we will detail afterwards, we de-
termine the linear system of equations corresponding to the entire discrete domain.

The two points of view (point-oriented and element-oriented) finally would give the same re-
sults. However, the element-oriented point of view provides us with a much simpler frame-
work. From now on, we adopt this element-centred point of view.

4.2 Element-based discretisation

The degrees of freedom (DOF) of the Q1P0 finite element are the velocity components at the 4
nodes and the pressure in the centre of the element, which is assumed to be constant in all the
interior, leading to discontinuous pressure between elements. However, this is not a problem
because, to derive the weak form of equations, we only require the pressure field p(x, y, z, t) to
be square-integrable on the domain. Thus, there is no restriction as for its first derivative.

The vectorU contains the 8 degrees of freedom (DOF) of one 2D element. This could be perfectly
generalised to 3D but, for the sake of clarity, we only consider the 2D case.

Page 28 Master thesis

Figure 17: Q1P0 element DOF Figure 18: Reference Q1P0 element first
shape function

Figure 19: Reference Q1P0 element and
Gauss integration points

Coordinates of the
Gauss point

Weight

− 1√
3
; 1√

3
1

1√
3
; 1√

3
1

1√
3
;- 1√

3
1

− 1√
3
;- 1√

3
1

Figure 20: Gauss integration points and
weights

U =
(
u1 v1 u2 v2 u3 v3 u4 v4

)T
The velocity field within the element is to be approximated using the value of the velocity at
the 4 nodes of the element and the associated shape function. The value of the shape function
is 1 at the associated node and 0 at the other 3 nodes of the element. For instance,N1 is equal to
1 at (x1; y1) and is null at (x2; y2), (x3; y3) and (x4; y4) (see Figure 18 for a more representative
illustration8).

We interpolate the velocity field u using the DOFs of the elements and the shape functions.

{
u = u1N1 + u2N2 + u3N3 + u4N4

v = v1N1 + v2N2 + v3N3 + v4N4

The expressions above complywith the restrictionu(x1, y1) = u1, u(x2, y2) = u2, u(x3, y3) = u3

and u(x4, y4) = u4. This leads to the following matrix equation, which is a muchmore compact
way to write the interpolation.

8In Figure 18 is only plotted the first shape functions. N2, N3 and N4 are totally symmetric.

Fast Octree pseudo-compressible solver for wind engineering application Page 29

u = NU =

(
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

)
U

Using this expression, the temporal derivative of u can be obtained as ∂tu = N(x, y) ∂tU
9.

Then, we compute the derivatives of u

∂u
∂x = u1

∂N1
∂x + u2

∂N2
∂x + u3

∂N3
∂x + u4

∂N4
∂x

∂u
∂y = u1

∂N1
∂y + u2

∂N2
∂y + u3

∂N3
∂y + u4

∂N4
∂y

∂v
∂x = v1

∂N1
∂x + v2

∂N2
∂x + v3

∂N3
∂x + v4

∂N4
∂x

∂v
∂y = v1

∂N1
∂y + v2

∂N2
∂y + v3

∂N3
∂y + v4

∂N4
∂y

which can be expressed in matrix form

∇Su∇Su∇Su = BU =

∂N1
∂x 0 ∂N2

∂x 0 ∂N3
∂x 0 ∂N4

∂x 0

0 ∂N1
∂y 0 ∂N2

∂y 0 ∂N3
∂y 0 ∂N4

∂y

∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x

∂N3
∂y

∂N3
∂x

∂N4
∂y

∂N4
∂x

U

To have a complete formulation, we need to express the stress tensor in terms of the Voigt no-
tation.

σσσ = −Pc

1
1
0

+ C∇SuC∇SuC∇Su , with C =

2µ 0 0
0 2µ 0
0 0 µ

where Pc is the value of the pressure in the centre of the element.

We introduce all these expressions in Equation 19a but, first of all, we have to express the test
functions δuδuδu and∇Sδu∇Sδu∇Sδu. In the Galerkin approach, the velocity test function and its gradient are
δuδuδu = NδUδUδU and∇Sδu∇Sδu∇Sδu = BδUδUδU because we use the same interpolation for the test functions. We
insert these expressions into Equation 19a to obtain:

9The shape functions are time-independent

Page 30 Master thesis

∀δUδUδU 6= 0,

∫
Ω
δUTδUTδUTBT

−Pc
1

1
0

+ C∇Su∇Su∇Su

+

∫
Ω
ρδUTδUTδUTNTN ∂tU

=

∫
Ω
ρδUTδUTδUTNTN ∂tŨ +

∫
Ω
ρδUTδUTδUTNTb +

∫
∂Ω\Γu

δUTδUTδUTNTt dΓ

Moreover, the previous equation is true for every δUδUδU which complies with the Dirichlet bound-
ary conditions, which means that:

∫
Ω
BT

−Pc
1

1
0

+ CBU

+

∫
Ω
ρNTN ∂tU

=

∫
Ω
ρNTN ∂tŨ +

∫
Ω
ρNTb +

∫
∂Ω\Γu

NTt (21)

AsU and Pc do not depend on space variables, Equation 22 is a direct consequence of previous
development.

−

∫
Ω
BT

1
1
0

Pc +

(∫
Ω
BTCB

)
U +

(∫
Ω
ρNTN

)
∂tU

=

(∫
Ω
ρNTN

)
∂tŨ +

(∫
Ω
ρNTb

)
+

(∫
∂Ω

NTt

)
+ qTU (22)

q and t are first-order tensors containing respectively the nodal and boundary forces which are
applied on the element.

We define a discrete gradient operator.

G =
(
∂N1
∂x

∂N1
∂y

∂N2
∂x

∂N2
∂y

∂N3
∂x

∂N3
∂y

∂N4
∂x

∂N4
∂y

)T
Considering the matrices product, we can easily prove that:

BT

1
1
0

 = G

Fast Octree pseudo-compressible solver for wind engineering application Page 31

Remains Equation 18b to be discretised. The pressure test function is δp = 1 as we only consider
the value of the pressure Pc in the centre of the Q1P0 finite element.

First of all, we need to express the divergence of u.

∇∇∇ · u =
∂u

∂x
+
∂v

∂y
= GTU

Then, we substitute this expression of the divergence in Equation 19b.

(∫
Ω
dΩ

)
.
Pc +

(∫
Ω
KGT dΩ

)
U = 0

Let us define some useful matrices.

Kuu,loc =

∫
Ω
BTCB dΩ Muu,loc =

∫
Ω
ρNTN dΩ Dloc =

∫
Ω
G dΩ

F =

∫
Ω
ρNTb dΩ +

∫
∂Ω

NTt dΓ + qTU

Expressing the previous equations using the notation above, we get:

Kuu,loc U + Muu,loc

.
U−Dloc P = F + Muu,loc

.

Ũ

Ae
K

.
Pc + DT

locU = 0
(23)

The matricesKuu,loc,Muu,loc,Dloc are computed using Gauss integration techniques over the
reference element depicted in Figure 19. The N symbols represent the four Gauss-quadrature
points. Kuu,loc,Muu,loc andDloc are respectively the local stiffness matrix, the local mass ma-
trix and the local gradient operator. DT

loc can be considered as the local divergence operator.

4.3 Isoparametric element integration

To efficiently compute the element integrals, an isoparametric reference element is to be used.
This way, we do not have to express the shape functions for each element of the mesh. We
work using this reference element and, with a certain mapping, we are able to come back to the
"physical element" and compute the stiffness, mass and gradient matrices. This a key point in
the FEM implementation because an error in this part of the process has huge consequences.

Let us call ξ and η the space variables of the reference element and Ωref the domain of the
reference element. For the sake of simplicity, let us focus on the computation of the stiffness
matrix. Once the computation process of this particular integral is understood, the computation
of the other ones is immediate.

Page 32 Master thesis

First of all, it is necessary to build a mapping between the reference element and the "physical"
one, i.e., find a transformation x = x(ξ, η) and y = y(ξ, η) to pass from the reference coordinates
to x and y which are associated to our original element. This mapping depends on the type of
element we are implementing. The Q1P0 element is an isoparametric one, which means that
we will reuse the exact same shape functions we previously defined for the DOF.

x = x1N1(ξ, η) + x2N2(ξ, η) + x3N3(ξ, η) + x4N4(ξ, η)

y = y1N1(ξ, η) + y2N2(ξ, η) + y3N3(ξ, η) + y4N4(ξ, η)

It can be easily checked that the point (−1,−1) of the reference element (see Figure 19), which is
labelled as number 1, is "sent" to (x1, y1), which is labelled as number 1 of the physical element
because N1(−1,−1) = 1, N1(1,−1) = 0, N1(1, 1) = 0 and N1(−1, 1) = 0 (we defined the
shape functions this way). This demonstration can be repeated for all the points of the reference
element.

Once we defined this transformation, the Jacobian matrix J is to be introduced. It is possible to
directly relate dΩ and dΩref using its determinant.

J =

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

 dΩ = |J| dΩref (24)

where |J| is the determinant of J. Now we are able to transfer the computation of the integral
from the physical elements to the reference one.

∫
Ω
BTCB dΩ =

∫
Ωref

BT(x(ξ, η), y(ξ, η))CB(x(ξ, η), y(ξ, η)) |J(ξ, η)| dΩref

Up to now, we do not know the expression of matrix B because the information we have is the
derivative of the shape function with respect to ξ and η and, let us remember that the entries
of B are the derivatives of the shape functions with respect to x and y. The following step is to
express B(x(ξ, η), y(ξ, η)). To do this, we need to apply the chain rule.

∀i ∈ [|1, 4|], Ni(x, y) = Ni(x(ξ, η), y(ξ, η))

∀i ∈ [|1, 4|], ∂Ni

∂x
=
∂Ni

∂ξ

∂ξ

∂x
+
∂Ni

∂η

∂η

∂x

∀i ∈ [|1, 4|], ∂Ni

∂y
=
∂Ni

∂ξ

∂ξ

∂y
+
∂Ni

∂η

∂η

∂y

The terms ∂ξ
∂x ,

∂η
∂x ,

∂ξ
∂y and ∂η

∂y are directly related to the inverse of the Jacobian matrix. Since
the transformation from the reference element to the original one is a mapping (bijective trans-

Fast Octree pseudo-compressible solver for wind engineering application Page 33

formation), the inverse of the Jacobian exists and can be computed easily and accurately if the
original quadrilateral is not too deformed.

To finish the computation of the integral, a 4-point Gauss quadrature is implemented.

∫
Ωref

BT(x(ξ, η), y(ξ, η))CB(x(ξ, η), y(ξ, η)) |J(ξ, η)| dΩref =
∑
ξgξgξg

BTBTBT (ξgξgξg)CB(ξgξgξg)|J(ξgξgξg)|ωg (25)

The integral overΩref is approximated by the sum over the four Gauss integration points whose
coordinates are given by ξgξgξg.

4.4 Numerical expression

In order to implement this formulationwithin a FEMcode, it is necessary to numerically express
the matrices N, B andD.

We are to compute the shape functions associated to each node of the quadrilatere and the
subsequent partial derivatives.

N1(ξ, η) = 1
4(ξ − 1)(η − 1) ∂N1

∂ξ = 1
4(η − 1) ∂N1

∂η = 1
4(ξ − 1)

N2(ξ, η) = −1
4(ξ + 1)(η − 1) ∂N2

∂ξ = −1
4(η − 1) ∂N2

∂η = −1
4(ξ + 1)

N3(ξ, η) = 1
4(ξ + 1)(η + 1) ∂N3

∂ξ = 1
4(η + 1) ∂N3

∂η = 1
4(ξ + 1)

N4(ξ, η) = −1
4(ξ − 1)(η + 1) ∂N4

∂ξ = −1
4(η + 1) ∂N4

∂η = −1
4(ξ − 1)

We choose a 4-point Gauss integration to perform the numerical calculation of the different
integrals. Using isoparametric element, we can compute the Jacobian of the geometric transfor-
mation between the physical configuration and the reference one.

∂x
∂ξ = 1

4

(
(x1 − x2 + x3 − x4)η − x1 + x2 + x3 − x4

)
∂x
∂η = 1

4

(
(x1 − x2 + x3 − x4)ξ − x1 − x2 + x4 + x3

)
∂y
∂ξ = 1

4

(
(y1 − y2 + y3 − y4)η − y1 + y2 + y3 − y4

)
∂x
∂η = 1

4

(
(y1 − y2 + y3 − y4)ξ − y1 − y2 + y4 + y3

)

Page 34 Master thesis

Figure 21: Simple mesh ex-
ample

Figure 22: Block decomposi-
tion of local stiffness matrix

Figure 23: Block decomposi-
tion of local gradient matrix

4.5 Assembly of a B-bar elements mesh

Equations 23 are the equations for 1 element. Of course, we want to study a more complex sys-
tem with several elements in a structured mesh. To do that, we need to assemble the elemental
matricesKuu,loc, Muu,loc and D to get the following global linear system of equations:

MUU

.
U + KUUU−DP = F + MUU

.

Ũ (26a)

MPP

.
P + DTU = 0 (26b)

For the sake of clarity, we are going to explain the assembly process on a simple example as the
one presented in Figure 21. Themesh is composed by 4Q1P0 elements. Each element is labelled
from 1 to 4. There are 9 nodes, labelled from 1 to 9. It is very important to distinguish between
the local numbering (in each element) and the global numbering of the nodes. For instance,
node 5 (global numbering) is the node 3 of element 1 but the node 4 of element 2.

In the whole process of assembling, we do not take into account the boundary conditions of the
problem. This is a subsequent step.

4.5.1 Assembly of the stiffness and mass matrices

The stiffness matrixKuu,loc and mass matrixMuu,loc will be assembled in an usual way. Their
size is (8; 8) and they can be divided into 16 different blocks (see Figure 22). In our simple
example, all the elements are equal so the local stiffness matrices are equal but it is not always
the case. The size of the global stiffness and mass matrices is (2Nnode; 2Nnode) where Nnode is
the number of nodes of the mesh.

To assemble the local stiffness matrices into the global one, we need to loop over the 4 elements
of the mesh. For each element, we place the 16 blocks we previously described taking into
account the local numbering of nodes in the element and the global one. Figure 24 presents the
first step of the loop. It is mandatory to carefully implement it because, for instance, the node 5
(in global numbering) is the third node of element 1. As a consequence, the block Kloc,13 goes
to the block K15 of the global stiffness matrix. We repeat the same set of operations for the 4
elements (see Figures 24, 25, 26 and 27).

Fast Octree pseudo-compressible solver for wind engineering application Page 35

Figure 24: First step of the stiffness matrix
assembly process. Loop over the first ele-
ment.

Figure 25: Second step of the stiffness ma-
trix assembly process. Loop over the second
element.

Figure 26: Third step of the stiffness matrix
assembly process. Loop over the third ele-
ment.

Figure 27: Fourth step of the stiffness ma-
trix assembly process. Loop over the fourth
element.

In the end, the stiffness and mass matrices are quite sparse and have a tridiagonal structure,
which will lead to coding and memory optimisations. More generally, the structure of the stiff-
ness matrix and mass matrices depends on the global and local numbering. If we had labelled
the nodes another way, the structure of the stiffness and mass matrices would have been differ-
ent. This highlights the importance of the FEM code mesher. If the numbering of the nodes is
efficient, the optimisation of the stiffness and mass matrices can lead to huge reduction of the
computational cost of the simulation.

Reasoning in terms of blocks makes the implementation easier because, for each node of the
element, it is important to remember there are 2 DOF. If we had to implement the same element
in 3D, the blocks would be of size (3; 3) because there will be 3 DOF.

Page 36 Master thesis

Figure 28: The 4 steps of the discrete gradient operator assembly process

4.5.2 Discrete gradient operator assembly

The process is quite different to get Dglobal from the Dlocal matrices. Let us say the number of
elements is Nelement and the number of nodes of the mesh is Nnode. The size of Dglobal will be
(2Nnode, Nelement), to be consistent with the matrices product. In our particular example, the
size of D is (18, 4) (see Figure 28) because there are 9 nodes and 4 elements in the mesh.

To assemble D, it is necessary to compute the column vectors Dlocal, which, in our case, are
equal because the elements are the same, and put its different components in the column of
Dglobal which corresponds to the number of the element we are looping on. For instance, let
us study the first step of the loop (see Figure 28). As it corresponds to the first element, we will
work in the first column of matrix Dglobal. The node 5 (in global numbering) is the third node
of the element (in local numbering). As a consequence, the block Dlocal,3 goes to the block D5

of the global matrixD and so on for the rest of the nodes and elements. We change of columns
each time we change of elements.

4.5.3 Pressure mass matrix assembly

Because we use Q1P0 elements, the global pressure "mass matrix" MPP will be very easy to
compute. It is a diagonal matrix of size (Nelement, Nelement) and the term i on the diagonal will
be Ae,i/Ki where Ae,i is the area of the element i and Ki the bulk modulus of the element i.
MPP,global being diagonal will be a great advantage for time integration; this is a key feature
when using Q1P0 elements.

4.5.4 Global assembly

It is possible to go a step further in the assembly process. The total number of DOF (taking into
account pressure DOFs and velocity nodal values) is 2Nnode +Nelement. We can define a vector
YYY containing all the DOF of the problem (first the velocity nodal values, then the pressure ones)
and define from Equations 26a and 26b the following Ordinary Differential Equation (ODE):

Fast Octree pseudo-compressible solver for wind engineering application Page 37

Figure 29: The globally assembled mass ma-
trices

Figure 30: The globally assembled stiffness,
gradient and divergence matrices

YYY =

U

P

 =

u1

v1

...

u9

v9

P1

P2

P3

P4

MUU 0

0 MPP

 .

YYY +

KUU −D

DT 0

YYY =

F

0

 (27)

The globally assembled stiffness, mass, gradient and divergence matrices are presented in Fig-
ures 29 and 30. The advantage of presenting the problem as in ODE 27 is that one only needs
to manipulate the vector YYY which considerably simplifies the writing of the linear system of
equations. Previously we had to deal with two different variables (U and P) and two ODEs. It
enables us to gather all the unknowns of the problem in the same vector.

4.6 Implementation optimisation

Thanks to some of the MUU, MPP, KUU and D specific frames, it is possible to optimise their
implementation to make the simulation faster and less memory-consuming. To do that, it is
possible to use the Python library "scipy.sparse" which allows us to store the matrices in an

Page 38 Master thesis

optimised way. Moreover, this library supports the basic operations of the Numpy library, in
particular the dot product, which is very comfortable.

As we previously highlighted,MPP is a (Nelement, Nelement) diagonal matrix, whereNelement is
the number of elements in the mesh. The number of terms it contains is thus N2

element, i.e, one
needs to allocateN2

element memory spaces to the matrix storage. Entirely storingMPP (without
any kind of memory optimisation) is completely inefficient because it is practically equivalent
to storing a matrix of zeros, which does not contain any kind of useful information. The non-
zero entries of the matrix are the Nelement terms of the diagonal. As a consequence the ratio
of "useful" information is Nelement/N2

element = 1/Nelement. For instance, considering a mesh of 1000
elements (this is a really small one), we already have a ratio of "useful" information of 0,1%. Stor-
ing the entire matrix without taking into account its structure would be completely inefficient
because 99,9% of the stored information would be useless. As a consequence, it is much more
efficient to store it as a first-order tensor (vector) which contains the entries of the diagonal of the
original matrix MPP. This is done with the variable type "dia_matrix" from the "scipy.sparse"
library.

Using the same idea, the stiffness matrix KUU, and gradient matrix D are stored using the
variable type "coo_matrix" of the "scipy.sparse" library. Rather than storing the entire matrix,
the computer stores the line and column of the non-zero entries of the matrix as well as their
value.

Let us have a look at a numerical example to make things clearer. We want to optimise the
storage of matrixA defined as

A =

0 0 3

1 0 0

0 0 0

 (28)

The "coo_matrix" associated toA would be

ACoo =

1 3 3

2 1 1

 (29)

The first column of ACoo represent the lines of the non-zero terms of A, the second column of
ACoo the columns of the non-zero terms ofA and finally the third column ofACoo the non-zero
entries of A. For instance, the first line of ACoo is 1, 3, 3 because the term of A at line 1 and
column 3 is 3. The second line ofACoo is 2, 1, 1 because the term ofA at line 2 and column 1 is
1. This is how works the variable type "coo_matrix".

One important thing we need to know is that the variable type "coo_matrix" supports all the
operations of the Numpy library, which greatly facilitates the solver implementation.

Figure 31 shows the memory space required to store the stiffness matrixKUU in both standard
and sparse matrix implementations. The horizontal axis represents the number of elements in

Fast Octree pseudo-compressible solver for wind engineering application Page 39

Figure 31: Memory space for standard and sparse matrices implementations

the mesh whereas the vertical one stands for the RAM memory space, in bytes. The two axis
are presented in logarithmic scale. This graph is the result of a test I run myself. I simply build
finer and finer meshes (thus increasing the number of elements) and compare them all using
the Python method "object.nbytes" which returns the memory space (in bytes) occupied by the
given "object".

As previously explained, the storage of sparse matrices is much more efficient. For instance,
if we consider a mesh of 13 000 elements, the storage of the full stiffness matrix KUU requires
almost 6 · 109 bytes whereas it is of only 6 · 106 bytes for the sparse matrix, which is 1 000
times less. In addition, Figure 31 clearly highlights that the memory space for the full matrix
is O

(
N2
element

)
, because the slope of the blue line (which corresponds to the full matrix imple-

mentation) is 210, whereas it is onlyO (Nelement) for the sparse matrix implementation, an order
of magnitude lower; this means that we will be able to use larger meshes with sparse matrices
before reaching the RAM limit of the computer.

10Let us remember that the axis are presented in logarithmic scale.

Page 40 Master thesis

5 Back and Forth Error Compensation and Correction method

To obtain the equations of Problem 15, we split the Navier-Stokes equations into two with, on
the one hand, the PDE which describes the effects of compressibility, inertia and viscosity 11

and, on the other hand, a purely convective one, we will solve using the Back and Forth Error
Compensation and Correction (BFECC) method

∂ũ

∂t
+ ũ · ∇∇∇ũ = 0 (30)

where ũ is, in our case, the velocity field.

In the phenomena which are governed by PDEs which have the same shape as Equation 30, the
transport of information only occurs thanks to the convective term. In other words, the particles
of material transport with themselves all their physical characteristics and that is why there are
changes in the velocity field throughout time. There is no viscosity neither compressibility.

The objective of this part is to present the main features and outcomes of the BFECC method
without entering its details since it is not the core of the project. For more information, the
reader can refer to [DL03].

5.1 First step forward

The BFECC is a combination of two steps forward and one step backward.

Let us imagine we are given a velocity field ũn at a given time tn and we want to compute the
velocity field ũn+1 at time tn+1 at each point of the mesh. Since the PDE is only convective we
only need to compute the velocity of the fluid particle which coincides with the point of the
mesh xI at time tn+1. Figure 32 presents the follow-up of the particle in its trajectory. At time tn,
the fluid particle is in y, then in xI at tn+1 and in z at tn+2. Let us recall that xI is a node of the
mesh. To know the velocity of the particle at tn+1 in xI, we just need to knowwhere the particle
was at the previous time step tn and what its velocity at tn was. To sum up, we have that

un+1 (xI) = ũn(y) (31)

where y is the position of the fluid particle at time tn.

To compute y, we use an approximation of the velocity

ũn (xI) =
xI − y

δt
⇐⇒ y = xI − δt ũn (xI) (32)

If we gather Equation 31 and Equation 32 together, we get that

11We discretised it in the previous section, using Q1P0 finite elements.

Fast Octree pseudo-compressible solver for wind engineering application Page 41

Figure 32: Follow-up of a fluid particle
Figure 33: BFECC method summary

un+1 (xI) = ũn
(
xI − δt ũn (xI)

)
(33)

Since the velocity field ũn is known, we can interpolate it thanks to our mesh to find the value
of ũn

(
xI − δtũ(xI)

)
. We have done the first step of the BFECC method (see Figure 33).

5.2 Backward step

Now, let us imagine we compute the velocity at time tn knowing its value at time tn+1, i.e. going
back to the past12. As before, we need to track the particle which coincides with the position xI

at time tn, i.e. determine where it will be and what its velocity will be at time tn+1. The fluid
particle which is at xI at time tn will follow its trajectory and will be at z at time tn+1 (see Figure
32). As a consequence:

un+1(z) = un (xI) (34)

since the particle transports with itself the information (in our case the velocity) it contains.

The same way we did before:

un+1(xI) =
z− xI

δt
⇐⇒ z = xI + δtun+1(xI) (35)

And finally:

un (xI) = un+1
(
xI + δtun+1(xI)

)
(36)

12This is one of the key features of the BFECC method

Page 42 Master thesis

5.3 Error compensation

Until now, we did a step forward in the future to get the nodal values of un+1 and a step back-
ward in the past to compute the nodal values of un (see the second step in Figure 33). If the
process were perfect and reversible, the velocity field ũn and un should be equal. However, we
are doing some approximation and that is why there is an error en = ũn−un. This overall error
is the sum of the error we do in the forward step and the one of the backward step.

en = enforward + enbackward (37)

Let us assume that the error we do when going backward in the past is the same as the one we
do when going forward in the future.

enforward = enbackward (38)

The expression of the forward error is thus:

enforward =
1

2
en =

1

2
(ũn − un) (39)

As we know the nodal values of ũn and un, we can compensate it (as the name of the method
indicates) so that it cancels itself when going forward in time once more.

5.4 Second forward step

We define:

vn = ũn +
1

2
(ũn − un) (40)

and do one more step in the future to compute the value of ũn+1.

ũn+1 (xI) = vn
(
xI − δtvn (xI)

)
(41)

The idea behind this last step is that the forward error should cancel itself. In the end, we can
compute the nodal variables at time step tn+1.

Algorithm 2 is a sum up of what has to be done in the BFECC method. One disadvantage is
that before going forward or backward, we need to compute all the nodal values, which implies
the same operations to be done in three different loops.

Fast Octree pseudo-compressible solver for wind engineering application Page 43

Algorithm 2 The BFECC method algorithm
Require: ũn, δt

for node xI in Γmesh do
Compute un+1 (xI) = ũn

(
xI − δt ũn (xI)

)
end for
for node xI in Γmesh do
Compute un (xI) = un+1

(
xI + δtun+1(xI)

)
end for
Compute vn = ũn + 1

2 (ũn − un)
for node xI in Γmesh do

Compute ũn+1 (xI) = vn
(
xI − δtvn (xI)

)
end for

6 Time integration of equations

Let us recall the equations we got after having done the assembly of the stiffness, mass and
gradient matrices.

