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Abstract

The Unmanned Air Vehicles (UAVs) are being integrated into our society at an increasing rate.

The amount of industries that use drones is getting larger every year. Besides the military sec-

tor, which was probably the first adopter of drone technology, they are now also being used in

the industries such as search and rescue, delivery service, media, civil engineering, etc.

In fact, airlines now use drones to perform inspections on aircraft. They fly around air-

planes in search of cracks and deformations in the structure. They can also perform such in-

spections inside an airplane wing, in which fuel is stored. That means that the drone is given

a trajectory to follow. That path can be generated live from the cameras on board or it can be

a programmed track. However, the fact is that there is a path that the drone receives and so it

has to regulate its actuators (rotors) in such a way that the drone follows the trajectory. This is

what the thesis is about - to design and implement a controller in MATLAB® that makes the

UAV follow the coordinates given to it.

The main control strategy used in this thesis will be Model Predictive Control (MPC) that

is applied to a drone’s mathematical model in the Linear Parameter Varying (LPV) format.

Thanks to this format, it will be possible to apply the most basic MPC strategy, which is suit-

able for linear systems. Firstly, an attempt is made to control the UAV with a single LPV-MPC

controller; however, it will be apparent in the thesis that due to strong nonlinearities, the drone

was not able to follow the reference coordinates. Therefore, the controller was separated into

two separate controllers. The LPV-MPC strategy was used to control the attitude of the UAV

and the feedback linearization strategy was used to control the position of the drone.

The validation of the control strategy was performed in MATLAB® in the form of several

simulations. Five different tracks were given for the drone to follow. It was then examined how

well the UAV followed the given positions, velocities and angles.
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A.4 z and ż values as a function of time . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.5 φ, θ, ψ values as a function of time . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.6 U1, U2, U3, U4 values as a function of time . . . . . . . . . . . . . . . . . . . . . . 54

A.7 Flight trajectory - straight line in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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Chapter 1

Introduction

1.1 Motivation

As we enter into the decade in which drone technology enters into more andmore industries, it

is imperative that they are reliable in terms of flight. They must be stable enough to withstand

disturbances such as wind. They must be robustly safe to minimize the risk of accidents in the

human population. Also, they need to be able to track the trajectories given to them with very

high precision if it is desired to use them in tight areas such caves in the event of a search and

rescue mission.

Themainmotivation of this thesis is is to contribute in making drones to follow trajectories

smoother and with higher precision. That in turn will have a positive impact on the society in

terms of various applications such as the inspection of structures from the inside in confined

spaces. A drone can follow a trajectory even with a simple Proportional, Integral, Derivative

(PID) controller. However, a PID controller is only capable of seeing one sample time ahead.

That can make the UAV underdamped resulting it to oscillate in the air dangerously. There-

fore, to achieve low error trajectory tracking and smoother flight in sharp turns, more advanced

control techniques with higher horizon period should be experimented with. In this thesis, the

main attention will be on applying the LPV-MPC controller to a drone mathematical model.

The UAV in this thesis is a quadcopter - a drone with four rotors, that are at equal distances

from the center of the drones.
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1.2 Thesis Objectives

The first goal was to investigate whether one LPV-MPC controller could be applied to the entire

mathematical model of the drone. However, it became apparent that due to strong nonlinear-

ities, the drone was not able to follow the reference coordinates. Therefore, the controller was

separated into two separate controllers. The LPV-MPC strategy was used to control the attitude

of the UAV and the feedback linearization strategywas used to control the position of the drone.

The objectives of the thesis are the following:

• To reformulate the mathematical model of the drone into the LPV format.

• To derive the mathematical formulation of the MPC such that a MATLAB® solver called

“quadprog” could be applied.

• To implement the LPV-MPC controller to control the drone attitude.

• To implement the position controller to control the drone position in space and integrate it

with the LPV-MPC attitude controller.

• To validate the global controller by letting it track various tracks.

1.3 Thesis Structure

The thesis is structured in the following way to achieve the aforementioned goals:

Chapter 2

This chapter establishes the mathematical model of the quadcopter and the reference frames

used.

Chapter 3

This chapter reformulates the mathematical model of the drone into the LPV format. It also

derives the mathematical formulation of the MPC to make it compatible with the quadprog

solver. This will be followed by the implementation of the LPV-MPC controller in MATLAB®.

Finally, the position controller will be implemented and integrated with the LPV-MPC attitude

controller.
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Chapter 4

In this chapter, the global controller is validated - the results are shown and analyzed. The con-

troller will be tested on five different trajectories.

Chapter 5

The final chapter concludes the thesis and summarizes its findings. In addition, future potential

research areas from this work will be discussed.
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Chapter 2

Quadrotor mathematical model

The MPC strategy uses the model of a system to predict its behaviour into the future based

on the length of its horizon period. Based on the model prediction, the optimizer in the MPC

minimizes the cost function. The inputs found are then applied to the system. Therefore, it is

important that the mathematical model of the system is accurate. If it is not accurate enough,

then the obtained inputs, that were obtained from the model will not influence the real system

as expected. Its response might become underdamped, overdamped or even unstable. This

chapter focuses on defining the coordinate frames used to control the drone and it establishes

the mathematical model of a quadcopter.

2.1 The definition of coordinate frames

There will be two reference frames considered: a fixed ground (Earth) reference frame (E-

frame) in Figure 2.1 [3] and a Body fixed frame (B-frame) in Figure 2.2 [3]. In Figure 2.1 [3], it

can be seen that the E-frame (in green) has the axis N, that points towards the North, the axis

E, that points towards the East, and the axis U that is perpendicular to its plane. This last one

is the global axis with respect to which the drone flies.

The B-frame in Figure 2.2 [3] is attached to the drone itself. Because of that, it is more

suitable to use the E-frame for position measurement and the B-frame for the velocity measure-

ment. It is assumed that the center of the reference frame is put in the center of the mass of the

drone [3].
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Figure 2.1: Fixed ground reference frame (green) [3]

Figure 2.2: The body reference frame attached to the UAV [3]
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2.2 The control inputs

In order to understand the input signals of the drone, it is important to clarify how the four

rotors of the drone move. In Figure 2.3 [3], it can be seen that the motors 1 and 3 rotate counter-

clockwise and the rotors 2 and 4 rotate clockwise. The body axis is positioned in such a way

that the positive x-direction points towards motor 1 and the positive y-direction points towards

motor 2.

Figure 2.3: The UAV motors, their rotational direction and the B-axis [3]

There are 4 input signals that are introduced into the system: U1, U2, U3 and U4. [3]

Thrust U1 [N] (Throttle)

This input signal is a force that points towards the z-axis of the B-frame. This force is generated

by the angular rotation of all the rotors. It does not matter if the rotation of one rotor is faster

than the spinning of the other 3motors. The thrust force that all the rotors generate are summed

up resulting in the global thrust force called U1. It can be seen visually in Figure 2.4 [3]. On the

left of this figure, it can be clearly seen that the added rotation of each of the rotors contributes

to generating the thrust force U1.
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Figure 2.4: Thrust force U1 generated by the 4 rotors of the quadcopter [3]

Moment U2 [N m] (Roll)

The input signal U2 is a torque signal, which is around the x-axis of the body frame. It can be

seen visually in Figure 2.5 [3]. In order to produce this input signal, the rotation of the rotors

in motors 1 and 3 must be equal; however, the spinning of the motors 2 and 4 must be different.

That creates an imbalance in the thrust force around the x-axis, which will create a moment

around it, which is the control input signal U2. That moment, which also depends on how far

the rotors are from the center of the drone, causes the UAV to rotate around the x-axis of the

body frame.

Figure 2.5: Moment U2 generated by the 4 rotors of the quadcopter [3]

Moment U3 [N m] (Pitch)

The input signal U3 is a torque signal, which is around the y-axis of the body frame. It can be

seen visually in Figure 2.6 [3]. In order to produce this input signal, the rotation of the rotors

in motors 2 and 4 must be equal; however, the spinning of the motors 1 and 3 must be different.

That creates an imbalance in the thrust force around the y-axis, which will create a moment

around it, which is the control input signal U3. That moment, which also depends on how far

the rotors are from the center of the drone, causes the UAV to rotate around the y-axis of the

body frame.
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Figure 2.6: Moment U3 generated by the 4 rotors of the quadcopter [3]

Moment U4 [N m] (Yaw)

The input signal U4 is a torque signal, which is around the z-axis of the body frame. It can be

seen visually in Figure 2.7 [3]. In order to produce this input signal, the rotation of the rotors in

motors 1 and 3 must be equal, and the rotation of the rotors 2 and 4 must be equal; however, the

spinning of the motors 1 and 3 must be different from the spinning of the motors 2 and 4. Due

to conservation of angular momentum, the Yaw moment, which is the U4 input signal will be

generated. Due to that moment, the UAVwill start rotating around the z-axis of its body frame.

Figure 2.7: Moment U4 generated by the 4 rotors of the quadcopter [3]

In the system of equations 2.1, it is shown how the force U1 and themoments U2, U3 andU4 are

related to the acceleration in the z-axis and the angular accelerations of φ, θ and ψ, respectively.

Here,m, Ix, Iy, Iz are the drone’s mass and the values of its angular momentum about the axes

specified in their subscript, respectively. The double-dots mean the second time derivative of

the variables, which in this case are their acceleration values.
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U1 = mz̈

U2 = Ixφ̈

U3 = Iy θ̈

U4 = Izψ̈

(2.1)

In case of a reference tracking problem, the closed loop controller for the UAV gives the input

signals U1, U2, U3 and U4 directly to the drone. Based on these inputs, the four rotors of the

UAV rotate accordingly. That means that there must be a relationship between the input signals

and the angular velocities of the rotors. In the system of equations (2.2) [3], it can be seen very

clearly how the control input signals are related to the angular velocities of the rotors, which are

denoted as Ω1, Ω2, Ω3 and Ω4 [rad · s−1] for the motors 1, 2, 3 and 4, respectively. The values of

cT [Ns2] and cQ [Nms2] are aerodynamic coefficients of thrust and drag, respectively [1]. The

value of l [m] is the distance between the center of the quadrotor and the center of a propeller

[1]. Finally, the equation (2.3) adds up the rotational velocities of all the rotors [1]. Since the

propellers 1 and 3 rotate counter-clockwise and the propellers 2 and 4 rotate clockwise, the mo-

tors 1 and 3 have the opposite sign compared to the motors 2 and 4

U1 = cT · (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

U2 = cT · l · (Ω2
4 − Ω2

2)

U3 = cT · l · (Ω2
3 − Ω2

1)

U4 = cQ · (−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(2.2)

such that

Ωtotal = −Ω1 + Ω2 − Ω3 + Ω4 (2.3)

The final step needed to start building the controller for the drone is to obtain its state space

equations. It is needed to have the drone’s mathematical model in that form because it must

only contain first order differentiation. The reason for that is because in the implementation of

the controller aMATLAB® ode45 integrator will be used to integrate the system’s states in time.
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However, the integrator only accepts first order systems; hence, the equations of motion need

to be made first order, which will be done in the next section.

