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Abstract In this work, a novel approach is presented to solve the trajectory tracking problem
for autonomous vehicles. This method is based on the use of a cascade control where the external
loop solves the position control using a novel Linear Parameter Varying - Model Predictive
Control (LPV-MPC) approach and the internal loop is in charge of the dynamic control of
the vehicle using a LPV - Linear Quadratic Regulator technique designed via Linear Matrix
Inequalities (LPV-LMI-LQR). Both techniques use an LPV representation of the kinematic
and dynamic models of the vehicle. The main contribution of the LPV-MPC technique is its
ability to calculate solutions very close to those obtained by the non-linear version but reducing
significantly the computational cost and allowing the real-time operation. To demonstrate the
potential of the LPV-MPC, we propose a comparison between the non-linear MPC formulation
(NL-MPC) and the LPV-MPC approach.
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1. INTRODUCTION

In the last recent years, we have experienced a great
advance in the technological career towards autonomous
driving. Today, we can see how research centers and com-
panies in the automotive sectors are accelerating and in-
vesting large amounts of money. In addition, if we add
to this progress the advances in legislation and the in-
creasing acceptance of the user, we converge on the fact
that driving, as we know it today, has days counted. The
numerous advantages that the autonomous vehicle offers
with respect to traditional vehicles are obvious. However,
the most attractive is the great reduction of accidents on
the roads, which will lead to a huge reduction in deaths
on roads worldwide.

In order to achieve complete autonomous driving, a series
of modules are needed working in a sequential and orga-
nized manner. First, the vehicle sensing network (GPS,
IMU, encoders, cameras, LIDAR, etc) collects all the
vehicle and environment information and is treated to
extract measurements of interest (vehicle and obstacles
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position, velocities, etc). Then, the trajectory planning
module is responsible for generating the route using the
actual vehicle position and the desired one. This trajectory
is composed of global positions, orientations and vehicle
velocities. Finally, the automatic control generates the
control actions (acceleration, steering and braking) for the
actuators using the computed sequence of references and
the position of the vehicle.

The automatic control is the last piece in the sequence
of the autonomous vehicle and one of the most important
tasks since it is in charge of guaranteeing its motion. It
is also the topic addressed in this paper. From a model-
based control point of view, the control problem may be
mainly defined by two characteristics: the type of con-
trol (lateral, longitudinal or integrated) and the type of
model considered for its design (kinematic, linear dynamic,
simplified non-linear dynamics or non-linear dynamics).
Jiang and Astolfi (2018) and Yang et al. (2017) address
the problem of lateral control using non-linear feedback
control techniques. Optimal-based techniques like LQR
for lateral control problem is formulated in Boyali et al.
(2018). Regarding the longitudinal control, we can find
LQR strategy in Naeem and Mahmood (2016); Junaid
et al. (2005) and Hs in Naeem and Mahmood (2016).
However, these control strategies solve simplified versions
of the real problem, i.e. the integrated control. This work
addresses both the longitudinal-lateral integrated control
problem for autonomous vehicles.



Control strategies based on Linear Parameter Varying
(LPV) models aim to solve NL control problems using a
pseudo-linear reformulation which incorporates the origi-
nal non-linearities within new parameters. These parame-
ters depend on some system states and inputs which are
called scheduling variables. Some recent books, Tanaka
and Wang (2004), Gaspar et al. (2016), Rotondo (2017),
Ostertag (2011) and Duan and Yu (2013), presented the
study of the modeling and design of LPV under the for-
mulation based on LMI. Several design approaches can be
used such as pole positioning, Hy,, Hy and Ho-LQR. These
techniques have proven to be widely accepted in the field
of robotics, for example Rotondo (2017) and Blazi¢ (2017).

Model Predictive Control (MPC) is another technique that
has proven to be one of the most interesting methods
in this field in recent years. This strategy allows to find
the optimal control action through the resolution of a
constrained optimization problem in which a mathemat-
ical model of the real system is evaluated in a future
horizon. Recent articles such as Rawlings and Risbeck
(2017), Corriou (2018) and Mayne (2014) present the latest
advances in MPC control outside the automotive field. In
the field of autonomous vehicles, we can find all kinds of
formulations for the MPC. From NL-MPC applications in
Ercan et al. (2017), where the lateral control problem is
solved, to MPC lateral control using a linearized model of
the vehicle in Xu et al. (2017). Working with non-linear
models usually gives the best results. However, when work-
ing with systems with fast dynamics this technique may
result non-viable since its excessive computational time.
This is the reason why recent exploration of other ways
opens the door to ideas such as Linear Parameter Varying
- Model Predictive Control (LPV-MPC). Cisneros et al.
(2016) and Besselmann and Morari (2009) present the
MPC strategy using LPV models. The advanatge of LPV
approach is that the non-linear model can be expressed
as a combination of linear models with parameter varying
with some scheduling variables without using linearization
(Sename et al., 2013).