MUU

.
U + KUUU−DP = FU + MUU

.

Ũ (42a)

MPP

.
P + DTU = 0 (42b)

We can adopt different strategies to integrate our system of equations in time, i.e. pass from
time step tn to time step tn+1. The objective of this part of the work is to implement different
ones, compare them and, in the end, validate the robustness of the fractional time step method.

Before writing the different time integration methods, let us sum up the situation taking into
account each matrix and its "order of magnitude", i.e. the order of magnitude of the terms it
contains. This has a huge importance when dealing with the stability of the numerical scheme.

Let us say that h is the characteristic size of the elements in themesh,Nnode the number of nodes
and Nelement the number of elements.

To understand how to determine the order of magnitude of a matrix term, let us take the exam-
ple of matrix MPP, which is the easiest one. We know that MPP is a diagonal matrix and its
diagonal terms are equal to the area of the corresponding element divided by the bulkmodulus
(constant in the element).

(MPP)i =
Ai
K

Where (MPP)i is the i-th element of MPP diagonal and Ai the area of element i.

If we consider a structured mesh with square Q1P0 finite elements, Ai = h2. Consequently, in
this case, the diagonal terms of matrix MPP are equal to h2/K. In this case, we have more than
an order of magnitude since it is possible to compute the exact value. Because the computation

Page 44 Master thesis

of KUU, MUU and D requires assembling, it is harder to give the exact value of their entries,
that is why we limit ourselves to an order of magnitude.

Matrix Order of magnitude Size

MUU ρh2 (2Nnode, 2Nnode)

KUU µ (2Nnode, 2Nnode)

D h (2Nnode, Nelement)

MPP h2/K (Nelement, Nelement)

Table 2: Matrices main features

6.1 Forward Euler (FE)

6.1.1 Equations of Forward Euler

This is the most basic scheme. It consists in writing the equilibrium at tn (after discretisation of
time) and approximate the time derivatives as:

∂tU =
1

δt

(
Un+1 −Un

)
∂tP =

1

δt

(
Pn+1 −Pn

)
∂tŨ =

1

δt

(
Ũn+1 −Un

)
(43)

Which gives:

1

δt
MUU(Un+1 −Un) + KUUUn −DPn = Fn +

1

δt
MUU

(
Ũn+1 −Un

)
(44a)

1

δt
MPP(Pn+1 −Pn) + DTUn = 0 (44b)

Then we just need to find the expression of Pn+1 and Un+1 as a function of Pn andUn.

Pn+1 = Pn − δtM−1
PPD

TUn (45a)

Un+1 = δtM−1
UU (Fn + DPn −KUUUn) + Ũn+1 (45b)

To avoid computing the solution of the linear system in the first equation, themassmatrixMUU

is lumped so that it is diagonal and its inverse is straightforwardly computed. To lump amatrix,
we compute the sum of each matrix line i and store this value in the diagonal term i (see Figure
34). As a consequence, the lumped matrix is diagonal.

The Forward Euler scheme is an explicit one; the computational cost of the simulation is con-
siderably reduced since no linear system of equations is solved.

Fast Octree pseudo-compressible solver for wind engineering application Page 45

Figure 34: Lumping process

Operation Operation type Computational cost

δtM−1
PPD

TUn Matrix multiplication (2Nnode)Nelement

Pn+1 = Pn − δtM−1
PPD

TUn Vector addition Nelement

Table 3: Computational cost of Equation 45a

6.1.2 Computational cost of the Forward Euler scheme

Let us study now one time integration step. The goal is to compute the number of operations the
computer needs to do to pass fromUn andPn toUn+1 andPn+1. We study each equation of the
numerical scheme and estimate the number of elementary operations (addition, matrix/matrix
multiplication, linear system resolution,...) the computer needs to do to go to the following one.

First, let us consider Equation 45a. Two operations are required: one matrix/vector multi-
plication and one vector addition (see Table 3). We consider that the matrix M−1

PPD
T of size

(Nelement, 2Nnode) is computed once and for all at the beginning of the process. It is not neces-
sary to compute it at each time step.

Globally, Equation 45a has a computational cost of (2NnodeNelement)+Nelement = Nelement(2Nnode+
1). As we want to study the asymptotic behaviour of the model, we make the assumptions that
Nelement >> 1 and Nnode >> 1. This basically means that we are studying very large meshes,
which is the main purpose of the work we are doing.

As a consequence:

C45a = O(2NnodeNelement) (46)

where C45a is the computational cost of Equation 45a.

Equation 45b is the second one of the Forward Euler scheme. There are three matrix/vector
products and two vector additions (see Table 4).

Finally, we have C45b = 2Nnode(4Nnode +Nelement + 2) (see Table 4).

C45b = O(2Nnode(4Nnode +Nelement)) (47)

Page 46 Master thesis

Operation Operation type Computational cost

KUUUn Matrix/vector product (2Nnode)
2

DPn Matrix/vector product (2Nnode)Nelement

Fn + DPn −KUUUn Vector addition 2Nnode

δtM−1
UU (Fn + DPn −KUUUn) Matrix/vector multiplication (2Nnode)

2

Un+1 = Ũn+1 + ... Vector addition 2Nnode

Table 4: Computational cost of Equation 45b

To obtain the computational cost of the whole Forward Euler scheme, we add the complexity
of Equations 45a and 45b, which gives:

CFE = O(4Nnode(2Nnode +Nelement)) (48)

6.1.3 Stability of the Forward Euler scheme

The Forward Euler method is explicit, which means it is conditionally stable. First of all, let us
study the stability of Equation 44a. To make it stable, 1/δtMUU must "dominate" KUU and D.
We know the value of the entries of these matrices. The order of magnitude of the 1/δtMUU

terms is 1/δt ρh2. The order of magnitude of theKUU terms is µ. Finally, the order of magnitude
of theD terms is h, which leads to 2 restrictions on the time step δt.

δt << ρ
h2

µ
(49a)

δt << ρh (49b)

Let us study now the stability of Equation 44b. The process is the same as before. MPP must
dominate DT. The order of magnitude of the 1/δtMPP terms is 1/δt · h2/K, which leads to the
following restriction on δt.

δt <<
h

K
(50)

Globally, the most restrictive condition we obtain is δt << h/K. For instance, if we consider
a problem involving water, the bulk modulus would be of 2,2 GPa and 0,1 for h. Of course
the value of h depends on the required resolution. This numerical example is meant to get a
first insight of the problems we would face. The restriction we found only gives us an order of
magnitude for the time step we should use. Indeed, the reality is much more complex because
the frontier of the stability domain of the Forward Euler scheme is not so clear. It depends on
many parameters such as the truncation error of the computer for instance or the quality of the
mesh we use.

Fast Octree pseudo-compressible solver for wind engineering application Page 47

As a consequence, in this particular example, the restriction becomes δt << 4.5.10−11, which
is incompatible with reasonable computation time. A Forward Euler scheme is really easy to
implement and understand but its conditional stability, in the case of quasi-incompressible flu-
ids, is a weak point. This is the reason why we should look for an alternative time integration
strategy.

One of the direct consequence of Equation 50 is that a smaller time step is to be used for smaller
elements. A priori, it appears a bit strange, the main thought being that for smaller elements,
a bigger time step should be used. However, Equation 50 is totally coherent with CFD theory,
particularly with the use of the Courant number, defined for each element as Co = vδt/h, where
v, is a characteristic velocity of the element, δt, the time step and h the size of the element. The
Courant–Friedrichs–Lewy condition states that the Courant number should inferior to 1 so that
the numerical simulation is stable. If we use smaller elements (smaller h), we should decrease
the value of δt too, which is consistent with our previous analysis.

6.2 Backward Euler (BE)

Themain outcome from the previous section is thatwe cannot useQ1P0 elementsmesh coupled
with the Forward Euler scheme because the condition on the time step is too restrictive. To
overcome this problem, a completely implicit numerical scheme could be implemented. The
most basic one we can think of is the Backward Euler one. To obtain the equations, we need to
write the equilibrium at tn+1.

1

δt
MUU(Un+1 −Un) + KUUUn+1 −DPn+1 = Fn+1 +

1

δt

(
Ũn+1 −Un

)
1

δt
MPP(Pn+1 −Pn) + DTUn+1 = 0

It is necessary to operate over the equations to finally get the expressions of Pn+1 andUn+1.

(
1

δt
MUU + KUU + δtDM−1

PPD
T)Un+1 = Fn+1 + DPn +

1

δt
MUUŨn+1 (52a)

Pn+1 = Pn − δtM−1
PPD

TUn+1 (52b)

The Backward Euler scheme is completely implicit, which means that it is unconditionally sta-
ble: there is no restriction on the time step we can use. This is a great advantage but the price
we have to pay for this is the computation of several matrices dot product (with a high com-
putational cost) and the resolution of a linear system of equations, which can be very large
depending on the mesh we use (see Equation 52a). Using the Python library Numpy, the cost of
solving the linear system of equations would approximately beO((2Nnode)

3), which is an order
of magnitude bigger than the Forward Euler scheme.

As a consequence, to make the BE numerical scheme competitive, we need to find a way to
speed up the resolution of the linear system of equations. To do that, we will use the Conjugate
Gradientmethod, such as it was presented in Section 2. To be able to use thismethod to solve the

Page 48 Master thesis

linear systemof equations, we need to prove that thematrixQ = 1/δtMUU+KUU+δtDM−1
PPD

T

is symmetric positive definite. Otherwise, the Conjugate Gradient algorithm would not work.

First of all, it appears quite clearly that this matrix is symmetric.

QT =
1

δt
MT

UU + KT
UU + δt

(
DM−1

PPD
T
)T

=
1

δt
MUU + KUU + δtDM−T

PPD
T

sinceMUU = MT
UU (diagonal matrix) and (AB)T = BTAT

=
1

δt
MUU + KUU + δtDM−1

PPD
T

because MPP andM−1
PP are diagonal matrices

In the end, we haveQT = Q, which proves thatQ is symmetric.

To prove that it is definite positive, let us consider a vector x 6= 0. We have to show that xTQx >
0. By definition:

xTQx =
1

δt
xTMUU x + xTKUU x + δtxTDM−1

PPD
T x

Let us consider the first term xTMUU x and say that x =

(
x0 x1 ... xn

)T
. After some

computation, we get that

xTMUU x =

n∑
i=1

(MUU)i x
2
i

Since (MUU)i > 0, we can conclude that xTMUU x > 0 because it is a sum of strictly positive
terms.

Secondly, let us consider the term xTKUUx. To prove that it is positive, it is important to recall
the definition ofKUU

KUU =

∫
Ω
BTCB dΩ (53)

which means that

Fast Octree pseudo-compressible solver for wind engineering application Page 49

xTKUUx = xT

(∫
Ω
BTCB dΩ

)
x

=

∫
Ω
xTBTCBx dΩ

since x is a constant vector

=

∫
Ω

(Bx)T C (Bx) dΩ

Let us introduce the vector z =

(
z0 z1 z2

)T
= Bx. We have that

xTKUUx =

∫
Ω
zTCz dΩ (54)

It can be almost immediately seen that the function zTCz = 2µz2
0 +2µz2

1 +µz2
2 is always positive,

which means that xTKUUx > 0.

Lastly, we have to study xTDM−1
PPD

T x. Let us introduce y = DTx. It is possible to interpret
the previous expression as:

xTDM−1
PPD

Tx = (DTx)TM−1
PP(DTx) = yTM−1

PPy

As previously, let us say y =

(
y0 y1 ... ym

)T

yTM−1
PPy =

m∑
i=1

(M−1
PP)i y

2
i

Let us remember that all the terms of matrix MPP are positive. Therefore, (M−1
PP)i > 0 and

yTM−1
PPy > 0.

From this development, we can deduce that for all x 6= 0, xTQx > 0 andQ is symmetric definite
positive. Due to this, we can use the Conjugate gradient iterative method to find the solution
of the linear system, which considerably reduces the computational cost of the Backward Euler
scheme since it is only limited by the resolution of the linear system of equations using the
Conjugate Gradient method.

Let us compute the overall computational cost of the overall BEmethod. As previously, we need
to find the computational cost of each equation and make the sum.

The computational cost of Equations 52b and 52a are given by Table 5 and 5 respectively.

C52b = 2NnodeNelement (55a)

Page 50 Master thesis

Operation Operation type Computational cost

δtM−1
PPD

TUn+1 Matrix/vector product 2NnodeNelement

Pn − δtM−1
PPD

TUn+1 Vector addition Nelement

Table 5: Computational cost of Equation 52b

Operation Operation type Computational cost

DPn Matrix/vector product 2NnodeNelement

1
δtMUUŨn+1 Matrix/vector product (2Nnode)

2

Fn+1 + DPn + 1
δtMUUŨn+1 Vector addition 2Nnode

QUn+1 = Fn+1 + ... Linear system resolution (2Nnode)
2

Table 6: Computational cost of Equation 52a

C52a = 2NnodeNelement + 8N2
node (55b)

Finally, the computational cost of the Backward Euler scheme is

CBE = O(8N2
node + 4NnodeNelement) (56)

The computational cost of the BE method is relatively high. In order to find a compromise, it is
worth it to study a third numerical scheme, known as Fractional Step splitting and widely used
inComputational FluidDynamics. In theory, this "hybrid" scheme is conditionally stable, which
is a disadvantage in comparisonwith the BE numerical scheme, but it has a lower computational
cost.

6.3 Fractional step (FS) splitting

In order to overcome the problem induced by the mass balance equation (where the high value
of the bulk modulus K does not allow to use a large time step), we need to write this equation
at time step tn+1, like in the Backward Euler scheme so that the resolution of this equation is
implicit and does not depend on the time step we use.

6.3.1 Fractional step equations

The first equation approximately remains equal (see Equation 44a). The unique difference is
that we use the term Pn+1.

1

δt
MUU(Un+1 −Un) + KUUUn −DPn+1 = Fn +

1

δt
MUU

(
Ũn+1 −Un

)
(57a)

Fast Octree pseudo-compressible solver for wind engineering application Page 51

1

δt
MPP(Pn+1 −Pn) + DTUn+1 = 0 (57b)

Up to this stage, we have to solve 2 implicit linear equations. This would have a huge computa-
tional cost, that is why we decide to add an intermediate step. We introduce an "intermediate"
velocity variable Ûwhich helps us solving Equation 57a. Û can be seen as a first approximation
of U.

1

δt
MUU(Ûn+1 −Un) + KUUÛn −DPn = Fn +

1

δt
MUU

(
Ũn+1 −Un

)
(58a)

1

δt
MUU(Un+1 − Ûn+1)−D(Pn+1 −Pn) = 0 (58b)

1

δt
MPP(Pn+1 −Pn) + DTUn+1 = 0 (58c)

We can remark that the sum of Equations 58a and 58b gives back Equation 57a. The two systems
are strictly equivalent, except we assume thatKUUUn ≈ KUUÛn. Equation 57b remains equal.

After some manipulations of equations, we finally get Equations 59a, 59b, 59c and 59d.

Ûn+1 = Ũn+1 + δtM−1
UU(Fn −KUUÛn + DPn) (59a)

(
1

δt
MPP + δtDTM−1

UUD)dPn+1 = −DTÛn+1 (59b)

Pn+1 = Pn + dPn+1 (59c)

Un+1 = Ûn+1 + δtM−1
UUDdPn+1 (59d)

We have to solve two explicit equations (59a and 59d) and an implicit one (see Equation 59b).

6.3.2 Fractional step computational cost

The computational cost of this Fractional Step scheme is higher than for a ForwardEuler scheme.
We still consider that the number of velocity DOFs is 2Nnode and the number of pressure DOFs
is Nelement.

First, let us study Equation 59a, which involves 3 vector/matrix multiplication and two vector
additions. Its computational cost is thus C59a = O(2Nnode(4Nnode + Nelement)), by adding the
contribution of each step presented in Table 7.

The same process is repeated for Equation 59b.

We do not consider, in this analysis of the computational cost, the computation of the matrix
1/δtMPP + δtDTM−1

UUD because it is done once and for all at the beginning of the time inte-
gration loop, i.e. we do not need to compute it for each time iteration and we do not consider
relevant to include it in this analysis since it is a punctual operation.

Page 52 Master thesis

Operation Operation type Computational cost

DPn Vector/matrix multiplication (2Nnode)Nelement

KUUÛn Vector/matrix multiplication (2Nnode)
2

Fn −KUUÛn + DPn Vector addition 2Nnode

δtM−1
UU(Fn −KUUÛn + DPn) Vector/matrix product (2Nnode)

2

Ûn+1 = Ũn+1+ ... Vector addition 2Nnode

Table 7: Computational cost of Equation 59a

Operation Operation type Computational cost

DTÛn+1 Vector/matrix multiplication (2Nnode)Nelement

Computation of dPn+1 Linear system resolution N2
element

Table 8: Equation 59b computational cost

Let us focus on the resolution of the linear system to find the value of dPn+1. Obviously, it is
possible to use the Python library "Numpy" and its method "linalg.solve". However, this would
be completely useless. Indeed, despite we do not have a clear insight of what this function
really does to solve the linear system, the user manual of the Numpy library estimates that the
computational cost of solving a linear system with this function is O(N3

element).

The linear system to be solved in the Fractional Step time integration is:

(
1

δt
MPP + δtDTM−1

UUD

)
dPn+1 = −DTÛn+1

We need to prove that L = 1/δtMPP + δtDTM−1
UUD is symmetric, definite and positive. It

appears quite clearly that this matrix is symmetric.

LT =
1

δt
MT

PP + δt
(
DTM−1

UUD
)T

=
1

δt
MPP + δtDTM−T

UUD

sinceMPP = MT
PP (diagonal matrix) and (AB)T = BTAT

=
1

δt
MPP + δtDTM−1

UUD

becauseMUU has been previously lumped andM−1
UU is a diagonal matrix

Fast Octree pseudo-compressible solver for wind engineering application Page 53

Operation Operation type Computational cost

δtM−1
UUDdPn+1 Vector/matrix multiplication (2Nnode)Nelement

Un+1 = Ûn+1 + ... Vector addition Nelement

Table 9: Equation 59d computational cost

In the end, we have LT = L, which proves that L is symmetric. To prove that is definite and
positive, let us consider a vector x 6= 0. We have to prove that xTLx > 0. By definition:

xTLx =
1

δt
xTMPP x + δtxTDTM−1

UUDx

Let us consider the first term xTMPP x and say that x =

(
x0 x1 ... xn

)T
.

xTMPP x =

n∑
i=1

(MPP)i x
2
i

Since (MPP)i > 0 because it contains the area of the mesh element i divided by the bulk mod-
ulusK, we can conclude that xTMPP x > 0 (it is a sum of strictly positive terms).

On the other hand, we have to study xTDTM−1
UUDx. Let us introduce y = Dx. It is possible

to interpret the previous expression as:

xTDTM−1
UUDx = (Dx)TM−1

UU(Dx) = yTM−1
UUy

As previously, let us say y =

(
y0 y1 ... ym

)T

yTM−1
UUy =

m∑
i=1

(M−1
UU)i y

2
i

Let us remember that all the terms of matrix MUU are positive and that the matrix has been
lumped. Therefore, (MUU)i > 0. As a consequence, yTM−1

UUy > 0.

From this development, we can deduce that for all x 6= 0, xTLx > 0 and L is a symmetric,
definite and positive. Due to this, we can use the Conjugate gradient iterative method to find
the solution of the linear system LdPn+1 = FP

n+1 −DTÛn+1, which will considerably speed
up the resolution of the problem.

The computational cost of solving the system of linear equations is N2
element, which means that

C59b = O(Nelement(2Nnode +Nelement))

Finally, one can compute the computational cost of Equation 59d (see Table 9):

Page 54 Master thesis

C59d = O(2NnodeNelement) (60)

Let us sum up the computational cost of the whole Fractional Step method. We have to add
every contribution of each resolution step, which gives:

CFS = O(8N2
node +N2

element + 6NnodeNelement) (61)

6.3.3 Fractional step stability

There are similarities between the ForwardEulermethod and the Fractional Step splittingmethod.
As before, to study the stability of this numerical scheme, we have to take into account each
equation of the process and compare the order of magnitude of the different matrices.

Equation 59b is implicit; this means it is unconditionally stable. To determine the critical time
step for which the numerical simulation converges, we only have to consider Equations 59a and
59d.

On the one hand, for Equation 59a, we wantMUU to dominateKUU andD, which leads to the
restrictions δt << ρh2/µ and δt << ρh. On the other hand, in Equation 59d, we only wantMUU

to dominate D, which leads to δt << ρh

δt <<
ρh2

µ

δt << ρh

In many applications, ρh << ρh2/µ, since µ is quite low. As a consequence, the most restrictive
condition is δt << ρh. Let us study the same numerical example as in the Forward Euler part
in order to compare the two methods. In this example, we had h = 0.1 and, for a real case
application with water, the density ρwould be equal to 1000 kg/m3, which means the condition
we get on the time step is δt << 100. Fractional step is much more stable than the Forward
Euler scheme so we can use larger time step for the temporal integration.

6.4 Summary

To finish this section, let us sum up the different time integration methods and the order of
magnitude of their critical time step as well as their computational cost.

Wewill express the computational cost of each numerical schemewith the variables of the prob-
lem. Let us say that number of elements in the horizontal and vertical directions are respectively
Nx and Ny in a structured mesh. The total number of elements is Nelement = NxNy. The total
number of points in the mesh is Nnode = (Nx + 1)(Ny + 1) ≈ NxNy ≈ Nelement because we
assume Nx, Ny >> 1.

Fast Octree pseudo-compressible solver for wind engineering application Page 55

Numerical scheme Critical time step Computational cost

Forward Euler h/K 8N2
node + 4NnodeNelement = O(N2

element)

Fractional step ρh 8N2
node +N2

element + 6NnodeNelement = O(N2
element)

Backward Euler Unconditionally stable 8N2
node + 4NnodeNelement = O(N2

element)

Table 10: Time integration method stability / Computational cost

Themain conclusionwe can draw from Table 10 is that there is no significant difference in terms
of computational cost between the three numerical scheme we studied in this section because
we use the Conjugate Gradient method to solve the linear system of equations. Otherwise, the
computational cost of the Fractional step splitting and the Backward Euler scheme would be
O(N3

element) because, in both cases, one has to solve a linear system of equations.

The Forward Euler scheme is to be discarded because its critical time step is too small and the
numerical simulation would be too long. Using the BE or the FS method is quite equivalent
since the FS critical time step is quite big and it could be suitable for practical cases.

Page 56 Master thesis

7 The Shifted Boundary method

As we previously explained, because of the Q1P0 special features, we are able to make the nu-
merical simulation faster, especially because the mass matrix MPP is diagonal. Nevertheless,
the behaviour of Q1P0 elements strongly depends on the type of the mesh we use, Q1P0 el-
ements presenting really poor results when assembled in unstructured meshes. For instance,
Q1P0 elements would work correctly when disposed like in Figure 35 but would give really bad
results with the mesh of Figure 36.

However, building a structured mesh over a complex geometry as well as imposing boundary
conditions in such situation are not so easy and that is whywe need to use the Shifted Boundary
method (see [MS18] for the reference article).

7.1 Complex geometries and structuredmeshes. Implicit geometrey representation

Normally, the type of mesh one has to use depends on the problem geometry. To represent
rectangular domain as in Figure 35, it is strongly recommended to use a structured mesh be-
cause the geometry presents two dominant directions and the structured mesh can adapt to
this particular configuration. However, everything becomes much more difficult with complex
geometry. For example, standard meshers will not be able to provide a structured mesh of the
geometry presented in Figure 36. Structuredmeshes are not as adaptative as unstructured ones,
which makes the meshing complicated.

In order to make the Q1P0 elements work properly, it is necessary to find a way to create struc-
tured meshes of complex geometry.

7.1.1 Detect inner nodes

Let us say we want to build a structured mesh taking into account a hole in the geometry (see
Figure 37). The first thing to do is to spot the inner points, i.e. the points of the mesh which are
situated within the circle (see Figure 38).

Every given geometry Ω can be completely characterised by its level set function fΩ. A given
point x is an inner point of the geometry Ω if and only if fΩ(x) < 0.

Figure 35: Example of a structured mesh us-
ing quadrilateral elements

Figure 36: Example of an unstructured mesh
using quadrilateral elements

Fast Octree pseudo-compressible solver for wind engineering application Page 57

Figure 37: Geometry to be meshed Figure 38: Detection of inner points

Figure 39: Different hole geometries Figure 40: A particular configuration

Definition 6. ∀x, x is an interior point of Ω ⇐⇒ fΩ(x) < 0

For a given geometrywith unknown characteristics (seeΩ1 in Figure 39), it is not always possible
to find an analytical expression of the level set function fΩ. However, in the case of less complex
geometries such as circles (see Ω2 in Figure 39), the analytical expression of the level set function
is known. Let us take the example of a circle whose centre is xC and radius R as depicted in
Figure 39. The expression of the level set function is:

∀x, fΩ2(x) = (x− xC)T (x− xC)−R2 = ||x− xC||2 −R2 (63)

Point B with coordinates xB is within the circle because fΩ2(xB) < 0. The norm of the vector
xB − xC is inferior to the radius of the circle, which means, by definition, that point B is an
interior point. On the contrary, point A is out of the circle because fΩ2(xA) > 0. Using the
level set function of a given shape is really useful to rapidly determine if a point x is an inner
or an outer one. For each point of the structured mesh (see Figure 37) with coordinates xI , we
compute the value of the level set function at point x and determine if the point is an inner or
an outer one. An example of this process is given in Figure 38, where four different inner points
(represented by �) have been detected. Algorithm 3 sums up the different steps to be executed
to detect all the inner nodes.

7.1.2 Detect inner elements

The second step is to define the inner elements of the mesh. An inner elements is compound by
one or more inner nodes.

For instance, in Figure 41 (where inner elements are coloured in red), element 12 is an inner
one because its up right node is within the circle. Element 22 has 2 nodes within the circle and
element 23 is completely within the circle, that is why they are labelled as inner elements. We

Page 58 Master thesis

Algorithm 3 Detecting inner nodes
Require: coordinates_matrix, fΩ, nnode
for node = 1 ... nnode do

Get node coordinates xnode

Compute fΩ (xnode)
if fΩ (xnode) < 0 then

Add node to the list of inner node
end if

end for
Return the list of inner nodes

Figure 41: Original structured mesh and de-
tected inner elements Figure 42: Final structured mesh

can imagine some configurations where some parts of the element are situated within the hole
and the element is not referenced as an inner one, for example in the configuration of Figure
40. The element is not considered to be in the boundary shape because none of its node is an
interior one, even if a part of its right side is “in the boundary”.