2.3 The mathematical model of a quadrotor

A quadcopter has six degrees of freedom - 3 position and 3 attitude dimensions. These are

x, y, z and φ, θ, ψ, respectively. The mathematical model of a UAV has to incorporate all the

degrees of freedom. One way to express a mathematical model of a drone is to write it in the B-

frame. The system of equations (2.4) describes the drone in the B-frame [3]. The variables u, v

andw are x, y and z velocities in the B-frame [ms−1], respectively. The variables p, q and r are the

angular velocities of φ, θ, ψ in the B-frame [rad s−1], respectively. The Ω is the added rotation

of all the rotors that comes from the equation (2.3) [1]. The constant g is the gravitational

acceleration on the surface of the Earth, which is 9.81ms−2. Finally, the constant JTP [Nms2] is

is the total rotational moment of inertia around the propeller axis [3]

u̇ = (vr − wq) + g sin θ

v̇ = (wp− ur)− g cos θ sinφ

ẇ = (uq − vp)− g cos θ cosφ+
U1

m

ṗ = qr
Iy − Iz
Ix

− JTP
Ix

qΩ +
U2

Ix

q̇ = pr
Iz − Ix
Iy

+
JTP
Iy

pΩ +
U3

Iy

ṙ = pq
Ix − Iy
Iz

+
U4

Iz

(2.4)

The system of equations (2.4) is in a convenient form because it only contains first order dif-

ferentiation [3] . However, the problem with expressing everything in the B-frame is that now

all six degrees of freedom states are velocities. However, the trajectory is given in the position

values of x, y and z in the E-frame. Therefore, it is needed to have a system of equations in

which the translational motion states are in the E-frame position format. The rotational motion

states can stay in the B-frame as angular velocities. This Hybrid-frame (H-frame) can be seen

in the equation (2.5) [3].
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ẍ = (cosφ sin θ cosψ + sinφ sinψ)
U1

m

ÿ = (cosφ sin θ sinψ − sinφ cosψ)
U1

m

z̈ = −g + cosφ cos θ
U1

m

ṗ = qr
Iy − Iz
Ix

− JTP
Ix

qΩ +
U2

Ix

q̇ = pr
Iz − Ix
Iy

+
JTP
Iy

pΩ +
U3

Iy

ṙ = pq
Ix − Iy
Iz

+
U4

Iz

(2.5)

The H-frame contains the position variables in the E-frame. However, now the problem is that

it has second order differentiation in it. The MATLAB® integrator ode45 needs first order dif-

ferential equations though. In addition, the H-frame does not contain the angles φ, θ, ψ, which

are the orientation of a drone in the E-frame. To solve these two problems, the H-frame system

of equations can be expanded. The relationship between the E and B-frame can be used to cre-

ate one large system of equations that contains all the six states in the B and also in the E-frame

- in total, 12 states, which are: u, v, w, p, q, r, x, y, z, φ, θ, ψ. This system of equations would

be first order and therefore suitable for the ode45 integrator. The rotational matrix under the

Z-Y’-X” Euler angles convention that relates the translational velocities in the B-frame (u, v, w)

to the translational velocities in the E-frame (ẋ ẏ ż) can be seen in the equation (2.6) [2]. The

transformation matrix that relates the angular velocities in the B-frame (p, q, r) to the angular

velocities in the E-frame (φ̇, θ̇, ψ̇) can be seen in the equation (2.7) [3]

R =


cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

 (2.6)

T =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 (2.7)

Now, there are all the tools needed to build a global system of equations with all the states from

the both frames and that is also first order, suitable for the ode45 integrator.The global open-
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loop system that will be integrated in this thesis while running the simulations can be seen in

the equation (2.8). The system of equations in this configuration allows all the states (u, v, w,

p, q, r, x, y, z, φ, θ, ψ) to be tracked. Once an initial value is given to them, the equation (2.8)

computes their derivatives and then it is possible to know the state values in the next sample

time period

u̇ = (vr − wq) + g sin θ

v̇ = (wp− ur)− g cos θ sinφ

ẇ = (uq − vp)− g cos θ cosφ+
U1

m

ṗ = qr
Iy − Iz
Ix

− JTP
Ix

qΩ +
U2

Ix

q̇ = pr
Iz − Ix
Iy

+
JTP
Iy

pΩ +
U3

Iy

ṙ = pq
Ix − Iy
Iz

+
U4

Iz
ẋ

ẏ

ż

 = R


u

v

w



φ̇

θ̇

ψ̇

 = T


p

q

r



(2.8)
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Chapter 3

The controller design

3.1 Introduction to two possible control strategies

In the previous chapter, an open loop system of a UAV in the form of state space equations

was derived. This chapter is about designing a suitable control strategy for the drone using

the LPV-MPC technique. Two different control strategies will be attempted. The first of them

will attempt to apply the LPV-MPC approach to control the entire system. The schematic of the

control strategy is shown in Figure 3.1.

Figure 3.1: Control strategy: only LPV-MPC applied

It will become apparent in this thesis that the strategy presented in Figure 3.1 will fail at con-

trolling the drone because there are hard nonlinearities in its mathematical model. It will make

it impossible to extract the angles φ and θ and therefore, the LPV-MPC approach could not be

used on the entire system. Nevertheless, the attempt to do it was made as it will be seen in
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this chapter. Because of the failure of the first method, an alternative approach was used. The

schematic of it can be seen in Figure 3.2. In that approach, the controller was split into two

subcontrollers. One controller is responsible for the position variables x, y, z. This position

controller uses the state feedback linearization method. The outputs it generates are U1, and

the angles φ and θ. The aforementioned angles are the ones that, together with U1 and ψ, are

necessary in order for theUAV to reach its x, y, z reference position. U1 is fed straight as an input

into the open loop system. However, the angles φ and θ are then fed into the attitude controller

as reference values. This controller is the one that uses the LPV-MPC approach. The reference

angles φ and θ, together with the angle ψ from the planner, allows the LPV-MPC controller to

find the remaining three control actions for the open loop system, which are U2, U3 and U4. It

is important to note that the LPV-MPC controller needs time push the state angles towards its

reference values. Therefore, the attitude controller must work at a higher frequency compared

to the position controller - it has to have higher dynamics. In this thesis, it will be seen that

the inner loop (the loop for the attitude controller) works 4 times faster. After integrating the

open-loop system, the new angles φ, θ and ψ are fed back into the LPV-MPC controller together

with the new Ω value at every one-fourth of the sample time. In addition, at every sample time,

the open loop system sends the new x, y and z values back into the position controller.

Figure 3.2: Control strategy: LPV-MPC applied in combination with a position controller
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3.2 LPV mathematical derivation for the UAV

In order to use the most basic MPC strategy made for linear systems, the nonlinear UAVmodel

must first be linearized or reformulated into the Linear Parameter Varying (LPV) format, which

encapsulates the model nonlinearities in a linear structure. The latter approach is used in this

thesis.

There are several advantages that the LPV offers compared to linearizing a system. Firstly,

linearization becomes less precise as the system moves further away from the operating point.

However, this problem does not occur with LPV because it is merely a reformulation of a math-

ematical nonlinear model into a format that resembles into a linear structure. In other words,

all the nonlinearities are encapsulated in A and B matrices of a state space equation.

Secondly, one has to make a stability check every time an operating point in linearizing a

system changes. That is because with every point where the system is linearized, the Amatrix

is different. Thus, its eigenvalues need to be checked to make sure that their real numbers are

negative. However, with the LPV approach, one can define a region in the state space and if the

stability of the system is proven in the vertices of the region, then the system is stable inside the

region as well.

In order to derive an LPVmodel of the system, it is good to treat the equations concerning

the positions separate from the equations that describe the drone’s attitude. First, the position

equations are dealt with. They are the first three equations in the system of equations (2.5) [3].

However, they are all second order differential equations. To get them into a linear state space

format, the system of equations need to be expanded where the the states are x, ẋ, y, ẏ, z, ż.

In equation (3.1), a state space system for linear systems is shown. As one can see, it is equiv-

alent to (2.5) [3]. However, since the nonlinearities stay, they are all put in the B matrix. The

A matrix is multiplied by the states and the B matrix is multiplied by the input. The states

x, ẋ, y, ẏ, z, ż can be renamed as x1, x2, x3, x4, x5, x6, then their derivatives ẋ, ẍ, ẏ, ÿ, ż, z̈

will be ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6 - resulting in a first order system of differential equations.



26 Chapter 3. The controller design



ẋ

ẍ

ẏ

ÿ

ż

z̈


=



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0





x

ẋ

y

ẏ

z

ż


+



0

(cosφ sin θ cosψ + sinφ sinψ) 1
m

0

(cosφ sin θ sinψ − sinφ cosψ) 1
m

0

− g
U1

+ cosφ cos θ 1
m


U1 (3.1)

In order to have an LPVmodel for the angles, the last 3 equations of a system of equations (2.5)

will be considered [3]. However, these equations are in the B-frame. To control the drone, the

LPV model needs to contain the angles and their instantaneous changes in the E-frame. In case

of angles, both of the frames are related to each other by the transformation matrix T in equa-

tion (2.7) [3].

However, here a simplifying assumption can be made that affects how the drone is con-

trolled, insignificantly. The quadcopter cannot hover in one position if it is tilted in one direc-

tion all the time - it would start sliding down diagonally. The goal is to design a controller that

stabilizes the quadcopter close to the hovering position. In this case, the angles φ and θ are

assumed to be zero, which makes the T matrix in the equation (2.7) an identity matrix I . This

converts the last three equations in the system of equations (2.5) [3] into a system of equations,

in which p, q, r become φ̇, θ̇, ψ̇, respectively [3]. It can be seen in the equation (3.2) [3], which

is also second order

φ̈ = θ̇ψ̇
Iy − Iz
Ix

− JTP
Ix

θ̇Ω +
U2

Ix

θ̈ = φ̇ψ̇
Iz − Ix
Iy

+
JTP
Iy

φ̇Ω +
U3

Iy

ψ̈ = φ̇θ̇
Ix − Iy
Iz

+
U4

Iz

(3.2)

Just like it was done with the position variables, to generate an LPV format for the angles, the

system of equations (3.2) [3] was expanded. The LPV format is shown in equation (3.3) [3], in

which it can be seen that all the nonlinearities are encapsulated in the A matrix. The B matrix

only has constant values. TheAmatrix is multiplied by the states and theBmatrix is multiplied

by the inputs
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

φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈


=



0 1 0 0 0 0

0 0 0 −Ω·JTP
Ix

0 θ̇ · Iy−IzIx

0 0 0 1 0 0

0 Ω·JTP
Iy

0 0 0 φ̇ · Iz−IxIy

0 0 0 0 0 1

0 θ̇
2 ·

Ix−Iy
Iz

0 φ̇
2 ·

Ix−Iy
Iz

0 0





φ

φ̇

θ

θ̇

ψ

ψ̇


+



0 0 0

1
Ix

0 0

0 0 0

0 1
Iy

0

0 0 0

0 0 1
Iz




U2

U3

U4

 (3.3)

In the second control strategy with the position controller, only the equation (3.3) is used in

the MPC control [3]. That is because position is handled by the feedback linearization strategy

that does not require an LPV model of the system. However, in the first control strategy, where

only the LPV-MPC method is used for the entire system, both LPV models are combined into

one single state space system of equations as can be seen in equation (3.4). That is used for the

MPC in the first control strategy, where only the LPV-MPCmethod is used to control the entire

drone



ẋ

ẍ

ẏ

ÿ

ż

z̈

φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈



=

ALPV−(x−y−z) zeros(6, 6)

zeros(6, 6) ALPV−(φ−θ−ψ)





x

ẋ

y

ẏ

z

ż

φ

φ̇

θ

θ̇

ψ

ψ̇



+

BLPV−(x−y−z) zeros(6, 3)

zeros(6, 1) BLPV−(φ−θ−ψ)



U1

U2

U3

U4



(3.4)
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3.3 General MPC mathematical derivation

In this section, it is shown how the MPC technique was derived to match the MATLAB® quad-

prog solver that allows to solve a problem with the following structure [4]

min
x

1

2
xTHx+ fTx such that


A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(3.5)