The contribution of this paper focuses on the use of LPV
models for the automatic control strategy design for an
autonomous vehicle considering both longitudinal and lat-
eral dynamics. An MPC approach is proposed based on
the LPV kinematic formulation of the vehicle that leads
to a quadratic optimal problem. In addition, introducing
the terminal set concept, we are able to guarantee stability.

The paper is structured as follows: Section 2 gives an
overview of the work and describes the different types
of modelling used for control purposes. In Section 3, the
kinematic and dynamic control designs are developed.
Section 4 shows the simulation results and Section 5
presents the conclusions of the work.

2. OVERVIEW OF THE PROPOSED SOLUTION

In this work, we consider the problem of urban au-
tonomous guidance. To solve it, two important tasks have
to be carried out: the trajectory planning and the auto-
matic control.

On the one hand, the trajectory planning to be followed
by the vehicle has to fulfill particular specifications such
as continuous and differentiable velocity profiles. Thus,
this module is in charge of providing discrete and smooth
references to the automatic control stage. On the other
hand, the automatic control is in charge of following the
planned references, thus, moving the vehicle between two
ground coordinates as well as generating smooth control
actions for achieving a comfortable journey. In Fig. 1, we
show the planning-control diagram proposed in this work.
Observe that two control levels have been designed as a
cascade scheme, one for the position control and a faster
and inner one to control the dynamic behaviour of the
vehicle, i.e. linear and angular velocities.

The level of difficulty of a vehicle guidance control problem
comes often determined by two aspects: the type of control
(lateral, longitudinal or mixed) and the complexity of the
model to be controlled (kinematic, linear dynamic, non-
linear simplified dynamic or non-linear dynamic). In this
work we address one of the most complex configurations,
to solve the mixed non-linear dynamic problem. The
following subsection covers the formulation of the different
models used for solving the control problem.

2.1 LPV Control Oriented Models

Unlike controlling common mobile robots which operate
at a low interval of velocities, urban cars work in a higher
velocities and accelerations range. This fact makes indis-
pensable to study control techniques based on elaborated
dynamic models, articularly with the aim of being safer
and smoother in the control performance. In this work, two
model-based techniques cover the kinematic and dynamic
control at different layers and, hence, at different sampling
times. For that reason, the use of mathematical kinematic
and dynamic vehicle models are necessary. The kinematic
model is based on the mass-point assumption while for the
dynamic one the bicycle model has been considered. We
refer to the Appendix A for the complete model equations
used in this paper. In the following subsections, we present
the LPV formulation of both, the kinematic and dynamic
models.

Kinematic LPV model. The state, control and reference
vectors, respectively, are denoted as

Te v Vg cos 0
Te = | Ye 7UC_[£]7T6_|:dwd e]a (1a)
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where x., y. and 6. are the position and orientation errors,
respectively. The inputs v, and w are the longitudinal
and angular velocities, respectively. vy and wy are the
longitudinal and angular reference velocities, respectively.
Then, defining the vector of scheduling variables as p(k) :=
[w(k),v4(k), 0. (k)] which are bounded in w € [—1.42,1.42]
rad "y € [0.1,20] 2 and 6. € [0.05,0.05] rad, the non-
linear kinematic model (see Alcala et al. (2018b)) is trans-
formed into the Linear Parameter Varying representation
as follows

J?c(k + 1) = AC(p(k))xc(k) + Bcuc(k) - Bcrc(k),

(1b)

where



Trajectory
Planner

’ Tc [Kinematic LPV-| Uc +C Ued
[MPC Controller h L )

Le
2

v+

T [z y 0]

N
J

Vehicle

ud (" \xd
Dynamic LPV-
KLQR Controller)

Figure 1. Autonomous guidance scheme composed by the trajectory planning stage and both control layers: kinematic
and dynamic.

Figure 2. Bicycle model used for control purposes.
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with T, being the outer loop sampling time.

From this formulation, a polytopic representation for the
control design is obtained as

2me

ze(k+1) = Z wi(p(k))Ac;zc(k) + Beue(k) — Bere(k)
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being n. the number of scheduling variables and A; each
one of the polytopic vertex systems obtained as a combi-
nation of the extreme values of the scheduling variables.