Algorithm 4 Detecting inner elements
Require: inner_nodes, connectivity_matrix, Nelement

for element = 1 ... Nelement do
From connectivity_matrix get the labels n1, n2, n3 and n4 of the elements nodes
if n1 in inner_nodes or n2 in inner_nodes or n3 in inner_nodes or n4 in inner_nodes then
Add element to the list of inner elements

end if
end for
Return the list of inner elements

The final mesh we get (see Figure 42) has the great advantage of being structured, which means
that we will be able to use Q1P0 finite elements. The inner elements elements (coloured in red
in Figure 41), will not be taken into account in the process of assembly we depicted, as if they
did not exist at all in the mesh.

Sometimes, obstacles in the fluid domain are not taken into account in the numerical simulation.
In the example of Figure 43, there is no inner elements13 (they would be coloured in red). If
we run the simulation with this particular mesh, everything will happen as if the hole had
been eliminated because the mesher was not able to detect it. Depending on the application

13This is because of how inner elements have been defined

Fast Octree pseudo-compressible solver for wind engineering application Page 59

Figure 43: Example of geometry simplification

of the simulation, this can be seen as a drawback or an advantage. If one wants to model a
flow with lots of precision, of course this geometry simplification is a huge problem because
the approximation of the problem is not representative at all. However, if one is dealing with
enormous geometry14, this is not a problem; it can even be seen as an advantage because the
geometry is considerably simplified and useless details are removed from the simulation, which
can maybe make it more stable too.

To sum up, what we did in these previous steps was an approximation of the original domain
geometry with a structured mesh. Now we have to tackle the problem of the boundary condi-
tions. In the unstructured mesh of Figure 36, it is reasonable to consider the circle as the inner
boundary of the mesh because the geometrical approximation of an unstructured mesh is re-
ally good15. However, in the case of the structured one, the boundary has been shifted from the
circle (which corresponds to the original problem we want to solve) to the points represented
by�. These points are the new boundary of the domain where we are going to solve the Navier
equations and the points where we are going to apply some given boundary conditions.

We cannot apply the exact same type of boundary conditions as the ones associated to the circle
in the original problem because the geometrical approximation of the hole is really bad (we
are trying to approximate a circle using square elements). The obtained results considering
this very simple solution would not be representative at all. Obviously, if we reduce the size
of the elements, the mesh will be a better approximation of the geometry and we could apply
the same type of boundary conditions. For instance, if we impose the velocity to be null on the
circle in the original problem, if the mesh geometrical approximation is good enough, it could
be possible to consider imposing a null velocity at the � points too. However, let us remember
the main purpose of this work. We want to design a really fast solver to do simulations of huge
domains. Creating meshes with really small elements (because we want to do a representative
approximation of the original geometry) is not a really good idea to make the simulation faster.
More elements in the mesh necessarily means a higher computational cost.

To overcome this problem, we need to find a way to transpose the original boundary conditions
(in our case the boundary conditions on the circle) to the new boundary points.

14Let us remember we are designing a special solver for this kind of geometry.
15This is one reason for which this type of mesh is widely used

Page 60 Master thesis

Figure 44: The closest point search Figure 45: Closest point on a circle

7.2 Shifting the boundary conditions imposition

7.2.1 Closest point search

First of all, to transpose the boundary conditions from the original boundary to the actual mesh
boundary, it is necessary to look for the points of the hole which are the closest to the structured
mesh boundary.

Let us consider the situation of Figure 44, where the mesh boundary points are still represented
by �. I1 and I2 are two mesh boundary points. For each of them, we are to look for the points
P1 and P2 of the hole which are closest to I1 and I2 respectively. In most cases, this search is
complicated, especially when the shape of the hole is very complicated. However, in the case of
simpler ones, the analytical expression of points P coordinates can be computed.

Let us study the example of Figure 45 where we are to find the coordinates xP = (xP , yP) of
point P , defined as the point of the circle which is the closest to I , knowing the coordinates
xI = (xI , yI) of point I , the coordinates xC = (xC , yC) of the circle centre and the radius R of
the circle.

We know that P is on the circle so, by definition:

(xP − xC)2 + (yP − yC)2 = ||xP − xC||2 = R2 (64)

Moreover, the two vectors xI − xC and xP − xC are colinear, which means that:

xP − xC = α (xI − xC) , α > 0 (65)

We need to find the value of α. Let us compute the norm of xP − xC, as a function of α:

||xP − xC|| = α||xI − xC|| (66)

It is possible to combine Equations 66 and 64 to find the value of the parameter α:

α =
R

||xI − xC||
(67)

Fast Octree pseudo-compressible solver for wind engineering application Page 61

Finally, we compute the value of xP:

xP = xC + α (xI − xC) = xC +R
xI − xC

||xI − xC||
(68)

Thanks to Equation 68, it is possible to rapidly compute the coordinates of point P knowing all
the geometrical parameters of the model.

Analytically knowing the position of the closest point depends on the complexity of the original
geometry. Are currently implemented in the code two particular kinds of obstacles: circles and
rectangles. This part of the application is object-oriented, i.e. it is possible to define the obstacles
as new class instantiations with their own methods and attributes, which makes the code more
flexible.

7.2.2 Velocity gradient approximation

By definition, point P is situated on the original boundary. As a consequence, the velocity uP

at this point is known because a boundary condition was defined. Nevertheless, what interests
us is to know the value of velocity uI at point I because this is the new boundary of the mesh
(point P is not on the mesh boundary any more). To pass from uP (whose value is known) to
uI (whose value we want to determine), we use the first-order Taylor approximation:

uP = uI +∇∇∇u (xI) (xP − xI) (69a)

uI = uP −∇∇∇u (xI) (xP − xI) (69b)

where xI and xP are the coordinates of points I and P respectively and∇∇∇u (xI) the value of the
gradient of u evaluated in xI. In most cases, the analytical expression of∇∇∇u is unknown and
that is why we have to approximate it by a function ΠΠΠ. Since we are just interested in the nodal
values of∇∇∇u, we interpolate ΠΠΠ using shape functions.

ΠΠΠ (x) =

nnode∑
k=1

Nk (x)ΠkΠkΠk with ΠΠΠ (x) =

Π11(x) Π12(x)

Π21(x) Π22(x)

 (70)

Let us just recall that, if xk are the coordinates of node k, Nk(xk) = 1 and Nk(xi) = 0 for i 6= k.

Because ΠΠΠ(x) is a matrix function, we need to work term by term:

ΠΠΠij (x) =

nnode∑
k=1

Nk (x) (ΠkΠkΠk)ij (71)

There, different strategies can be followed. We chose to approximate ∇u∇u∇u in the sense of least
square minimisation. The problem to be solved is thus:

Page 62 Master thesis

Find ΠΠΠij(x) s.t.Ψ(ΠΠΠij) =

∫
Ω

(
ΠΠΠij(x)− (∇∇∇u)ij

)2
dΩ is minimum (72)

We substitute the expression of ΠΠΠij(x) in the function Ψ(ΠijΠijΠij), which gives:

Ψ
(
(ΠΠΠ0)ij , ..., (ΠΠΠnnode

)ij
)

=

∫
Ω

nnode∑

k=1

Nk(x) (ΠΠΠk)ij

− (∇∇∇u)ij

2

dΩ (73)

The variables of this minimisation problem are the nodal values ofΠijΠijΠij andwewant tominimise
Ψ with respect to each one of them. Let us compute each partial derivative.

∂Ψ

∂ (ΠΠΠl)ij
=

∂

∂ (ΠΠΠl)ij

∫
Ω

nnode∑

k=1

Nk(x) (ΠΠΠk)ij

− (∇∇∇u)ij

2

dΩ, ∀l ∈
[
|1, nnode|

]

=

∫
Ω

∂

∂ (ΠΠΠl)ij

nnode∑

k=1

Nk(x) (ΠΠΠk)ij

− (∇∇∇u)ij

2

dΩ

=

∫
Ω

2Nl(x)

nnode∑
k=1

(
Nk(x) (ΠΠΠk)ij

)
− (∇∇∇u)ij

 dΩ

Since we are looking for the values of (ΠΠΠl)ij which minimise the function Ψ(x), we equal the
derivatives to zero:

1

2

∂Ψ

∂ (ΠΠΠl)ij
=

∫
Ω
Nl(x)

nnode∑
k=1

(
Nk(x) (ΠΠΠk)ij

)
− (∇∇∇u)ij

 dΩ = 0 (74)

∫
Ω
Nl(x)

nnode∑
k=1

Nk(x) (ΠΠΠk)ij

 dΩ =

∫
Ω
Nl(x) (∇∇∇u)ij dΩ (75)

And finally:

∀l ∈
[
|1, nnode|

]
,

nnode∑
k=1

(∫
Ω
Nk(x)Nl(x)dΩ

)
(ΠΠΠk)ij =

∫
Ω
Nl(x) (∇u∇u∇u)ij dΩ (76)

We now need to deal with the term (∇∇∇u)ij because its analytical expression is unknown. We
also need to approximate its value, interpolating the nodes values of u.

Fast Octree pseudo-compressible solver for wind engineering application Page 63

(∇∇∇u)ij =
∂ui
∂xj

by definition

=
∂

∂xj

nnode∑
k=1

(uk)iNk(x)

=

nnode∑
k=1

(uk)i
∂Nk

∂xj

Let us gather all the elements we have obtained so far. We get that:

∀l ∈
[
|1, nnode|

]
,

nnode∑
k=1

(∫
Ω
Nk(x)Nl(x)dΩ

)
(ΠΠΠk)ij =

nnode∑
k=1

(∫
Ω
Nl(x)

∂Nk

∂xj
dΩ

)
(uk)i (77)

Let us remember that the objective is to compute the nodal values (ΠΠΠk)ij so that we can compute
the approximation of the gradient of u at each node of the mesh. Equation 77 actually describes
a linear system of equations in which the nodal values (ΠΠΠk)ij are the unknowns. Let us write
Equation 77 using matrices notations:

∫
ΩN1N1

∫
ΩN1N2 ...

∫
ΩN1Nnnode∫

ΩN2N1

∫
ΩN2N2 ...

∫
ΩN2Nnnode

...∫
ΩNnnode

N1 dΩ
∫

ΩNnnode
N2 ...

∫
ΩNnnode

Nnnode

(ΠΠΠ1)ij

(ΠΠΠ2)ij

...(
ΠΠΠnnode

)
ij

=

∫
ΩN1

∂N1
∂xj

∫
ΩN1

∂N2
∂xj

...
∫

ΩN1
∂Nnnode
∂xj∫

ΩN2
∂N1
∂xj

∫
ΩN2

∂N2
∂xj

...
∫

ΩN2
∂Nnnode
∂xj

...∫
ΩNnnode

∂N1
∂xj

∫
ΩNnnode

∂N2
∂xj

...
∫

ΩNnnode

∂Nnnode
∂xj

(u1)i

(u2)i

...(
unnode

)
i

MΠMΠMΠ =

∫
ΩN1N1

∫
ΩN1N2 ...

∫
ΩN1Nnnode∫

ΩN2N1

∫
ΩN2N2 ...

∫
ΩN2Nnnode

...∫
ΩNnnode

N1 dΩ
∫

ΩNnnode
N2 ...

∫
ΩNnnode

Nnnode

ΠΠΠij =

(ΠΠΠ1)ij

(ΠΠΠ2)ij

...(
ΠΠΠnnode

)
ij

(78)

Page 64 Master thesis

Figure 46: Reference element forMΠ andAj matrices integration

Aj =

∫
ΩN1

∂N1
∂xj

∫
ΩN1

∂N2
∂xj

...
∫

ΩN1
∂Nnnode
∂xj∫

ΩN2
∂N1
∂xj

∫
ΩN2

∂N2
∂xj

...
∫

ΩN2
∂Nnnode
∂xj

...∫
ΩNnnode

∂N1
∂xj

∫
ΩNnnode

∂N2
∂xj

...
∫

ΩNnnode

∂Nnnode
∂xj

Ui =

(u1)i

(u2)i

...(
unnode

)
i

(79)

With these different notations, the linear system we have to solve becomes:

MΠMΠMΠΠijΠijΠij = AjUi , i ∈ {1; 2}, j ∈ {1; 2} (80)

7.2.3 Integrals computation

The last thing to determine is the way to compute the integrals. As before, the matricesMΠ and
Aj are computed for each element of the mesh and then assembled. However, we will not use
the same reference element as for the computation of the stiffness and mass matrices because
we are not computing the integrals over the four Gauss points as depicted in Figure 19. We will
integrate the matricesMπMπMπ andAj computing the sum over the four corner nodes as depicted in
Figure 46, where N represent the integration points.

This way, the matrix MΠ is diagonal16, which simplifies the computation of the vector of un-
knowns (ΠΠΠk)ij . We have to solve four different systems because i = 1 or 2 and j = 1 or 217.

7.2.4 Apply boundary conditions

Let us sum up the results all we got until now. First of all, before beginning the time integration
loop, we should look for the closest points which are on the original boundary of the geometry

16Let us remember that Nk(xk) = 1 and Nk(xi) = 0 for i 6= k
17In the case of a 3D problem, we would solve nine different linear systems of equations because the velocity u

would have three components and there would be three space variables x, y and z

Fast Octree pseudo-compressible solver for wind engineering application Page 65

for each point of the structured mesh boundary. Still before beginning the time integration
loom, the matricesMΠMΠMΠ andAj (j = 1; 2) should be computed by computing the elemental ones
and assembling them. These matrices remain constant all along time and should be computed
once and for all.

Then we enter in the time integration loop using the techniques presented in Section 6. Within
each time step, Algorithm 5 should be applied to impose the required boundary conditions.

Algorithm 5 Applying boundary conditions
Require: MΠMΠMΠ,A1,A2,Un, Γmesh
for i = 1, 2 do

for j = 1, 2 do
SolveMΠMΠMΠΠΠΠij = AjU

n
iU
n
iU
n
i → ΠΠΠij

Store ΠΠΠij for each node of the mesh
end for

end for
for node in Γmesh do
Get closest point P
Compute unode = uP −ΠΠΠnode (xP − xI)
Apply boundary condition toUn

end for

Let us say that the Γmesh list contains all the nodes which are on the boundary of the structured
mesh. Once we update Un, we use it to compute Un+1 using a Forward Euler or Fractional Step
schemes for instance.

Page 66 Master thesis

8 Resolution of 2 calibration problems

From now on, we have all the elements to validate and/or calibrate the B-bar element for fluids.
To do so, we’ll study 2 very basic examples, for which analytical solution is "known". The com-
parison between analytical solution and the numerical solution will be a part of the simulation
validation test. The 2 problems we consider are quite different because distinct phenomena are
at stake in each one.

On one hand, Figure 47 represents the most basic viscosity-driven problem we can imagine.
There the effects of viscosity are predominant and the compressibility (due to pressure) is neg-
ligible. There is no volume change because the displacement is tangential. This is a very well-
known problem, already studied in the XIX century by Maurice Couette.

On the other hand, the problem presented in Figure 48 implies to consider the effect of com-
pressibility. In this channel, the velocity propagates thanks to the volume change of the elements
which transmit it to the following ones, such as in sound propagation.

A priory, we do not know if the B-bar element "reacts" the same way when dealing with vis-
cosity effects or compressibility ones. Studying two different problems will bring us useful
information.

8.1 Viscosity-driven problem / Couette flow

We impose a tangential velocity at the top of the domain, normal velocity being null. The bottom
of the domain is supposed to be fix (null tangential and normal velocity). The velocity will
"propagate" up to the bottom of the domain thanks to the viscosity of the fluid, which can be
seen as different layers; viscosity acts as friction between each one.

In our case, several assumptions are to be made in order to find the analytical PDE:

• The problem is uni-dimensional in space, the variable x is not relevant. Everything only
depends on y since Lx >> Ly.

• The vertical velocity in the whole domain is null: v = 0

Figure 47: A viscosity-driven problem
Figure 48: A compressibility-driven prob-
lem

Fast Octree pseudo-compressible solver for wind engineering application Page 67

• The fluid is quasi-incompressible.

• The parameters ρ, µ, andK are constant all over the domain

• We neglect the effect of gravity

As a consequence of all these hypotheses, the velocity field can be simplified and its gradient
computed.

u =

u(x, y)

v(x, y)

 =

u(y)

0

 ∇u∇u∇u =

0 ∂u
∂y

0 0

 (81)

We can easily see that u · ∇u∇u∇u = 0, which means that the convective term of the Navier-Stokes
equation is null.

We compute the strain rate tensor.

∇Su∇Su∇Su =

 0 1
2
∂u
∂y

1
2
∂u
∂y 0

The next step is to obtain the stress tensor using the constitutive equation of Newtonian fluid.
One is able to compute the divergence of the stress tensor as well.

σσσ = −pI + 2µ∇Su∇Su∇Su =

−p µ∂u∂y

µ∂u∂y −p

 ∇∇∇ · σσσ =

 − ∂p
∂x + µ∂

2u
∂y2

µ ∂
∂x

(
∂u
∂y

)
− ∂p

∂y

 =

µ∂2u∂y2

−∂p
∂y

We finally apply the momentum balance equation, where we neglect the gravity term.

∇∇∇ · σσσ = ρ
∂u

∂t

By equalling the right and left-hand sides, we get two partial differential equations (PDE)which
would enable us to determine the velocity u and the pressure p, taking into account the bound-
ary conditions of the problem.

µ∂2u∂y2

−∂p
∂y

 =

ρ∂u∂t
0

∂u

∂t
− µ

ρ

∂2u

∂x2
= 0 (82a)

Page 68 Master thesis

∂p

∂y
= 0 (82b)

To finish, we use the mass conservation equation for quasi-incompressible fluid, assuming ρ is
constant all over the domain.

∂p

∂t
+K∇∇∇ · u =

∂p

∂t
= 0

In the end, we have ∂p/∂x = 0, ∂p/∂y = 0 and ∂p/∂t = 0 so we can conclude p = 0 in the whole do-
main. This is a more rigourous demonstration to show that the effects of pressure are negligible
in this type of flow.

Equation 82a is a diffusion one. There is no analytical solution for the transient problem, even
using the separation of variable. However, theory about this type of equation tells us we can
define a diffusion coefficient D = µ/ρ

(
m2/s

)
= L2/τ , where L is a characteristic length of the

problem and τ a characteristic time of the problem.

τ =
L2 ρ

µ

Wehave to take care about the signification of τ . We are not saying thatwe reach the equilibrium
state for t = τ . We are only giving an order of magnitude of the duration of the process. Let us
imagine the diffusion of a certain substance in a glass ofwater. One can relate the time needed by
substance to diffuse in the whole domain and the size of the glass using the coefficient diffusion
D. Of course this is only an order of magnitude. It is possible to apply the same reasoning to
our particular problem. If one considers a particle of fluid at y = L, how long should he wait
to see the particle move? We can get an order of magnitude using τ . In any case, there is not a
clear delimitation between transient and stationary problem.

The stationary velocity field is very easy to compute since ∂2u/∂x2 = 0.

ustationary = v0
Ly − y
Ly

8.2 Compressibility-driven problem

The second problem we want to solve is presented in Figure 48. We impose a given velocity
at one side of the channel to study the propagation of this velocity all along the domain. The
normal velocity on the up and down sides of the domain is null (there is no penetration of fluid
into the wall of the channel). The prescribed displacement at the left side could be constant or
sinusoidal depending on the type of problem we are solving.

As previously, we have to make some assumptions, in order to solve it analytically and then
compare the results with the numerical simulation:

Fast Octree pseudo-compressible solver for wind engineering application Page 69

• We neglect gravity

• The vertical velocity is null in the whole domain: v = 0

• 1D problem, all variables only depend on x: u(x, y) = u(x)

• Quasi-incompressible fluid

• ||µ∂xxu || << || ρ ∂tu ||

• || ρu ∂xu || << || ρ ∂tu ||

• Infinite channel to avoid the rebound of waves.

We follow the same steps as before: compute the vector∇Su∇Su∇Su, then the tensionsσσσ to finally apply
the momentum balance equation and the mass conservation one.

∇Su∇Su∇Su =

∂u
∂x 0

0 0

 ∇∇∇ · u =
∂u

∂x
u∇uu∇uu∇u =

u∂u∂x
0

In this particular case, we have∇Su∇Su∇Su =∇u∇u∇u.

In this second problem, the convective term u∇uu∇uu∇u and∇∇∇·u are not null. The velocity divergence
is not null because there are changes of volume.

We compute the stresses within the fluid. An interesting point to be remarked is that there is
no shear stress in the fluid. The effects of the fluid viscosity are thus considerably reduced.

σσσ =

−p+ 2µ∂u∂x 0

0 −p

Afterwards, we apply the momentum balance (neglecting the gravity term) to obtain 2 PDEs.

∇∇∇ · σσσ =

− ∂p
∂x + 2µ∂

2u
∂x2

−∂p
∂y

 = ρ

∂u
∂t

0

+ ρ

u∂u∂x
0

∂yp = 0 (83a)

ρ ∂tu = 2µ∂xxu− ∂xp− ρu ∂xu (83b)

The last PDE of the problem is given by the mass conservation equation. ∂yp is still null because
we did not take into account the gravity. In the case of a thin channel where Lx >> Ly, this is
a reasonable assumption.

Page 70 Master thesis

∂tp+K ∂xu = 0 (84)

It is time we applied all the hypotheses presented before, which gives the following simplified
equations.

∂yp = 0 (85a)

ρ ∂tu = −∂xp (85b)

∂tp+K ∂xu = 0 (85c)

The combination of Equations 85b and 85c will give a characteristic Alembert Equation which
describes the wave propagation in our medium.

The demonstration of the Alembert equation is based on the expression of ∂tt as a function of
∂xx.

Proof.

ρ ∂ttu = −∂t(∂xp) using Equation 85b
= −∂x(∂tp)

because we assume that t and x are independent variables

= K ∂xxu using Equation 85c

We finally obtain the Alembert equation:

∂xxu−
1

c2
∂ttu = 0 (86)

Where c =
√

K
ρ

[
m/s

]
As in the first problem, there is no analytical solution for a general transient problem. We will
need to impose specific boundary conditions in order to get one. However, we can define awave
propagation velocity c, which the characterise the wave propagation in our medium. This will
be very useful to validate our numerical simulation.

Fast Octree pseudo-compressible solver for wind engineering application Page 71

9 Structure of the Python script

We have all the elements to practically implement the solver before testing it on practical cases.
The objective of this section is to present some important implementation without entering all
its details. All the scripts I wrote can be found in Section 12. As for technical data, to run the
scripts, I used my personal computer which has a processor Intel i5 (1.8 GHz) and a RAM of 4
Go.

9.1 Code structure

The application script has been written from scratch using Python 3.7 (see [VRD99] for the
documentation of this version). This was very challenging to go from nothing up to writing the
whole post-process of the solution. The goal is to study the behaviour of a Q1P0 finite elements
mesh (over a rectangular domain) associated with the different time integration strategies we
previously defined aswell as the Shifted Boundary Conditionsmethod and the BFECCmethod.

Figure 49 presents the general structure of the script. It is compound of 6 different modules
which interact with the main one. As for now, this is not an object-oriented code, which would
be a further great improvement. To make the code readable and facilitate the different tests we
would operate, I tried tomake it as flexible as possible, splitting it inmany functions, within each
module. Afterwards, eachmodule and its interactionswith the other ones are detailed. The aim
is to highlight the most important elements of the numerical simulation without annoying the
reader with all programming details.

Let us remember that the final objective of this work is the implementation of the new solver
we are designing in Kratos. This means that, in this future implementation, we will not have to
design neither the pre-process nor the post-process parts. The inputs of the solver in Kratos are
directly the connectivity matrix gathering all the elements and their characteristics, the matrix
of coordinates and the boundary conditions. However, in the Python script, a pre and post-
process were needed so that the code works correctly.

9.2 I/O (Input/Output)

Thinking about the application relates itself with its environment is a really important part of
the coding because we have to adapt the structure of the input parameters to the solver.

9.2.1 Input

In order to do the simulation of several different cases, the user is able to define various inputs:

• The fluid characteristics µ (viscosity), ρ (density) and K (bulk modulus) which are, in a
first attempt, supposed to be constant all over the domain.

• The size of the square domain, i.e. Lx and Ly.

Page 72 Master thesis

Figure 49: The Python script processes

• The number of elements in the horizontal and vertical directions, respectively nx and ny.

• The time step dt and the total simulation duration tmax.

• The time integration strategy. Up to now are implemented the Forward and Backward
Euler schemes and the Fractional Step splitting.

• The boundary conditions.

Finding a flexible and efficient way to impose the boundary conditions was one of the most
tricky part of the code. Up to now, we are able to simulate uniform, logarithmic, tangential and
parabolic (on each border of the rectangular domain) velocity boundary conditions.

9.2.2 Output

The outputs of the simulation are a graphical representation (basically a picture) of the velocity
and pressure fields in the domain. As we are dealing with a transient problem (which depends
on time), we need to this post-process for various time steps and then animate it. The post-
process of the pressure is greatly simplified becausewe are studying rectangular Q1P0 elements
meshes, which means that the pressure is constant all over the element.

Fast Octree pseudo-compressible solver for wind engineering application Page 73

Figure 50: Global numbering of elements and
nodes Figure 51: Space discretisation

Figure 52: Mesher black box

9.3 Inputs pre-process

9.3.1 Mesh generation

Knowing the value of Lx, Ly, nx and ny, we are able to build a structured quadrilateral mesh of
our domain18. We need to build a coordinates matrixXY to store the x and y coordinates of the
mesh points and a connectivity matrixMconnectivity. The total number of points in the mesh is
(nx+1)(ny +1), the total number of elements is nxny;XY and t are thus a

(
(nx + 1)(ny + 1), 2

)
and

(
nxny, 4

)
Numpy arrays, respectively.