In Figure 3.3 [5], a simple intuition into theMPC strategy is presented. The sequence goes from

up to down. The sample times go from the sample k to the sample k +N . The parameter N is

called the prediction horizon. The length of it depends on the system dynamics. The goal of the

MPC is to stabilize itself around the reference during the prediction horizon. In the first sub-

image, it can be seen that there are many ways to get there. The algorithm determines the error

values in each sample time as it can be seen in the second sub-image. It then takes two main

features into account - the squared sum of the errors (e) and the squared sum of the change

of inputs (δu) as it can be seen in equation (3.6) [5]. The importance of errors and change of

inputs can be regulated with weights (w). This entire equation is called a cost function (J)

J =
N∑
i=1

wee
2
k+i +

N−1∑
i=0

w∆u∆u2
k+i (3.6)

MPC uses a solver that finds a set of change of inputs such that the cost function is min-

imized. In the third sub-image in Figure 3.3 [5], one can see the predicted path that was gen-

erated by the inputs that the solver had previously chosen. However, due to disturbances and

uncertainties, the systemmight end up being slightly off from the prediction in the next sample

period. In the third sub-image, it is slightly above the predicted value. Therefore, only the first

element of the input vector is chosen - the rest are discarded. Then, the horizon period shifts

and it goes from k + 1 to k + N + 1. A new prediction is made from the most recent position

as it can be seen in the forth sub-image. That position might be measured or a combination of

measured and predicted position that comes out of a filter such as the Kalman filter.
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When dealingwithMPC - a distinctionmust bemade, which depends on the objectives. If MPC

is used for the purpose of regulation, then that means that the goal is to bring the state values

close to zero. In this case, the linear prediction model is

xk+1 = Axk +Buk

yk = Cxk +Duk

(3.7)

where x is a state variable, u is the input variable, and y is the output vector that is related

to a state vector through the C matrix. The D matrix is assumed to be zero as it is with most

systems. This model is discretized. In this thesis, the discretization was performed using both,

the forward Euler method, and the zero hold order (zoh). In the case of regulation, the cost

function of MPC is

J = min
1

2
xTt+NSxt+N +

1

2

N−1∑
k=0

(xTt+kQxt+k + uTt+kRut+k) (3.8)

It is important to point out that in the case of regulation, the cost function does not deal

with input changes - the inputs are absolute values. That is because once the states are all zero,

the inputs can also be zero assuming that the system is stable. For example, if the objective is

to land and stop the drone, then once this goal is met, the UAV’s inputs can be equal to zero. In

addition, the last element in the horizon period has a different weight matrix, which is called S.

Also, the cost function is multiplied by a value of 0.5. That is for convenience. When a gradient

of it is taken, then the constant in the cost function becomes 1 [9]. Since the cost function shifts in

time, the symbol t is the present time and t+k is k samples from the current present. However,

in this thesis, the challenge is not regulation, it is reference tracking. In a tracking problem, in

the cost function, the state variable is replaced by the error variable [8] leadind to

J = min
1

2
eTt+NSet+N +

1

2

N−1∑
k=0

(eTt+kQet+k + uTt+kRut+k) (3.9)

The error is defined in equation (3.27) [8] as follows

ek = rk − yk = rk − Cxk. (3.10)
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In a tracking problem, the inputs must be nonzero to keep the tracking error zero and keep

the UAV following the reference so that it could track the desired trajectory. Nonetheless, once

the drone reaches the reference value, the change of input can be zero assuming that the system

is stable. Therefore, in a tracking problem, the changes of input∆uk are used, which are defined

as follows [8]

∆uk = uk − uk−1. (3.11)

The equation (3.11) can be rewritten as [8]

uk = uk−1 + ∆uk. (3.12)

That means that the state space equation (3.7) can be rewritten in the following way as [7]

xk+1 = Axk +B(uk−1 + ∆uk)

yk = Cxk.
(3.13)

The next step would be to augment the systemwhere the absolute input one sample in the

past uk−1 becomes a state as well. The augmented formulation can be written as [8]

xk+1

uk

 =

A B

0 I


 xk

uk−1

+

B
I

∆u = Ãx̃k + B̃∆u

yk =

[
C 0

] xk

uk−1

 = C̃

 xk

uk−1.


(3.14)

Once the error term in the cost function is substituted with with the equation (3.27) and

the C matrix and the states are replaced with the augmented version from equation (3.14) , the

cost function will have ∆u instead of an absolute of u [8]
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J = min
1

2
(rt+N − C̃x̃t+N )TS(rt+N − C̃x̃t+N )+

+
1

2

N−1∑
k=0

((rt+k − C̃x̃t+k)TQ(rt+k − C̃x̃t+k) + ∆uTt+kR∆ut+k).
(3.15)

Once it is written out, there will be some terms that are constant. From an optimization

point of view, constant terms do not affect the results of the optimizer. Therefore, to simplify

the equation, they will be crossed out as follows [8]

J = �������1

2
rTt+NSrt+N − rTt+NSC̃x̃t+N +

1

2
x̃Tt+N C̃

TSC̃x̃t+N+

+
n−1∑
k=0

[
������1

2
rTt+kQrt+k − rTt+kQC̃x̃t+k +

1

2
x̃Tt+kC̃

TQC̃x̃t+k +
1

2
∆uTt+kR∆ut+k

]
.

(3.16)

It is important to note that this form is valid only if theweightmatrices are diagonal because

then they equal to their transpose values and this form can be achieved.

So far, the horizon period has been described with a summation sign. However, it can also be

described by stacking the future reference values, states and change of inputs in one big vector,

where each element represents one sample time period. It can be seen in equation (3.17) along

with a present state vector denoted as x̃t, which is written separately and does not form part of

the future state values [8]. Also, in the global vector for the horizon period, the reference and

the state values start from the period t+ 1 and end at t+N ; however, the change of inputs start

at the period t and end at t + N − 1. That is because an input in one period affects a state and

an output in the next period. In equation 3.18 [8], one can see how the entire cost function is

written in that way, where the weight matrices are stacked into big diagonal matrices, which

describe the entire horizon period.

r =



rt+1

rt+2

.

.

rt+N


x̃ =



x̃t+1

x̃t+2

.

.

x̃t+N


∆u =



∆ut

∆ut+1

.

.

∆ut+N−1


x̃t = present (3.17)
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J ′ = min
1

2
x̃T


C̃TQC̃

.

C̃TQC̃

C̃TSC̃


x̃− rT


QC̃

.

QC̃

SC̃


x̃+

+min
1

2
∆uT


R

.

R

R


∆u = min

1

2
x̃TQx̃− rTT x̃+min

1

2
∆uTR∆u

(3.18)

The objective is to write the cost function in the form that only has change of input values and

and state values in the present. To remove future state values, a mathematical manipulation is

performed as follows [6]

x̃1 = Ãx̃0 + B̃∆u0

x̃2 = Ãx̃1 + B̃∆u1 =

= Ã2x̃0 + ÃB̃∆u0 + B̃∆u1

...

x̃k = Ãkx̃0 + [Ãk−1B̃ Ãk−2B̃ ... B̃]


∆u0

∆u1

...

∆uN−1



(3.19)

where the state values are substituted with the previous state values that only consist of the A

and B matrices, the current state value, and the current and future change of input values. The

entire state space system for the entire horizon period can be compactly represented as [8]
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x̃ =



B̃

ÃB̃ B̃

Ã2B̃ ÃB̃ B̃

. .

ÃN−1B̃ . . . B̃


∆u+



Ã

Ã2

.

.

ÃN


x̃t = C∆u+

̂̂
Ax̃t. (3.20)

The future state values in the cost function are then replaced by this compact form. As it

can be seen in equation (3.21), the future state variables have disappeared from the cost function

J ′ =
1

2
(C∆u+

̂̂
Ax̃t)

TQ(C∆u+
̂̂
Ax̃t) +

1

2
∆uTR∆u− rTT (C∆u+

̂̂
Ax̃t)⇒

⇒ ignoring constant terms

(3.21)

When it is written out, the constant terms are again ignored due to the fact the they do not

influence the optimizer results. The final results of the derivation can be seen in the following

[8]

J ′′ =
1

2
∆uT (C

T
QC +R)∆u+

[
x̃Tt rT

]̂̂ATQC
−TC

∆u =

=
1

2
∆uTH∆u+

[
x̃Tt rT

]
F
T

∆u =
1

2
∆uTH∆u + fT∆u

(3.22)

Here, it is shown (in bold) how the entire cost function is put in a form that can be accepted

by the MATLAB® quadprog solver. In the most basic case, it needs to receive the matrixH and

the vector fT . IfH is positive definite, then the solver will find a set of ∆u-s that minimizes the

cost function. The first element of the set of ∆u-s is then used to move the UAV. All the other

elements will be discarded and in the next sample time period, the same process is repeated.
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Figure 3.3: MPC intuition [5]
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3.4 The architecture of the LPV-MPC controller

In this section, the architecture of the MPC controller is described - its schematic can be seen

in Figure 3.4. Since, in the end, a second control strategy in Figure 3.2 was used, the one with

the position controller, the MPC architecture described in this section is made to fit this control

plan. The dotted line in red is where the control loop goes from one sample time to another.

The integration using the MATLAB® ode45 integrator happens in the nonlinear model block,

which represents the open loop system. The angular velocities in the B-frame and the angles

themselves in the E-frame, togetherwith the total rotational velocity of the rotors from the previ-

ous sample time period, are then sent to the continuous LPV block, where the nonlinear model

is transformed into an LPV model. The angles in the E-frame are also sent directly to the cost

function, because it needs the present angular values as can be seen in equation (3.22) [8].

The LPV model is continuous; however, the controller works discretely. Therefore, the

LPV system needs to be discretized. The discrete LPV block takes in the A, B, C and D ma-

trices from the continuous LPV block and discretizes them using the forward Euler method or

the zero-order-hold (zoh) method - both are available in the code. The discretized matrices are

then used to generate the H and F T matrices in theH and F T matrix generation block. They are

then sent to the cost function block, which also receives a reference angle vector for the entire

horizon period. The matrix H and the vector fT are then sent to the MATLAB® quadprog op-

timizer, where a sequence of ∆u-s are found that minimizes the cost function. The first element

of that sequence is used to calculate the absolute input in the current sample time period. It can

be seen in the following

Ut+k = Ut+k−1 +

[
1 0 0 0

]


∆u1t+k

∆u2t+k

∆u3t+k

∆u4t+k


(3.23)

for the horizon period of 4 samples, which is the case in the control strategy in Figure 3.2 It is

then fed into the nonlinear model block. The absolute U-s are also used to compute the total

rotational velocity of the rotors in the present sample period, which is also sent to the nonlinear

model block. Then, the integration happens and the entire process starts all over again.
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Finally, in Figure 3.5, it is shown how the reference angle ψ is computed in the planner. The

angle is always measured counter-clockwise starting from 3 o’clock. The tail of a red arrow is

the current sample time period. The head of that arrow is the next sample time period.

