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Abstract 

Working memory is a critical system of human cognition, providing a conscious stream of 

thought that allows us to focus attention, store and manipulate temporary information, and 

flexibly solve complex problems. Although traditionally seen as a multi-componential system 

with distinct capacity-limited stores (Baddeley & Hitch, 1974), there is a growing consensus 

that working memory is a more dynamic, attentional-based system limited by the ability to 

both maintain and disengage from memory representations. Central to this maintenance and 

disengagement is the integration of representations by binding them into established or novel 

relations – a process termed relational integration. Working memory tasks are often linked to 

higher-order abstract reasoning (fluid intelligence) tasks which requires abstraction of 

relations; and the capacity for relational integration is prevalent throughout comparative 

cognition. Despite this, the nature of relational integration within working memory is not well 

understood. This is at least in part due to the difficulty in quantifying unique relational 

integration demands, separately from well-established passive storage theories and attentional 

control theories, where predicted outcomes often coincide. The current project aims to 

understand the nature of relational integration in working memory, identifying aspects of 

relational integration which contribute to successful task performance on working memory 

and fluid intelligence tasks. To this end, several studies are conducted which investigate 

determinants of relational integration including complexity, salience, and systematicity. 

Consistent evidence emerges that indicates the ability to establish, maintain, and dissolve 

multiple strong and flexible bindings is the best predictor of task performance on relational 

integration tasks; and can predict well-established abstract reasoning tasks over-and-above 

classic working memory tasks which emphasize attentional control demands or at least, a 

demarcation of storage and processing. 
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RELATIONAL INTEGRATION IN WORKING MEMORY: 

DETERMINANTS OF EFFECTIVE TASK PERFORMANCE AND 

LINKS TO INDIVIDUAL DIFFERENCES IN FLUID INTELLIGENCE 

 

I. INTRODUCTION TO RELATIONAL INTEGRATION 

1.1. Humans as relational thinkers 

Humans are capable of interpreting complex relationships between both similar and 

dissimilar, real and abstract objects and concepts. We can piece together information within a 

novel scenario with other information attained over a lifespan, creating a complex 

constellation of relationships. These relationships can be as specific as the difference in love 

between John loves Mary and John loves Fido (Hummel & Holyoak, 2001). Although other 

species have demonstrated remarkable abilities to extract similarities and differences, there is 

no convincing evidence that this abstraction is anything more than complex behavioural 

learning or feature matching (Penn, Holyoak, & Povinelli, 2008). Conversely, human 

cognition can extract subtle relations, or generate relations between objects with no intrinsic 

similarities. This ability often manifests more as a tendency, seeing patterns in unrelated 

stimuli, as in apophenia or confirmation bias (Waterstone, 2007). Although this occasionally 

causes issues (Paul, Monda, Olausson, & Reed-Daley, 2014), our relational abilities are often 

effective and unlock limitless potential for learning new information through analogy (Penn 

et al., 2008). 

The tendency to think via relations has also enabled us to bypass cognitive limitations. 

In contrast to brief sensory memory (lasting under one second) which has a large capacity to 

accommodate perceptual experiences (Sperling, 1960), short-term memory (STM) capacity 

(in the realm of seconds and minutes) is severely limited (Cowan, 2017) to only a few pieces 

of information. Our ability to generate meaningful relations among otherwise independent 
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representations allows us to circumvent this original capacity and enables more meaningful 

interpretation of relationships between the representations. This is typically referred to as 

chunking (Cowan, 2001; Miller, 1956). In typical measures of STM, retaining elements in a 

series is seen as a measure of capacity (Colom, Rebollo, Abad, & Shih, 2006) and chunking 

is a natural strategy to subvert this capacity (Feigenson & Halberda, 2008). Often, effort must 

be taken to purposely disrupt chunking by ensuring to-be-remembered elements have no 

intrinsic relation (Portrat, Guida, Phénix, & Lemaire, 2016) or by diverting processing by 

requiring some manipulation of the series (such as recall in reverse order; Richardson, 2007). 

This manipulation is a defining feature of working memory, which is often seen as a dual-

module system for active processing (manipulation) and passive storage (maintenance) 

(Baddeley & Hitch, 1974). For instance, remembering the digits 27 and 18 would primarily 

involve passive storage (perhaps intermixed with more 'active' rehearsal; Tan & Ward, 2008), 

while summing them together would also require active processing in order to increment (a 

form of manipulation) the operands and generate the outcome (Dehaene, 1992). Thus, mental 

arithmetic is often seen as a quintessential working memory task (DeStefano & LeFevre, 

2004). Although there is no single agreed definition for working memory (Cowan, 2017), 

there is a growing consensus that the ability to construct relations between representations – 

relational integration – is a critical determinant of working memory task performance 

(Oberauer et al., 2018). There is also considerable emerging evidence to suggest that the 

capacity for relational integration is the strongest predictor of higher-order abstract reasoning 

(Chuderski, 2014; Oberauer, Süß, Wilhelm, & Wittman, 2008).  

This thesis argues that relational integration is the foundation of working memory. 