There we need to explain the global nodes and elements numbering. Figure 50 presents an
example of a structured mesh we use in the numerical simulation. Each element and node has
a global numbering (numbers within circles in Figure 50). We decided to label the nodes and
elements from the bottom left up to the right and the top. For instance, the coordinates of node
6 are (x2, y1). As a consequence, it appears clearly that:

XY =

x0 x1 x2 ... x3

y0 y0 y0 ... y3

T

18Let us recall that Q1P0 finite elements behave very poorly with unstructured meshes. It is really important to
work with structured ones.

Page 74 Master thesis

Figure 53: Time sigmoid inlet velocity

The i-th line of XY contains the x and y coordinates of point number i.

Then, we express the connectivitymatrix t. At the i-th line of t can be found the global numbers
of the nodes of element i. For instance, considering the mesh of Figure 50, the nodes of the
element 5 are 6, 7, 11 and 10. The fifth line of t will thus be (6, 7, 11, 10). More generally:

Mconnectivity =

0 1 5 4

1 2 6 5

2 3 7 6

...

10 11 15 14

With the connectivity matrix t and the coordinates oneXY, we are able to completely describe
the mesh of the domain.

9.3.2 Inlet velocity

Imposing to rapidly velocity boundary conditions is a source of numerical instability. In order
to solve this issue, we choose to impose a sigmoid profile (in time) of inlet velocity (see Figure
53). Sigmoid functions are C∞ ones, which means that all their derivatives are continuous. In
comparison, neither "step" functions (see Figure 53) nor their derivatives are continuous, which
can have severe consequences over the numerical simulation.

As for spatial features, we are able to impose uniform (Figure 54), parabolic (Figure 55) and
logarithmic (Figure 56) inlet profiles. Depending on the type of problem we want to solve, it
is necessary to choose between one of them. Parabolic profile is useful to model the fluid flow
within a pipe with viscous fluids and the logarithmic one approximately describes the wind
profile in the atmosphere.

Fast Octree pseudo-compressible solver for wind engineering application Page 75

Figure 54: Example of uni-
form inlet

Figure 55: Example of
parabolic inlet

Figure 56: Example of loga-
rithmic inlet

9.4 Implementation summary

Algorithm 6 very briefly sums up the main steps of the main module algorithm and how they
should be organised. Getting inner nodes and elements is the first part of the Shifted Bound-
ary Conditions method. Algorithm 7 presents the different stages performed within one time
integration and how the different algorithm we detailed before are linked. Of course, the nu-
merical scheme to pass from Un, Pn to Un+1, Pn+1 depends on the method we previously
defined (Forward Euler, Backward Euler or Fractional Step splitting).

Algorithm 6Main module algorithm
Require: vinlet, µ, ρ,K,Lx, Ly, nx, ny,U0,P0, dt, tmax
Get time discretisation
Get connectivity and coordinates matrices
Get inner nodes and elements
Make the assembly of the global stiffness, mass and gradient matrices
Lump mass matrices
Integrate discretised equations in time
Do solution post-process

Algorithm 7 Time integration algorithm
Require: MUU,MPP,D,KUU, δt,U0,P0

Apply boundary conditions→ Un

Store Un

Solve convective equation→ Ũn+1

Perform one step time integration→ Un+1,Pn+1

9.5 Solution post-process

The results of the loop for time integration are 2 matrices solU and solP which contain the
values of the velocity and pressure DOFs at each time step.

Page 76 Master thesis

9.5.1 Pressure post-process

In a Q1P0 elements mesh, the pressure is uniform within the elements. The best way to post-
process the outputs of the time integration loop is to represent coloured squares where the
colour stands for the value of the pressure in the element. Blue stands for the minimum pres-
sure, red for maximum one.

One advantagewith the pressure post-process is that thematrix solP directly contains the pres-
sure in every element; that is not the case with the matrix solU. Let us say that Pi(tn) is the
pressure in element i at time tn.

solP =

P0(t0) P0(t1) ... P0(tnbSteps)

P1(t0) P1(t1) ... P1(tnbSteps)

...

Pn(t0) Pn(t1) ... Pn(tnbSteps)

For instance, we get all the pressures at the last time step by selecting the last column of solP
and we post-process this column vector.

We use the Python library PIL which enables us to operate on JPEG images. Knowing the dis-
tances Lx and Ly and the total number of B-bar elements in the mesh, we are going to draw
squares of Lx/nx pixels in the horizontal direction and Ly/ny pixels in the vertical one. Each
square will be of one distinct colour to represent the pressure in the equivalent element. The
blue colour in a square stands for the minimum pressure, the red for the maximum one.

Fast Octree pseudo-compressible solver for wind engineering application Page 77

10 Practical case studies

After having implemented every part of the solver, we will run several test cases in order to
verify its convergence and derive some useful knowledge for the future implementation in a
production-ready code.

The results presented in this section are organised in an increasing level of complexity:

• First of all, the Couette flow problem. This is the most basic and easy-to-solve one because
it only involves viscosity whichmakes the numerical simulation stable, and it is quite easy
to have a first intuition of what the velocity fluid should look like. We will support it with
the theoretical studyt we realised in Section 8. This is the first stage of validation to show
that the solver we designed is able to deal with viscous effects.

• The channel with uniform and constant inlet problem. It is more complicated than the
Couette flow problem since it involves compressibility effects (and viscosity ones are al-
most null). This tends to make the simulation numerically unstable because of the bulk
modulus high value. As previously, the theoretical study of Section 8 will be useful to
consolidate the numerical results in comparison with the analytical ones.

• The fluid flow around a cylinder for different values of the Reynolds number. We will
study the convergence of the numerical simulation when refining the mesh and using dif-
ferent time steps. This is a basic but quite complicated problem because it mixes the effects
of viscosity and convection. At high values of the Reynolds number, vertices may appear
and the solver should be able to reproduce this phenomenon. In addition, this problem
will enable us to validate the implementation of the Shifted Boundary Conditions, which
was absent in the 2 previous problems, because there were no obstacles.

• Finally, a more realistic problem of air circulation in a city will be implemented and stud-
ied in order to determine if our solver could be used in production-ready codes for solving
future engineering problems.

10.1 Couette flow problem

The settings of the problem are identical to the ones of Section 8. Figure 57 presents the result of
the simulation if we only consider two boundary conditions: a tangential speed at the top of the
domain and a null one in the lower side, like depicted in Figure 47. It appears a vertical velocity
next to both left and right sides just like small vortices, which is not consistent with the idea one
can have of the flow a priori. To understand why, it is necessary to compute the expression of
the tensionσσσ in the domain taking into account that u = 1−y, which is the analytical stationary
solution of the problem. In this case, we have that ∂yu = −1 and p = 0.

σσσ = 2µ∇Su∇Su∇Su =

 0 −µ

−µ 0

Page 78 Master thesis

Figure 57: Free Couette flow Figure 58: Stationary Cou-
ette solution

Figure 59: Constrained Cou-
ette flow

Figure 60: Couette flow results with FE and
h = 0.2

Figure 61: Couette flow results with FE and
h = 0.05

We can compute the tension at the right side of the domain, considering the normal n = (1 0)T .

t = σσσ · n =

 0

−µ

This last equation means that the linear flow depicted in Figure 58 is not compatible with a free
border at the left and right sides of the domain. If we want to have a perfectly horizontal flow,
we need to impose two more boundary conditions. The vertical velocity should be null at the
left and right sides of the domain, i.e. v(x = 0, y) = 0 and v(x = Lx, y) = 0.

Figure 59 presents the kind of results one gets when imposing these new boundary conditions:
the small vortices disappeared because the flow ismore constrained and the vertical component
of the velocity is null in the whole domain.

Figures 60 and 61 are vertical cuts of the velocity field considering different element sizes h. The
horizontal axis represents the transverse speed u whereas the vertical one is the vertical coor-
dinate y. The solution at different time steps and the analytical stationary one are represented.
These graphs were obtained using a Forward Euler time integration.

These results are consistent with the analytical study we previously did. We had defined a
characteristic time τ = L2 · ρ/µ. In this case, τ = 25 considering L = 0.5, which corresponds
to the point in the middle of the domain. We ran the simulation up to t = 30 and the velocity

Fast Octree pseudo-compressible solver for wind engineering application Page 79

Figure 62: Mesh convergence for the Couette flow problem

field almost reached an equilibrium. Moreover, these results are consistent with the idea one
can have of the problem. First the upper part of the domain starts moving, which, by the action
of viscosity, makes the lower part move too.

10.1.1 Simulation convergence

Results obtained in the Couette flow case are consistent. However, we need to perform a more
quantitative analysis of the results in order to prove the robustness of the solver we designed,
including all the elements we previously described. To do that, we need to perform a given
simulation (with the same fluid characteristics and the same boundary conditions) using finer
meshes. If the solver is robust, the solution should converge when refining the mesh.

Let us say thatwe are to study the convergence of the numerical solution using a series ofmeshes
Mi = (Vi, Ei), where Vi is the set of nodes and Ei the set of elements, represented by the co-
ordinates and connectivity matrices respectively, and characterised by its elements size hi. We
define the velocity relative error as

eu,i =
||U(hi)−U(hi+1)||2

||U(hi)||2
(87)

where || · ||2 refers to the L2-norm as defined in Section 2 andU(h) represents the nodal values
of the velocity field using a certain mesh size h.

The same way, it is possible to define the pressure relative error

ep,i =
||P(hi)−P(hi+1)||2

||P(hi)||2
(88)

Figure 62 presents the results of the convergence analysis for the velocity field. The horizontal
axis stands for the element size h, in logarithm scale. The velocity relative error eu,i is plotted

Page 80 Master thesis

Figure 63: Channel configuration

in the vertical one. As for the pressure, since it is null in this type of flow, the results we get are
not relevant19 and that is why they are not presented.

The first conclusion we can draw from Figure 62 is that the solver is robust since the relative
error tends to 0 when the element size tends to 0, and this does not depend on the time step
dt. Very rapidly we reach very low values of the relative error, in the order of 0.2%, even with
coarse meshes. The time step has a low influence over the convergence of the mesh.

The Couette flow problem is quite easy to solve because the main phenomena at stake are the
viscous ones; the compressibility of the fluid being completely irrelevant. It is perfectly known
that viscosity tends to stabilise the numerical simulation since it acts as an energy dissipater.
The effects of viscosity are highly predictable. Moreover, the convective term, which tends to
make the simulation unstable is null.

10.2 The incompressible limit

The solver we developed until now enables us to simulate flows involving quasi-incompressible
fluid (with a very high bulk modulus, in comparison with the variation of pressure). We want
to determine the behaviour of the simulation in the incompressible limit, i.e. when the bulk
modulusK tends to infinite.

To do that, we consider the channel presented in Figure 63. The input flow on the left side of
the domain is uniform along the y-axis. At the upper and lower boundaries, we impose that the
normal component of the velocity is null but the tangential one is completely free. No boundary
condition is applied at the right domain boundary.

Figures 64 and 65 presents the results of the simulations using different values of the bulk mod-
ulus K. Figure 64 presents the horizontal component u of the velocity as a function of time at
the point represented by F in Figure 63. Figure 65 shows the pressure at the same point as a
function of time.

Several conclusions can be drawn from these two figures. The analytical stationary solution
of the problem are uniform and constant velocity field u = 1 (note that the inlet velocity is
equal to 1 in each simulation) and pressure p = 0. For each value of the bulk modulus we

19The same type of analysis has been done, but only numerical noise was observed and it was impossible to
interpret it correctly.

Fast Octree pseudo-compressible solver for wind engineering application Page 81

Figure 64: Velocity at the end of the channel
as a function of time

Figure 65: Pressure at the end of the channel
as a function of time

Figure 66: Pressure field in the channel at t =
0.12

Figure 67: Velocity field in the channel at t =
0.12

tested in the three simulations, the velocity and pressure fields converge to the stationary one
if we wait enough time. At first sight, we could think that the green line in Figure 64 (which
stands for K = 400) does not tend to 1 but this is the case if we let the simulation run more
time. The oscillations one can observe in the graphs are due to the compressibility of the fluid.
In the case of the "incompressible fluid" (orange line with K = 4 · 106), these oscillations are
reduced and the convergence to 1 is much faster, which is consistent with the theory. If the bulk
modulus is infinite, the fluid behaves itself as if it was a rigid body; the information propagates
instantaneously from the left side to the right one. Let us remember that waves propagate in
the fluid with a velocity of c =

√
K/ρ =

√
K because, in our case, ρ = 1. If we increase the bulk

modulus, the wave propagation speed increases. At t = 0, one imposes a uniform velocity at
the left side of the domain. A fluid particle which is at the right side of the domain will get this
information and start moving at time t = Lx/c.

If we consider Figure 65, it is very easy to numerically compute thewave propagation speed. For
instance, in the simulationwithK = 400 (green line), the pressure starts rising at approximately
t0 = 0.5, whichmeans that the numerical wave propagation speed is cnumerical = Lx/t0 ≈ 10/0.5 =
20, which is consistent with the analytical wave propagation speed canalytical =

√
K = 20. This

process can be repeated with the two other simulations.

Figures 66, 67, 68, 69, 70, 71, 72, 73 describe the pressure and velocity fields at various times of

Figure 68: Pressure field in the channel at t =
0.15

Figure 69: Velocity field in the channel at t =
0.15

Page 82 Master thesis

Figure 70: Pressure field in the channel at t =
0.16

Figure 71: Velocity field in the channel at t =
0.16

Figure 72: Pressure field in the channel at t =
0.17

Figure 73: Velocity field in the channel at t =
0.17

the simulation in the case ofK = 4 · 104, for which some oscillations can be observed.

Little by little, the velocity we impose at the left side of the domain "propagates" from the left
to the right, and the fluid starts moving. It is almost impossible to simulate an infinite channel
(which would be the case in the real problem) because we have to mesh a finite domain and,
as a consequence, when the front arrives at the end of the domain, it rebounds and goes back
to the left. The oscillations of Figures 64 and 65 for K = 4 · 104 and K = 400 are due to
this phenomenon. In these two configurations, there are rebounds because the fluid does not
comply with the quasi-incompressible approximation. The rate of change of the inlet velocity
is too high compared to the bulk modulus of the fluid, the inlet velocity (the information to be
propagated) increases too rapidly and the fluid is not able to propagate it correctly. Anotherway
to see it is to compute themaximumpressure in the fluid and compare it with the bulkmodulus
of the fluid. We should take into account the density variations because it is not constant any
more, the series of assumptions we made20 are not valid any more and that is why we do not
have physically-consistent results.

More generally, it is very complicated to impose coherent boundary conditions at the outlets
of the finite domain. To dissipate the energy, we tried to implement shock absorbers, whose
force is proportional to the derivative of the velocity F = −η ∂u/∂t but this makes the simulation
unstable because the numerical approximation of the velocity derivative is very imprecise.

10.3 Flow around a cylinder

Now that we have checked the ability of our solver to deal with the viscosity (Couette flow) and
compressibility (in the channel of the previous section), it is possible to pass to the following
stage, i.e. associate them in more complex flows. Moreover, by putting an obstacle in the flow,
it will be possible to show the accuracy of the Shifted Boundary Conditions method and its
association with the other employed techniques.

20Let us remember that we made the assumption that ∂ρ << ρ in Section 3

Fast Octree pseudo-compressible solver for wind engineering application Page 83

Parameters Value

µ 10

ρ 1

K 107

Dcylinder 20

tmax 15

Re 0.1

Figure 74: Parameters of the small Reynolds
simulation

Figure 75: Inlet velocity for the low Re case

Figure 76: Velocity field around a cylinder for
a low value of the Reynolds number

Figure 77: Pressure field around a cylinder for
a low value of the Reynolds number

10.3.1 Low Reynolds flow

First, we consider the problem of the flow around a cylinder at a low value of the Reynolds
number, for which the viscous effects are dominant and the numerical simulation should be
stable.

The parameters used in the simulation are gathered in Table 74. Dcylinder refers to the diameter
of the cylinder and tmax the time that lasts the simulation. Let us just recall that the Reynolds
number is computed as

Re =
Lρ v0

µ
(89)

where L is the characteristic length of the problem, in our case the diameter of the cylinder.

As for the boundary conditions, the left side of the square domain is the inlet of the problem.
The inlet velocity profile is presented in Figure 75. It increases little by little starting from 0
to avoid numerical instability. At the upper and lower sides of the domain are imposed "slip"
boundary conditions, i.e. the normal component of the velocity is null.

Page 84 Master thesis

Figure 78: Velocity field relative error for the
low Reynolds problem

Figure 79: Pressure field relative error for the
low Reynolds problem

Figures 76 and 77 present the velocity and pressure fields we obtain at the end of the simulation
using a quite coarse mesh (it will be refined later on). First of all, what can be analysed from
these figures is that the Shifted Boundary Conditions method is working since the fluid gets
around the cylinder, which is what we expected. Moreover, the pressure field is consistent with
the common sense since the pressure is higher upstream of the cylinder. There is a pressure
gradient between the upstream and downstream sides of the cylinder.

We will use this problem type to validate the accuracy of the solver we previously designed.
The FEM theory tells that the solutions we get using finer meshes should converge. To check
that, several simulations using different mesh sizes and different time steps are run and the
relative errors using the L2-norm are computed. Figures 78 and 79 present the results for the
velocity and pressure fields, respectively. In both graphs, the horizontal axis stands for the
element size h and the vertical one for the corresponding relative error. In addition, we studied
the convergence of the results for the Fractional Step (FS) and Backward Euler (BE) methods.

Several interesting conclusions can be drawn from these graphs. First of all, as foreseen, the
Forward Euler method does not give results for the time steps we considered because, for every
mesh size, the solution diverges and tends to infinite. It is mandatory to use either the BE
method or the FS one. Secondly, these two numerical schemes present almost identical precision
for a given time step and mesh size, which is even truer for the pressure field. Changing from
BE to FS does not have a significant impact on the precision of the results we get, which suggests
that these two numerical schemes are, in our case, quite equivalent. Lastly, the accuracy of the
simulation strongly depends on the time step we use. For instance, if we consider dt = 0.02
(see the blue lines in Figures 78 and 79), when refining the mesh, the relative error decreases
until h = 4. If we use even finer meshes, the relative error increases. The same pattern can be
observed with dt = 4 · 10−3. All of this is consistent with the theoretical analysis we previously
did since we had the restriction

dt << ρh (90)

for the FS scheme, which means that one should use smaller time steps for finer meshes. It is
exactly the conclusions we get from Figures 78 and 79. When reducing the size of the elements
in the mesh, the relative error does not decrease and, sometimes, it even increases. There must

Fast Octree pseudo-compressible solver for wind engineering application Page 85

Figure 80: Comparison between the BE and
FS computational costs (in seconds)

Figure 81: Relative reduction of computa-
tional cost between the BE and FS schemes

a be a balance between the time step one should use and the spatial precision he desires.

To show that the BE and FS methods are quite equivalent, we are to analyse the computational
cost of the twomethods in order to determine if one is more advantageous than the other. From
now on, the Forward Euler method is discarded since it is quite hard to achieve convergence
with reasonable time steps.

Figures 80 presents the simulation time (in the vertical axis) that the computer needs to do 10
time steps in the problem of the flow around the cylinder we previously described as a function
of the number of elements there are in the mesh (horizontal axis). We compare the BE and FS
methods. In Figure 81 is presented the relative computational cost reduction as a function of
the number of elements in the mesh. This relative computational cost reduction is computed as

τ(Nelement) =
CBE(Nelement)− CFS(Nelement)

CBE(Nelement)
(91)

where CBE and CFS refers to the computational cost of the BE and FS methods respectively. It
describes how much time we could save using the FS method rather than the BE one.

For small meshes, the FS method is much more interesting because it has a much lower compu-
tational cost. The reduction is of approximately 30%. However, when increasing the number of
elements in the mesh, this advantage almost disappears and there is no significant difference
between the BE and FS methods. This result is a bit disappointing since we expected a lower
computational cost for the FS method. I was not able to run the simulation for meshes with
more than 6 000 elements because of the limited capacity of my PC. It is barely impossible to
check if the order of magnitude of the computational cost is O(N2

element) since we would need
to run the simulation with much larger meshes.

10.3.2 Higher Reynolds flow

The objective now is to increase the value of the Reynolds number in order to see if the solver
is able to reproduce the behaviour of more complex flows, with vortices for instance.

Page 86 Master thesis

Figure 82: Dimensions of the domain for high
values of the Reynolds number Figure 83: Mesh used for high Reynolds flows

Figure 84: Velocity field at Re = 10 Figure 85: Velocity field at Re = 100

Figure 82 presents the dimensions of the domain of the simulation. The mesh we used is de-
picted in Figure 83; there are approximately 6 000 finite elements. I was not able to perform the
simulation with finer meshes because I already reached the top capacity of my computer. I am
aware that the mesh is a bit too coarse and it would be useful to refine it in some special areas.

As the Reynolds number increases, the size of the cylinder’s trail increases too as it can be ob-
served in Figures 84, 85, 86 and 87. Moreover, at high values of the Reynolds number, the trail
starts waving with a constant time period, even if all boundary conditions are symmetrical.
Moreover, for Re = 10, the inlet is approximately equivalent to the outlet. At high values of the
Reynolds number, the obstacle has influence over a much larger area.

Figures 89, 91, 93 and 95 represent the vorticity index of the flows. The vorticityωωω is a first-order
tensor defined as the cross product between the∇∇∇ operator and the velocity field u.

ωωω =∇∇∇× u (92)

As we are dealing with 2D problems, this expression can be simplified as

Figure 86: Velocity field at Re = 500 Figure 87: Velocity field at Re = 2000

Fast Octree pseudo-compressible solver for wind engineering application Page 87

Figure 88: Pressure field at Re = 10 Figure 89: Vorticity field at Re = 10

Figure 90: Pressure field at Re = 100 Figure 91: Vorticity field at Re = 100

Figure 92: Pressure field at Re = 500 Figure 93: Vorticity field at Re = 500

Figure 94: Pressure field at Re = 2000 Figure 95: Vorticity field at Re = 2000

Page 88 Master thesis

ωωω =

(
∂v

∂x
− ∂u

∂y

)
ez (93)

To compute the vorticity index at one point of the domain, we just need to take the norm of the
vorticity vector.

In Figures 89, 91, 93 and 95, we associated a certain colour to each element of the mesh, so that
the final results can be easily interpreted. This colour stands for the vorticity index in the centre
of the element, the maximum value of the vorticity index being red, and blue for the minimum.

The turbulence downstream of the cylinder increases as the Reynolds number increases. The
depression area behind the cylinder is much larger when the Reynolds number of the flow is
very high; the drag force applied on the cylinder would be more important. The vorticity is
maximum at upper and lower part of the cylinder, which is consistent because they are the
most critical zones of the flow. There is a competition between viscosity and convection in the
boundary layers of the flow because we impose the velocity to be null on the cylinder.

What I expected before running these different simulations was to evidence the creation of Von
Karman vortices at some given values of the Reynolds numbers. These characteristic vortices
do not appear, and this is a failure of the simulations. I think the main explication is the mesh
of the domain, which is too coarse21. To make Von Karman vortices appear, I should have used
a much finer mesh. However, I already was at the top capacity of my computer (with around 6
000 elements) and simulations of around six hours. I really was limited by my machine.

10.4 Impact of a city over the wind field

In this last part of the section, we try to study a more realistic case thanks to the solver we
developed in order to fully complete the tests and the master thesis.

As we said in Section 1, the solver would be used to solve large engineering problems, such as
themodelisation of thewind fieldwithin a city. Of course, the object of this Proof of Concept we
are doing is not to directly solve this kind of problem because themodelling process would very
long and difficult and the computation power of a simple PC is not enough to run the numerical
simulation.

However, by greatly simplifying the geometry and reducing it to its minimum, it is possible to
get useful preliminary results and have a first idea of what could be at stake in the real engi-
neering problem.

I chose to study the very simple problem of a "city" compound by four buildings and a unique
street. The mesh I used in the numerical simulation is presented in Figure 96. In order to have
more accurate results, finite elements are smaller around the buildings and larger in the zones
which are less affected. The inlet velocity, on the left side of the square domain, is a logarithmic
one22. In addition, we work at a Reynolds number of Re = 500

21We should particularly refine the mesh in the boundary layers of the cylinder
22This is a classical way to model the velocity profile in the atmosphere

Fast Octree pseudo-compressible solver for wind engineering application Page 89

Figure 96: Mesh of the city

Figure 97: Velocity field at t = 45

Figure 98: Velocity field at t = 90

Figure 99: Velocity field at t = 135

Figure 100: Velocity field at t = 180

Page 90 Master thesis

Figure 101: Vorticity field at t = 45

Figure 102: Vorticity field at t = 90

First of all is presented the velocity field in Figures 97, 98, 99 and 100. They are useful to con-
firm that the Shifted Boundary Condition method was well implemented for square elements
because the velocity field is consistent with what we could expected before running the sim-
ulation: the fluid accelerates to pass over the buildings. Moreover, some phenomena of fluid
re-circulation can be observed behind, for instance, the green building with the apparition of a
small vortex which evacuates itself after a certain period of time (see Figures 97 and 98).

As we could expect it before running the simulation, we can that a city deeply modifies the
wind field. The downstream fluid flow is much more turbulent than in the upstream part as
depicted in Figures 101, 102, 103, 104 which present the vorticity field at different time steps.
In addition, the city has an impact over a large distance. Of course, the numerical simulation
should be bettered (refined mesh and smaller time step) and we have to take lots of care as
for the representativity of the solution but this phenomenon is really important and should be
taken into account in the resolution of real engineering problems. Let us imagine that an airport
is to be built next to the city. The modifications of the wind field caused by the buildings could
greatly affect the planes because more turbulence in the atmosphere means harder takes-off
and landings. More generally, there are more and more attempts to model the impact of large
structures over thewind field in a given region, let us just cite the example of wind turbinewake
models.

Figure 103: Vorticity field at t = 135

Fast Octree pseudo-compressible solver for wind engineering application Page 91

Figure 104: Vorticity field at t = 180

Figure 105: Pressure field at t = 45

Figure 106: Pressure field at t = 90

Figure 107: Pressure field at t = 135

Figure 108: Pressure field at t = 180

Page 92 Master thesis

11 Conclusion and perspectives

I chose thismaster thesis because it was a great opportunity forme to implement a finite element
code from scratch and have more knowledge about what a FEM code does. In my professional
life, one day or another, I may need to use one and it is very important for an engineer to know
a bit how it internally works. If one uses this kind of software as a black box which displays
results, some huge errors can be made. For instance, let us have a look at the results post-
process. I chose not to do any post-process and display the raw results (for the velocity as
well as the pressure), which means, for example, that the pressure field can appear a bit ugly
because there may be sharp changes between some elements. However, this is very important
not to forget that the pressure field is non-continuous when using Q1P0 elements; this is one of
the fundamental characteristics of this element. In a commercial code, this raw pressure field
would have certainly be post-processed to be softer and nobodywould care about the continuity
of the pressure field. This is not a very big deal but one just has to be aware of it.