Figure 3.4: MPC controller architecture

Figure 3.5: The reference angle ψ calculation in the planner
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3.5 The position controller

This section describes the feedback linearizationmethod in the position controller that is used in

the second control strategy in Figure 3.2. The system of the second order differential equations

that govern the UAV’s position are [3]

ẍ = (cosφ sin θ cosψ + sinφ sinψ)
U1

m

ÿ = (cosφ sin θ sinψ − sinφ cosψ)
U1

m

z̈ = −g + cosφ cos θ
U1

m

(3.24)

The system can be written out as a system of first order differential equations as it can be

seen in the following [3]

ẋ1 = x2

ẋ2 = (cosφ sin θ cosψ + sinφ sinψ)
U1

m

ẋ3 = x4

ẋ4 = (cosφ sin θ sinψ − sinφ cosψ)
U1

m

ẋ5 = x6

ẋ6 = −g + cosφ cos θ
U1

m

(3.25)

The system can be written out as a system of first order differential equations as it can be seen

in equation (3.25) [3], where x1 = x, x2 = ẋ, x3 = y, x4 = ẏ, x5 = z, x6 = ż [3].

Besides position reference values x, y, z, the planner also needs to provide the position controller

with the reference velocities ẋ, ẏ, ż that are calculated as follows

˙xRt+1 =
xRt+1 − xRt

Ts

˙yRt+1 =
yRt+1 − yRt

Ts

˙zRt+1 =
zRt+1 − zRt

Ts

(3.26)
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Next, the errors of the position and velocity values are computed. The velocity errors are differ-

entiated one more time to get the acceleration of the error values. The second error derivative

is essentially the negative of the acceleration of a position variable, because the reference ve-

locity values are constant during one sample time and so, they become zeros. These errors are

calculated as [3].

ex = xRt − xt ėx = ẋRt − ẋt ëx = −ẍt = vx

ey = yRt − yt ėy = ˙yRt − ẏt ëy = −ÿt = vy

ez = zRt − zt ėz = ˙zRt − żt ëz = −z̈t = vz

(3.27)

The variables vx, vy, vz are then chosen to be a control action for the linearized state feedback

control strategy as [3].

vx = −kx1ex − kx2 ėx

vy = −ky1ey − k
y
2 ėy

vy = −kz1ez − kz2 ėz

(3.28)

From equation 3.24 [3], the variables vx, vy, vz can can also be substitutedwith the second order

differential equations that govern the UAV’s position, as it can be seen in the following [3]

vx = −(cosφ sin θ cosψ + sinφ sinψ)
U1

m

vy = −(cosφ sin θ sinψ − sinφ cosψ)
U1

m

vz = −(−g + cosφ cos θ
U1

m
)

(3.29)

By choosing negative real poles, the constants in equation (3.28) can be computed [3]. Then, the

values vx, vy, vz are determined. In order to find the angles θ and φ for the attitude controller,

which it will then use as reference angles, the equations (3.30) [3] and (3.31) [3] are used,

respectively. The constants a, b, c and d are calculated as [3]

θ = tan−1(ac+ bd) (3.30)
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if

(
|ψref | <

π

4
or |ψref | >

3π

4

)
φ = tan−1(

cos(θ)(tan(θ)d− b)
c

)

else

φ = tan−1(
cos(θ)(a− tan(θ)c)

d
)

(3.31)

a =
vx

vz + g
, b =

vy
vz + g

, c = cosψref , d = sinψref (3.32)

U1 =
(vz + g)m

cosφ cos θ
(3.33)

These angles, along with the ψR angle from the planner, will serve as reference angles for

the LPV-MPC controller. However, the position controller also finds the inputU1, that is directly

fed into the nonlinear model. The control action U1 can be computed in equation (3.33) [3].

3.6 Implementation of the position and the LPV-MPC controller

In Figure 3.6, one can see the structure of the control strategy code. The code itself is in the

Appendix B. The script consists of one MAIN file and six supportive functions. It is approxi-

mately shown with arrows in which location in the main file the functions are used. The initial

constants function is a library type function in which one can find constants and certain initial

values. This function also supports the other functions in this code.

The MAIN file first loads the constants and the initial values. It gets the trajectory, the ref-

erence velocities and the reference yaw angle from the trajectory generator (planner). Then, the

outer loop begins where the position controller function is used. After that, the LPV-MPC loop

starts that uses a function to get the discrete LPVmodel. The inner loop loops through the code

4 times per 1 loop of the outer loop. In the MPC simplification function, the necessary matrices

for the solver are generated. After that, the solver is called. The results are then fed into the

nonlinear drone model, where the integration of the open loop system happens. Finally. the

results are plotted, which can be seen in the validation chapter.
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Figure 3.6: The structure of the control strategy code
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Chapter 4

Validation of the controller

In this chapter, both of the proposed control strategies in Figures 3.1 and 3.2 will be validated.

The testing processwill be performed by giving the controllers a trajectorywhich is a spiral with

a radius of 2 meters. Its initial height is 2 meters and the final height is 5 meters. The testing

time will be 100 seconds and one sample time period is 0.1 seconds. In both cases, the initial

rotational velocity of all the rotors is 3000 rad
s . At this rate, the UAV does not produce enough

thrust in order to be able to leave the ground. The drone is not tilted in terms of its roll and

pitch angles. The initial yaw angle will be 90 degrees counter-clockwise from 3 o’clock. The

initial x, y and z coordinates of the UAV are 0, -1, 0 meters, respectively. The weight matrices

in MPC (Q, R, S) are all identity matrices. The parameters of the drone in this thesis belong to

AscTec Hummingbird [3].

In Appendix A, in Figures fromA.1 to A.24, four more trajectories were created to test how

the proposed position and LPV-MPC controller tracks different trajectories. The paths were

created by trying to change the nature of each position (x, y, z) dimension. Special attention

must be given to Figure A.5, in which it can be seen that as the time progresses, the angle φ

becomes more and more negative. It means that if the test period is very long and the structure

of the expanding spiral remains the same (the same initial andfinal height, and the continuously

increasing radius along with the same sample time). Then, it can be expected that the drone

becomes unstable at some point.
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4.1 Experimenting with a global LPV-MPC controller-spiral

In this section, a global LPV-MPC controller was tested that is presented in Figure 3.1. The

results are shown in Figures from 4.1 to 4.4. It is clear that the controller fails to track the trajec-

tory. The x and y dimensions are completely unaffected. The UAV only oscillates up and down

along the z-axis. This can be explained by the fact that the angles φ and θ remain unaffected.

This comes from the fact that the angles could not be separated from highly nonlinear equations

of motion and represented as inputs in the LPV model in equation (3.4). In other words, this

control architecture was not able to generate reference values for the angles. The hope was that

the angles would automatically adjust themselves in the system internally when presentedwith

the position and yaw angle reference values. However, that did not happen and another control

strategy was needed. Only the ψ angle properly tracked its reference values, which means that

the drone was spinning while going up and down with a much greater magnitude than the

amplitude of the spiral in the z-dimension.

Figure 4.1: Flight trajectory in x, y, z
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Figure 4.2: x, y, z and ψ values as a function of time

Figure 4.3: φ and θ values as a function of time
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Figure 4.4: U1, U2, U3, U4 values as a function of time
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4.2 Validation of the LPV-MPC and position controller - spiral

Since the proposed control strategy in Figure 3.1 failed tomeet its objectives, a strategy in Figure

3.2 was implemented to control the UAV. Here, the position and angular variables were decou-

pled. The position controller, which uses the feedback linearizationmethodology, computes the

necessary U1 input for the drone. However, it also computes the angles φ and θ that are nec-

essary for the drone to reach in order for it to be able to reach its target position. These angles

along with the ψ angle from the planner are then fed into the LPV-MPC controller as reference

values. In order to give the LPV-MPC controller time to adjust the UAV’s angles and reach the

target orientation, the inner control loop has to work faster - in this case, four times faster. The

horizon period for MPC was was also chosen to be 4 samples.

As it can be seen in Figures from 4.5 to 4.11, this control strategy has very high success.

All the UAV’s six degrees of freedom are tracked with very small errors. In tracking the x, y, z

reference velocity values, one can observe strong overshoot at the beginning of the test period.

That can be explained by the fact that the drone starts its journey from quite a long distance

away from the trajectory. However, once it reaches the path that it needs to follow, the velocities

of the UAV stabilize and track the reference values very smoothly.

Figure 4.5: Flight trajectory - spiral
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Figure 4.6: x and ẋ values as a function of time

Figure 4.7: y and ẏ values as a function of time
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Figure 4.8: z and ż values as a function of time

Figure 4.9: φ, θ, ψ values as a function of time



48 Chapter 4. Validation of the controller

Figure 4.10: φ, θ, ψ values as a function of time - zoomed in

Figure 4.11: U1, U2, U3, U4 values as a function of time
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Chapter 5

Conclusion

5.1 Summary of the results

The aim of this Master’s thesis was to take the nonlinear mathematical model of a quadcopter

and put it in the Linear Parameter Varying (LPV) form in order to be able to use the most basic

Model Predictive Control (MPC) strategy, which was developed for linear systems. And then,

the goal was to apply the MPC strategy and make the UAV track a given trajectory. It was first

attempted to create one global LPV-MPC controller and control the drone thatway; however, the

attempt was unsuccessful, because there were strong nonlinearities in the LPV model that did

not let the pitch and roll angles to be extracted from themodel and formulated as control actions.

As a result, these angles remained unaffected and unchanged, which in turn meant that the

drone’s x and y position coordinates were unaltered. The challenge was solved by decoupling

the controller into two parts. The position controller, which uses the feedback linearization

methodology, was responsible for controlling the position variables, and the attitude controller

controlled the angles using the LPV-MPC control strategy. This strategymanaged to control the

drone with high precision.

5.2 Proposed future research work

The results in this thesis look promising. However, much work remains to be done in this sub-

ject. This work did not apply any constraints on the inputs, outputs, nor on the states of the UAV.

The parameters of the drone used in this thesis belong to AscTec Hummingbird [3]. The work
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in this thesis could be expanded by taking the maximum state, input and output values of the

aforementioned quadcopter and integrating them into the LPV-MPC controller as the bounds

for this controller.

This thesis does not deal with any unexpected disturbances either, which introduce uncer-

tainty in model prediction. In addition, it does not take into account the noise that occurs in the

sensors, that adds uncertainty in the measured states or outputs. The work could be expanded

by introducing the aforementioned challenges into the system, and then modifying the LPV-

MPC, and the position controller. Perhaps, a filter such as Kalman filter could be added to the

control loop to make the tracking more robust. Along with that, also the weight matrices Q, S,

R in MPC could be properly tuned. At this point, they are just identity matrices.

Finally, once all these additions are made, all the results could be tested on a real drone.