Even the most rudimentary storing of elements in STM requires relational integration: 

temporary binding of memory representations to a place within a relational structure 

(Oberauer, 2009a; Robin & Holyoak, 1995). Together, a set of integrated bindings allows us 
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to draw associations between representations (Oberauer, Süß, Wilhelm, & Sander, 2007). The 

following sections of this chapter outlines the current interpretation of working memory 

being a system based on relational integration. It will also discuss the much-cited overlap 

between working memory and higher-order “fluid intelligence” tasks which involve abstract 

reasoning (Ackerman, Beier, & Boyle, 2005; Shipstead, Harrison, & Engle, 2016). The 

remainder of this chapter then describes the objectives and plan of the current project: 

investigating factors contributing to effective working memory performance and links to 

abstract reasoning. In Chapter II, the background theories and research contributing to a new 

definition of working memory as a system for relational integration are explored.  

1.2. Working Memory as a system for Relational Integration 

Section 1.1. outlined STM as a passive storage system and highlighted processing 

demands as a defining feature that extends STM into working memory (WM), a system that 

accounts for both maintenance and manipulation (Baddeley & Hitch, 1974) of temporarily 

activated representations. In addition to maintenance and manipulation (storage and 

processing), theories of WM must also account for the important role of attention (Baddeley, 

1993), which distinguishes (i) centrally focused representations, said to be within ‘central 

attention’ (Broadbent, 1958); from (ii) unfocused representations that are held active (Cowan, 

1995; Fougnie, 2008; Oberauer, 2002) which can be immediately accessed by central 

attention (as they are just outside the focus of attention); from (iii) inactive representations 

held in long-term memory which require deliberate or primed retrieval to be activated 

(Oberauer & Hein, 2012). Although it may be easier to think of each of the three functions of 

WM (storage, processing, attention) as operating distinctly (as was the norm for multi-

componential models, e.g., Baddeley & Hitch, 1974), a primary argument of this thesis is that 

the three functions can be understood together through a theory of working memory where 

relational integration is its foundation. At the very least, it is argued that the storage and 
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processing functions emerge through relational integration. For instance, recalling a list of 

serially ordered digits appears to be a theoretically ‘simple’ storage task, involving storing 

each digit as an independent representation within a temporary buffer that can be easily 

accessed (Unsworth & Engle, 2006). Similarly, a system based on relational integration 

allows us to bind each digit to its place within the order but also allows us to manipulate the 

order by binding the digits to new places. We propose that the capacity for relational 

integration is based on the ability to construct multiple strong and flexible bindings. Bindings 

must be strong in the face of interfering information (Lewandowsky, Geiger, Morrell, & 

Oberauer, 2010; Oberauer & Lewandowsky, 2008) that could otherwise degrade bindings and 

compromise relations (for instance, recalling a list of digits in serial order while ignoring 

irrelevant letter distractors). Bindings must also be flexible to accommodate shifting and 

updating of element relations (Kessler & Oberauer, 2014) that may be required (for instance, 

rearranging a randomly-ordered list of digits in arithmetically ascending order). The number 

of strong and flexible bindings that can be active at a single time is an indication of binding 

capacity, the relational integration equivalent to storage capacity in traditional views of 

working memory (Conway, Jarrold, Kane, Miyake, & Towse, 2007). Whether binding 

capacity varies between individuals; or whether binding capacity is fixed, and the variation 

occurs in the flexibility and strength of these bindings, remains to be seen. 

Binding and relational integration have been used generally to refer to drawing 

associations between elements within memory (e.g., Olsen et al., 2015; Sluzenski, 

Newcombe, & Kovacs, 2006), though the current project necessitates a theoretical account of 

relational integration. Relational integration involves generating a relational structure by 

binding an element to a role within a relation (Halford, Wilson, & Philips, 1998; Hummel & 

Holyoak, 2001; Oberauer, 2009a). The role signifies the role being played by the element in 
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the association.1 For instance, when John loves Mary, John is in the lover role and Mary is in 

the loved role (Hummel & Holyoak, 2001). Several roles constitute a relational set (although 

one-dimensional or 'unary' sets consisting of only one role, such as an attribute, may also be 

considered relations, Halford et al., 1998). The number of roles that make up a set signifies 

the dimensionality of the relation (Halford et al., 1998). For instance, loves is a two-

dimensional relation consisting of a lover and a loved. The result of relational integration is 

the instantiation of a relational instance that allows us to comprehend associations between 

multiple elements in WM.2 That is, the otherwise independent elements (John and Mary) 

have been integrated into a meaningful relation, allowing us to comprehend that John is the 

one loving Mary (because he is in the lover role, an active initiating agent), and that Mary 

may or may not reciprocate this love (because she is in the loved role, a passive target). In 

this way, relational integration is termed as such not because it is about integrating relations 

(as in analogy) but because it involves integration of the relational kind (relational is an 

adjective, not a nominalisation). It should also be noted that, although binding may be used 

shorthand to refer to binding elements together (as in, “binding a series of digits together”), 

this usage belies the actual binding process, which involves binding elements to roles. Thus, a 

more accurate statement would be “binding digits into a series”, where the underlying process 

involves each digit being bound to a location in the series. 