Moreover, I was very interested in computational mechanics and this first approach was very
rewarding for me. This master thesis was not the easiest one because I had to take into account
lots of parameters and implement lots of algorithms but I really liked it, even if I got blocked
several times. For instance, at the first shoot, I made a huge error when codingmy Python appli-
cation in the part of the computation of the stiffness matrix because I had not really understood
the mechanism and how this matrix and the other ones should be computed. I lost lots of time
because of this but, finally, I managed to see where my error was and correct it. This is an exam-
ple among many other ones. The best way to learn how to code well is to take a computer and
start writing lines of code. One can have all the theoretical knowledge he wants, it is nothing
without the practical one. I considerably bettered my knowledge of the Python language by
coding during more than six months.

I realised that the way one codes can considerably affect the success or failure of a project. The
same application is much easier to maintain if it is divided into many functions and/or sub-
routines because each of them can be separately tested, which makes the code debugging much
faster. The testing and debugging of the functions are the most important parts of the job. I
should have split much more my Python into functions at the beginning of the project to be
more efficient.

Let us get to the overall conclusions of the project. We developed a fluidmechanics solver using
a mixed u-p formulation for quasi-incompressible fluid and Q1P0 finite elements. This type of
finite elements is widely used in computational mechanics to solve incompressible problems so
themain ideawas to determine if they could be adapted to CFD and the chances of success were
quite high. However, it is well-known that the Q1P0 elements show really poor results when
used in unstructured meshes and that is why structured ones had to be used, which raised the
issue of boundary conditions since it is muchmore difficult to correctly impose themwith struc-
tured them. The solution was to implement the Shifted Boundary Conditions method. Finally,
a Back and Forth Error Compensation and Correction (BFECC) method was implemented to
deal with the convective term of the Navier-Stokes equation.

All these elements combined constitute the new solver wewere to design at the beginning of the
project. Then, this solver was tested over different cases and compared with reference solutions
in order to validate its robustness.

Fast Octree pseudo-compressible solver for wind engineering application Page 93

Globally, the solver is quite robust because it gives coherent results evenwhenusing quite coarse
meshes, which is not always the case in the world of fluid dynamics. There is no significant
difference between the Fractional Step time splitting and the Backward Euler scheme: this is
due to the particular structure of the Q1P0 element. However, we were not able to model the
Von Karman vortices that should have appeared in the case of the flow around a cylinder at
given values of the Reynolds number. This does not question the efficiency and relevance of
the solver since I think the main problem in these simulations was the mesh which was too
coarse. Normally, the boundary layer (the most critical part of the flow because this is where
there is a competition between convection and viscosity) should be meshed with much finer
finite elements since correctly modelling this area is a key issue. However, as I only my PC at
my disposition, I could not reasonably run simulations with more elements.

The solver we designed is meant to be used to solve "real life" engineering problems. The last
case study is a first (and very simple) application of the solver to study the wind field in a city. It
could be associated with, for instance, a numerical simulation of the contamination in order to
study how it spreads. If one knows the wind field, it can introduce it in an advection/diffusion
contamination model to compute the pollutant concentration in every part of the city. Knowing
the wind field is just a first step towards the main interesting goals.

Page 94 Master thesis

References

[BCH98] Jordi Blasco, Ramon Codina, and Antonio Huerta. A fractional-step method for
the incompressible navier–stokes equations related to a predictor–multicorrector
algorithm. International Journal for Numerical Methods in Fluids, 28(10):1391–1419,
1998.

[CCCdS03] Daniel Christ, M Cervera, M Chiumenti, and C Agelet de Saracibar. A Mixed Fi-
nite Element Formulation for Incompressibility Using Linear Displacement and Presure
Interpolations. International Center for Numerical Methods in Engineering, 2003.

[Cod01a] Ramon Codina. Pressure stability in fractional step finite element methods for in-
compressible flows. Journal of Computational Physics, 170(1):112–140, 2001.

[Cod01b] Ramon Codina. A stabilized finite element method for generalized stationary in-
compressible flows. Computer Methods in Applied Mechanics and Engineering, 190(20-
21):2681–2706, 2001.

[DL03] Todd F Dupont and Yingjie Liu. Back and forth error compensation and correction
methods for removing errors induced by uneven gradients of the level set function.
Journal of Computational Physics, 190(1):311–324, 2003.

[FP02] Joel H Ferziger and Milovan Perić. Computational methods for fluid dynamics, vol-
ume 3. Springer, 2002.

[Hug12] Thomas JR Hughes. The finite element method: linear static and dynamic finite element
analysis. Courier Corporation, 2012.

[MR18] Marcel Montllor Ramoneda. Computational fluid dynamics: Fractional step
method and its applications in internal and external flows. B.S. thesis, Universi-
tat Politècnica de Catalunya, 2018.

[MS18] Alex Main and Guglielmo Scovazzi. The shifted boundary method for embedded
domain computations. part i: Poisson and stokes problems. Journal of Computational
Physics, 372:972–995, 2018.

[S+94] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient
method without the agonizing pain, 1994.

[VdO05] GAH Van den Oord. Introduction to locking in finite element methods. Materials
Technology Institute, Eindhoven University of Technology, 2005.

[VJP08] Bart Vossen, HR Javani Joni, and RHJ Peerlings. Volumetric locking in finite ele-
ments. Bachelor Thesis, EindhovenUniversity of Technology, Eindhoven, TheNetherlands,
2008.

[VRD99] Guido Van Rossum and Fred L Drake. Python tutorial. Open Documents Library,
1999.

Fast Octree pseudo-compressible solver for wind engineering application Page 95

12 Appendix

1# −∗− coding : utf−8 −∗−
2" " "
3Created on Thu Nov 8 18 : 3 5 : 5 0 2018
4

5@author : clement . lemardele
6" " "
7

8

9import numpy as np
10import math
11import os
12from scipy . sparse import coo_matrix
13from scipy . sparse import dia_matr ix
14

15

16import Element_Bbar_v2 as Bbar
17import Solver_Navier_Stokes_v3 as so lver
18import Pre_process_v6 as pre_process
19import Post_process_v7 as post_process
20

21

22###
23###
24###
25

26# Implementation of severa l c l a s s e s to model obs t a c l e s in the f l u id domain
27# Each c l a s s has i t s own a t t r i b u t e s depending on the f ea tu r e s of the shape
28

29# get_Leve l_Set (s e l f , x) = re turn the value of the l ev e l s e t funct ion
30# assoc ia t ed to the obs t a c l e a t point x . The express ion of the l ev e l s e t
31# funct ion depends on the shape f ea tu r e s
32

33# ge t_Closes t_Po in t (s e l f , x) = given a point with coordinates x , re turn the
34# coordinates of the c l o s e s t point which i s on the border of the obs t a c l e
35

36# get_Shape_Coordinates (s e l f) = re turn a l i s t of points which are on the
37# border of the obs t a c l e ==> used for pre and post−process
38

39###
40###
41

42c l a s s Circle_BC :
43

44# Defines a c l a s s to implement a round obs t a c l e in the f l u id domain
45# At t r i bu t e s : cen t re and radius
46

47def _ _ i n i t _ _ (s e l f , cent re_coordinates , radius) :
48

49s e l f . c en t re_coord ina tes = np . array (cen t re_coord ina tes)
50s e l f . radius = radius
51

52###
53

54def get_Leve l_Set (s e l f , x) :
55

56cen t re = s e l f . c en t re_coord ina tes
57radius = s e l f . radius

Page 96 Master thesis

58

59re turn np . l i n a l g . norm(x − centre , 2) − radius
60

61###
62

63def ge t_Closes t_Po in t (s e l f , x) :
64

65x_centre = s e l f . c en t re_coord ina tes
66radius = s e l f . radius
67

68re turn x_centre + radius ∗ (x−x_centre) / np . l i n a l g . norm(x−x_centre , 2)
69

70###
71

72def get_Shape_Coordinates (s e l f) :
73

74radius = s e l f . radius
75cen te r = s e l f . c en t re_coord ina tes
76x_C = center [0]
77y_C = center [1]
78

79x _ l i s t = np . l in space (x_C − radius , x_C + radius , 100)
80y _ l i s t = np . l in space (y_C − radius , y_C + radius , 100)
81shape_coordinates = np . zeros ((4 0 0 , 2) , dtype = f l o a t)
82

83count = 0
84

85f o r x in x _ l i s t :
86

87y0 = y_C + math . sq r t (radius ∗∗2 − (x − x_C) ∗∗2)
88y1 = y_C − math . sq r t (radius ∗∗2 − (x − x_C) ∗∗2)
89

90shape_coordinates [count , 0] = x
91shape_coordinates [count , 1] = y0
92count += 1
93

94shape_coordinates [count , 0] = x
95shape_coordinates [count , 1] = y1
96count += 1
97

98f o r y in y _ l i s t :
99

100x0 = x_C + math . sq r t (radius ∗∗2 − (y − y_C) ∗∗2)
101x1 = x_C − math . sq r t (radius ∗∗2 − (y − y_C) ∗∗2)
102

103shape_coordinates [count , 0] = x0
104shape_coordinates [count , 1] = y
105count += 1
106

107shape_coordinates [count , 0] = x1
108shape_coordinates [count , 1] = y
109count += 1
110

111re turn shape_coordinates
112

113###
114

115def get_Normal (s e l f , x) :
116

117normal = np . zeros ((2 , 1) , dtype = f l o a t)

Fast Octree pseudo-compressible solver for wind engineering application Page 97

118

119normal [0 , 0] = s e l f . c en t re_coord ina tes [0]
120normal [1 , 0] = s e l f . c en t re_coord ina tes [1]
121

122normal = x − normal
123

124re turn 1 / np . l i n a l g . norm(normal) ∗ normal
125

126

127###
128###
129

130

131c l a s s Rectangle_BC :
132

133# Defines a c l a s s to implement a square obs t a c l e in the f l u id domain
134# At t r i bu t e s : x _ l e f t , x−coordinate of the rec t ang l e l e f t s ide
135# x_r ight , x−coordinate of the rec t ang l e r i gh t s ide
136# y_bottom , y−coordinate of the rec t ang l e bottom side
137# y_up , y−coordinate of the rec t ang l e up s ide
138

139def _ _ i n i t _ _ (s e l f , x _ l e f t , x_r ight , y_bottom , y_up) :
140s e l f . x _ l e f t = x _ l e f t
141s e l f . x_ r igh t = x_r igh t
142s e l f . y_bottom = y_bottom
143s e l f . y_up = y_up
144

145###
146

147def get_Leve l_Set (s e l f , x) :
148

149x_point = x [0]
150y_point = x [1]
151

152x _ l e f t = s e l f . x _ l e f t
153x_r igh t = s e l f . x_ r igh t
154y_bottom = s e l f . y_bottom
155y_up = s e l f . y_up
156

157l e v e l _ s e t = 1
158

159i f x _ l e f t < x_point and x_point < x_r igh t\
160and y_bottom < y_point and y_point < y_up : l e v e l _ s e t = −1
161

162i f x_point == x _ l e f t and y_bottom <= y_point\
163and y_point <= y_up : l e v e l _ s e t = 0
164

165i f x_point == x_r igh t and y_bottom <= y_point\
166and y_point <= y_up : l e v e l _ s e t = 0
167

168i f y_point == y_bottom and x _ l e f t <= x_point\
169and x_point <= x_r igh t : l e v e l _ s e t = 0
170

171i f y_point == y_up and x _ l e f t <= x_point\
172and x_point <= x_r igh t : l e v e l _ s e t = 0
173

174re turn l e v e l _ s e t
175

176###
177

Page 98 Master thesis

178def ge t_Closes t_Po in t (s e l f , x) :
179

180x_point = x [0]
181y_point = x [1]
182

183x _ l e f t = s e l f . x _ l e f t
184x_r igh t = s e l f . x_ r igh t
185y_bottom = s e l f . y_bottom
186y_up = s e l f . y_up
187

188x_ c l o s e s t = [x_point , y_point]
189

190i f x_point <= x _ l e f t : x _ c l o s e s t [0] = x _ l e f t
191i f x_point >= x_r igh t : x _ c l o s e s t [0] = x_r igh t
192

193i f y_point <= y_bottom : x_ c l o s e s t [1] = y_bottom
194i f y_point >= y_up : x _ c l o s e s t [1] = y_up
195

196re turn x_ c l o s e s t
197

198###
199

200def get_Shape_Coordinates (s e l f) :
201

202x _ l e f t = s e l f . x _ l e f t
203x_r igh t = s e l f . x_ r igh t
204y_bottom = s e l f . y_bottom
205y_up = s e l f . y_up
206

207point_coordinates = np . zeros ((4 0 0 , 2) , dtype = f l o a t)
208

209x _ l i s t = np . l in space (x_ l e f t , x_r ight , 100)
210y _ l i s t = np . l in space (y_bottom , y_up , 100)
211

212point_coordinates [0 : 1 0 0 , 0] = x _ l i s t
213point_coordinates [0 : 1 0 0 , 1] = [y_bottom for i in range (100)]
214

215point_coordinates [1 0 0 : 2 0 0 , 0] = x _ l i s t
216point_coordinates [1 0 0 : 2 0 0 , 1] = [y_up for i in range (100)]
217

218point_coordinates [2 0 0 : 3 0 0 , 1] = y _ l i s t
219point_coordinates [2 0 0 : 3 0 0 , 0] = [x _ l e f t fo r i in range (100)]
220

221point_coordinates [3 0 0 : 4 0 0 , 1] = y _ l i s t
222point_coordinates [3 0 0 : 4 0 0 , 0] = [x_r igh t fo r i in range (100)]
223

224re turn point_coordinates
225

226

227###
228###
229

230

231c l a s s Domain_Boundary :
232

233# Defines a c l a s s to implement the square domain boundary
234# At t r i bu t e s : Lx , s i z e of the domain in x−d i r e c t i on
235# Ly , s i z e of the domain in y−d i r e c t i on
236# s ide : ’ l e f t ’ , ’ bottom ’ , ’ r i gh t ’ or ’up ’
237

Fast Octree pseudo-compressible solver for wind engineering application Page 99

238def _ _ i n i t _ _ (s e l f , s ide , Lx , Ly) :
239

240s e l f . s ide = s ide
241s e l f . Lx = Lx
242s e l f . Ly = Ly
243

244###
245

246def get_Leve l_Set (s e l f , x) :
247

248i f s e l f . s ide == ’ l e f t ’ : re turn x [0]
249i f s e l f . s ide == ’ r i gh t ’ : re turn s e l f . Lx − x [0]
250i f s e l f . s ide == ’ bottom ’ : re turn x [1]
251i f s e l f . s ide == ’up ’ : re turn s e l f . Ly − x [1]
252

253###
254

255def ge t_Closes t_Po in t (s e l f , x) :
256

257i f s e l f . s ide == " l e f t " : re turn [0 , x [1]]
258i f s e l f . s ide == " r i gh t " : re turn [s e l f . Lx , x [1]]
259i f s e l f . s ide == " bottom " : re turn [x [0] , 0]
260i f s e l f . s ide == "up" : re turn [x [0] , s e l f . Ly]
261

262###
263

264def get_Normal (s e l f , x) :
265

266i f s e l f . s ide == " l e f t " : re turn np . array ([[−1 . 0] , [0 . 0]])
267i f s e l f . s ide == " r i gh t " : re turn np . array ([[1 . 0] , [0 . 0]])
268i f s e l f . s ide == " bottom " : re turn np . array ([[0 . 0] , [−1 . 0]])
269i f s e l f . s ide == "up" : re turn np . array ([[0 . 0] , [1 . 0]])
270

271

272

273###
274###
275###
276

277# Input of s imulat ion parameters (by user)
278

279###
280# I n l e t v e l o c i t y
281

282# Max i n l e t v e l o c i t y
283v_0 = 10
284

285# Temporal va r i a t i on of the i n l e t v e l o c i t y
286def ge t _u_ in l e t (time , v_0) :
287

288# Time sigmoid i n l e t v e l o c i t y
289

290t_0_1 = 2 . 5
291t_a_1 = 15
292

293s ig_1 = (1 + np . exp(−(time − t_a_1)/t_0_1)) ∗∗(−1)
294

295re turn v_0 ∗ s ig_1
296

297

Page 100 Master thesis

298###
299# Fluid proper t i e s
300

301mu = 0 . 4 # V i s co s i t y
302rho = 1 # Density
303bulk = 1e7 # Compress ib i l i ty / bulk modulus
304

305###
306# Geometric proper t i e s
307

308Lx = 450 # Horizontal s i z e of the square domain
309Ly = 80 # Ve r t i c a l s i z e of the square domain
310

311# Mesh proper t i e s
312nbElemHoriz = 145 # Number of f i n i t e elements in x−d i r e c t i on
313nbElemVert = 35 # Number of f i n i t e elements in y−d i r e c t i on
314

315x_concentrated = [[4 5 , 175] , 2]
316y_concentrated = [[0 , 50] , 2]
317

318###
319# Boundary condi t ions
320

321# L i s t of ob s t a c l e s which are in the f l u id domain
322shapes = [Rectangle_BC (60 , 70 , 0 , 12) ,
323Rectangle_BC (70 , 80 , 0 , 17) ,
324Rectangle_BC (100 , 110 , 0 , 20) ,
325Rectangle_BC (110 , 140 , 0 , 6)]
326

327# Poss ib l e boundary condi t ions : s l ip , no_s l ip
328# Poss ib l e i n l e t : uni form_inlet , pa r abo l i c _ in l e t , l oga r i thmi c_ in l e t ,
329# t a ng en t i a l _ i n l e t
330

331boundaries = [[Domain_Boundary (" l e f t " , Lx , Ly) , " l oga r i t hm i c _ in l e t "] ,
332[Domain_Boundary (" bottom " , Lx , Ly) , " no_s l ip "] ,
333[Domain_Boundary ("up" , Lx , Ly) , " s l i p "] ,
334[Rectangle_BC (60 , 70 , 0 , 12) , " no_s l ip "] ,
335[Rectangle_BC (70 , 80 , 0 , 17) , " no_s l ip "] ,
336[Rectangle_BC (100 , 110 , 0 , 25) , " no_s l ip "] ,
337[Rectangle_BC (110 , 140 , 0 , 6) , " no_s l ip "]]
338

339###
340# I n i t i a l condi t ion
341

342nbPoints = (nbElemHoriz + 1) ∗ (nbElemVert + 1)
343nbElem = nbElemHoriz ∗ nbElemVert
344

345# Define i n i t i a l condi t ions fo r the ve l o c i t y and pressure f i e l d s
346U0 = np . zeros ((2 ∗ nbPoints , 1) , dtype = f l o a t)
347P0 = np . zeros ((nbElem , 1) , dtype = f l o a t)
348

349

350###
351# Time in t eg r a t i on parameters
352

353# Numerical scheme to be used
354integrat ion_method = ’FS ’ # FE = Forward Euler
355# BE = Backward Euler
356# FS = Fra c t i ona l Step
357

Fast Octree pseudo-compressible solver for wind engineering application Page 101

358# Maximum time
359tmax = 450
360

361# Time step to be used
362dt = 0 .01
363

364###
365# Post−process parameter
366

367# Number of p i c tu re s to be post−processed
368n_sample = 10
369

370# Computation of the Reynolds number
371Re = 20 ∗ rho ∗ v_0 / mu
372

373

374

375###
376###
377###
378

379# Pre process of the s imulat ion
380pr in t (’ Pre−process ’)
381

382# Cha r a c t e r i s t i c s i z e of elements (in hor izon ta l and v e r t i c a l d i r e c t i on s)
383h = math . sq r t (Lx ∗ Ly / (nbElemHoriz ∗ nbElemVert))
384

385# Time d i s c r e t i s a t i o n
386nbSteps = i n t (tmax/dt) # Number of time s teps of the s imulat ion
387time = pre_process . g e t _ t ime_d i s c r e t i s a t i on (nbSteps , dt)
388

389u_ in l e t = ge t _u_ in l e t (time , v_0) # conta ins the values of the i n l e t v e l o c i t y
390# a t each time step
391

392# Generation of the s t ruc tured quad r i l a t e r a l mesh over the whole (Lx , Ly)
393# domain without taking in to account the obs t a c l e s
394connec t iv i ty , coordinates , neighbours = \
395pre_process . get_structured_mesh (Lx , Ly , nbElemHoriz , nbElemVert ,\
396x_concentrated , y_concentrated)
397

398

399###
400

401# Looking for inner nodes , boundary nodes and inner elements (see Sh i f t ed
402# Boundary Condition)
403

404# I n i t i a l i s a t i o n of the l i s t s
405inner_nodes = []
406boundary_nodes = []
407inner_elements = []
408nodes_boundaries = []
409

410# Loop over a l l the boundary condi t ions contained in array " boundaries "
411f o r boundary in boundaries :
412

413shape = boundary [0]
414BC_type = boundary [1]
415

416shape_inner_elements , shape_inner_nodes , shape_boundary_nodes = \
417pre_process . ge t _ inne r_ f ea tu re s (shape , connec t iv i ty , coordinates)

Page 102 Master thesis

418

419# We add the inner nodes , boundary nodes and inner elements as soc i a t ed to
420# each obs t a c l e
421inner_nodes += shape_inner_nodes
422boundary_nodes += shape_boundary_nodes
423inner_elements += shape_inner_elements
424

425# To apply the Sh i f t ed Boundary Conditions method , we have to know which
426# obs t a c l e i s a s soc i a t ed to each boundary node
427fo r node in shape_boundary_nodes : nodes_boundaries . append ([node , shape ,\
428BC_type])
429

430# Ju s t to ensure tha t nodes appear only once in each l i s t
431inner_nodes = l i s t (s e t (inner_nodes))
432boundary_nodes = l i s t (s e t (boundary_nodes))
433inner_elements = l i s t (s e t (inner_elements))
434

435# We def ine the s e t of nodes which are not inner ones
436act ive_nodes = l i s t (range (nbPoints))
437f o r node in inner_nodes : act ive_nodes . remove (node)
438

439ac t ive_e lements = l i s t (range (nbElem))
440f o r element_number in inner_elements : ac t ive_e lements . remove (element_number)
441

442# Generate a p i c tu re of the mesh and save i t in the d i r e c to ry
443pre_process . display_mesh (inner_elements , boundary_nodes , connec t iv i ty ,\
444coordinates , shapes , nbElemVert , nbElemHoriz)
445

446

447

448###
449###
450###
451

452# Assembly of the matr ices
453pr in t (’ Beginning mesh assembly ’)
454

455

456# I n i t i a l i s a t i o n
457Kuu = np . zeros ([2 ∗ nbPoints , 2∗ nbPoints] , dtype = f l o a t)
458Muu = np . zeros ([2 ∗ nbPoints , 2∗ nbPoints] , dtype = f l o a t)
459D = np . zeros ([2 ∗ nbPoints , nbElem] , dtype = f l o a t)
460Mpp = np . zeros ([1 , nbElem] , dtype = f l o a t)
461Mpp_inv = np . zeros ([1 , nbElem] , dtype = f l o a t)
462

463M_PI = np . zeros ([1 , nbPoints] , dtype = f l o a t)
464N_DNDx = np . zeros ([nbPoints , nbPoints] , dtype = f l o a t)
465N_DNDy = np . zeros ([nbPoints , nbPoints] , dtype = f l o a t)
466

467

468# Loop over a l l the a c t i v e elements of the mesh
469# Inner elements which have been el iminated during the pre−process part are not
470# taken in to account in the assembly process , as i f they did not e x i s t any
471# more
472

473pr in t (’\tLooping over a c t i v e elements ’)
474

475f o r num_element in ac t ive_e lements :
476

477# Get the four nodes of the given element

Fast Octree pseudo-compressible solver for wind engineering application Page 103

478element = connec t iv i t y [num_element , :]
479

480# Get the g loba l numbers as soc i a t ed with each node of the element
481numNode0 = element [0]
482numNode1 = element [1]
483numNode2 = element [2]
484numNode3 = element [3]
485

486# Get the coordinates of the four nodes
487X0 = coordinates [numNode0]
488X1 = coordinates [numNode1]
489X2 = coordinates [numNode2]
490X3 = coordinates [numNode3]
491

492# Get l o c a l matr ices (see Q1P0 f i n i t e element)
493[MuuElem, KuuElem , DElem , N_DNDx_elem, N_DNDy_elem] =\
494Bbar . get_Loca l_Matr ices (X0 , X1 , X2 , X3 , rho , mu)
495

496surface_element = (X1 [0] − X0 [0]) ∗ (X3 [1] − X0 [1])
497

498###
499# Global matr ices assembly
500

501f o r i in range (4) :
502

503fo r j in range (4) :
504

505numElemI = element [i]
506numElemJ = element [j]
507

508# Assembly of the s t i f f n e s s matrix
509Knode = KuuElem[2∗ i : 2∗ i +2 , 2∗ j : 2∗ j +2]
510Kuu[2∗numElemI : 2∗numElemI+2 , 2∗numElemJ : 2∗numElemJ+2] += Knode
511

512

513# Assembly of the ve l o c i t y mass matrix
514Mnode = MuuElem[2∗ i : 2∗ i +2 , 2∗ j : 2∗ j +2]
515Muu[2∗numElemI : 2 ∗numElemI+2 , 2∗numElemJ : 2 ∗numElemJ+2] += Mnode
516

517

518N_DNDx[numElemI , numElemJ] += N_DNDx_elem[i , j]
519N_DNDy[numElemI , numElemJ] += N_DNDy_elem[i , j]
520

521

522# Assembly of the pressure mass matrix
523Mpp[0 , num_element] = surface_element / bulk
524Mpp_inv [0 , num_element] = bulk / surface_element
525

526

527# Assembly of the gradient/divergence matrix
528f o r i in range (4) :
529

530numNodeI = element [i]
531

532vec = DElem[2∗ i : 2 ∗ i +2]
533

534D[2∗numNodeI : 2∗numNodeI+2 , num_element : num_element + 1] = vec
535

536M_PI [0 , numNodeI] += surface_element / 4 . 0
537

Page 104 Master thesis

538

539###
540# Lump the ve l o c i t y mass matrix
541

542pr in t (’\tLumping matr ices ’)
543

544# I n i t i a l i s a t i o n
545Muu_lumped = np . zeros ((1 , 2 ∗ nbPoints) , dtype = f l o a t)
546Muu_lumped_inv = np . zeros ((1 , 2 ∗ nbPoints) , dtype = f l o a t)
547