The expression p;(p(k)) is known as the membership
function and is given by

Ne

pi(p(k)) = Hfij(ngvn{) ,i={1,..,2"} (3a)
j=1
i _ Pi—pik)
M= ——
Pj—Pj (3b)
n=1-n), i={1,...,n:},

where fzj(’?&ﬁ{) corresponds to any of the weighting
function that depend on each rule i.

Dynamic LPV model. The dynamic LPV model consid-
ered in this work is a transformation of the non-linear one
presented in Alcala et al. (2018a).

Then, the state and control vectors are denoted as

Vg 5
Tg = |Vy |, Uqg = |:CL:| 3
w
where vy, a and ¢ are the lateral velocity, rear wheel

longitudinal acceleration and steering angle, respectively
(see Fig. 2). The LPV model can be expressed as

xd(k + 1) = Ad(’ﬂ(k))xd(k‘) + Bdud(k‘) ,

(4a)

(4b)

with the time-varying scheduling vector as 9(k) :=
[0(k),vz(k),vy(k)] being § € [-0.25,0.25] rad, v, €
[0.1,20] = and v, € [-1,1] & and
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with T; being the sample time used in the dynamic control
loop, i.e. the inner control loop. m and I represent the
vehicle mass and inertia, respectively. I and [, are the
distances from the center of gravity to the front and rear
wheel axes, respectively. Variables Cy and C, represent
the tire stifness coefficient for the front and rear wheels. p,
A,., p and Cy are the density of the air, the front sectional
area of the vehicle, the friction coefficient and the drag
coefficient, respectively.



As in the case of kinematic model, we look for a polytopic
dynamic formulation like the following
ona

xd(k + 1) = Z i (ﬂ(k))Adlxd(k) =+ Bdiud(k) R (5)

being ng the number of dynamic scheduling variables and
Ag, represent each one of the polytopic vertex dynamic
systems obtained as a combination of the extreme values
of the dynamic scheduling variables. The membership
function u;(¥(k)) is the same than the one presented in
(3) but using the dynamic scheduling vector 9(k).

3. CONTROL DESIGN

In this section, we present the control scheme proposed for
this work as well as its design. The control strategy of the
vehicle has been divided into two nested layers, see Fig
1. The outermost layer controls the vehicle’s kinematics,
i.e. position and orientation of the car, and works at a
frequency of 10 Hz. On the other hand, the internal loop
controls the dynamic behavior of the vehicle, i.e. its speeds,
at a frequency of 200 Hz. Next, both control loops are
described separately.

3.1 Kinematic LPV-MPC Design

At this point, we present the formulation of the LPV-MPC
strategy, which focuses on solving position and orientation
control of the vehicle.

This strategy is based on the resolution of a linear
quadratic optimization problem by using the non-linear
kinematic error model in its LPV polytopic representation
(2). However, there exist the problem associated with the
lack of knowledge of the matrix of scheduling variables
through the entire prediction horizon. In Cisneros et al.
(2016), the use of the optimized state sequence which is
obtained after each optimization is proposed.

In this work, the scheduling variables are states of the
system whose desired values are known since the trajectory
planner generates them. That is why we propose the use of
such references as known scheduling variables for the entire
optimization horizon being then the scheduling sequence
T :=[p(k),...,p(k + N)]. In this way, we can compute the
evolution of the model more accurately and in anticipation.

In addition, since the basic MPC formulation cannot
guarantee the overall stability of the system, we propose
the addition of a terminal constraint and a terminal cost
to the optimization problem.

To formulate the problem, the polytopic LPV system
presented in (2) has been considered. In order to avoid
a difficult reading, the sub-index c¢ is omitted in the rest
of the subsection. Then, the focus is on a MPC scheme
where the cost function is defined as

N—1
J = Z ($£+7;ka+¢ + Auk+iRAuk+i) + x£+NP:vk+N ,
i=0

(6)

where Q@ = QT > 0, R = RT > 0and P = PT >
0 represent the states, input and terminal set tuning
matrices of apropriate dimensions, respectively.

At each time k the values of x;, and ui_1 are known and
the following optimization problem can be solved

mir&i{r};ize Jk (AU, Xk)
subject to
2me
Thtigl = Z 1 (Pryi) AjTr
j=1
+ Bugyi — Briy;
Ukti = Uki—1 + DUpy; , Vi=0,..,N—1
AU, € ATI
U, ell
Tr+N € X
(7)
where
Auy, Uk
Augyq U1
AU, = . ERm,UkZ ERm,
Aupin_1 U4 N—1

(8)
being m the number of inputs of the kinematic system. II

and AII are the constraint sets for the inputs and their
derivatives, respectively.