In Oberauer’s (2009a) model of working memory, which draws on connectionist 

architectures involving networks of interconnected nodes, elements are represented in content 

nodes and roles are represented in context nodes. Content nodes are bound to context nodes 

so that the element and its role may be represented together. Both content and context nodes 

are extremely versatile (Oberauer, 2009a), allowing for the free generation of virtually any 

 
1 A role can also be referred to as a slot in filler-slot terminology (Halford et al., 1998; Robin & Holyoak, 1995). 
2 For the purposes of the current project, we limit the scope of relational integration to WM, rather than e.g., 

episodic memory, where it has also featured (Olson & Newcombe, 2014). 
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association between any set of elements. For instance, we may instantiate a relation between 

rat and mouse by binding each of them to the taxonomical order of rodent, which is itself a 

feature of both rats and mice. More broadly, we can also relate rat and mouse by binding 

them to the taxonomical class of mammals. Alternatively, we may relate rat and mouse by 

binding them to an anatomical feature, like the fact they both have tails. If they are in our 

immediate vicinity, we can recognize that the rat is further from us in physical space, by 

binding the rat to a closer spatial context and the mouse to further. We could also relate the 

rat and mouse by the fact that they both feature in this sentence, or by the fact they are both 

being represented here in English orthography. There are virtually infinite ways to construct a 

relation, and relational integration accommodates this by allowing any element to be bound to 

any role (Oberauer, 2009a). The bound roles inform of the association between the elements 

they are bound to, such as similarities (each being bound to a rodent role) or differences 

(mouse being bound to smaller).  

Our flexibility in binding means it is possible to construct novel relations, such as a 

mouse being bound to larger and a rat being bound to smaller, though experience with the 

contrary relation (i.e., mice actually being smaller than rats) means this binding is more 

effortful as it must contend with schemas that have been well established in LTM through 

repeated exposure. As a simple example of schemas, depending on the goal of the task, 

rearranging the letters I-B-F could involve retrieving a schema for alphabetical order (B-I-F) 

or by retrieving a schema of a familiar acronym (F-B-I). Constructing novel relations without 

relying on schemas is often critical for solving novel problems. For instance, recalling the 

randomly ordered list of letters I-B-F requires constructing then maintaining a novel relation 

representing the temporal order first-second-third (if the random order is otherwise 

meaningless). Although constructing novel relations is often a critical component of the task, 

retrieving established schemas may also be required depending on task demands. Although 
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this appears akin to the contrast between fluid and crystallized intelligence (Horn & Cattell, 

1966), there is evidence to suggest that schemas can be strategically developed over the 

course of reasoning tasks (Thompson, Prowse Turner, & Pennycook, 2011). Both are 

required for day-to-day functional WM. Although binding is broadly flexible for the reasons 

discussed, individual differences in the flexibility of binding may be considered in the ability 

to contend with highly established – but unhelpful – schemas. Figure 1.1 provides a 

visualisation of how a recall task can be handled using either retrieval of a relevant schema or 

by constructing a novel relation. Although either can work for this particular task, they each 

have advantages and disadvantages that are amplified according to the task format. For 

instance, constructing a novel relation representing temporal order is more likely to be lost to 

interference as it has not yet been committed to a well-established schema in LTM; though if 

the words lack any meaningful relation, there may be no schema that can be retrieved. Well-

established schemas may also cause intrusions from related non-target words. 
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Figure 1.1. Demonstration of how a simple recall task elicits relational integration and can be 

solved by either (a) constructing a novel relation (e.g., temporal order) or (b) by retrieving a 

schema set from LTM that can be applied to the relation. Instantiation of temporal order 

among the elements involves binding each element to a context relating its temporal position 

(e.g., 1st, 2nd, …). In this example, retrieval of a semantic schema allows each word to be 

bound to a medical context, propagating activation of elements at recall. Maintaining only 

one unique context representation (‘medical’) reduces the cognitive load of the task, but the 

overreliance on this single context in lieu of more specific contexts (like temporal order) can 

result in intrusions by lure words such as syringe, which have some tangential activation. 

The contrast between construction of novel relations and retrieval of established 

schema sets can explain past research. Consider a dual task paradigm where the primary task 

is to remember a list of words and the secondary task involves verifying the grammatical 

veracity of sentences. From a relational integration perspective of WM, we would predict that 

similarities between to-be-remembered words in the primary task and distracting words in the 

secondary task would degrade performance because the potential for them to have 

overlapping schema sets is high. Conversely, similarities between to-be-remembered words 

and other to-be-remembered words within the same primary task would enhance 

performance, because their ‘recall-list’ schema overlaps with their semantic/categorical 

schema. Conlin, Gathercole, and Adams (2005) and Li (1999) both found evidence for the 

degrade in recall when there were similarities between the recall list and the distractor 
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component, while there is an abundance of evidence that same-list similarity does indeed 

enhance recall (e.g., Poirier & Saint-Aubin, 1995; Saint-Aubin, Ouellette, & Poirier, 2005), 

evidenced through clustering effects (Bousfield, 1953; Manning & Kahana, 2012). 