548# Lumping
549f o r i in range (2 ∗ nbPoints) :
550

551Muu_lumped[0 , i] = sum(Muu[i , :])
552

553i f Muu_lumped[0 , i] != 0 : Muu_lumped_inv [0 , i] = 1 / Muu_lumped[0 , i]
554

555

556

557###
558# Compute the inverse of M_PI matrix
559

560pr in t (’\tComputing inverse matr ices ’)
561

562# I n i t i a l i s a t i o n
563M_PI_inv = np . zeros ((1 , nbPoints) , dtype = f l o a t)
564

565f o r i in range (nbPoints) :
566

567i f M_PI [0 , i] != 0 : M_PI_inv [0 , i] = 1 / M_PI [0 , i]
568

569

570

571###
572

573# De f in i t i on as sparse matr ices
574

575pr in t (’\ tCrea t ing sparse matr ices ’)
576

577# coo_matr ices
578Kuu = coo_matrix (Kuu, dtype = f l o a t)
579D = coo_matrix (D, dtype = f l o a t)
580N_DNDx = coo_matrix (N_DNDx, dtype = f l o a t)
581N_DNDy = coo_matrix (N_DNDy, dtype = f l o a t)
582

583# Diagonal matr ices
584Mpp = dia_matr ix ((Mpp, 0) , (nbElem , nbElem) , dtype = f l o a t)
585Mpp_inv = dia_matr ix ((Mpp_inv , 0) , (nbElem , nbElem) , dtype = f l o a t)
586Muu_lumped = dia_matr ix ((Muu_lumped , 0) , (2∗ nbPoints , 2∗ nbPoints) ,\
587dtype = f l o a t)
588Muu_lumped_inv = dia_matrix ((Muu_lumped_inv , 0) , (2∗ nbPoints , 2∗ nbPoints) ,\
589dtype = f l o a t)
590M_PI = dia_matr ix ((M_PI , 0) , (nbPoints , nbPoints) , dtype = f l o a t)
591M_PI_inv = dia_matr ix ((M_PI_inv , 0) , (nbPoints , nbPoints) , dtype = f l o a t)
592

593

594

595###
596###
597###

Fast Octree pseudo-compressible solver for wind engineering application Page 105

598# Perform time in t eg r a t i on depending on the numerical scheme the user has
599# defined
600

601solU , solP = \
602so lver . per form_t ime_integrat ion (Muu_lumped , Muu_lumped_inv , Mpp, Mpp_inv , D, Kuu,\
603dt , nbSteps , integration_method , U0 , P0 , M_PI_inv ,\
604N_DNDx, N_DNDy, nodes_boundaries , coordinates ,\
605u_in le t , connec t iv i ty , neighbours)
606

607

608

609###
610###
611###
612# Saving the most important va r i ab l e s
613

614pr in t (’ Beginning post−process ’)
615

616pr in t (’\tSaving matr ices ’)
617

618np . save (’ solU . npy ’ , solU)
619np . save (’ solP . npy ’ , solP)
620np . save (’ connec t iv i t y . npy ’ , connec t iv i t y)
621np . save (’ coordinates . npy ’ , coordinates)
622np . save (’ time . npy ’ , time)
623np . save (’ inner_elements . npy ’ , inner_elements)
624

625# V i sua l i za t i on of so lu t ion
626

627increment = i n t (nbSteps / n_sample)
628

629# Index of time s teps fo r which we are going to post−process the so lu t ion
630sample = [nb for nb in range (nbSteps) i f not nb%increment]
631

632

633s o l _ v o r t i c i t y = np . zeros ((nbElem , len (sample)) , dtype = f l o a t)
634count = 0
635

636pr in t (’\tComputing v o r t i c i t y f i e l d ’)
637

638f o r i in sample :
639

640v o r t i c i t y _ f i e l d = post_process . g e t _Vo r t i c i t y _F i e ld (solU [: , i] ,\
641connec t iv i ty , coordinates)
642

643s o l _ v o r t i c i t y [: , count] = v o r t i c i t y _ f i e l d
644

645count +=1
646

647###
648# To build the pressure sca le , we need to determine the minimum and maximum
649# pressure in the whole s imulat ion
650# Same idea fo r the v o r t i c i t y
651

652max_pressure_ l i s t = [0 fo r i in range (len (sample))]
653min_pressure_ l i s t = [0 fo r i in range (len (sample))]
654max_vo r t i c i t y _ l i s t = [0 fo r i in range (len (sample))]
655min_vo r t i c i t y _ l i s t = [0 fo r i in range (len (sample))]
656count = 0
657

Page 106 Master thesis

658pr in t (’\tDef in ing colour s c a l e ’)
659

660f o r i in sample :
661

662max_pressure_ l i s t [count] = max(solP [: , i])
663min_pressure_ l i s t [count] = min (solP [: , i])
664

665max_vo r t i c i t y _ l i s t [count] = max(s o l _ v o r t i c i t y [: , count])
666min_vo r t i c i t y _ l i s t [count] = min (s o l _ v o r t i c i t y [: , count])
667

668count += 1
669

670min_pressure = min (min_pressure_ l i s t)
671max_pressure = max(max_pressure_ l i s t)
672

673min_vor t i c i ty = min (m in _vo r t i c i t y _ l i s t)
674max_vort i c i ty = max(max_vo r t i c i t y _ l i s t)
675

676pr in t (’\ t\tMax pressure : ’ + s t r (max_pressure))
677pr in t (’\ t\tMin pressure : ’ + s t r (min_pressure))
678

679pr in t (’\ t\tMax v o r t i c i t y : ’ + s t r (max_vort i c i ty))
680pr in t (’\ t\tMin v o r t i c i t y : ’ + s t r (min_vor t i c i ty))
681

682pr in t (’\ tCrea t ing r e su l t s d i r e c t o r i e s ’)
683

684# Creat ion of d i r e c t o r i e s
685os . mkdir (" Pressure ")
686os . mkdir (" Ve loc i ty ")
687os . mkdir (" Vo r t i c i t y ")
688

689count = 0
690

691pr in t (’\ t S to r ing ve loc i ty , pressure and vo r t i c i t y ’)
692

693f o r i in sample :
694

695post_process . ve loc i ty_Quiver (solU [: , i] , coordinates , dt ,\
696tmax , i , shapes , Re , Lx , Ly)
697

698post_process . d isplay_pressure (inner_elements , connec t iv i ty , coordinates ,\
699min_pressure , max_pressure , solP [: , i] , i ,\
700shapes , nbElemVert , nbElemHoriz)
701

702post_process . d i sp l ay_Vor t i c i t y (inner_elements , connec t iv i ty , coordinates ,\
703min_vor t i c i ty , max_vort ic i ty ,\
704s o l _ v o r t i c i t y [: , count] , count , shapes ,\
705nbElemVert , nbElemHoriz)
706

707count += 1

Scripts/Navier_Stokes_v3.py

1# −∗− coding : utf−8 −∗−
2" " "
3Created on Thu Apr 25 12 : 4 1 : 3 6 2019
4

5@author : clement . lemardele
6" " "
7

Fast Octree pseudo-compressible solver for wind engineering application Page 107

8# This module conta ins a l l the func t ions needed for the pre−process of the
9# Navier problems using Q1P0 elements and a s t ruc tured mesh
10

11import numpy as np
12from PIL import Image
13

14

15def create_image (Lx , Ly) :
16

17# Return an empty matrix of given s i z e which wil be converted in to a
18# p i c tu re l a t e r on . The matrix conta ins RGB tuples
19# Lx , Ly = hor izon ta l and v e r t i c a l s i z e of the domain one wants to repre−
20# sent with the p i c tu re
21

22# The l a r g e s t dimension of the domain p i c tu re wi l l inc lude nb_pixe ls p i x e l s
23nb_pixe ls = 1200 # p i xe l s
24

25i f Lx == max(Lx , Ly) : # the l a r g e s t dimension i s Lx
26

27# The image wi l l have nb_pixe ls in the hor izon ta l d i r e c t i on
28image_array = 255 ∗ np . ones ((i n t (Ly/Lx∗ nb_pixe ls) , nb_pixels , 3) ,\
29dtype = in t)
30

31e l s e : # the l a r g e s t dimension i s Ly
32

33# The image wi l l have nb_pixe ls in the v e r t i c a l d i r e c t i on
34image_array = 255 ∗ np . ones ((nb_pixels , i n t (Lx/Ly∗ nb_pixe ls) , 3) ,\
35dtype = in t)
36

37re turn image_array
38

39

40###
41###
42

43def get_mesh_element_picture (nx , ny) :
44

45# Return a RGB matrix represent ing a mesh element
46# nx = number of p i x e l s in the hor izon ta l d i r e c t i on
47# ny = number of p i x e l s in the v e r t i c a l d i r e c t i on s
48# White colour = [255 , 255 , 255] (RGB)
49# Black colour = [0 , 0 , 0] (RGB)
50

51# Creat ion of a " white " matrix with given dimensions nx and ny
52image_array = 255 ∗ np . ones ((ny , nx , 3) , dtype = in t)
53

54# The image wi l l inc lude a 1 p ixe l black border
55# Le f t black border
56image_array [: , 0 : 1] = np . zeros ((ny , 1 , 3) , dtype = i n t)
57# Right black border
58image_array [: , nx − 1 : nx + 1] = np . zeros ((ny , 1 , 3) , dtype = i n t)
59# Up black border
60image_array [0 : 1 , :] = np . zeros ((1 , nx , 3) , dtype = i n t)
61# Bottom black border
62image_array [ny − 1 : ny + 1 , :] = np . zeros ((1 , nx , 3) , dtype = in t)
63

64re turn image_array
65

66

67###

Page 108 Master thesis

68###
69

70

71def c onve r t _ t o _ l i s t (co lor_matr ix) :
72

73# Return a l i s t of the RGB p ixe l s which are contained in co lor_matr ix
74# co lor_matr ix = matrix of RGB p ixe l s
75

76s i z e = color_matr ix . shape
77

78ma t r i x _ l i s t = []
79

80# Loop over the en t i r e matrix co lor_matr ix
81fo r i in range (s i z e [0]) :
82

83f o r j in range (s i z e [1]) :
84

85# For each entry of color_matr ix , we convert i t in to a tuple and
86# add to the l i s t of tuple
87new_tuple = (i n t (co lor_matr ix [i , j , 0]) , \
88i n t (co lor_matr ix [i , j , 1]) ,\
89i n t (co lor_matr ix [i , j , 2]))
90

91ma t r i x _ l i s t . append (new_tuple)
92

93re turn ma t r i x _ l i s t
94

95

96###
97###
98

99def ge t _ in t e r i o r_e l emen t_p i c tu re (nx , ny) :
100

101# Return the p i c tu re of an i n t e r i o r element , i . e . which has been
102# el iminated in the Sh i f t ed Boundary Condition method
103# nx = number of hor izon ta l p i x e l s
104# ny = number of v e r t i c a l p i x e l s
105# Red colour = [255 , 0 , 0]
106

107# Creat ing a new white image
108image_array = 255 ∗ np . ones ((ny , nx , 3) , dtype = in t)
109

110fo r i in range (ny) :
111

112f o r j in range (nx) :
113

114# We se t the p ixe l to red
115image_array [i , j] = [255 , 0 , 0]
116

117# Creat ion of a 1 px black border
118image_array [: , 0 : 1] = np . zeros ((ny , 1 , 3) , dtype = i n t)
119image_array [: , nx − 1 : nx + 1] = np . zeros ((ny , 1 , 3) , dtype = i n t)
120image_array [0 : 1 , :] = np . zeros ((1 , nx , 3) , dtype = i n t)
121image_array [ny − 1 : ny + 1 , :] = np . zeros ((1 , nx , 3) , dtype = in t)
122

123re turn image_array
124

125

126

127def display_mesh (inner_elements , boundary_nodes , connec t iv i ty , coordinates ,\

Fast Octree pseudo-compressible solver for wind engineering application Page 109

128shapes , nbElemVert , nbElemHoriz) :
129

130# Create and save an image of a s t ruc tured mesh of quad r i l a t e r a l elements
131

132# inner_elements = l i s t of elements which have been el iminated during
133# the Sh i f t ed Boundary condi t ions process . The inner elements w i l l be
134# displayed in red
135# boundary_nodes = l i s t of the mesh boundary nodes
136# connec t iv i t y = mesh connec t iv i t y matrix
137# coordinates = mesh coordinates matrix
138# nbElemHoriz = number of elements in the hor izon ta l d i r e c t i on
139# nbElemVert = number of elements in the v e r t i c a l d i r e c t i on
140# resu l t _pa th = path where the mesh p i c ture wi l l be saved
141# shapes = l i s t of shapes to be superimposed
142

143s i ze_coord ina te s = coordinates . shape
144

145nbPoints = s i ze_coord ina te s [0]
146

147Lx = coordinates [nbPoints − 1 , 0]
148Ly = coordinates [nbPoints − 1 , 1]
149

150image_array = create_image (Lx , Ly)
151

152size_image = image_array . shape
153

154# We take a margin so tha t to avoid e r ro r s
155# hor i zon ta l _p i xe l = number of p i x e l s to represent the d i s tance Lx
156# v e r t c i a l _ p i x e l = number of p i x e l s to represent the d i s tance Ly
157hor i zon ta l _p i xe l = size_image [1]
158v e r t i c a l _ p i x e l = size_image [0]
159

160# In the mesh , there are 2 types of elements , each one represented by a
161# given image
162

163count = 0
164pixe l_y = v e r t i c a l _ p i x e l
165

166f o r j in range (nbElemVert) :
167

168pixe l_x = 0
169

170fo r i in range (nbElemHoriz) :
171

172element = connec t iv i t y [count , :]
173

174node_0 = element [0]
175node_2 = element [2]
176

177x0 = coordinates [node_0 , :]
178x2 = coordinates [node_2 , :]
179

180x_A = x0 [0]
181y_A = x0 [1]
182

183x_B = x2 [0]
184y_B = x2 [1]
185

186# Determine the dimensions of the element
187length_x = in t ((x_B − x_A) / Lx ∗ hor i zon ta l _p i xe l)

Page 110 Master thesis

188length_y = in t ((y_B − y_A) / Ly ∗ v e r t i c a l _ p i x e l)
189

190# Once we determine the pos i t i on of the element , we co loca t e i t in
191# the RGB matrix
192

193i f count in inner_elements :
194

195i n t e r i o r_e l emen t_p i c tu re =\
196ge t_ in t e r i o r_e l emen t_p i c tu re (length_x , length_y)
197

198image_array [pixe l_y − length_y : pixel_y ,\
199pixe l_x : p ixe l_x + length_x] \
200= in t e r i o r_e l emen t_p i c tu re
201

202e l s e :
203

204mesh_element_picture =\
205get_mesh_element_picture (length_x , length_y)
206

207image_array [pixe l_y − length_y : pixel_y ,\
208pixe l_x : p ixe l_x + length_x] \
209= mesh_element_picture
210

211pixe l_x += length_x
212

213count += 1
214

215pixe l_y = pixe l_y − length_y
216

217

218# To use the module Image , we need to convert image_array , which i s a
219# matrix , in to a l i s t of tup les
220image_tuple = conve r t _ t o _ l i s t (image_array)
221

222# Creat ion a new pic ture using the module Image
223img = Image . new("RGB" , (size_image [1] , s ize_image [0]))
224

225img . putdata (image_tuple)
226

227# We save in . jpg format the p i c tu re of the mesh in the ind ica ted d i r e c to ry
228img . save ("Mesh . jpg ")
229

230

231###
232###
233

234def g e t _ t ime_d i s c r e t i s a t i on (nbSteps , dt) :
235

236# Return a vec tor conta in ing the l i s t of a l l the d i s c r e t i s ed times
237

238re turn np . l in space (0 , dt ∗nbSteps , nbSteps + 1)
239

240

241###
242###
243

244def get_Geometr ica l_Sui te (x0 , x1 , alpha , num) :
245

246# Return the values of a geometr ica l su i t e between x0 and x1 and reason
247# alpha

Fast Octree pseudo-compressible solver for wind engineering application Page 111

248

249x = x0
250su i t e = [f l o a t (x0)]
251length = x1 − x0
252

253# Determine i n i t i a l i n t e r v a l length
254h = length ∗ (1−alpha) / (1 − alpha ∗∗ (num))
255

256f o r i in range (0 , num−1) :
257

258su i t e . append (x + h ∗ alpha ∗∗ i)
259x += h ∗ alpha ∗∗ i
260

261su i t e . append (f l o a t (x1))
262

263re turn su i t e
264

265

266###
267###
268

269def g e t _X_ l i s t (x_concentrated , nbElemHoriz , Lx) :
270

271# Return the l i s t of the mesh X−coordinates
272# x_concentrated = area of the mesh where f i n i t e elements are concentrated
273# to have more prec i s i on
274# nbElemHoriz = number of f i n i t e elements in hor izon ta l d i r e c t i on
275# Lx = s i z e of the domain in hor izon ta l d i r e c t i on
276

277alpha = 1 . 1
278

279X = []
280

281x0 = x_concentrated [0] [0]
282x1 = x_concentrated [0] [1]
283hx_c = x_concentrated [1]
284

285num = in t ((x1 − x0)/ hx_c)
286po i n t _ l i s t _ c = np . l in space (x0 , x1 , num + 1 , dtype = f l o a t)
287po i n t _ l i s t _ c = l i s t (p o i n t _ l i s t _ c)
288

289X += po i n t _ l i s t _ c
290

291i f x0 != 0 :
292

293n_ l e f t = (nbElemHoriz − num) ∗ (1 + (Lx − x1) / x0) ∗∗(−1)
294n_ l e f t = i n t (n _ l e f t)
295po i n t _ l i s t _ x _ l e f t = get_Geometr ica l_Sui te (0 , x0 , 1/alpha , n _ l e f t)
296X += po i n t _ l i s t _ x _ l e f t
297

298e l s e : n _ l e f t = 0
299

300n_r ight = nbElemHoriz − num − n_ l e f t
301po i n t _ l i s t _ x _ r i gh t = get_Geometr ica l_Sui te (x1 , Lx , 1 . 0 2 , n_r ight)
302

303X += po i n t _ l i s t _ x _ r i gh t
304

305X = l i s t (s e t (X))
306X . so r t ()
307

Page 112 Master thesis

308re turn X
309

310

311###
312###
313

314def g e t _Y_ l i s t (y_concentrated , nbElemVert , Ly) :
315

316# See ge t _X_ l i s t
317

318alpha = 1 . 1
319

320Y = []
321

322y0 = y_concentrated [0] [0]
323y1 = y_concentrated [0] [1]
324hy_c = y_concentrated [1]
325

326num = in t ((y1 − y0)/ hy_c)
327po i n t _ l i s t _ c = np . l in space (y0 , y1 , num + 1 , dtype = f l o a t)
328po i n t _ l i s t _ c = l i s t (p o i n t _ l i s t _ c)
329

330Y += po i n t _ l i s t _ c
331

332i f y0 != 0 :
333

334n_bottom = (nbElemVert − num) ∗ (1 + (Ly − y1) / y0) ∗∗(−1)
335n_bottom = in t (n_bottom)
336point_ l i s t_y_bot tom = get_Geometr ica l_Sui te (0 , y0 , 1/alpha , n_bottom)
337Y += point_ l i s t_y_bot tom
338

339e l s e : n_bottom = 0
340

341n_up = nbElemVert − num − n_bottom
342poin t_ l i s t _y_up = get_Geometr ica l_Sui te (y1 , Ly , alpha , n_up)
343

344Y += poin t_ l i s t _y_up
345

346Y = l i s t (s e t (Y))
347Y . so r t ()
348

349re turn Y
350

351

352###
353###
354

355def get_structured_mesh (Lx , Ly , nbElemHoriz , nbElemVert ,\
356x_concentrated , y_concentrated) :
357

358# Return the connec t iv i t y and coordinates matr ices of a s t ruc tured quadri−
359# l a t e r a l mesh
360# Lx , Ly = hor izon ta l and v e r t i c a l s i z e of the mesh
361# nbElemHoriz , nbElemVert = number of elements in the hor izon ta l and
362# v e r t i c a l d i r e c t i on s
363

364# nbElem = t o t a l number of elements in the mesh
365nbElem = nbElemHoriz ∗ nbElemVert
366

367# nbPoints = t o t a l number of points in the mesh

Fast Octree pseudo-compressible solver for wind engineering application Page 113

368nbPoints = (nbElemHoriz + 1) ∗ (nbElemVert + 1)
369

370X = ge t _X_ l i s t (x_concentrated , nbElemHoriz , Lx)
371Y = ge t _Y_ l i s t (y_concentrated , nbElemVert , Ly)
372

373connec t iv i t y = np . zeros ((nbElem , 4) , dtype = in t)
374coordinates = np . zeros ((nbPoints , 2) , dtype = f l o a t)
375

376i = 0
377

378pr in t (’\tGenerat ing coordinates matrix ’)
379

380f o r j in range (nbElemVert + 1) :
381

382fo r k in range (nbElemHoriz + 1) :
383

384coordinates [i , 0] = X[k]
385coordinates [i , 1] = Y[j]
386

387i = i + 1
388

389i = 0
390node = 0
391

392neighbour_matrix = [[] fo r i in range (nbPoints)]
393

394pr in t (’\tGenerat ing connec t iv i t y matrix ’)
395

396f o r j in range (nbElemVert) :
397

398fo r k in range (nbElemHoriz) :
399

400connec t iv i t y [i , :] = [node , node + 1 , node + nbElemHoriz + 2 ,\
401node + nbElemHoriz + 1]
402

403neighbour_matrix [node] . append (i)
404neighbour_matrix [node + 1] . append (i)
405neighbour_matrix [node + nbElemHoriz + 2] . append (i)
406neighbour_matrix [node + nbElemHoriz + 1] . append (i)
407

408i += 1
409node += 1
410

411node += 1
412

413re turn connec t iv i ty , coordinates , neighbour_matrix
414

415

416###
417###
418

419def ge t_ inne r_ f ea tu re s (shape , connec t iv i ty , coordinates) :
420

421# Return a l i s t of inner_nodes , boundary_nodes and inner_elements fo r a
422# given shape
423# An inner_node i s cha ra c t e r i s ed by a negat ive value of the shape l ev e l
424# s e t funct ion
425# One or more points of an inner element are inner nodes
426# connec t iv i t y = connec t iv i t y matrix of the mesh
427# coordinates = coordinates matrix of the mesh nodes

Page 114 Master thesis

428

429inner_nodes = []
430boundary_nodes = []
431inner_elements = []
432

433nb_node = 0
434

435# Loop over a l l the mesh nodes
436# nb_node represen t s the number of the node we are looping on
437

438fo r node in coordinates :
439

440# I f the l e v e l s e t funct ion i s negative , t h i s i s an inner_node
441i f shape . ge t_Leve l_Set (node) < 0 : inner_nodes . append (nb_node)
442# I f the l e v e l s e t funct ion i s null , t h i s i s a boundary node because
443# the node i s exac t l y on the shape border
444e l i f shape . ge t_Leve l_Set (node) == 0 : boundary_nodes . append (nb_node)
445

446nb_node += 1
447

448nb_element = 0
449

450# Loop over a l l the mesh elements
451# nb_element represen t s the number of the element we are looping on
452

453fo r element in connec t iv i t y :
454

455node_0 = element [0]
456x0 = coordinates [node_0 , :]
457

458node_1 = element [1]
459x1 = coordinates [node_1 , :]
460

461node_2 = element [2]
462x2 = coordinates [node_2 , :]
463

464node_3 = element [3]
465x3 = coordinates [node_3 , :]
466

467i f node_0 in inner_nodes or node_1 in inner_nodes or \
468node_2 in inner_nodes or node_3 in inner_nodes :
469

470inner_elements . append (nb_element)
471

472# We need to s e t new boundary points
473# The points of the elements where the l ev e l s e t funct ion i s
474# s t r i c t l y pos i t i v e are the new boundary point of the mesh
475

476i f shape . ge t_Leve l_Set (x0) > 0 : boundary_nodes . append (node_0)
477i f shape . ge t_Leve l_Set (x1) > 0 : boundary_nodes . append (node_1)
478i f shape . ge t_Leve l_Set (x2) > 0 : boundary_nodes . append (node_2)
479i f shape . ge t_Leve l_Set (x3) > 0 : boundary_nodes . append (node_3)
480

481nb_element += 1
482

483boundary_nodes = l i s t (s e t (boundary_nodes))
484

485re turn inner_elements , inner_nodes , boundary_nodes

Scripts/Pre_process_v6.py

Fast Octree pseudo-compressible solver for wind engineering application Page 115

1# −∗− coding : utf−8 −∗−
2" " "
3Created on Sat Mar 2 15 : 4 8 : 4 2 2019
4

5@author : clement . lemardele
6" " "
7

8import numpy as np
9import math
10

11

12

13def get_C (mu) :
14

15C = np . array ([[2 ∗mu, 0 , 0] ,
16[0 , 2∗mu, 0] ,
17[0 , 0 , mu]])
18

19re turn C
20

21

22###
23###
24

25def get_B (DNDx, J_ inv) :
26

27# Return matrix B
28# DNDx = matrix of shape func t ions de r iva t i ve s
29# J_ inv = inverse of the Jacobian matrix
30

31B = np . zeros ([3 , 8])
32

33f o r i in range (4) :
34

35B[0 , 2∗ i] = DNDx[i , 0] ∗ J_ inv [0 , 0] + DNDx[i , 1] ∗ J_ inv [1 , 0]
36B[1 , 2∗ i +1] = DNDx[i , 0] ∗ J_ inv [0 , 1] + DNDx[i , 1] ∗ J_ inv [1 , 1]
37B[2 , 2∗ i] = B [1 , 2∗ i +1]
38B[2 , 2∗ i +1] = B [0 , 2∗ i]
39

40re turn B
41

42

43###
44###
45

46def get_DNDx(X) :
47

48# Return matrix of shape func t ions de r iva t i ve s
49# X = coordinates of a given point
50