TheMATLAB® script could be translated into a C/C++ code and then loaded on a UAV testing

how the control strategy tracks the trajectories from this thesis in real life.
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Appendix A

Validation using additional trajectories

A.1 Validation of the LPV-MPC and position controller - expanding

spiral

Figure A.1: Flight trajectory - extended spiral
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Figure A.2: x and ẋ values as a function of time

Figure A.3: y and ẏ values as a function of time
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Figure A.4: z and ż values as a function of time

Figure A.5: φ, θ, ψ values as a function of time
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Figure A.6: U1, U2, U3, U4 values as a function of time
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A.2 Validation of the LPV-MPC and position controller - straight line

in 3D

Figure A.7: Flight trajectory - straight line in 3D
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Figure A.8: x and ẋ values as a function of time

Figure A.9: y and ẏ values as a function of time
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Figure A.10: z and ż values as a function of time

Figure A.11: φ, θ, ψ values as a function of time
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Figure A.12: U1, U2, U3, U4 values as a function of time



Appendix A. Validation using additional trajectories 59

A.3 Validation of the LPV-MPC and position controller - wavy line

in 3D

Figure A.13: Flight trajectory - wavy line in 3D
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Figure A.14: x and ẋ values as a function of time

Figure A.15: y and ẏ values as a function of time
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Figure A.16: z and ż values as a function of time

Figure A.17: φ, θ, ψ values as a function of time
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Figure A.18: U1, U2, U3, U4 values as a function of time
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A.4 Validation of the LPV-MPC and position controller - the crown

Figure A.19: Flight trajectory - the crown
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Figure A.20: x and ẋ values as a function of time

Figure A.21: y and ẏ values as a function of time
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Figure A.22: z and ż values as a function of time

Figure A.23: φ, θ, ψ values as a function of time
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Figure A.24: U1, U2, U3, U4 values as a function of time
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Appendix B

The implementation script

B.1 Function: MAIN_LPV_MPC_drone.m

1 c l e a r a l l

2 c lo se a l l

3 c l c

4

5 %% Main f i l e fo r c on t r o l l e r i ng the drone

6

7 % The con t r o l l e r c on s i s t s of the pos i t i on c on t r o l l e r ( s t a t e feedback

8 % l i n e a r i z a t i o n ) − outer loop AND a t t i t ude c on t r o l l e r (LPV−MPC) −

inner

9 % loop with f a s t e r dynamics

10

11 % The re l evan t funct ion f i l e s to t h i s main f i l e are the fol lowing :

12 % in i t i a l _ c o n s t a n t s .m

13 % LPV_cont_discrete .m

14 % MPC_simplif icat ion .m

15 % nonlinear_drone_model .m

16 % tra j e c t o ry_gene r a t o r .m

17 % pos_con t ro l l e r .m
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18

19 %% Load the constant values

20 cons tants=i n i t i a l _ c o n s t a n t s () ;

21 Ts=cons tants { 7 } ;

22 c on t r o l l ed_ s t a t e s=cons tants { 1 4 } ; % number of con t ro l l ed s t a t e s in

t h i s s c r i p t

23 innerDyn_length=cons tants { 1 8 } ; % Number of inner con t ro l loop

i t e r a t i o n s

24

25 %% Generate the re f e rence s i gna l s

26 t = 0 : Ts∗ innerDyn_length : 1 0 0 ;

27 t _ang les =(0:Ts : t (end)) ’ ;

28 r = 2 ;

29 f =0 .025 ;

30 he igh t_ i =2;

31 he igh t_ f =5;

32 [ X_ref , X_dot_ref , Y_ref , Y_dot_ref , Z_ref , Z_dot_ref , p s i _ r e f ]=

t r a j e c t o ry_gene r a t o r ( t , r , f , he ight_ i , he igh t_ f ) ;

33 p l o t l=length ( t ) ; % Number of outer con t ro l loop i t e r a t i o n s

34

35 %% Load the i n i t i a l s t a t e vec tor

36

37 ut=0;

38 vt=0;

39 wt=0;

40 pt=0;

41 qt=0;

42 r t =0;

43 xt =0;%X_ref (1 ,2) ; % I n i t i a l t r a n s l a t i o n a l pos i t i on

44 yt=−1;%Y_ref (1 ,2) ; % I n i t i a l t r a n s l a t i o n a l pos i t i on

45 z t =0;%Z_ref (1 ,2) ; % I n i t i a l t r a n s l a t i o n a l pos i t i on

46 phi t =0; % I n i t i a l angular pos i t i on
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47 t h e t a t =0; % I n i t i a l angular pos i t i on

48 ps i t=ps i _ r e f (1 ,2) ; % I n i t i a l angular pos i t i on

49

50 s t a t e s=[ut , vt , wt , pt , qt , r t , xt , yt , zt , phit , the ta t , p s i t ] ;

51 s t a t e s _ t o t a l=s t a t e s ;

52

53 % Assume tha t f i r s t Phi_ref , Theta_ref , P s i _ r e f are equal to the

f i r s t

54 % phit , the ta t , p s i t

55 r e f _ ang l e s _ t o t a l=[phit , the ta t , p s i t ] ;

56 ve loc i tyXYZ_tota l=[X_dot_ref (1 ,2) , Y_dot_ref (1 ,2) , Z_dot_ref (1 ,2) ] ;

57 %% I n i t i a l drone s t a t e

58

59 omega1=3000; % rad/ s a t t = −1 s

60 omega2=3000; % rad/ s a t t = −1 s

61 omega3=3000; % rad/ s a t t = −1 s

62 omega4=3000; % rad/ s a t t = −1 s

63

64 c t = cons tants { 1 1 } ;

65 cq = cons tants { 1 2 } ;

66 l = cons tants { 1 3 } ;

67

68 U1=c t ∗(omega1^2+omega2^2+omega3^2+omega4^2) ; % Input a t t = −1 s

69 U2=c t ∗ l ∗(omega4^2−omega2^2) ; % Input a t t = −1 s

70 U3=c t ∗ l ∗(omega3^2−omega1^2) ; % Input a t t = −1 s

71 U4=cq∗(−omega1^2+omega2^2−omega3^2+omega4^2) ; % Input a t t = −1 s

72

73 UTotal=[U1 ,U2 ,U3 ,U4 ] ;% 4 inputs

74

75 globa l omega_total

76 omega_total=−omega1+omega2−omega3+omega4 ;

77
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78 %% S t a r t the g loba l c on t r o l l e r

79

80 fo r i _g l oba l = 1 : p lo t l −1

81

82

83 %% Implement the pos i t i on c on t r o l l e r ( s t a t e feedback

l i n e a r i z a t i o n )

84

85 [ phi_ref , the t a_ re f , U1]=pos_con t ro l l e r ( X_ref ( i _g l oba l +1 ,2) ,

X_dot_ref ( i _g l oba l +1 ,2) , Y_ref ( i _g l oba l +1 ,2) , Y_dot_ref ( i _g l oba l

+1 ,2) , Z_ref ( i _g l oba l +1 ,2) , Z_dot_ref ( i _g l oba l +1 ,2) , p s i _ r e f (

i _g l oba l +1 ,2) , s t a t e s ) ;

86

87

88 Phi_re f=phi_re f ∗ones ( innerDyn_length+1 ,1) ;

89 Theta_re f=the t a _ r e f ∗ones ( innerDyn_length+1 ,1) ;

90 Ps i _ r e f=ps i _ r e f ( i _g l oba l +1 ,2)∗ones ( innerDyn_length+1 ,1) ;

91

92 r e f _ ang l e s _ t o t a l=[ r e f _ ang l e s _ t o t a l ; Ph i_ re f ( 2 : end) Theta_re f ( 2 : end

) P s i _ r e f ( 2 : end) ] ;

93

94 %% Create the re f e rence vec tor

95

96 r e f S i gna l s=zeros ( length ( Ph i_re f ( : , 1 ) )∗ con t ro l l ed_ s t a t e s , 1 ) ;

97 % Format : r e f S i gna l s=[Phi_re f ; Theta_re f ; P s i _ r e f ; Ph i_ re f ; . . . e t c ]

x inner

98 % loop frequency per one s e t of pos i t i on c on t r o l l e r outputs

99 k_ r e f _ l o c a l =1;

100 fo r i = 1 : c on t r o l l ed_ s t a t e s : length ( r e f S i gna l s )

101 r e f S i gna l s ( i )=Phi_re f ( k_ re f _ lo ca l , 1 ) ;

102 r e f S i gna l s ( i +1)=Theta_re f ( k_ re f _ lo ca l , 1 ) ;

103 r e f S i gna l s ( i +2)=Ps i _ r e f ( k_ re f _ lo ca l , 1 ) ;
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104 k_ r e f _ l o c a l=k_ r e f _ l o c a l +1;

105 end

106

107

108 k_ r e f _ l o c a l =1; % for reading re f e rence s i gna l s

109 hz = cons tants { 1 5 } ; % horizon period

110 f o r i =1: innerDyn_length

111 %% Generate d i s c r e t e LPV Ad, Bd , Cd, Dd matr ices

112 [Ad, Bd , Cd, Dd, x_dot , y_dot , z_dot , phit , phi_dot , the ta t ,

theta_dot , ps i t , ps i_dot]=LPV_cont_discrete ( s t a t e s ) ;

113 ve loc i tyXYZ_to ta l=[ve loc i tyXYZ_tota l ; [ x_dot , y_dot , z_dot ] ] ;

114

115

116 %% Generating the current s t a t e and the re f e rence vec tor

117 x_aug_t=[phi t ; phi_dot ; t h e t a t ; the ta_dot ; p s i t ; ps i_dot ;U2 ;U3 ;U4

] ;

118

119 k_ r e f _ l o c a l=k_ r e f _ l o c a l+con t r o l l ed_ s t a t e s ;

120

121 % S t a r t counting from the second sample period :

122 % r=re f S i gna l s ( Phi_re f_2 ; Theta_ref_2 ; P s i _ r e f _2 ; Phi_re f_3 . . . )

e t c .

123 i f k _ r e f _ l o c a l+con t r o l l ed_ s t a t e s ∗hz−1 <= length ( r e f S i gna l s )

124 r=r e f S i gna l s ( k_ r e f _ l o c a l : k _ r e f _ l o c a l+con t r o l l ed_ s t a t e s ∗hz

−1) ;

125 e l s e

126 r=r e f S i gna l s ( k_ r e f _ l o c a l : length ( r e f S i gna l s ) ) ;

127 hz=hz−1;

128 end

129

130 %% Generate s imp l i f i c a t i o n matr ices fo r the cos t funct ion

131 [Hdb, Fdbt , Cdb ,Adc] = MPC_simplif icat ion (Ad, Bd ,Cd,Dd, hz) ;
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132

133 %% Cal l ing the optimizer (quadprog)

134

135 % Cost funct ion in quadprog : min(du)∗1/2∗du ’Hdb∗du+f ’ du

136 % f ’=[ x_t ’ , r ’ ] ∗ Fdbt

137 f t =[x_aug_t ’ , r ’ ] ∗ Fdbt ;

138

139 % Hdb must be pos i t i v e d e f i n i t e fo r the problem to have

f i n i t e minimum.

140 % Check i f matrix Hdb in the cos t funct ion i s po s i t i v e

d e f i n i t e .

141 [~ ,p] = chol (Hdb) ;

142 i f p~=0

143 disp ( ’Hdb i s NOT pos i t i v e d e f i n i t e ’ ) ;

144 end

145

146 % Cal l the so lver

147 opt ions = optimset ( ’ Display ’ , ’ o f f ’ ) ;

148 lb=cons tants { 16 } ;

149 ub=cons tants { 17 } ;

150 [du , f va l ]=quadprog(Hdb, f t , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , opt ions ) ;

151

152 % Update the r e a l inputs

153 U2=U2+du(1) ;

154 U3=U3+du(2) ;

155 U4=U4+du(3) ;

156

157 UTotal=[UTotal ;U1 ,U2 ,U3 ,U4 ] ;

158

159 % Compute the new omegas based on the new U−s .