Interestingly, Crowder (1979) also found the faciliatory effect of semantic similarity between 

elements on overall item recall, but a detrimental effect on correct order recall. Crowder’s 

diverging result supports the idea of two distinct relational structures being established: a 

serial order constructed at the time of the task and a semantic similarity schema. The 

overlapping of the two relational structures improves unordered recall (because each set 

provides a method for the elements to be maintained) but competes on ordered recall 

(because only the serial order holds information on the sequence order). Saint-Aubin and 

Poirier (1999) however, found no disadvantage for semantic similarity on order accuracy. 

Thus, while the enhancing effect of same-list similarity is ubiquitous, a detrimental effect on 

order effects is more contentious. Oberauer (2009b) suggests that the conflicting different-list 

findings are the result of a trade-off between beneficial and detrimental propagation of 

similarity. The distractors add additional cues for recall, but also overwrite the features of the 

target list. Oberauer (2009b) found that different-list similarity only led to a detriment in 

phonological overlap (rather than semantic overlap). However, because Oberauer’s (2009b) 

secondary task was based on pronouncing the distractors aloud, it is likely that the exclusive 

phonological overlap deficit was a result of task format. Thus, while the past research is 

overall consistent with a relational system of WM where different relations (e.g., temporal or 

semantic) can be applied to the same recall lists, it is important to consider task factors that 

may promote or obstruct certain types of relations. In this case, the semantic similarity of the 

stimuli was critically important, as was how the dependent variable was scored (e.g., whether 

order is critical to accuracy or recall can be unordered, and whether intrusions are ignored or 

penalized). 
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The current project makes the following assumption: relational integration is not 

simply a subcomponent process of WM but rather, it is the foundation of WM. Recall the 

three classic functions of WM: storage, processing, and attention. Now, consider how they 

manifest in a relational integration system of WM. In order for elements to be stored within 

WM, they must each be bound to a role (or, according to Oberauer (2009a), a content node is 

bound to a context node). Processing consists entirely of establishing and dissolving 

bindings, thereby integrating and disintegrating relations. Processing thus plays a part in 

storage (binding elements to roles in the first place) but also controls manipulation and 

generation of new relations (switching the bindings around to instantiate new relations). 

Already, the strict demarcation of storage and processing becomes nebulous. Attention is 

“taking possession by the mind” (Cowan, 1995, p.4): allowing a single content-context 

binding in WM to be focused by the conscious mind. Direct access is provided to multiple 

additional bindings, allowing attention to be redirected to any of these bindings in WM 

instantly and without retrieval from LTM. Attention therefore also relates to how bindings are 

stored and the depth of processing that can be accomplished. In this way, the three classic 

functions of WM (storage, processing, attention) do not together form a multi-componential 

WM but rather, they are emergent properties resulting from WM being based on relational 

integration. From this view, WM cannot be considered modular with a distinct ‘operator’ 

executing processes on modular systems (Baddeley, 2000). Rather, WM can only be 

segmented by the level of attentional activation provided (usually none for LTM, high for the 

direct access region of WM, and completely activated for the binding in central attention), 

and the system is dynamic rather than static. From the relational integration framework, WM 

still constitutes critical functions: attention, storage, and access to STM and LTM. But the 

lines between these functions are not as strict, because they all work in tandem, as they 

should.  
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Traditionally, the goal in WM research has been to explore differences in ‘storage 

capacity’ (the number of elements that can be maintained over time) in the face of processing 

disruption. This is a (superficially) useful metric because the measurement is easy to 

understand: the number of items that can be recalled is your capacity, and if you can recall 

more than another person, you have a higher capacity. In actuality, it has probably served to 

oversimplify capacity limits and led to casual reductionism. The storage-while-processing 

metric emerged from separate-component definitions of WM (demarcating storage and 

processing; Cowan, 2017), where the gold standard of measurement is the complex span task 

(Daneman & Carpenter, 1980; Engle, Cantor, & Carullo, 1992) which appears reliable across 

task domains (Conway et al., 2005). Complex span tasks require iterative retention of 

elements (the primary task) while alternating with some distracting processing task (the 

secondary task). For instance, the operation span variant of the task may involve alternating 

between remembering a word (like CAT) then solving a simple arithmetic equation (like 3 + 5 

= ?), repeating this pattern until participants are probed to recall the list of words in the order 

they appeared. Although constructing a recall list itself requires updating a continuous 

sequence of bindings (of elements to serial position roles), the focus of this recall list as an 

indicator of capacity may be somewhat misleading. It may not be the capacity itself (in terms 

of number of raw elements) that defines individual differences, but how rapidly, accurately, 

flexibly, and firmly the bindings can be generated and maintained in the face of the repeated 

tangential processing (Oberauer & Hein, 2012). It is also important to consider how 

effectively the participants can chunk the individual raw elements to overcome the extreme 

number of elements (Cowan, 2001), which is directly related to all of these ‘ingredients’ of 

successful relational integration, such as flexibility. The proposal that distinct, intermittent 

processing in complex-span tasks ensures measurement of a true capacity is unlikely at best, 

and psychometrically indefensible at worst. Mathy, Chekaf, and Cowan (2018) demonstrated 
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that the ‘chunkability’ of elements improved performance to a similar extent in both simple 

span and complex span tasks, indicating that the addition of processing tasks do not relate to 

a disruption in chunking. Unsworth and Engle (2006) suggest that the intermittent task simply 

raises the chance of displacing an item (accidentally unbinding a memory element). This may 

be related to intermittent tasks ensuring that participants cannot use sensory memory through 

subvocalization to rehearse the series of elements. In any case, chunking is almost assured to 

occur in complex span tasks, and complex spans probably only work as well as they do (in 

measuring WM capacity) because they, to a degree, measure chunking ability (Chekaf, 