51x = X[0]
52y = X[1]
53

54DNDx = np . array ([[0 . 2 5 ∗ (y−1) , 0 . 2 5 ∗ (x−1)] ,
55[−0.25∗ (y−1) , −0.25∗(x+1)] ,
56[0 . 2 5 ∗ (y+1) , 0 . 2 5 ∗ (x+1)] ,
57[−0.25∗ (y+1) , −0.25∗(x−1)]])
58

59re turn DNDx

Page 116 Master thesis

60

61

62###
63###
64

65def ge t_ J (X0 , X1 , X2 , X3 , X) :
66

67# Return the jacob ian of the i soparametr i c t ransformat ion
68# X0 , X1 , X2 , X3 = coordinates of the 4 nodes of the element
69# X = coordinates of a given point
70

71x0 = X0 [0]
72y0 = X0 [1]
73

74x1 = X1 [0]
75y1 = X1 [1]
76

77x2 = X2 [0]
78y2 = X2 [1]
79

80x3 = X3 [0]
81y3 = X3 [1]
82

83x = X[0]
84y = X[1]
85

86J = np . array ([[. 2 5 ∗ (y ∗ (x0−x1+x2−x3)−x0+x1+x2−x3) ,\
87. 2 5 ∗ (x ∗ (x0−x1+x2−x3)−x0−x1+x2+x3)] ,
88[. 2 5 ∗ (y ∗ (y0−y1+y2−y3)−y0+y1+y2−y3) ,\
89. 2 5 ∗ (x ∗ (y0−y1+y2−y3)−y0−y1+y2+y3)]])
90

91# Compute the inverse of the Jacobian matrix
92

93J_ inv = np . zeros ([2 , 2])
94

95J_ inv [0 , 0] = 1 . 0 / J [0 , 0]
96

97J_ inv [1 , 1] = 1 . 0 / J [1 , 1]
98

99det_ J = J [0 , 0] ∗ J [1 , 1] − J [1 , 0] ∗ J [0 , 1]
100

101re turn det_J , J , J _ inv
102

103

104###
105###
106

107def get_G (DNDx, J_ inv) :
108

109# Return G matrix
110# DNDx = matrix of shape func t ions de r iva t i ve s
111# J_ inv = inverse of the jacob ian matrix
112

113G = np . zeros ([8 , 1])
114

115fo r i in range (0 , 4) :
116

117G[2∗ i , 0] = DNDx[i , 0] ∗ J_ inv [0 , 0] + DNDx[i , 1] ∗ J_ inv [1 , 0]
118G[2∗ i +1 , 0] = DNDx[i , 0] ∗ J_ inv [0 , 1] + DNDx[i , 1] ∗ J_ inv [1 , 1]
119

Fast Octree pseudo-compressible solver for wind engineering application Page 117

120re turn G
121

122

123###
124###
125

126def get_N (X) :
127

128# Return the matrix of shape func t ions N
129# X = coordinates of a given point
130

131x = X[0]
132y = X[1]
133

134N = np . array ([[0 . 2 5 ∗ (x−1) ∗ (y−1) , 0 , −0.25∗(x+1) ∗ (y−1) , 0 ,\
1350 . 2 5 ∗ (x+1) ∗ (y+1) , 0 , −0.25∗(x−1) ∗ (y+1) , 0] ,
136[0 , 0 . 2 5 ∗ (x−1) ∗ (y−1) , 0 , −0.25∗(x+1) ∗ (y−1) ,\
1370 , 0 . 2 5 ∗ (x+1) ∗ (y+1) , 0 , −0.25∗(x−1) ∗ (y+1)]])
138

139re turn N
140

141

142###
143###
144

145def get_Local_Matr ices (X0 , X1 , X2 , X3 , rho , mu) :
146

147# Return the s t i f f n e s s , mass , gradient matr ices of a given element
148# X0 , X1 , X2 , X3 = coordinates of the 4 nodes
149# rho , mu = density , dynamic v i s c o s i t y
150

151# Gauss i n t eg r a t i on points and weights fo r the quadrature of the s t i f f n e s s
152# and mass matr ices
153Xg = np . array ([[−1/math . sq r t (3) , 1/math . sq r t (3) , 1] ,
154[1/math . sq r t (3) , 1/math . sq r t (3) , 1] ,
155[1/math . sq r t (3) , −1/math . sq r t (3) , 1] ,
156[−1/math . sq r t (3) , −1/math . sq r t (3) , 1]])
157

158# In t eg ra t i on s points used for the quadrature of the N_DNDx and N_DNDy
159# matr ices (see Sh i f t ed Boundary Conditions)
160Xref = np . array ([[−1 . 0 , −1.0] ,
161[1 . 0 , −1.0] ,
162[1 . 0 , 1 . 0] ,
163[−1.0 , 1 . 0]])
164

165MuuElem = np . zeros ((8 , 8) , dtype = f l o a t)
166KuuElem = np . zeros ((8 , 8) , dtype = f l o a t)
167DElem = np . zeros ((8 , 1) , dtype = f l o a t)
168

169N_DNDx_elem = np . zeros ((4 , 4) , dtype = f l o a t)
170N_DNDy_elem = np . zeros ((4 , 4) , dtype = f l o a t)
171

172# Quadrature of the s t i f f n e s s , mass and gradient matr ices
173# Loop over the 4 Gauss points
174f o r X in Xg :
175

176DNDx = get_DNDx(X)
177

178det_J , J , J _ inv = ge t_ J (X0 , X1 , X2 , X3 , X [: 2])
179

Page 118 Master thesis

180B = get_B (DNDx, J_ inv)
181N = get_N (X [: 2])
182C = get_C (mu)
183

184matrix1 = np . dot (B . t ranspose () , C)
185KuuElem += np . dot (matrix1 , B) ∗ det_ J ∗ X[2]
186MuuElem += rho ∗ np . dot (N. transpose () , N) ∗ det_ J ∗ X[2]
187

188DElem += get_G (DNDx, J_ inv) ∗ det_ J ∗ X[2]
189

190# Quadrature of the N_DNDx and N_DNDy matr ices
191# Loop over the Xref points
192fo r i in range (4) :
193

194f o r k in range (4) :
195

196DNDx = get_DNDx(Xref [i , :])
197

198det_J , J , J _ inv = ge t_ J (X0 , X1 , X2 , X3 , Xref [i , :])
199

200DNk_D_Xi = DNDx[k , 0]
201DNk_D_eta = DNDx[k , 1]
202

203DNk_Dx = DNk_D_Xi ∗ J_ inv [0 , 0] + DNk_D_eta ∗ J_ inv [1 , 0]
204DNk_Dy = DNk_D_Xi ∗ J_ inv [0 , 1] + DNk_D_eta ∗ J_ inv [1 , 1]
205

206N_DNDx_elem[i , k] = DNk_Dx ∗ det_ J
207N_DNDy_elem[i , k] = DNk_Dy ∗ det_ J
208

209

210re turn MuuElem, KuuElem , DElem , N_DNDx_elem, N_DNDy_elem

Scripts/Element_Bbar_v2.py

1# −∗− coding : utf−8 −∗−
2" " "
3Created on Thu Apr 25 12 : 5 7 : 0 1 2019
4

5@author : clement . lemardele
6" " "
7

8import numpy as np
9import time
10

11

12import Convect ive_solver_v2 as convec t ive_so lver
13import Boundary_condit ion_solver as BC_solver
14

15

16def so lve_con jugate_gradient (A, b , i n i) :
17

18# Solve the l i n e a r system of equat ions Ax = b using the Conjugate Gradient
19# method
20# i n i = i n i t i a l point of the i t e r a t i v e method
21

22# Maximum number of i t e r a t i o n s in the Conjugate Gradient method
23maxiter = 100
24# Tolerance over the re s idua l Ax − b
25t o l = 5e−3
26

Fast Octree pseudo-compressible solver for wind engineering application Page 119

27count = 1
28

29x_0 = i n i
30d_0 = b − A. dot (x_0)
31r_0 = d_0
32

33r e f = np . l i n a l g . norm(r_0)
34

35while count <= maxiter and np . l i n a l g . norm(r_0) >= t o l ∗ r e f :
36

37vec = A. dot (d_0)
38alpha = np . dot (r_0 . t ranspose () , r_0) / np . dot (d_0 . t ranspose () , vec)
39

40x_1 = x_0 + alpha ∗ d_0
41

42r_1 = r_0 − alpha ∗ vec
43

44beta = np . dot (r_1 . t ranspose () , r_1) / np . dot (r_0 . t ranspose () , r_0)
45

46d_1 = r_1 + beta ∗ d_0
47

48r_0 = r_1
49d_0 = d_1
50x_0 = x_1
51

52count +=1
53

54# I f the Conjugate Gradient has not converged in maxiter i t e r a t i o n s
55i f count == maxiter + 1 and np . l i n a l g . norm(r_0) >= t o l ∗ r e f :
56pr in t (’ Conjugate gradient convergence : not achieved ’)
57

58re turn x_0
59

60

61

62###
63###
64

65def perform_t ime_integrat ion (Muu_lumped , Muu_lumped_inv , Mpp, Mpp_inv , D, Kuu,\
66dt , nbSteps , method , U_ini , P_ini , M_PI_inv ,\
67N_DNDx, N_DNDy, nodes_boundaries , coordinates ,\
68u_in le t , connec t iv i ty , neighbours) :
69

70# Perform the time in t eg r a t i on of the problem
71# Returns matr ices solU and solP , which conta ins the nodal values of the
72# ve l o c i t y and pressure a t each time step
73

74size_problem_U = U_ini . shape
75size_problem_P = P_in i . shape
76

77# I n i t i a l i s a t i o n of the in t eg r a t i on
78U0 = U_ini
79P0 = P_in i
80

81# Time i n i t i a l i s a t i o n
82t = 0
83

84solU = np . zeros ([size_problem_U [0] , nbSteps + 1])
85solP = np . zeros ([size_problem_P [0] , nbSteps + 1])
86

Page 120 Master thesis

87coun t_ i t e r a t i on = 0
88

89###
90

91# Forward Euler numerical scheme
92i f method == "FE" :
93

94pr in t (" Beginning Forward Euler time in t eg r a t i on ")
95t 0 = time . time ()
96

97f o r i in range (nbSteps) :
98

99# We compute the nodal values of the approximation
100# of the gradient of U
101PI = BC_solver . get_PI (M_PI_inv , N_DNDx, N_DNDy, U0)
102

103# We apply boundary condi t ions
104DOF = BC_solver . apply_boundary_condition (U0 , PI , nodes_boundaries ,\
105coordinates , u_ in le t , i)
106

107# We s to r e U0 for post−process
108solU [: , i] = U0 [: , 0]
109solP [: , i] = P0 [: , 0]
110

111# Computation of the convect ive term
112U_transport = convec t ive_so lver . t r anspor t (U0 , coordinates , dt ,\
113connec t iv i ty , DOF, neighbours)
114

115# Forward Euler numerical scheme
116vec1 = − np . dot (Kuu, U0) + np . dot (D, P0)
117vec1 = Muu_lumped_inv . dot (vec1)
118U1 = dt ∗ vec1 + U_transport
119

120vec2 = − D. transpose () . dot (U0)
121vec2 = Mpp_inv . dot (vec2)
122P1 = P0 + dt ∗ vec2
123

124t += dt
125

126i f c oun t _ i t e r a t i on == 10000 :
127

128# Ind i ca t e how the s imulat ion i s going on
129pr in t ("Time in t eg r a t i on : %.2 f " % t)
130coun t_ i t e r a t i on = 0
131

132U0 = U1
133P0 = P1
134

135coun t_ i t e r a t i on += 1
136

137PI = BC_solver . get_PI (M_PI_inv , N_DNDx, N_DNDy, U0)
138DOF = BC_solver . apply_boundary_condition (U0 , PI , nodes_boundaries ,\
139coordinates , u_ in le t , nbSteps)
140

141solU [: , nbSteps] = U0 [: , 0]
142solP [: , nbSteps] = P0 [: , 0]
143

144t 1 = time . time ()
145s imulat ion_t ime = t1 − t 0
146

Fast Octree pseudo-compressible solver for wind engineering application Page 121

147pr in t (" Simulat ion time : %.3 f " % simulat ion_t ime)
148

149###
150

151# F ra c t i ona l Step method
152i f method == "FS " :
153

154pr in t (" Beginning F ra c t i ona l Step time in t eg r a t i on ")
155t 0 = time . time ()
156

157U_hat_0 = np . zeros ((size_problem_U [0] , 1) , dtype = f l o a t)
158dP = np . zeros ((size_problem_P [0] , 1) , dtype = f l o a t)
159P1 = np . zeros ((size_problem_P [0] , 1) , dtype = f l o a t)
160

161# Previous computation of use fu l matr ices
162L = Muu_lumped_inv . dot (D)
163L = dt ∗ D. transpose () . dot (L)
164L = 1/dt ∗ Mpp + L
165

166matrix = Muu_lumped_inv . dot (D)
167

168f o r i in range (nbSteps) :
169

170PI = BC_solver . get_PI (M_PI_inv , N_DNDx, N_DNDy, U0)
171DOF = BC_solver . apply_boundary_condition (U0 , PI , nodes_boundaries ,\
172coordinates , u_ in le t , i)
173

174solU [: , i] = U0 [: , 0]
175solP [: , i] = P0 [: , 0]
176

177# Computation of the convect ive term
178U_transport = convec t ive_so lver . t r anspor t (U0 , coordinates , dt ,\
179connec t iv i ty , DOF, neighbours)
180

181# F i r s t equation
182vec1 = − Kuu . dot (U_hat_0) + D. dot (P0)
183vec1 = Muu_lumped_inv . dot (vec1)
184U_hat_1 = dt ∗ vec1 + U_transport
185

186# Second equation
187vec2 = − D. transpose () . dot (U_hat_1)
188dP = solve_con jugate_gradient (L , vec2 , dP)
189

190# Pressure update
191P1 = P0 + dP
192

193# Third equation
194U1 = U_hat_1 + dt ∗ matrix . dot (dP)
195

196t += dt
197

198i f c oun t _ i t e r a t i on == 1000 :
199

200pr in t ("\tTime in t eg r a t i on : %.4 f " % t)
201coun t_ i t e r a t i on = 0
202

203U0 = U1
204U_hat_0 = U_hat_1
205P0 = P1
206

Page 122 Master thesis

207coun t_ i t e r a t i on += 1
208

209PI = BC_solver . get_PI (M_PI_inv , N_DNDx, N_DNDy, U0)
210DOF = BC_solver . apply_boundary_condition (U0 , PI , nodes_boundaries ,\
211coordinates , u_ in le t , nbSteps)
212

213solU [: , nbSteps] = U0 [: , 0]
214solP [: , nbSteps] = P0 [: , 0]
215

216t 1 = time . time ()
217s imulat ion_t ime = t1 − t 0
218pr in t (’\ t\tS imulat ion_t ime : %.3 f ’ % simulat ion_t ime)
219

220

221###
222

223# Backward Euler method
224i f method == "BE" :
225

226pr in t (" Beginning Backward Euler time in t eg r a t i on ")
227t 0 = time . time ()
228

229# Computation of use fu l matr ices
230D_Mpp_inv = D. dot (Mpp_inv)
231L = D_Mpp_inv . dot (D. transpose ())
232

233f o r i in range (nbSteps) :
234

235PI = BC_solver . get_PI (M_PI_inv , N_DNDx, N_DNDy, U0)
236DOF = BC_solver . apply_boundary_condition (U0 , PI , nodes_boundaries ,\
237coordinates , u_ in le t , i)
238

239solU [: , i] = U0 [: , 0]
240solP [: , i] = P0 [: , 0]
241

242U_transport = convec t ive_so lver . t r anspor t (U0 , coordinates , dt ,\
243connec t iv i ty , DOF)
244

245# Update of ve l o c i t y
246vec1 = D. dot (P0) + 1/dt ∗ Muu_lumped . dot (U_transport)
247matrix1 = 1/dt ∗ Muu_lumped + Kuu + dt ∗ L
248U1 = solve_con jugate_gradient (matrix1 , vec1 , U0)
249

250# Update of pressure
251vec2 = D. transpose () . dot (U1)
252vec2 = Mpp_inv . dot (vec2)
253P1 = P0 − dt ∗ vec2
254

255t += dt
256

257i f c oun t _ i t e r a t i on == 100 :
258

259pr in t ("\tTime in t eg r a t i on : %.3 f " % t)
260coun t_ i t e r a t i on = 0
261

262U0 = U1
263P0 = P1
264

265coun t_ i t e r a t i on += 1
266

Fast Octree pseudo-compressible solver for wind engineering application Page 123

267PI = BC_solver . get_PI (M_PI_inv , N_DNDx, N_DNDy, U0)
268DOF = BC_solver . apply_boundary_condition (U0 , PI , nodes_boundaries ,\
269coordinates , u_ in le t , nbSteps)
270

271solU [: , nbSteps] = U0 [: , 0]
272solP [: , nbSteps] = P0 [: , 0]
273

274t 1 = time . time ()
275s imulat ion_t ime = t1 − t 0
276pr in t (’\ t\tS imulat ion time : %.3 f ’ % simulat ion_t ime)
277

278

279re turn solU , solP

Scripts/Solver_Navier_Stokes_v3.py

1# −∗− coding : utf−8 −∗−
2" " "
3Created on Sun Aug 11 16 : 4 0 : 2 9 2019
4

5@author : clement lemardele
6" " "
7

8import numpy as np
9import math
10

11

12def get_PI (M_PI_inv , N_DNDx, N_DNDy, U) :
13

14# Compute the value of the PI matrix a t each point of the mesh
15# See Sh i f t ed Boundary Conditions method
16# Return the nodal values of the ve l o c i t y gradient approximation
17

18size_U = U. shape
19nbNodes = in t (size_U [0] / 2 . 0)
20PI = np . zeros ((nbNodes , 4) , dtype = f l o a t)
21

22even_number = [nb for nb in range (2∗nbNodes) i f not nb % 2]
23odd_number = [nb for nb in range (2∗nbNodes) i f nb % 2]
24

25Ux = U[even_number , :]
26Uy = U[odd_number , :]
27

28PI [: , 0] = M_PI_inv . dot (N_DNDx. dot (Ux)) [: , 0]
29PI [: , 1] = M_PI_inv . dot (N_DNDy. dot (Ux)) [: , 0]
30PI [: , 2] = M_PI_inv . dot (N_DNDx. dot (Uy)) [: , 0]
31PI [: , 3] = M_PI_inv . dot (N_DNDy. dot (Uy)) [: , 0]
32

33re turn PI
34

35###
36###
37

38

39def get_Orthogonal_Vector (vec tor) :
40

41a = vector [0 , 0]
42b = vector [1 , 0]
43

44re turn 1/math . sq r t (a∗∗2 + b ∗∗2) ∗ np . array ([[b] , [−a]])

Page 124 Master thesis

45

46

47###
48###
49

50def apply_boundary_condition (U, PI , nodes_boundaries , coordinates , u_ in le t ,\
51index) :
52

53# Apply the Sh i f t ed Boundary Conditions
54# U = value of ve l o c i t y DOFS at current time step
55# PI = approximation of the gradient of U
56# nodes_boundaries = l i s t of boundary nodes
57# coordinates = coordinates matrix of the mesh nodes
58# u_ in l e t = value of i n l e t flow at current time step
59# index = index of the current time step
60

61s i ze_coord ina te s = coordinates . shape
62nbPoints = s i ze_coord ina te s [0]
63

64DOF = [i fo r i in range (nbPoints)]
65

66Lx = coordinates [nbPoints − 1 , 0]
67Ly = coordinates [nbPoints − 1 , 1]
68

69fo r node_boundary in nodes_boundaries :
70

71x_I = np . zeros ((2 , 1) , dtype = f l o a t)
72x_P = np . zeros ((2 , 1) , dtype = f l o a t)
73

74u_I = np . zeros ((2 , 1) , dtype = f l o a t)
75u_P = np . zeros ((2 , 1) , dtype = f l o a t)
76

77numNode = node_boundary [0]
78geometry = node_boundary [1]
79BC_type = node_boundary [2]
80

81node_coordinate = coordinates [numNode , :]
82

83# We get the c l o s e s t point which i s on the geometry
84c l o s e s t _po in t = geometry . ge t_Closes t_Po in t (node_coordinate)
85

86x_I [: , 0] = node_coordinate
87x_P [: , 0] = c l o s e s t _po in t
88

89# We recons t ruc t the gradient of the ve l o c i t y a t point I
90nabla_U = np . zeros ((2 , 2) , dtype = f l o a t)
91nabla_U [0 , 0] = PI [numNode, 0]
92nabla_U [0 , 1] = PI [numNode, 1]
93nabla_U [1 , 0] = PI [numNode, 2]
94nabla_U [1 , 1] = PI [numNode, 3]
95

96# We apply the boundary condi t ions depending on the type of boundary
97# condi t ions we imposed at the given geometry
98###
99i f BC_type == ’ no_s l ip ’ :
100

101u_P [: , 0] = [0 . 0 , 0 . 0]
102

103u_I = u_P − np . dot (nabla_U , x_P − x_I)
104

Fast Octree pseudo-compressible solver for wind engineering application Page 125

105U[2∗numNode : 2∗numNode + 2 , 0] = u_I [: , 0]
106

107i f numNode in DOF: DOF. remove (numNode)
108

109###
110

111e l i f BC_type == ’ uni form_in le t ’ :
112

113normal = geometry . get_Normal (x_P)
114u_P [: , 0] = − u_ in l e t [index] ∗ normal [: , 0]
115

116u_I = u_P − np . dot (nabla_U , x_P − x_I)
117

118U[2∗numNode : 2∗numNode + 2 , 0] = u_I [: , 0]
119

120i f numNode in DOF: DOF. remove (numNode)
121

122###
123

124e l i f BC_type == ’ pa r abo l i c _ i n l e t ’ :
125

126i f numNode in DOF: DOF. remove (numNode)
127

128i f geometry . s ide == ’ l e f t ’ or geometry . s ide == ’ r i gh t ’ :
129

130normal = geometry . get_Normal (x_P)
131y_c l o s e s t = c l o s e s t _po in t [1]
132

133u_P [: , 0] = − 4 ∗ u_ in l e t [index] / Ly∗∗2 ∗\
134y_c l o s e s t ∗ (Ly − y_c l o s e s t) ∗ normal [: , 0]
135

136u_I = u_P − np . dot (nabla_U , x_P − x_I)
137

138U[2∗numNode : 2∗numNode + 2 , 0] = u_I [: , 0]
139

140i f geometry . s ide == ’ bottom ’ or geometry . s ide == ’up ’ :
141

142normal = geometry . get_Normal (x_P)
143x_ c l o s e s t = c l o s e s t _po in t [0]
144

145u_P [: , 0] = − 4 ∗ u_ in l e t [index] / Lx∗∗2 \
146∗ x_ c l o s e s t ∗ (Lx − x_ c l o s e s t) ∗ normal [: , 0]
147

148u_I = u_P − np . dot (nabla_U , x_P − x_I)
149

150U[2∗numNode : 2∗numNode + 2 , 0] = u_I [: , 0]
151

152###
153

154e l i f BC_type == ’ l oga r i t hm i c _ in l e t ’ :
155

156i f numNode in DOF: DOF. remove (numNode)
157

158i f geometry . s ide == ’ l e f t ’ or geometry . s ide == ’ r i gh t ’ :
159

160normal = geometry . get_Normal (x_P)
161y_c l o s e s t = c l o s e s t _po in t [1]
162

163y_0 = Ly / (math . exp (1) − 1)
164u_P [: , 0] = − u_ in l e t [index] ∗ math . log (1 + y_c l o s e s t/y_0) \

Page 126 Master thesis

165∗ normal [: , 0]
166

167u_I = u_P − np . dot (nabla_U , x_P − x_I)
168

169U[2∗numNode : 2∗numNode + 2 , 0] = u_I [: , 0]
170

171i f geometry . s ide == ’ bottom ’ or geometry . s ide == ’up ’ :
172

173normal = geometry . get_Normal (x_P)
174x_ c l o s e s t = c l o s e s t _po in t [0]
175

176x_0 = Lx / (math . exp (1) − 1)
177u_P [: , 0] = − u_ in l e t [index] ∗ math . log (1 + x_ c l o s e s t/x_0) \
178∗ normal [: , 0]
179

180u_I = u_P − np . dot (nabla_U , x_P − x_I)
181

182U[2∗numNode : 2∗numNode + 2 , 0] = u_I [: , 0]
183

184###
185

186e l i f BC_type == ’ t a ng en t i a l _ i n l e t ’ :
187

188i f numNode in DOF: DOF. remove (numNode)
189

190normal = geometry . get_Normal (x_P)
191orth_normal = get_Orthogonal_Vector (normal)
192

193u_P [: , 0] = 0 . 1 ∗ orth_normal [: , 0]
194

195u_I = u_P − np . dot (nabla_U , x_P − x_I)
196

197U[2∗numNode : 2∗numNode + 2 , 0] = u_I [: , 0]
198

199###
200

201e l i f BC_type == ’ s l i p ’ :
202

203i f geometry . s ide == ’ l e f t ’ or geometry . s ide == ’ r i gh t ’ :
204U[2∗numNode, 0] = 0 . 0
205

206e l i f geometry . s ide == ’ bottom ’ or geometry . s ide == ’up ’ :
207U[2∗numNode + 1 , 0] = 0 . 0
208

209###
210

211re turn DOF

Scripts/Boundary_condition_solver.py

1# −∗− coding : utf−8 −∗−
2" " "
3Created on Sun Aug 11 16 : 3 4 : 2 5 2019
4

5@author : clement lemardele
6" " "
7

8def i s _ In (x_P , element , coordinates) :
9

10# Return True i f the point x_P i s within a given element

Fast Octree pseudo-compressible solver for wind engineering application Page 127

11# Otherwise re turn Fa l se
12

13x = x_P [0]
14y = x_P [1]
15

16node_0 = element [0]
17node_2 = element [2]
18

19x0 = coordinates [node_0 , :]
20x2 = coordinates [node_2 , :]
21

22x_A = x0 [0]
23y_A = x0 [1]
24

25x_B = x2 [0]
26y_B = x2 [1]
27

28t e s t = Fa l se
29

30i f x_A <= x and x <= x_B and y_A <= y and y <= y_B : t e s t = True
31

32re turn t e s t
33

34

35###
36###
37

38

39def get_Element_Number (x_P , num_node , coordinates , connec t iv i ty , neighbours) :
40