The set x represents the terminal state set. Then, by
introducing this constraint in the optimization problem,
we force the states to converge into a stable region and
then, to ensure the MPC stability. The computation of
this terminal safety set is carried out by solving two LMI-
based problems.

First, the controller for each polytopic system (A;) is found
by solving the following LQR-LMI

Y (AY +BW)T v WT

A;Y + BW; Y 00 |_,
v 0 Qrs 0 | = (9)
4% 0 0 Rrg
Vi=1,..,2"

with Y = Y7 >0, Qrs = Q%S >0 and Rps = R%:S > 0.
This problem returns the matrices Y and W,. Then, the
resulting controllers are obtained by K; = W;Y ~!. Note
that tllle terminal set matrix P in (6) is found to be equal
toY ™.

This LQR design is a particular formulation for the one
presented in Theorem 25 of Tanaka and Wang (2004). The
constant nature of kinematic input matrix B, in (1) allows
the use of this simplified LMI version.

The second problem consists on finding the largest termi-
nal region x. To do so, we solve the following constrained
optimization problem using the previously obtained con-
trollers K;



maxizmize Jx(2)
subject to
—Z Z(A; + BK;)T <0
(A; + BK;)Z —Z
K, ZKl —u> <0 Vi=1,..,2".
(10)

The resulting variable is Z. Hence, we compute the largest
terminal region as y = {z|zT Sz < 1}, with S = Z~L. Note
that this problem is totally constrained by the maximum
values of the control actions.

3.2 Dynamic LPV-LQR Design

To design the dynamic controller we use the polytopic
system (5). Then, we solve offline the optimal LMI problem
(9) for computing the polytope vertex controllers K.
Finally, the dynamic controller gain is computed online
following

27d

K@(k) =Y m((k))K; , (11)
=1

where p;(9(k)) represents the weighting function pre-
sented in (3) by using the dynamic scheduling vector
defined in (4). The offline computation of polytopic con-
trollers allows this control strategy to work at the desired
frequency of 200 Hz.

4. SIMULATION RESULT

Table 1. Kinematic LPV-MPC design param-

eters.
Parameter [ Value H Parameter [ Value
Q 0.9*diag(0.33 0.33 0.33) u [1.4 20]
R 0.1*diag(0.8 0.2) u [-1.4 0.1]
Te 0.1s Au [0.3 2]
N 20 Au [-0.3 -2]
Rrs diag(1 3) Qrs diag(1 1 3)

In this section, we validate the performance of the pro-
posed control scheme through simulation in MATLAB.
The considered vehicle for running simulations is an elec-
tric RWD one whose dynamics are presented in Appendix
B. To show the promising results of the LPV-MPC, we
perform a comparison against the non-linear MPC ap-
proach (NL-MPC in resulting figures). The LPV-MPC
uses planning data to instanciate the state space matrices
at every control time step within the MPC prediction.

Then, the optimal control problem (7) is solved at a
frequency of 10 Hz using the solver GUROBI (Gurobi
(2014)) through YALMIP framework (Lofberg (2004)).
This solves the position control problem in a outer loop.
Note that the non-linear MPC problem has been computed
using IPOPT solver and considering the same adjustment
and prediction horizon (see Table 1). In the inner loop, the
dynamic state feedback control problem (Section 3.2) is
solved at a rate of 200 Hz to follow the velocities provided
by the kinematic control.

To verify the real-time feasibility of the presented strate-
gies, we perform the simulations on a DELL Inspiron

15 (Intell core i7-8550U CPU @ 1.80GHzx8). The LPV-
MPC, dynamic LPV-LQR and vehicle model parameters
are listed in Tables 1, 2 and 4, respectively.

Table 2. Dynamic LPV-LQR design parame-
ters.

Parameter [ Value

Q 0.9%diag(0.66 0.01 0.33)
R 0.1*diag(0.5 0.5)
T, 0.005 s

Solving the problem (10) to determine the largest terminal
set, we obtain matrix S as

0.465 O 0
S = 0 23.813 76.596 | .
0 76.596 257.251

(12)

The tests have been carried out in the circuit of Fig.
3 where the aim is to simulate a road driving at a
variable speed. For assessment purposes, a perturbation is
introduced in the coefficient of friction, varying it sharply
from 1 to 0.5 at t = 110 s and from 0.5 to 1 at ¢ = 120
s. This scenario intends to show a real case in which the
vehicle passes through dry and wet asphalt surface while
turning a curve.