Gauvrit, Guida, & Mathy, 2015), which can be more directly (through a relational integration 

perspective) seen as binding effectiveness. A major goal of this thesis is to verify this 

perspective of relational integration and demonstrate that understanding WM through a 

demarcation between storage and processing is a misleading and unsatisfying interpretation. 

Before outlining these aims in more detail (along with the scope of the thesis), it is 

necessary to address the ever-present links between WM and higher-order “fluid intelligence” 

tasks that involve abstract reasoning (Ackerman et al., 2005). Fluid intelligence is general, 

flexible functioning applied to novel problem-solving situations, and has been described as 

the ability to rapidly learn, apply brain power, and extract information and patterns from 

complex set of stimuli (Blair, 2006; Cattell & Horn, 1978). Fluid intelligence is the hallmark 

of individual differences research, because tests of fluid intelligence have shown outstanding 

predictive ability for academic achievements (Giofrè, Borella, & Mammarella, 2017; Laidra, 

Pullmann, & Allik, 2007; Matešić, 2000) and workplace performance (Schmidt & Hunter, 

2004), at least for modern, developed Western societies (Wicherts, Dolan, Carlson, & van der 

Maas, 2010). As it turns out, fluid intelligence tasks always involve working with relations, 

drawing on patterns and integrating relational information to uncover a missing piece of the 

puzzle (this is explored in Chapter II). Thus, where the classic modular view of WM is 
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frequently at odds in attempting to correlate disparate tasks (simple ones that measure raw 

storage capacity and complex ones that measure abstract reasoning), a relational integration 

perspective of WM uncoincidentally suggests that similar processes act on both WM tasks 

and fluid intelligence tasks – this thesis will refer to this theory as the relational integration 

hypothesis. The relational integration hypothesis circumvents correlational arguments that see 

fluid intelligence as some ethereal, immeasurable attribute of humanity ("traditional views", 

as pointed out by Shipstead et al., 2016). For the relational integration hypothesis, the 

correlation is sensible. Although this thesis will continue to use the term fluid intelligence 

(Gf), the definitions between Gf, abstract reasoning, and even WM (from a relational 

integration perspective) may largely overlap (Deary, 2003), as all fundamentally demand 

relational integration. Chapter II outlines some key differences between WM and Gf. 

Although this thesis ultimately concedes that there are more similarities than differences, 

these differences have often been nebulously described due to an overreliance on individual 

difference theories, which cannot explain the processes underlying Gf (Birney, Beckmann, & 

Beckmann, 2019). The main point to take away from this short briefing on Gf is that factors 

associated with effective relational integration jointly influence performance on both WM 

and Gf tasks. 

1.3. Aims of the thesis 

Section 1.2. argued that WM should be understood as a system that allows for 

temporary binding between two types of mental representations: ‘content’ elements 

consisting of units of information, and flexible ‘context’ roles that signify positions within a 

relation. This is as opposed to a componential system with static stores which are operated on 

by a distinct central executive (Baddeley, 1992). Section 2.1. explores in more depth the 

issues related to componential views of WM, but the most pertinent issue is that the central 

executive is unfalsifiable and pervasive to understanding of a unitary WM system (Baddeley, 
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1998; Parkin, 1998). To rectify this long-standing issue, the goals of this thesis is to (i) 

demonstrate that WM can be understood most completely through a theory that incorporates 

relational integration, rather than through a system that demarcates storage and processing,  

(ii) explore factors associated with individual differences in effective relational integration 

(binding capacity manifesting through relational complexity, flexibility, and systematicity), 

and (iii) verify the relational integration hypothesis by demonstrating how relational 

integration jointly acts on WM and Gf tasks, and how it uncoincidentally accounts for the 

WM-Gf relationship over modular theories of WM which require more dubious explanations. 

This project attempts to address these research questions with an experimental-

differential approach, with each study involving either experimental manipulations or a 

combination of experimental and individual-differential techniques. In all cases (every study) 

and for every research question, evidence presented tends to reinforce theories of relational 

integration and weaken modular theories (and, at times, attentional control theories) of WM. 

The thesis should provide a compelling argument for why modular theories are 

unsatisfactory, and some evidence (Chapters V and VI) for why attentional control theories 

inadequately account for the overlap between WM and Gf. The remainder of this chapter is 

devoted to outlining how the current project attempts to achieve this goal by proposing the 

two core research questions addressed by this thesis: (i) How can binding capacity for 

relational integration be conceptualized and operationalized? (ii) Does the relational 

integration hypothesis account for the overlap between WM and Gf tasks? 