41# Return the number of the element where the point x_P i s s i tua t ed
42

43e l emen t _ l i s t = neighbours [num_node]
44found_element = e l emen t_ l i s t [0]
45

46f o r num_element in e l emen t_ l i s t :
47

48element = connec t iv i t y [num_element , :]
49

50i f i s _ I n (x_P , element , coordinates) == True : found_element = num_element
51

52re turn found_element
53

54

55###
56###
57

58

59def ge t _Ve lo c i t y_ In t e rpo l a t i on (U, x_point , connec t iv i ty , num_element ,\
60coordinates) :
61

62# Return the value of the ve l o c i t y a t point x_point , by doing the
63# in t e rpo l a t i on in the element num_element
64# U = nodal values of the ve l o c i t y f i e l d
65# x_point = coordinates of a given point
66# num_element = number of the element where we are doing the in t e rpo l a t i on
67# connec t iv i t y = connec t iv i t y matrix of the mesh
68# coordinates coordinates matrix of the mesh
69

70x = x_point [0]

Page 128 Master thesis

71y = x_point [1]
72

73# We get the nodes of the element
74element = connec t iv i t y [num_element , :]
75

76node_0 = element [0]
77node_1 = element [1]
78node_2 = element [2]
79node_3 = element [3]
80

81x0 = coordinates [node_0 , :]
82x1 = coordinates [node_1 , :]
83x3 = coordinates [node_3 , :]
84

85x_A = x0 [0]
86x_B = x1 [0]
87y_A = x0 [1]
88y_B = x3 [1]
89

90u_0 = U[2∗ node_0 : 2∗node_0 + 2 , :]
91u_1 = U[2∗ node_1 : 2∗node_1 + 2 , :]
92u_2 = U[2∗ node_2 : 2∗node_2 + 2 , :]
93u_3 = U[2∗ node_3 : 2∗node_3 + 2 , :]
94

95N0 = (x − x_B) ∗ (y − y_B) / (x_A − x_B) / (y_A − y_B)
96N1 = (x − x_A) ∗ (y − y_B) / (x_B − x_A) / (y_A − y_B)
97N2 = (x − x_A) ∗ (y − y_A) / (x_B − x_A) / (y_B − y_A)
98N3 = (x − x_B) ∗ (y − y_A) / (x_A − x_B) / (y_B − y_A)
99

100# In t e rpo l a t i on using shape func t ions
101

102re turn N0 ∗ u_0 + N1 ∗ u_1 + N2 ∗ u_2 + N3 ∗ u_3
103

104

105###
106###
107

108

109def t ranspor t (U, coordinates , dt , connec t iv i ty , DOF, neighbours) :
110

111# Return the nodal values of the purely−convect ive problem so lu t ion at
112# fol lowing time step
113

114# U = nodal values of the current ve l o c i t y f i e l d
115# coordinates = coordinates matrix of the mesh
116# dt = time step
117# connec t iv i t y = connec t iv i t y matrix of the mesh
118# DOF = the problem degrees of freedom
119# neighbours = matrix conta in ing a l l the elements which conta in a given
120# node
121

122# I n i t i a l i s a t i o n
123U_hat_1 = U
124

125# F i r s t s tep forward
126f o r i in DOF:
127

128x_node = coordinates [i , :]
129u_node = U[2∗ i : 2∗ i +2 , 0]
130

Fast Octree pseudo-compressible solver for wind engineering application Page 129

131x_former = x_node − dt ∗ u_node
132

133# Get the number of the element where the f l u id p a r t i c l e was
134former_element = get_Element_Number (x_former , i , coordinates ,\
135connec t iv i ty , neighbours)
136

137# In t e rpo l a t e ve l o c i t y
138u_hat_node_1 = ge t _Ve lo c i t y_ In t e rpo l a t i on (U, x_former , connec t iv i ty ,\
139former_element , coordinates)
140

141U_hat_1 [2∗ i : 2∗ i + 2] = u_hat_node_1
142

143

144U_hat_0 = U
145

146# Backward step
147f o r i in DOF:
148

149x_node = coordinates [i , :]
150

151x_future = x_node + dt ∗ U_hat_1 [2∗ i : 2∗ i +2 , 0]
152

153future_element = get_Element_Number (x_future , i , coordinates ,\
154connec t iv i ty , neighbours)
155

156u_hat_node_0 = ge t _Ve lo c i t y_ In t e rpo l a t i on (U_hat_1 , x_future ,\
157connec t iv i ty , future_element , coordinates)
158

159U_hat_0 [2∗ i : 2∗ i + 2] = u_hat_node_0
160

161# Correc t ion and compensation
162U_hat_hat = U + 0 . 5 ∗ (U − U_hat_0)
163

164U_1 = U
165

166# Second forward step
167f o r i in DOF:
168

169x_node = coordinates [i , :]
170

171x_former = x_node − dt ∗ U_hat_hat [2∗ i : 2∗ i + 2 , 0]
172

173former_element = get_Element_Number (x_former , i , coordinates ,\
174connec t iv i ty , neighbours)
175

176u_node_1 = ge t _Ve lo c i t y_ In t e rpo l a t i on (U_hat_hat , x_former ,\
177connec t iv i ty , former_element , coordinates)
178

179U_1[2∗ i : 2∗ i + 2] = u_node_1
180

181re turn U_1

Scripts/Convective_solver_v2.py

1# −∗− coding : utf−8 −∗−
2" " "
3Created on Thu Apr 25 12 : 4 4 : 0 4 2019
4

5@author : clement . lemardele
6" " "

Page 130 Master thesis

7

8# This module conta ins a l l the func t ions needed for the post−process of the
9# so lu t ion
10

11from PIL import Image
12import numpy as np
13import matp lo t l ib . pyplot as p l t
14import math
15

16

17

18def compute_max_norm (U) :
19

20# U = (u_1 v_1 u_2 v_2 . . . u_N v_N)
21# (u_1 v_1) fo r ins tance i s the ve l o c i t y of mesh node 1
22# Return the maximum ve lo c i t y norm for a l l mesh nodes
23

24nbPoints = i n t (len (U) / 2)
25Unorm = [0 for i in range (nbPoints)]
26

27fo r i in range (nbPoints) :
28

29Unorm[i] = math . sq r t (U[2∗ i]∗∗2 + U[2∗ i + 1] ∗ ∗2)
30

31re turn max(Unorm)
32

33

34###
35###
36

37def create_image (Lx , Ly) :
38

39# See the Pre−process module fo r more commentary
40

41nb_pixe ls = 1200
42

43i f Lx == max(Lx , Ly) :
44

45image_array = 255 ∗ np . ones ((i n t (Ly/Lx∗ nb_pixe ls) , nb_pixels , 3))
46

47e l s e :
48

49image_array = 255 ∗ np . ones ((nb_pixels , i n t (Lx/Ly∗ nb_pixe ls) , 3))
50

51

52re turn image_array
53

54

55###
56###
57

58def get_e lement_pic ture (nx , ny , colour) :
59

60# Return a RGB matrix corresponding to a rec tangular element of the
61# given colour
62# nx , ny = number of hor izon ta l and v e r t i c a l p i x e l s
63

64image_array = np . ones ((ny , nx , 3) , dtype = i n t)
65

66fo r i in range (ny) :

Fast Octree pseudo-compressible solver for wind engineering application Page 131

67

68fo r j in range (nx) :
69

70image_array [i , j] = colour
71

72re turn image_array
73

74

75###
76###
77

78def ge t_pressure_co lor (min_pressure , max_pressure , element_pressure) :
79

80# Return the colour of given element_pressure
81# Convert a pressure in to a colour using the fol lowing code
82# Blue colour = min_pressure
83# Red colour = max_pressure
84

85s c a l e = (element_pressure − min_pressure) / (max_pressure − min_pressure)
86

87i f s c a l e <= 0 . 2 5 :
88RGB = np . array ([0 , i n t (s c a l e /0.25 ∗ 255) , 2 55])
89

90e l i f 0 . 25 < s ca l e <= 0 . 5 :
91RGB = np . array ([0 . , 255 , i n t (255−(s c a l e − 0 . 2 5) /0.25 ∗ 255)])
92

93e l i f 0 . 5 < s c a l e <= 0 . 7 5 :
94RGB = np . array ([i n t ((s c a l e − 0 . 5) /0.25 ∗ 255) , 255 , 0 .])
95

96e l s e :
97RGB = np . array ([2 5 5 , i n t (255 − (s c a l e − 0 . 7 5) /0.25 ∗ 255) , 0 .])
98

99re turn RGB
100

101

102###
103###
104

105def c onve r t _ t o _ l i s t (co lor_matr ix) :
106

107s i z e = color_matr ix . shape
108

109ma t r i x _ l i s t = []
110

111f o r i in range (s i z e [0]) :
112

113fo r j in range (s i z e [1]) :
114

115new_tuple = (i n t (co lor_matr ix [i , j , 0]) , \
116i n t (co lor_matr ix [i , j , 1]) ,\
117i n t (co lor_matr ix [i , j , 2]))
118

119ma t r i x _ l i s t . append (new_tuple)
120

121re turn ma t r i x _ l i s t
122

123

124###
125###
126

Page 132 Master thesis

127def ge t_co lo r (RGB) :
128

129# Return the corresponding colour of a RGB p ixe l
130# White = [255 , 255 , 255]
131# Black = [0 , 0 , 0]
132# Red = [255 , 0 , 0]
133

134i f RGB[0] == 255 and RGB[1] == 255 and RGB[2] == 255 :
135re turn " white "
136e l i f RGB[0] == 0 and RGB[1] == 0 and RGB[2] == 0 :
137re turn " black "
138e l i f RGB[0] == 255 and RGB[1] == 0 and RGB[2] == 0 :
139re turn " red "
140e l s e :
141re turn " undefined_colour "
142

143###
144###
145

146def display_pressure (inner_elements , connec t iv i ty , coordinates , min_pressure ,\
147max_pressure , pressure , index , shapes , nbElemVert , nbElemHoriz) :
148

149s i ze_coord ina te s = coordinates . shape
150

151nbPoints = s i ze_coord ina te s [0]
152

153Lx = coordinates [nbPoints − 1 , 0]
154Ly = coordinates [nbPoints − 1 , 1]
155

156image_array = create_image (Lx , Ly)
157

158size_image = image_array . shape
159

160hor i zon ta l _p i xe l = size_image [1]
161v e r t i c a l _ p i x e l = size_image [0]
162

163count = 0
164pixe l_y = v e r t i c a l _ p i x e l
165

166fo r j in range (nbElemVert) :
167

168pixe l_x = 0
169

170f o r i in range (nbElemHoriz) :
171

172element = connec t iv i t y [count , :]
173

174node_0 = element [0]
175node_2 = element [2]
176

177x0 = coordinates [node_0 , :]
178x2 = coordinates [node_2 , :]
179

180x_A = x0 [0]
181y_A = x0 [1]
182

183x_B = x2 [0]
184y_B = x2 [1]
185

186length_x = in t ((x_B − x_A) / Lx ∗ hor i zon ta l _p i xe l)

Fast Octree pseudo-compressible solver for wind engineering application Page 133

187length_y = in t ((y_B − y_A) / Ly ∗ v e r t i c a l _ p i x e l)
188

189i f count not in inner_elements :
190

191# We convert the value of the pressure in to a colour
192element_color = ge t_pressure_co lor (min_pressure , max_pressure ,\
193pressure [count])
194

195# We get the corresponding coloured rec t ang l e
196element_pic ture =\
197get_e lement_pic ture (length_x , length_y , e lement_color)
198

199# We put i t in the p i c tu re matrix
200image_array [p ixe l_y − length_y : pixel_y ,\
201pixe l_x : p ixe l_x + length_x] \
202= element_pic ture
203

204count += 1
205pixe l_x += length_x
206

207pixe l_y = pixe l_y − length_y
208

209image_tuple = conve r t _ t o _ l i s t (image_array)
210

211img = Image . new("RGB" , (size_image [1] , s ize_image [0]))
212

213img . putdata (image_tuple)
214img . save (" Pressure/Pressure_ t " + s t r (index) + " . jpg ")
215img . c l o se ()
216

217

218###
219###
220

221

222def ve loc i ty_Quiver (U, coordinates , dt , tmax , index , shapes , Re , Lx , Ly) :
223

224# Save the quiver p lo t of the ve l o c i t y f i e l d U
225

226nb_DOF = len (U)
227

228even = [nb for nb in range (nb_DOF) i f not nb%2]
229odd = [nb for nb in range (nb_DOF) i f nb%2]
230

231Ux = U[even]
232Uy = U[odd]
233

234p l t . f i gure (f i g s i z e = (20 , Ly / Lx ∗ 20))
235ax = p l t . gca ()
236ax . quiver (coordinates [: , 0] , coordinates [: , 1] , Ux , Uy, s c a l e = 300)
237

238f o r shape in shapes :
239

240shape_points = shape . get_Shape_Coordinates ()
241

242X = shape_points [: , 0]
243Y = shape_points [: , 1]
244

245p l t . s c a t t e r (X , Y , 1)
246

Page 134 Master thesis

247p l t . t i t l e (’Re = ’ + s t r (Re) + ’ , t = ’ + s t r (round (dt ∗ index , 1)))
248

249p l t . s ave f ig (’ Ve loc i ty/Ve loc i t y_ t ’ + s t r (index) + ’ . jpg ’)
250

251p l t . c l o se ()
252

253

254###
255###
256

257

258def ge t _Vo r t i c i t y (x , x0 , x1 , x2 , x3 , u0 , u1 , u2 , u3) :
259

260# Return the v o r t i c i t y a t point x
261# x0 , x1 , x2 , x3 : coordinates of the element nodes
262# u0 , u1 , u2 , u3 : nodal values of the ve l o c i t y f i e l d a t point x0 , x1 , x2
263# and x3
264

265x_P = x [0]
266y_P = x [1]
267

268x_A = x0 [0]
269x_B = x1 [0]
270y_A = x0 [1]
271y_B = x3 [1]
272

273# Compute the shape func t ions de r iva t i ve s
274dN0_dx = (y_P − y_B) / (x_A − x_B) / (y_A − y_B)
275dN0_dy = (x_P − x_B) / (x_A − x_B) / (y_A − y_B)
276

277dN1_dx = (y_P − y_B) / (x_B − x_A) / (y_A − y_B)
278dN1_dy = (x_P − x_A) / (x_B − x_A) / (y_A − y_B)
279

280dN2_dx = (y_P − y_A) / (x_B − x_A) / (y_B − y_A)
281dN2_dy = (x_P − x_A) / (x_B − x_A) / (y_B − y_A)
282

283dN3_dx = (y_P − y_A) / (x_A − x_B) / (y_B − y_A)
284dN3_dy = (x_P − x_B) / (x_A − x_B) / (y_B − y_A)
285

286dv_dx = u0 [1] ∗ dN0_dx + u1 [1] ∗ dN1_dx + u2 [1] ∗ dN2_dx + u3 [1] ∗ dN3_dx
287du_dy = u0 [0] ∗ dN0_dy + u1 [0] ∗ dN1_dy + u2 [0] ∗ dN2_dy + u3 [0] ∗ dN3_dy
288

289re turn dv_dx − du_dy
290

291

292###
293###
294

295

296def ge t _Vo r t i c i t y _F i e ld (U, connec t iv i ty , coordinates) :
297

298# Return the v o r t i c i t y f i e l d computed a f t e r a given ve l o c i t y f i e l d U
299

300s i z e_ connec t i v i t y = connec t iv i t y . shape
301nbElem = s i z e_ connec t i v i t y [0]
302

303v o r t i c i t y _ f i e l d = [0 fo r i in range (nbElem)]
304

305fo r i in range (nbElem) :
306

Fast Octree pseudo-compressible solver for wind engineering application Page 135

307element = connec t iv i t y [i , :]
308

309node_0 = element [0]
310node_1 = element [1]
311node_2 = element [2]
312node_3 = element [3]
313

314x0 = coordinates [node_0 , :]
315x1 = coordinates [node_1 , :]
316x2 = coordinates [node_2 , :]
317x3 = coordinates [node_3 , :]
318

319u0 = U[2∗ node_0 : 2∗node_0 + 2]
320u1 = U[2∗ node_1 : 2∗node_1 + 2]
321u2 = U[2∗ node_2 : 2∗node_2 + 2]
322u3 = U[2∗ node_3 : 2∗node_3 + 2]
323

324# Coordinates of the element cen te r
325x_center = 0 .25 ∗ x0 + 0 .25 ∗ x1 + 0 .25 ∗ x2 + 0 .25 ∗ x3
326

327# Get the value of the v o r t i c i t y in the cen ter of the element
328vo r t i c i t y = ge t _Vo r t i c i t y (x_center , x0 , x1 , x2 , x3 , u0 , u1 , u2 , u3)
329

330v o r t i c i t y _ f i e l d [i] = abs (v o r t i c i t y)
331

332re turn v o r t i c i t y _ f i e l d
333

334

335###
336###
337

338

339def d i sp l ay_Vor t i c i t y (inner_elements , connec t iv i ty , coordinates , min_vor t i c i ty ,\
340max_vort ic i ty , v o r t i c i t y , index , shapes , nbElemVert ,

nbElemHoriz) :
341

342s i ze_coord ina te s = coordinates . shape
343

344nbPoints = s i ze_coord ina te s [0]
345

346Lx = coordinates [nbPoints − 1 , 0]
347Ly = coordinates [nbPoints − 1 , 1]
348

349image_array = create_image (Lx , Ly)
350

351size_image = image_array . shape
352

353hor i zon ta l _p i xe l = size_image [1]
354v e r t i c a l _ p i x e l = size_image [0]
355

356count = 0
357pixe l_y = v e r t i c a l _ p i x e l
358

359f o r j in range (nbElemVert) :
360

361pixe l_x = 0
362

363fo r i in range (nbElemHoriz) :
364

365element = connec t iv i t y [count , :]

Page 136 Master thesis

366

367node_0 = element [0]
368node_2 = element [2]
369

370x0 = coordinates [node_0 , :]
371x2 = coordinates [node_2 , :]
372

373x_A = x0 [0]
374y_A = x0 [1]
375

376x_B = x2 [0]
377y_B = x2 [1]
378

379length_x = in t ((x_B − x_A) / Lx ∗ hor i zon ta l _p i xe l)
380length_y = in t ((y_B − y_A) / Ly ∗ v e r t i c a l _ p i x e l)
381

382i f count not in inner_elements :
383

384# We convert the value of the pressure in to a colour
385element_color =\
386ge t_pressure_co lor (min_vor t i c i ty , max_vort ic i ty ,\
387vo r t i c i t y [count])
388

389# We get the corresponding coloured rec t ang l e
390element_pic ture =\
391get_e lement_pic ture (length_x , length_y , e lement_color)
392

393# We put i t in the p i c tu re matrix
394image_array [pixe l_y − length_y : pixel_y ,\
395pixe l_x : p ixe l_x + length_x] \
396= element_pic ture
397

398count += 1
399pixe l_x += length_x
400

401pixe l_y = pixe l_y − length_y
402

403image_tuple = conve r t _ t o _ l i s t (image_array)
404

405img = Image . new("RGB" , (size_image [1] , s ize_image [0]))
406

407img . putdata (image_tuple)
408img . save (" Vo r t i c i t y/Vo r t i c i t y _ t " + s t r (index) + " . jpg ")
409img . c l o se ()
410

411

412###
413###
414

415

416def f i nd_ In t e rva l (x , data) :
417

418n_data = len (data)
419t e s t = Fa l se
420index = 0
421

422while t e s t == Fa l se and index < n_data − 1 :
423

424i f data [index] <= x and x <= data [index + 1] :
425

Fast Octree pseudo-compressible solver for wind engineering application Page 137

426t e s t = True
427

428index += 1
429

430index = index − 1
431

432i f t e s t == Fa l se : index += 1
433

434i f index == n_data − 1 :
435

436i f x < data [0] : re turn −1
437i f x > data [−1] : re turn index
438

439e l s e : re turn index
440

441

442###
443###
444

445

446def get_Element_Number (x_node , coordinates) :
447

448# Return the number of the element where the point x_node i s s i tua t ed
449

450x = x_node [0]
451y = x_node [1]
452

453X_ l i s t = coordinates [: , 0]
454X_ l i s t = l i s t (s e t (X _ l i s t))
455X_ l i s t . s o r t ()
456

457Y_ l i s t = coordinates [: , 1]
458Y_ l i s t = l i s t (s e t (Y _ l i s t))
459Y_ l i s t . s o r t ()
460

461nbElemHoriz = len (X _ l i s t) − 1
462nbElemVert = len (Y _ l i s t) − 1
463

464num_column = f ind_ In t e rva l (x , X _ l i s t)
465num_line = f i nd_ In t e rva l (y , Y _ l i s t)
466

467i f num_column == −1: num_column = 0
468i f num_line == −1: num_line = 0
469

470i f num_column == nbElemHoriz : num_column = num_column − 1
471i f num_line == nbElemVert : num_line = num_line − 1
472

473element_number = num_line ∗ nbElemHoriz + num_column
474

475re turn element_number
476

477

478###
479###
480

481

482def get_Var iable_t ime (var iab le , solU , solP , connec t iv i ty , coordinates ,\
483x , y) :
484

485# Return the value of a given var i ab l e a t point (x , y) as a funct ion of

Page 138 Master thesis

486# time
487# va r i ab l e = pressure , x_ve loc i ty (hor izon ta l component of the ve l o c i t y) ,
488# y_ve loc i ty (v e r t i c a l component of the ve l o c i t y)
489

490num_element = get_Element_Number ([x , y] , coordinates)
491

492i f va r i ab l e == ’ pressure ’ :
493

494pressure_point = solP [num_element , :]
495

496re turn pressure_point
497

498i f va r i ab l e == ’ x_ve loc i ty ’ :
499

500element = connec t iv i t y [num_element , :]
501

502node_0 = element [0]
503node_1 = element [1]
504node_2 = element [2]
505node_3 = element [3]
506

507x0 = coordinates [node_0 , :]
508x1 = coordinates [node_1 , :]
509x3 = coordinates [node_3 , :]
510

511x_A = x0 [0]
512x_B = x1 [0]
513y_A = x0 [1]
514y_B = x3 [1]
515

516u_0 = solU [2∗node_0 , :]
517u_1 = solU [2∗node_1 , :]
518u_2 = solU [2∗node_2 , :]
519u_3 = solU [2∗node_3 , :]
520

521N0 = (x − x_B) ∗ (y − y_B) / (x_A − x_B) / (y_A − y_B)
522N1 = (x − x_A) ∗ (y − y_B) / (x_B − x_A) / (y_A − y_B)
523N2 = (x − x_A) ∗ (y − y_A) / (x_B − x_A) / (y_B − y_A)
524N3 = (x − x_B) ∗ (y − y_A) / (x_A − x_B) / (y_B − y_A)
525

526re turn N0 ∗ u_0 + N1 ∗ u_1 + N2 ∗ u_2 + N3 ∗ u_3
527

528i f va r i ab l e == ’ y_ve loc i ty ’ :
529

530element = connec t iv i t y [num_element , :]
531

532node_0 = element [0]
533node_1 = element [1]
534node_2 = element [2]
535node_3 = element [3]
536

537x0 = coordinates [node_0 , :]
538x1 = coordinates [node_1 , :]
539x3 = coordinates [node_3 , :]
540

541x_A = x0 [0]
542x_B = x1 [0]
543y_A = x0 [1]
544y_B = x3 [1]
545

Fast Octree pseudo-compressible solver for wind engineering application Page 139

546v_0 = solU [2∗ node_0 + 1 , :]
547v_1 = solU [2∗ node_1 + 1 , :]
548v_2 = solU [2∗ node_2 + 1 , :]
549v_3 = solU [2∗ node_3 + 1 , :]
550

551N0 = (x − x_B) ∗ (y − y_B) / (x_A − x_B) / (y_A − y_B)
552N1 = (x − x_A) ∗ (y − y_B) / (x_B − x_A) / (y_A − y_B)
553N2 = (x − x_A) ∗ (y − y_A) / (x_B − x_A) / (y_B − y_A)
554N3 = (x − x_B) ∗ (y − y_A) / (x_A − x_B) / (y_B − y_A)
555

556re turn N0 ∗ v_0 + N1 ∗ v_1 + N2 ∗ v_2 + N3 ∗ v_3

Scripts/Post_process_v7.py

	Solving very large engineering problems
	The Finite Element Method
	The modelling process
	The Proof of Concept (PoC)
	The Q1P0 finite element
	The Fractional Step Method

	Linear algebra preliminaries
	Matrix operations computational cost
	Matrices multiplication computational cost
	Matrices summation computational cost

	Solving linear systems of equations
	Symmetric positive definite matrix
	Iterative methods for the resolution of linear systems of equations
	The Steepest Descent method
	The Conjugate Gradient method

	Norm of a solution

	Formulation
	Navier-Stokes problem
	Weak form
	Voigt notation

	Q1P0 Galerkin discretisation
	Global discretisation
	Element-based discretisation
	Isoparametric element integration
	Numerical expression
	Assembly of a B-bar elements mesh
	Assembly of the stiffness and mass matrices
	Discrete gradient operator assembly
	Pressure mass matrix assembly
	Global assembly

	Implementation optimisation

	Back and Forth Error Compensation and Correction method
	First step forward
	Backward step
	Error compensation
	Second forward step

	Time integration of equations
	Forward Euler (FE)
	Equations of Forward Euler
	Computational cost of the Forward Euler scheme
	Stability of the Forward Euler scheme

	Backward Euler (BE)
	Fractional step (FS) splitting
	Fractional step equations
	Fractional step computational cost
	Fractional step stability

	Summary

	The Shifted Boundary method
	Complex geometries and structured meshes. Implicit geometrey representation
	Detect inner nodes
	Detect inner elements

	Shifting the boundary conditions imposition
	Closest point search
	Velocity gradient approximation
	Integrals computation
	Apply boundary conditions

	Resolution of 2 calibration problems
	Viscosity-driven problem / Couette flow
	Compressibility-driven problem

	Structure of the Python script
	Code structure
	I/O (Input/Output)
	Input
	Output

	Inputs pre-process
	Mesh generation
	Inlet velocity

	Implementation summary
	Solution post-process
	Pressure post-process

	Practical case studies
	Couette flow problem
	Simulation convergence

	The incompressible limit
	Flow around a cylinder
	Low Reynolds flow
	Higher Reynolds flow

	Impact of a city over the wind field

	Conclusion and perspectives
	Appendix