160 U1C=U1/ c t ;

161 U2C=U2/( c t ∗ l ) ;
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162 U3C=U3/( c t ∗ l ) ;

163 U4C=U4/cq ;

164

165 omega4P2=(U1C+2∗U2C+U4C) /4 ;

166 omega3P2=(−U4C+2∗omega4P2−U2C+U3C) /2 ;

167 omega2P2=omega4P2−U2C;

168 omega1P2=omega3P2−U3C;

169

170 omega1=sqr t (omega1P2) ;

171 omega2=sqr t (omega2P2) ;

172 omega3=sqr t (omega3P2) ;

173 omega4=sqr t (omega4P2) ;

174

175 % Compute the t o t a l omega

176 omega_total=−omega1+omega2−omega3+omega4 ;

177

178 % Simulate the new s t a t e s

179 T = (Ts)∗( i−1) : ( Ts) /30 : Ts∗( i−1)+(Ts) ;

180 [T , x]=ode45(@( t , x) nonlinear_drone_model ( t , x , [U1 ,U2 ,U3 ,U4]) ,T

, s t a t e s ) ;

181 s t a t e s=x(end , : ) ;

182 s t a t e s _ t o t a l =[ s t a t e s _ t o t a l ; s t a t e s ] ;

183

184 imaginary_check=imag( s t a t e s )~=0;

185 imaginary_check_sum=sum( imaginary_check ) ;

186 i f imaginary_check_sum~=0

187 disp ( ’ Imaginary part e x i s t s − something i s wrong ’ ) ;

188 end

189 end

190 end

191

192 %% Plot the t r a j e c t o r y
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193

194 % Tra j e c to ry

195 f i gure ;

196 plot3 ( X_ref ( : , 2 ) , Y_ref ( : , 2 ) , Z_ref ( : , 2 ) , ’−−b ’ , ’ LineWidth ’ ,2)

197 hold on

198 plot3 ( s t a t e s _ t o t a l ( 1 : innerDyn_length : end , 7 ) , s t a t e s _ t o t a l ( 1 :

innerDyn_length : end , 8 ) , s t a t e s _ t o t a l ( 1 : innerDyn_length : end , 9 ) , ’ r ’ , ’

LineWidth ’ ,1)

199 grid on ;

200 x l abe l ( ’ x−pos i t i on [m] ’ , ’ FontSize ’ ,15)

201 y labe l ( ’y−pos i t i on [m] ’ , ’ FontSize ’ ,15)

202 z l abe l ( ’ z−pos i t i on [m] ’ , ’ FontSize ’ ,15)

203 legend ({ ’ pos i t ion−r e f ’ , ’ pos i t i on ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’

,15)

204

205 %% Plot the pos i t i ons and v e l o c i t i e s ind iv idua l ly

206

207 % X and X_dot

208 f i gure ;

209 subplot (2 , 1 , 1)

210 plo t ( t ( 1 : p l o t l ) , X_ref ( 1 : p lo t l , 2 ) , ’−−b ’ , ’ LineWidth ’ ,2)

211 hold on

212 subplot (2 , 1 , 1)

213 plo t ( t ( 1 : p l o t l ) , s t a t e s _ t o t a l ( 1 : innerDyn_length : end , 7 ) , ’ r ’ , ’ LineWidth ’

,1)

214 grid on

215 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

216 y labe l ( ’ x−pos i t i on [m] ’ , ’ FontSize ’ ,15)

217 legend ({ ’ x−r e f ’ , ’ x−pos i t i on ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’ ,15)

218 subplot (2 , 1 , 2)

219 plo t ( t ( 1 : p l o t l ) , X_dot_ref ( 1 : p lo t l , 2 ) , ’−−b ’ , ’ LineWidth ’ ,2)

220 hold on
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221 subplot (2 , 1 , 2)

222 plo t ( t ( 1 : p l o t l ) , ve loc i tyXYZ_tota l ( 1 : innerDyn_length : end , 1 ) , ’ r ’ , ’

LineWidth ’ ,1)

223 grid on

224 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

225 y labe l ( ’ x−ve l o c i t y [m/s ] ’ , ’ FontSize ’ ,15)

226 legend ({ ’ x−dot−r e f ’ , ’ x−ve l o c i t y ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’

,15)

227

228 % Y and Y_dot

229 f i gure ;

230 subplot (2 , 1 , 1)

231 plo t ( t ( 1 : p l o t l ) , Y_ref ( 1 : p lo t l , 2 ) , ’−−b ’ , ’ LineWidth ’ ,2)

232 hold on

233 subplot (2 , 1 , 1)

234 plo t ( t ( 1 : p l o t l ) , s t a t e s _ t o t a l ( 1 : innerDyn_length : end , 8 ) , ’ r ’ , ’ LineWidth ’

,1)

235 grid on

236 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

237 y labe l ( ’y−pos i t i on [m] ’ , ’ FontSize ’ ,15)

238 legend ({ ’y−r e f ’ , ’y−pos i t i on ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’ ,15)

239 subplot (2 , 1 , 2)

240 plo t ( t ( 1 : p l o t l ) , Y_dot_ref ( 1 : p lo t l , 2 ) , ’−−b ’ , ’ LineWidth ’ ,2)

241 hold on

242 subplot (2 , 1 , 2)

243 plo t ( t ( 1 : p l o t l ) , ve loc i tyXYZ_tota l ( 1 : innerDyn_length : end , 2 ) , ’ r ’ , ’

LineWidth ’ ,1)

244 grid on

245 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

246 y labe l ( ’y−ve l o c i t y [m/s ] ’ , ’ FontSize ’ ,15)

247 legend ({ ’y−dot−r e f ’ , ’y−ve l o c i t y ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’

,15)
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248

249 % Z and Z_dot

250 f i gure ;

251 subplot (2 , 1 , 1)

252 plo t ( t ( 1 : p l o t l ) , Z_ref ( 1 : p lo t l , 2 ) , ’−−b ’ , ’ LineWidth ’ ,2)

253 hold on

254 subplot (2 , 1 , 1)

255 plo t ( t ( 1 : p l o t l ) , s t a t e s _ t o t a l ( 1 : innerDyn_length : end , 9 ) , ’ r ’ , ’ LineWidth ’

,1)

256 grid on

257 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

258 y labe l ( ’ z−pos i t i on [m] ’ , ’ FontSize ’ ,15)

259 legend ({ ’ z−r e f ’ , ’ z−pos i t i on ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’ ,15)

260 subplot (2 , 1 , 2)

261 plo t ( t ( 1 : p l o t l ) , Z_dot_ref ( 1 : p lo t l , 2 ) , ’−−b ’ , ’ LineWidth ’ ,2)

262 hold on

263 subplot (2 , 1 , 2)

264 plo t ( t ( 1 : p l o t l ) , ve loc i tyXYZ_tota l ( 1 : innerDyn_length : end , 3 ) , ’ r ’ , ’

LineWidth ’ ,1)

265 grid on

266 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

267 y labe l ( ’ z−ve l o c i t y [m/s ] ’ , ’ FontSize ’ ,15)

268 legend ({ ’ z−dot−r e f ’ , ’ z−ve l o c i t y ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’

,15)

269

270 %% Plot the angles ind iv idua l ly

271

272 % Phi

273 f i gure ;

274 subplot (3 , 1 , 1)

275 plo t ( t_ang les ( 1 : length ( r e f _ ang l e s _ t o t a l ( : , 1 ) ) ) , r e f _ ang l e s _ t o t a l ( : , 1 ) ,

’−−b ’ , ’ LineWidth ’ ,2)
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276 hold on

277 subplot (3 , 1 , 1)

278 plo t ( t_ang les ( 1 : length ( s t a t e s _ t o t a l ( : , 1 0 ) ) ) , s t a t e s _ t o t a l ( : , 1 0 ) , ’ r ’ , ’

LineWidth ’ ,1)

279 grid on

280 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

281 y labe l ( ’ phi−angle [ rad ] ’ , ’ FontSize ’ ,15)

282 legend ({ ’ phi−r e f ’ , ’ phi−angle ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’ ,15)

283

284 % Theta

285 subplot (3 , 1 , 2)

286 plo t ( t_ang les ( 1 : length ( r e f _ ang l e s _ t o t a l ( : , 2 ) ) ) , r e f _ ang l e s _ t o t a l ( : , 2 ) ,

’−−b ’ , ’ LineWidth ’ ,2)

287 hold on

288 subplot (3 , 1 , 2)

289 plo t ( t_ang les ( 1 : length ( s t a t e s _ t o t a l ( : , 1 1 ) ) ) , s t a t e s _ t o t a l ( : , 1 1 ) , ’ r ’ , ’

LineWidth ’ ,1)

290 grid on

291 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

292 y labe l ( ’ theta−angle [ rad ] ’ , ’ FontSize ’ ,15)

293 legend ({ ’ theta−r e f ’ , ’ theta−angle ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’

,15)

294

295 % Psi

296 subplot (3 , 1 , 3)

297 plo t ( t_ang les ( 1 : length ( r e f _ ang l e s _ t o t a l ( : , 3 ) ) ) , r e f _ ang l e s _ t o t a l ( : , 3 ) ,

’−−b ’ , ’ LineWidth ’ ,2)

298 hold on

299 subplot (3 , 1 , 3)

300 plo t ( t_ang les ( 1 : length ( s t a t e s _ t o t a l ( : , 1 2 ) ) ) , s t a t e s _ t o t a l ( : , 1 2 ) , ’ r ’ , ’

LineWidth ’ ,1)

301 grid on
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302 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

303 y labe l ( ’ psi−angle [ rad ] ’ , ’ FontSize ’ ,15)

304 legend ({ ’ psi−r e f ’ , ’ psi−angle ’ } , ’ Locat ion ’ , ’ nor theas t ’ , ’ FontSize ’ ,15)

305

306

307 %% Plot the inputs

308

309 f i gure

310 subplot (4 , 1 , 1)

311 plo t ( t_ang les ( 1 : length ( s t a t e s _ t o t a l ( : , 1 0 ) ) ) , UTotal ( : , 1 ) )

312 grid on

313 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

314 y labe l ( ’U1 [N] ’ , ’ FontSize ’ ,15)

315 subplot (4 , 1 , 2)

316 plo t ( t_ang les ( 1 : length ( s t a t e s _ t o t a l ( : , 1 0 ) ) ) , UTotal ( : , 2 ) )

317 grid on

318 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

319 y labe l ( ’U2 [Nm] ’ , ’ FontSize ’ ,15)

320 subplot (4 , 1 , 3)

321 plo t ( t_ang les ( 1 : length ( s t a t e s _ t o t a l ( : , 1 0 ) ) ) , UTotal ( : , 3 ) )

322 grid on

323 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

324 y labe l ( ’U3 [Nm] ’ , ’ FontSize ’ ,15)

325 subplot (4 , 1 , 4)

326 plo t ( t_ang les ( 1 : length ( s t a t e s _ t o t a l ( : , 1 0 ) ) ) , UTotal ( : , 4 ) )

327 grid on

328 x l abe l ( ’ time [ s ] ’ , ’ FontSize ’ ,15)

329 y labe l ( ’U4 [Nm] ’ , ’ FontSize ’ ,15)

330 %\\

331 %\\
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B.2 Function: initial_constants.m

1

2 func t ion cons tants=i n i t i a l _ c o n s t a n t s ()

3

4 % Constants

5 Ix = 0 . 0 0 3 4 ; %kg∗m^2

6 Iy = 0 . 0 0 3 4 ; %kg∗m^2

7 Iz = 0 . 0 0 6 ; %kg∗m^2

8 m = 0 . 6 9 8 ; %kg

9 g = 9 . 8 1 ; %m/s^2

10 J tp =1.302∗10^(−6) ; %N∗m∗s^2=kg∗m^2

11 Ts=0 .1 ; %s

12

13 % Matrix weights fo r the cos t funct ion (They must be diagonal )

14 Q=[1 0 0 ; 0 1 0 ; 0 0 1 ] ; % weights fo r outputs ( output x output )

15 S=[1 0 0 ; 0 1 0 ; 0 0 1 ] ; % weights fo r the f i n a l horizon outputs (

output x output )

16 R=[1 0 0 ; 0 1 0 ; 0 0 1 ] ; % weights fo r inputs ( input x input )

17

18 c t = 7.6184∗10^(−8) ; %N∗s^2

19 cq = 2.6839∗10^(−9) ; %N∗m^2

20 l = 0 . 1 7 1 ; %m;