1.3.1. How can binding capacity for Relational Integration be conceptualized and 

operationalized? 

This project takes the theoretical position that WM in general can be best understood 

through measuring the capacity for relational integration rather than a capacity for storage or 

attentional control. Binding capacity can be thought of as the number of bindings that can be 
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simultaneously active in WM. Support for a ‘binding capacity’ conceptualization of capacity 

limits has emerged directly from Oberauer et al. (2007) and Chuderski (2015), while research 

such as Chekaf et al. (2015) also support the theory but without the specific reference to a 

‘binding’ capacity. The Relational Complexity metric (Halford et al., 1998) attempts to 

quantify the number of bindings involved in each relation, with the suggestion that tasks 

requiring a specific relational instance as an outcome can quantify the binding capacity 

required of that task. The Relational Complexity scheme also introduces the important 

concept of systematicity: how systematic a set of bindings are in a relation. Systematicity can 

be thought of as the ease of chunking but is more specific and can be identified at the task-

level. High systematicity means bindings are consistently ordered in a fixed way, allowing 

problems which may appear to demand multiple active bindings to be solved with fewer 

active bindings (often only one) at the cost of some specific element-wise information that is 

often not related to the task solution. Throughout this thesis, we will see repeated examples of 

why systematicity must be considered when attempting to operationalize binding capacity. 

Binding capacity is conceptualized distinctly from a more unspecified ‘storage’ 

capacity because it automatically accounts for chunking by the very nature of the model 

(rather than as an addendum to the model). It also does not assume the same connotations 

with active vs. passive storage (or ‘primary’ vs. ‘secondary’ memory). Bindings are only ever 

active because they appear in the direct access region of WM where attentional activation is 

high (see Chapter II for more detail). The delineation between active and passive memory 

does not need to be so strict, because LTM is virtually infinite, and because bindings can be 

expressly activated through recent activation or schemas. Thus, a binding capacity view 

circumvents many of the shortcomings of storage capacity and, in fact, we find repeated 

evidence throughout the thesis that passive storage is virtually irrelevant to task performance 

and in linking WM tasks to Gf.   
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1.3.2. Does the Relational Integration Hypothesis account for covariation in Working 

Memory and Fluid Intelligence tasks? 

The relational integration hypothesis posits that binding capacity is the core limiting 

capacity that restricts performance on both WM and Gf tasks. As described earlier in this 

chapter, and explored in Chapter II, WM and Gf tasks overlap (at least in part) because they 

share relational integration demands. In four of the five studies (all except Chapter VII) 

presented in this thesis, prototypical measures of Gf are taken, and Gf performance is used as 

an outcome measure to demonstrate that the overlap between WM and Gf can be mostly (but 

not completely) accounted for by variation in relational integration demands, as predicted by 

the relational integration hypothesis. Differences in relational integration processes between 

WM and Gf emerge primarily due to the level of analysis. WM is often assessed at a level 

requiring maintenance and manipulation of bindings and the outcome of WM tasks is often 

verification that the binding is intact. Gf tasks, meanwhile, often require a comparison of two 

relations or the induction of an abstract rule that governs a set of relations. In either case, 

relational integration is fundamental, and a limiting factor of binding capacity affords only so 

much mental workspace for each participant. Because Gf tasks often have many complex 

demands (described further in Section 2.7), attempting to understand relational integration 

through higher-order Gf tasks may result in an unsatisfying level of doubt. Thus, our 

approach is to use operationally simpler tasks defined as ‘relational integration tasks’, which 

are (relatively) more process-pure, whereby the more variance that can be accounted for, the 

more the Gf tasks that are being predicted are actually based on relational integration. 

It should be cautioned here that no measure is truly process-pure, so we cannot ever 

claim that relational integration can uniquely explain performance on Gf. This is because 

tasks will always require some degree of perceptual information extracted, some degree of 

mental representation, some degree of attention, goal maintenance, inhibition, and many 
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other demands (see Section 2.7 for further discussion on this point). A failure of any of these 

demands will lead to an error and an error will (generally) be marked the same way on the 

outcome of a task. Thus, this aim is not so much an attempt to prove that relational 

integration is the most important be-all and end-all process of intelligence (a goal that would 

be doomed to fail) but instead, to simply highlight the consistently remarkable ability for 

relational integration to explain the WM-Gf overlap over modular theories of WM, which 

struggle even more with process-purity. Wherever possible, tasks are designed in ways that 

errors of relational integration are exemplified over errors of other demands. For instance, 

putting time limits on task items means that errors are now possible through an increase in 

failure conditions contingent on demands like processing speed, mind-wandering, and goal-

neglect. While all of these demands may well still contribute to accuracy errors we observe, 

the tasks are designed to make this a less likely outcome (especially over many items). Thus, 

although we cannot ever truly claim that relational integration is the most important process, 

we simply pose the experiments as evidence of the relational integration hypothesis, and each 

reader may accept this as psychometric evidence differently. What should be clear though, is 

that, as a cognitive model of WM, relational integration is a critical demand for successful 

task performance and should be considered alongside more easily understood demands such 

as mental representation and focused attention. 