Fig. 4 shows both, the linear and angular speed profiles
provided by the trajectory planning and the respective
vehicle responses for both compared approaches. In Fig.
5, we illustrate the complete set of errors, i.e. ¢, Ye, B¢, Ve
and we. In both, Fig. 4 and 5, it is seen the close behaviour
between LPV-based and NL-based approaches. However,
the non-linear MPC is able to better handle the external
disturbances.

The respective control actions applied to the simulation
vehicle are shown in Fig 6. Note that the LPV-MPC
response is as good as the NL-MPC one until the arrival
of the disturbance in the longitudinal axis. The steering
behaviour is practically the same throughout the test.

An important aspect of control strategies based on opti-
mization is the computational time spent at each optimiza-
tion procedure. In Fig. 7, we show the elapsed time at each
kinematic MPC optimization for both compared methods.
Note the computational time improvement achieved when
using the LPV-MPC strategy. Finally, a quantitative com-
parison is made using the root mean squared error (RMSE)
as performance measurement as shown in Table 3.

Table 3. Comparison using the root mean
squared error measure (RMSE).

Approach [ T [ y [ 0 [ v [ w
LPV-MPC | 0.589 | 0.238 | 0.016 | 0.302 | 0.014
NL-MPC 0.528 | 0.225 | 0.015 | 0.268 | 0.012

These results conclude a similar performance of the LPV-
MPC approach in comparison to the NL-MPC version.

5. CONCLUSION
In this work, a cascade control scheme (kinematic and

dynamic) was presented to solve the problem of integrated
control (lateral and longitudinal) of autonomous vehicles.
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The novel kinematic control was designed using the MPC
technique with the prediction model expresed in the LPV
formulation (LPV-MPC) without using any linearisation.
On the other hand, the dynamic control was approached
using the Linear Quadratic Regulator (LQR) strategy,
with a LPV modeling and using a LMI formulation of the
problem (LPV-LMI-LQR).

A comparison was made between two methods of solving
the control problem: using the non-linear MPC formula-
tion (NL-MPC) and using updated LPV-MPC with the

planner references. It was demonstrated that the LPV-
MPC technique works very well compared to the non-
linear control problem but in a much faster way (more
than 50 times faster).

Table 4. Dynamic model parameters.

Parameter [ Value H Parameter [ Value
Iy 0.758 m Ay 1.91 m?
I 1.036 m P 1184 29
m 683 kg Cy 0.36
I 560.94 kg m2 || u 1

N N
Cy 24000 = Cr 21000 ~-—
d 2680 c 1.6
b 6.1

A. VEHICLE MODEL FOR CONTROL

The non-linear equations employed for control purposes
are presented as

Te = WYe + Vg COSle — vy
Yo = —WTe + Vg Sin O,
ée = Wqg — W
F,rpsind F,
_ L _ 7df +wvy
m
Fyr

— = — WU,
m m

_ Fyrlycosé — Fygl,
h I
l
Fyp=Cy (5—”?/—“")

Vg Vg

Ve = Q
m

. F,pcosd

/Uy:y7+

(13)

x Vg

1
Fdf = Fdrag + Ff'riction = §CdPArU920 + pmg
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Refer to the Appendix A in Alcala et al. (2018b) for
the complete development of the kinematic error model.
Vehicle parameters are defined in Table 4.

B. VEHICLE MODEL FOR SIMULATION

For simulation purposes we use a higher fidelity vehicle
model. Unlike the model used for control design, this
considers a more precise tire model, i.e. the Pacejka "Magic
Formula" tire model where the parameters b, ¢ and d
define the shape of the semi-empirical curve. Also, a more
accurate computation of the tire slip angles is given.

% = vz cost — vy sin
Y = Vg sinf + v, cos 0

0=w
F,rpsind F,
@x:a_ﬂ_ﬂ_’_wvy
m m
o, = Torcosd | Fyr
m m
Fyplscosd — Fygl,
N I (14)

F,r = dsin (ctan™'(bay))
F,r = dsin (ctan™ ! (ba,))
ap =6 —tan~! (vy — lfw)

Vg Vg

l
oy = —tan"! (Uy + Tw)

Vg Vg

1
Fdf = Fdrag + Ffriction = §CdpA7‘Ui + pmg
All parameters are properly defined in Table 4.
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