21

22 c on t r o l l ed_ s t a t e s =3;

23 hz = 4 ; % horizon period

24

25 % Input bounds :

26 lb =[−0.5; −0.5 ; −0.5] ;

27 ub=[0 .5 ; 0 . 5 ; 0 . 5 ] ;

28

29 innerDyn_length=4; % Number of inner con t ro l loop i t e r a t i o n s
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30

31 px=[−1+0 j −2+0 j ] ;

32 py=[−1+0 j −2+0 j ] ;

33 pz=[−1+0 j −2+0 j ] ;

34

35 cons tants={Ix Iy Iz m g J tp Ts Q S R c t cq l c on t r o l l ed_ s t a t e s hz

lb ub innerDyn_length px py pz } ;

36

37 end

B.3 Function: trajectory_generator.m

1

2 %% Pos i t i on t r a j e c t o r y generat ion

3 func t ion [ X_ref , X_dot_ref , Y_ref , Y_dot_ref , Z_ref , Z_dot_ref , p s i _ r e f ]=

t r a j e c t o ry_gene r a t o r ( t , r , f , he ight_ i , he igh t_ f )

4

5 cons tants = i n i t i a l _ c o n s t a n t s () ;

6 Ts=cons tants { 7 } ; %s

7 innerDyn_length=cons tants { 1 8 } ; % Number of inner con t ro l loop

i t e r a t i o n s

8

9 alpha=2∗pi∗ f . ∗ t ;

10 d_height=height_f−he igh t_ i ;

11

12 x = r .∗ cos ( alpha ) ;

13 y = r .∗ s in ( alpha ) ;

14 z = he igh t_ i+d_height / t (end)∗ t ;

15

16 % x = ( r /10 .∗ t+2) .∗ cos ( alpha ) ;

17 % y = ( r /10 .∗ t+2) .∗ s in ( alpha ) ;

18 % z = he igh t_ i+d_height / t (end)∗ t ;
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19

20 % x = r .∗ cos ( alpha ) ;

21 % y = r .∗ s in ( alpha ) ;

22 % z = he igh t_ i+50∗d_height / t (end)∗ s in ( t ) ;

23

24 % x = r .∗ cos ( alpha ) ;

25 % y = 2.∗ t ;

26 % z = he igh t_ i+d_height / t (end)∗ t ;

27

28 % x = 2.∗ t /20+1;

29 % y = 2.∗ t /20−2;

30 % z = he igh t_ i+d_height / t (end)∗ t ;

31

32 dx=[x(2)−x(1) , x ( 2 : end)−x ( 1 : end−1) ] ;

33 dy=[y(2)−y(1) , y ( 2 : end)−y (1 : end−1) ] ;

34 dz=[z (2)−z (1) , z ( 2 : end)−z ( 1 : end−1) ] ;

35

36 x_dot=dx .∗(1/( Ts∗innerDyn_length ) ) ;

37 y_dot=dy .∗(1/( Ts∗innerDyn_length ) ) ;

38 z_dot=round(dz .∗(1/( Ts∗innerDyn_length ) ) ,8) ;

39

40 ps i=zeros (1 , length (x) ) ;

41 ps i (1)=atan2 (y(1) , x (1) )+pi /2 ;

42 ps i ( 2 : end)=atan2 (dy (2 : end) ,dx ( 2 : end)) ;

43

44 fo r i = 1 : length ( ps i )

45 i f ps i ( i )<0

46 ps i ( i )=2∗pi−abs ( ps i ( i ) ) ;

47 end

48 end

49

50 fo r i = 1 : length ( ps i )
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51 i f i >1

52 i f abs ( ps i ( i )−ps i ( i−1))>pi

53 ps i ( i : end)=ps i ( i : end)+2∗pi ;

54 end

55 end

56 end

57

58 X_ref = [ t ’ x ’ ] ;

59 X_dot_ref = [ t ’ x_dot ’ ] ;

60 Y_ref = [ t ’ y ’ ] ;

61 Y_dot_ref = [ t ’ y_dot ’ ] ;

62 Z_ref = [ t ’ z ’ ] ;

63 Z_dot_ref = [ t ’ z_dot ’ ] ;

64 ps i _ r e f = [ t ’ psi ’ ] ;

65 end

66 %\\

67 %\\

B.4 Function: LPV_cont_discrete.m

1

2 func t ion [Ad, Bd , Cd, Dd, x_dot , y_dot , z_dot , phi , phi_dot , theta ,

theta_dot , psi , ps i_dot ] = LPV_cont_discrete ( s t a t e s )

3 % This i s an LPV model concerning the three r o t a t i o n a l ax i s .

4

5 % Get the cons tants from the general pool of cons tants

6 cons tants = i n i t i a l _ c o n s t a n t s () ;

7 Ix = cons tants { 1 } ; %kg∗m^2

8 Iy = cons tants { 2 } ; %kg∗m^2

9 Iz = cons tants { 3 } ; %kg∗m^2

10 J tp=cons tants { 6 } ; %N∗m∗s^2=kg∗m^2

11 Ts=cons tants { 7 } ; %s
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12

13

14 % Assign the s t a t e s

15 % Sta t e s : [u , v ,w, p , q , r , x , y , z , phi , theta , ps i ]

16 u = s t a t e s (1) ;

17 v = s t a t e s (2) ;

18 w = s t a t e s (3) ;

19 p = s t a t e s (4) ;

20 q = s t a t e s (5) ;

21 r = s t a t e s (6) ;

22 phi = s t a t e s (10) ;

23 the ta = s t a t e s (11) ;

24 ps i = s t a t e s (12) ;

25

26 globa l omega_total ;

27

28 %%

29

30 % Rota t iona l matrix tha t r e l a t e s u , v ,w with x_dot , y_dot , z_dot

31 R_matrix=[cos ( the ta )∗cos ( ps i ) , s in (phi )∗ s in ( the ta )∗cos ( ps i )−cos (

phi )∗ s in ( ps i ) , . . .

32 cos (phi )∗ s in ( the ta )∗cos ( ps i )+s in (phi )∗ s in ( ps i ) ; . . .

33 cos ( the ta )∗ s in ( ps i ) , s in (phi )∗ s in ( the ta )∗ s in ( ps i )+cos (phi )∗

cos ( ps i ) , . . .

34 cos (phi )∗ s in ( the ta )∗ s in ( ps i )−s in (phi )∗cos ( ps i ) ; . . .

35 −s in ( the ta ) , s in (phi )∗cos ( the ta ) , cos (phi )∗cos ( the ta ) ] ;

36

37 x_dot=R_matrix ( 1 , : ) ∗[u ; v ;w] ; %x_dot

38 y_dot=R_matrix ( 2 , : ) ∗[u ; v ;w] ; %y_dot

39 z_dot=R_matrix ( 3 , : ) ∗[u ; v ;w] ; %z_dot

40

41 % To get phi_dot , theta_dot , psi_dot , you need the T matrix



84 Appendix B. The implementation script

42

43 % Transformation matrix tha t r e l a t e s p , q , r with phi_dot , theta_dot

, ps i_dot

44 T_matrix=[1 , s in (phi )∗ tan ( the ta ) , cos (phi )∗ tan ( the ta ) ; . . .

45 0 , cos (phi ) , −s in (phi ) ; . . .

46 0 , s in (phi )∗ sec ( the ta ) , cos (phi )∗ sec ( the ta ) ] ;

47

48 phi_dot=T_matrix ( 1 , : ) ∗[p ; q ; r ] ; %phi_dot

49 the ta_dot=T_matrix ( 2 , : ) ∗[p ; q ; r ] ; %theta_dot

50 psi_dot=T_matrix ( 3 , : ) ∗[p ; q ; r ] ; %psi_dot

51

52 A12=1;

53 A24=−omega_total∗ J tp / Ix ;

54 A26=theta_dot ∗( Iy−Iz )/ Ix ;

55 A34=1;

56 A42=omega_total∗ J tp / Iy ;

57 A46=phi_dot ∗( Iz−Ix )/ Iy ;

58 A56=1;

59 A62=(theta_dot /2) ∗( Ix−Iy )/ Iz ;

60 A64=(phi_dot /2) ∗( Ix−Iy )/ Iz ;

61

62 A = [0 A12 0 0 0 0 ;

63 0 0 0 A24 0 A26 ;

64 0 0 0 A34 0 0 ;

65 0 A42 0 0 0 A46 ;

66 0 0 0 0 0 A56 ;

67 0 A62 0 A64 0 0 ] ;

68

69

70 B = [ 0 0 0 ;

71 1/ Ix 0 0 ;

72 0 0 0 ;
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73 0 1/ Iy 0 ;

74 0 0 0 ;

75 0 0 1/ Iz ] ;

76

77 C = [1 0 0 0 0 0 ; 0 0 1 0 0 0 ; 0 0 0 0 1 0 ] ;

78

79 D=0;

80

81

82 % Di s c r e t i z e the system

83

84 % % Forward Euler

85 % Ad=eye( length (A(1 , : ) ) )+Ts∗A;

86 % Bd=Ts∗B ;

87 % Cd=C;

88 % Dd=D;

89

90

91 % Zero−Order Hold

92

93 % Create s t a t e−space

94 sysc=ss (A, B ,C,D) ;

95 sysd=c2d( sysc , Ts , ’ zoh ’ ) ;

96 Ad=sysd .A;

97 Bd=sysd . B ;

98 Cd=sysd .C;

99 Dd=sysd .D;

100

101

102 end

103 %\\
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B.5 Function: MPC_simplification.m

1

2 func t ion [Hdb, Fdbt , Cdb ,Adc] = MPC_simplif icat ion (Ad, Bd ,Cd,Dd, hz)

3

4 % db − double bar

5 % dbt − double bar transpose

6 % dc − double c i rcumf lex

7

8 A_aug=[Ad, Bd ; zeros ( length (Bd( 1 , : ) ) , length (Ad( 1 , : ) ) ) , eye ( length (Bd

( 1 , : ) ) ) ] ;

9 B_aug=[Bd ; eye ( length (Bd( 1 , : ) ) ) ] ;

10 C_aug=[Cd, zeros ( length (Cd( : , 1 ) ) , length (Bd( 1 , : ) ) ) ] ;

11 D_aug=Dd; % D_aug i s not used because i t i s a zero matrix

12

13 cons tants = i n i t i a l _ c o n s t a n t s () ;

14 Q = cons tants { 8 } ;

15 S = cons tants { 9 } ;

16 R = cons tants { 1 0 } ;

17

18 CQC=C_aug ’∗Q∗C_aug ;

19 CSC=C_aug ’∗ S∗C_aug ;

20 QC=Q∗C_aug ;

21 SC=S∗C_aug ;

22

23 Qdb=zeros ( length (CQC( : , 1 ) )∗hz , length (CQC(1 , : ) )∗hz) ;

24 Tdb=zeros ( length (QC( : , 1 ) )∗hz , length (QC(1 , : ) )∗hz) ;

25 Rdb=zeros ( length (R( : , 1 ) )∗hz , length (R( 1 , : ) )∗hz) ;

26 Cdb=zeros ( length (B_aug ( : , 1 ) )∗hz , length (B_aug ( 1 , : ) )∗hz) ;

27 Adc=zeros ( length (A_aug ( : , 1 ) )∗hz , length (A_aug ( 1 , : ) ) ) ;

28

29 fo r i = 1 : hz
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30

31 i f i == hz

32 Qdb(1+length (CSC( : , 1 ) )∗( i−1) : length (CSC( : , 1 ) )∗ i ,1+ length (

CSC(1 , : ) )∗( i−1) : length (CSC(1 , : ) )∗ i )=CSC ;