An abundance of research has been devoted to attempting to understand the 

overlapping functions between WM and Gf, to the point where all theories of WM must be 

able to explain performance on Gf tasks also (Conway et al., 2007). At the higher-order Gf 

level, the specific task attributes are lost (or at best, obscured) either simply in the complexity 

of the task or in the condensing of tasks into a latent factor. However, at times, WM theories 

can still be difficult to disentangle even at the WM task level. For instance, this chapter 

earlier explained how a relational integration WM can explain complex span task 
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performance. However, the standard complex span tasks do not offer a way to distinguish 

theories of attentional control from relational integration and in fact, complex span tasks are 

the hallmark paradigm of attentional control theories (Unsworth & Engle, 2006). Variation in 

performance on complex span tasks could contribute to either theory. In the current thesis, 

task analyses are conducted in each chapter, aiming to determine the relational integration 

demands involved in the core task. However, there are times when other theories (e.g., 

attentional control) may also explain the same (or similar) variance in the task, and thus, may 

also explain the WM-Gf overlap seen in that chapter. In general, although each individual 

study may not conclusively settle on relational integration as the core overlap (because it can 

be difficult to rule out attentional control theories), the thesis as a whole should provide 

compelling evidence for a relational integration view of WM and, at the very least, 

demonstrate how a relational integration view provides an explanation of the WM-Gf overlap 

that may not necessarily be conclusive, but is parsimonious. 

1.3.3. Scope of the thesis 

In concluding the introduction, it is important to briefly acknowledge important 

aspects of the research that do not fit within the scope of this thesis. These include LTM and 

the latent variable analysis.  

1.3.3.1. Long-term memory and the procedural/declarative distinction 

Although the current research focuses on WM, the important role of LTM and its 

place within this thesis must be addressed. In agreement with similar theorizing (Cowan, 

2005; Engle, Kane, & Tuholiski, 1999; Logie, 1996; Oberauer, 2009a; Ruchkin, Grafman, 

Cameron, & Berndt, 2003; van der Linden, 1998), the current view is that WM is a subsystem 

or activated portion of LTM, rather than separate systems. The relevance of LTM to WM is 

apparent both from the use of schema sets (discussed earlier) but also to any task that 

involves passive storage-over-time where the contents are stored beyond a directly accessible 
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state. In the current research, reference to LTM will primarily be made through these two 

avenues (schema sets and passive storage). However, LTM is also typically associated with a 

distinction between declarative (knowing ‘what’) and procedural (knowing ‘how’) memory 

systems (Squire, 2004). In an ‘activated LTM’ view of WM, this distinction persists at the 

level of active bindings. Oberauer (2009a) proposes two systems of WM (one declarative, 

one procedural) which operate in parallel: the declarative WM selects elements for operations 

and the procedural WM acts on them. Because both operate in parallel, it is often difficult to 

distinguish them at the task level. In general, declarative WM is more likely to be tapped in a 

task requiring binding and rearranging elements while procedural WM is more likely to be 

tapped in dual-task (task-switching) paradigms where goal orientation is essential (Kane & 

Engle, 2003). For the purposes of limiting scope, the current project does not distinguish 

declarative and procedural WM, though we acknowledge the usefulness of demarcating the 

systems at the WM level (Oberauer, 2009a). 

1.3.3.2. Latent variable analysis and Gf 

The second point to consider is the use of latent variable analysis. Latent variable 

analysis is useful because it extracts the commonality between tasks. Thus, rather than being 

concerned over task-specific artefacts or subtle differences in task presentation, the latent 

variable only accounts for what is common to all the tasks. This is particularly useful when 

measuring Gf, because we can supposedly capture more meaningful variance in Gf, rather 

than also picking up task-specific noise. The current gold standard for intelligence research is 

to also use latent variable analysis to extract a factor from WM tasks (Kane et al., 2004). The 

WM factor and the Gf factor are then correlated. In general, latent variable analysis of this 

kind (correlating latent variables to latent variables) can be unsatisfying. We are left 

considering what is common to each of the tasks which is often a variety of possible 

interpretations, from attentional control to storage. As we will see in this thesis, apparently 
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similar tasks can have considerably different reasons for their variance (consider the 

discussion of the Arithmetic Chain Task compared to the Swaps in Section 6.4). Latent 

variable analysis also requires large sample sizes (n = 200+) and long testing sessions with 

many tasks which is arduous and impractical for this project which favours multiple studies. 

Instead, our preferred approach is to experimentally manipulate theoretically simpler tasks 

such as those highlighted in each study, to demonstrate the usefulness of task-level analyses. 

The different conditions of the task are thus identical in every way except for the 

experimental manipulation, allowing us to conclude that any differences seen in the variation 

in performance on the task (and how it relates to Gf) must be due to this manipulation. 

Although this solution leads to elegant conclusions, this approach is more susceptible to task-

specific limitations. Thus, in every chapter, a task analysis is conducted to identify what 

demands are (or are not) associated with each condition. 