33 Tdb(1+length (SC( : , 1 ) )∗( i−1) : length (SC( : , 1 ) )∗ i ,1+ length (SC

( 1 , : ) )∗( i−1) : length (SC( 1 , : ) )∗ i )=SC ;

34 e l s e

35 Qdb(1+length (CQC( : , 1 ) )∗( i−1) : length (CQC( : , 1 ) )∗ i ,1+ length (

CQC(1 , : ) )∗( i−1) : length (CQC(1 , : ) )∗ i )=CQC;

36 Tdb(1+length (QC( : , 1 ) )∗( i−1) : length (QC( : , 1 ) )∗ i ,1+ length (QC

(1 , : ) )∗( i−1) : length (QC(1 , : ) )∗ i )=QC;

37 end

38

39 Rdb(1+length (R( : , 1 ) )∗( i−1) : length (R( : , 1 ) )∗ i ,1+ length (R( 1 , : ) )∗(

i−1) : length (R( 1 , : ) )∗ i )=R ;

40

41 f o r j = 1 : hz

42 i f j<=i

43 Cdb(1+length (B_aug ( : , 1 ) )∗( i−1) : length (B_aug ( : , 1 ) )∗ i ,1+

length (B_aug ( 1 , : ) )∗( j −1) : length (B_aug ( 1 , : ) )∗ j )=

A_aug^( i− j )∗B_aug ;

44 end

45 end

46 Adc(1+length (A_aug ( : , 1 ) )∗( i−1) : length (A_aug ( : , 1 ) )∗ i , 1 : length (

A_aug ( 1 , : ) ) )=A_aug^( i ) ;

47 end

48 Hdb=Cdb’∗Qdb∗Cdb+Rdb ;

49 Fdbt=[Adc’∗Qdb∗Cdb;−Tdb∗Cdb ] ;

50 end

51 %\\

52 %\\
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B.6 Function: pos_controller.m

1

2 func t ion [ Phi_ref , Theta_ref , U1]=pos_con t ro l l e r (X_ref , X_dot_ref ,

Y_ref , Y_dot_ref , Z_ref , Z_dot_ref , Ps i _ re f , s t a t e s )

3

4

5

6 %% Load the cons tants

7 cons tants=i n i t i a l _ c o n s t a n t s () ;

8 m = cons tants { 4 } ; %kg

9 g = cons tants { 5 } ; %m/s^2

10

11 %% Assign the s t a t e s

12 % Sta t e s : [u , v ,w, p , q , r , x , y , z , phi , theta , ps i ]

13

14 u = s t a t e s (1) ;

15 v = s t a t e s (2) ;

16 w = s t a t e s (3) ;

17 x = s t a t e s (7) ;

18 y = s t a t e s (8) ;

19 z = s t a t e s (9) ;

20 phi = s t a t e s (10) ;

21 the ta = s t a t e s (11) ;

22 ps i = s t a t e s (12) ;

23

24 % Rota t iona l matrix tha t r e l a t e s u , v ,w with x_dot , y_dot , z_dot

25 R_matrix=[cos ( the ta )∗cos ( ps i ) , s in (phi )∗ s in ( the ta )∗cos ( ps i )−cos (phi )∗

s in ( ps i ) , . . .

26 cos (phi )∗ s in ( the ta )∗cos ( ps i )+s in (phi )∗ s in ( ps i ) ; . . .

27 cos ( the ta )∗ s in ( ps i ) , s in (phi )∗ s in ( the ta )∗ s in ( ps i )+cos (phi )∗cos (

ps i ) , . . .
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28 cos (phi )∗ s in ( the ta )∗ s in ( ps i )−s in (phi )∗cos ( ps i ) ; . . .

29 −s in ( the ta ) , s in (phi )∗cos ( the ta ) , cos (phi )∗cos ( the ta ) ] ;

30

31 x_dot=R_matrix ( 1 , : ) ∗[u ; v ;w] ; %x_dot

32 y_dot=R_matrix ( 2 , : ) ∗[u ; v ;w] ; %y_dot

33 z_dot=R_matrix ( 3 , : ) ∗[u ; v ;w] ; %z_dot

34

35 %% Compute the e r ro r s

36 ex=X_ref−x ;

37 ex_dot=X_dot_ref−x_dot ;

38 ey=Y_ref−y ;

39 ey_dot=Y_dot_ref−y_dot ;

40 ez=Z_ref−z ;

41 ez_dot=Z_dot_ref−z_dot ;

42

43 %% Compute the the cons tants K1 , K2 , and the values vx , vy , vz to

s t a b i l i z e the pos i t i on subsystem

44 Ax=[0 1 ; 0 0 ] ;

45 Bx=[0 ; 1 ] ;

46 px=cons tants { 19 } ;

47 Kx=place (Ax , Bx , px) ;

48 ux=−Kx∗[ex ; ex_dot ] ;

49 vx=−ux ;

50

51 Ay=[0 1 ; 0 0 ] ;

52 By=[0 ; 1 ] ;

53 py=cons tants { 2 0 } ;

54 Ky=place (Ay, By , py) ;

55 uy=−Ky∗[ey ; ey_dot ] ;

56 vy=−uy ;

57

58 Az=[0 1 ; 0 0 ] ;
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59 Bz=[0 ; 1 ] ;

60 pz=cons tants { 2 1 } ;

61 Kz=place (Az , Bz , pz) ;

62 uz=−Kz∗[ ez ; ez_dot ] ;

63 vz=−uz ;

64

65 %% Compute phi , theta , U1

66 a=vx/(vz+g) ;

67 b=vy/(vz+g) ;

68 c=cos ( P s i _ r e f ) ;

69 d=s in ( P s i _ r e f ) ;

70

71 t an_ the ta=a∗c+b∗d ;

72 Theta_re f=atan ( tan_ the ta ) ;

73

74 i f or ( abs ( P s i _ r e f )<pi /4 , abs ( P s i _ r e f )>3∗pi /4)

75 tan_phi=cos ( Theta_re f )∗( tan ( Theta_re f )∗d−b)/c ;

76 e l s e

77 tan_phi=cos ( Theta_re f )∗(a−tan ( Theta_re f )∗c )/d ;

78 end

79

80 Phi_re f=atan ( tan_phi ) ;

81 U1=(vz+g)∗m/( cos ( Ph i_re f )∗cos ( Theta_re f ) ) ;

82

83 %% Check

84

85 ( cos ( Ph i_re f )∗ s in ( Theta_re f )∗cos ( P s i _ r e f )+s in ( Phi_re f )∗ s in ( P s i _ r e f ) )/

m∗U1 ;

86 ( cos ( Ph i_re f )∗ s in ( Theta_re f )∗ s in ( P s i _ r e f )−s in ( Ph i_re f )∗cos ( P s i _ r e f ) )/

m∗U1 ;

87 −g+(cos ( Ph i_re f )∗cos ( Theta_re f ) )/m∗U1 ;

88
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89 vx ;

90 vy ;

91 vz ;

92

93 end

94 %\\

95 %\\

B.7 Function: nonlinear_drone_model.m

1

2 func t ion dx = nonlinear_drone_model ( t , s t a t e s , U)

3 % In t h i s s imulat ion , the body frame and i t s t ransformat ion i s

used

4 % ins tead of a hybrid frame . That i s because fo r the so lver ode45

, i t

5 % i s important to have the nonl inear system of equat ions in the

f i r s t

6 % order form .

7

8 % Constants

9 cons tants = i n i t i a l _ c o n s t a n t s () ;

10 Ix = cons tants { 1 } ; %kg∗m^2

11 Iy = cons tants { 2 } ; %kg∗m^2

12 Iz = cons tants { 3 } ; %kg∗m^2

13 m = cons tants { 4 } ; %kg

14 g = cons tants { 5 } ; %m/s^2

15 J tp=cons tants { 6 } ; %N∗m∗s^2=kg∗m^2

16

17 % Sta t e s : [u , v ,w, p , q , r , x , y , z , phi , theta , ps i ]

18 u = s t a t e s (1) ;

19 v = s t a t e s (2) ;
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20 w = s t a t e s (3) ;

21 p = s t a t e s (4) ;

22 q = s t a t e s (5) ;

23 r = s t a t e s (6) ;

24 x = s t a t e s (7) ;

25 y = s t a t e s (8) ;

26 z = s t a t e s (9) ;

27 phi = s t a t e s (10) ;

28 the ta = s t a t e s (11) ;

29 ps i = s t a t e s (12) ;

30

31

32 % Inputs :

33

34 U1 = U(1) ;

35 U2 = U(2) ;

36 U3 = U(3) ;

37 U4 = U(4) ;

38

39

40 % Rota t iona l matrix tha t r e l a t e s u , v ,w with x_dot , y_dot , z_dot

41 R_matrix=[cos ( the ta )∗cos ( ps i ) , s in (phi )∗ s in ( the ta )∗cos ( ps i )−cos (

phi )∗ s in ( ps i ) , . . .

42 cos (phi )∗ s in ( the ta )∗cos ( ps i )+s in (phi )∗ s in ( ps i ) ; . . .

43 cos ( the ta )∗ s in ( ps i ) , s in (phi )∗ s in ( the ta )∗ s in ( ps i )+cos (phi )∗

cos ( ps i ) , . . .

44 cos (phi )∗ s in ( the ta )∗ s in ( ps i )−s in (phi )∗cos ( ps i ) ; . . .

45 −s in ( the ta ) , s in (phi )∗cos ( the ta ) , cos (phi )∗cos ( the ta ) ] ;

46

47 % Transformation matrix tha t r e l a t e s p , q , r with phi_dot , theta_dot

, ps i_dot

48 T_matrix=[1 , s in (phi )∗ tan ( the ta ) , cos (phi )∗ tan ( the ta ) ; . . .
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49 0 , cos (phi ) , −s in (phi ) ; . . .

50 0 , s in (phi )∗ sec ( the ta ) , cos (phi )∗ sec ( the ta ) ] ;

51

52 globa l omega_total

53

54 % The nonl inear equation descr ib ing the dynamics of the drone

55 dx(1 ,1)=(v∗r−w∗q)+g∗ s in ( the ta ) ; %u_dot

56 dx(2 ,1)=(w∗p−u∗r )−g∗cos ( the ta )∗ s in (phi ) ; %v_dot

57 dx(3 ,1)=(u∗q−v∗p)−g∗cos ( the ta )∗cos (phi )+U1/m; %w_dot

58 dx(4 ,1)=q∗r ∗( Iy−Iz )/ Ix−J tp / Ix∗q∗omega_total+U2/ Ix ; %p_dot

59 dx(5 ,1)=p∗r ∗( Iz−Ix )/ Iy+J tp / Iy∗p∗omega_total+U3/ Iy ; %q_dot

60 dx(6 ,1)=p∗q∗( Ix−Iy )/ Iz+U4/ Iz ; %r_dot

61 dx(7 ,1)=R_matrix ( 1 , : ) ∗[u ; v ;w] ; %x_dot

62 dx(8 ,1)=R_matrix ( 2 , : ) ∗[u ; v ;w] ; %y_dot

63 dx(9 ,1)=R_matrix ( 3 , : ) ∗[u ; v ;w] ; %z_dot

64 dx(10 ,1)=T_matrix ( 1 , : ) ∗[p ; q ; r ] ; %phi_dot

65 dx(11 ,1)=T_matrix ( 2 , : ) ∗[p ; q ; r ] ; %theta_dot

66 dx(12 ,1)=T_matrix ( 3 , : ) ∗[p ; q ; r ] ; %psi_dot

67

68 end
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