Although our overall preference is against a purely latent variable approach, it must 

be acknowledged that there are benefits of a latent outcome variable such as Gf, to smooth 

out task-specific differences in applying the results to real world applications (e.g., Schmidt 

& Hunter, 2004). However, unfortunately, this was not always possible for every study, so 

the mileage of the Gf latent variables does vary between studies. In the worst case, there is 

only a single measure representing Gf. In these cases, we use an abbreviated Raven’s 

Advanced Progressive Matrices (J. Raven, 1989), as it is the most well-established Gf 

measure in the literature (Carpenter, Just, & Shell, 1990; Jensen, 1980).  
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II. THEORIES OF WORKING MEMORY 

In this chapter, the theories most relevant to the current project are outlined. I preface 

this chapter with the admission that this review cannot be close to comprehensive, given the 

scale of definitions in the field (Cowan, 2017). Thus, the theories chosen for discussion here 

are ones that are most frequently drawn into discussion within this thesis. This chapter begins 

by describing the most popular model of WM, Baddeley and Hitch’s (1974) multi-

componential view, discussing its limitations and pervasiveness in the field. I then describe 

several additional models relevant to the current research (attentional control, generic 

working memory, the concentric model, and relational complexity) and explain how these 

provide more useful conceptualisations of WM. The chapter concludes with a synthesis of the 

relational theories (the models of Cowan, 2001; Halford et al. 1998; and Oberauer, 2009a) to 

develop a framework for assessing relational integration that is distinct from higher-order 

fluid intelligence. 

2.1. The Multicomponential Model 

In 1974, Baddeley and Hitch proposed a model of WM which combined two short-

term storage systems (a visual store and an auditory store) with attention and processing, 

distinguishing WM from the more passive storage of STM (Atkinson & Shiffrin, 1968). The 

short-term storage systems were split into the visuospatial sketchpad and the phonological 

loop, following evidence that indicated somewhat distinct capacities for visual and auditory 

domains. Attention and processing functions were relegated to the central executive, a system 

for controlling allocation of resources and adjusting stored elements. Although the 

demarcation of visual and auditory domains was useful for addressing discrepancies between 

the modalities (e.g., Murdock Jr., 1966), the central executive was the catalyst that 

distinguished the working from the memory. Despite this, Baddeley (2003) concedes that the 

central executive is the least understood part of his model, resigned to descriptions of an 
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“inscrutable, immaterial, omnipresent homunculus” (Donald, 1991, p. 327) making decisions 

on where to allocate attention and how to manipulate stored information. Baddeley (1998) 

has defended his use of the homunculus as a starting point: if we know that functions like 

attention and manipulation exist and are separable from storage, then we can conceptualise a 

system that handles these functions even if we cannot assign it to a neural substrate. 

However, as Donald (1991) and Parkin (1998) point out, the central executive has more often 

been relegated to handle functions that memory theorists cannot explain. The easily-

understood homunculus analogy (see Figure 2.1) has potentially contributed to the enduring 

and widespread use of Baddeley and Hitch’s multicomponential model both within WM 

(Cowan, 2017) and beyond, featuring in seminal visual perception papers (Luck & Vogel, 

1997) and large reviews in neuroscience (D'Esposito & Postle, 2015), further propagating its 

status as the most influential view of WM. 

 

Figure 2.1. The central executive is often seen as a homunculus: a miniature “person inside 

your head” that dictates the focus of attention and manipulates contents of the storage 

systems. While the homunculus can be a helpful analogy, it has proved pervasive, warping 

common understanding of working memory. Image source: Cartesian Theatre (2008) by 

Jennifer Garcia. Reproduced with permission by CC-By-SA-2.5.      
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The failure to explain the central executive was largely a result of the times (Cowan, 

2017) where passive STM systems were commonplace despite their inadequacy to explain 

processing (Atkinson & Shiffrin, 1968). Thus, Baddeley and Hitch can be commended for 

their influence on memory as an active system allowing for complex cognition. It is 

unfortunate that so much of Baddeley’s attempts to clear misconceptions (e.g., Baddeley, 

1998; Baddeley, 2012) about the central executive have not been as influential outside the 

WM field, though Baddeley (2000) did make a well-known amendment to the model by 

adding the episodic buffer. This component acted as a link between attention, LTM, and the 

slave storage systems, binding information together and allowing for the integration of 

elements in a similar way to relational theories. The specifics of how this binding occurs in 

the episodic buffer is not clear (like specifics of the central executive), but the fact that 

Baddeley felt it necessary is a clear indication of the pressing nature of relational processes in 

WM. Once again, this may have unfortunately set back common understanding of WM, as 

relational integration processes could be relegated to the episodic buffer without proper 

specification of the processes (once again, reminiscent of what occurred with the central 

executive). This is further setback by the misnomer ‘episodic’, inspired by Tulving (1983), 

despite the buffer’s capability of integrating semantic representations. Although necessary for 

the multicomponential model to account for relational integration, the general ambiguity of 

the episodic buffer (Cowan, 2017) has resulted in another element of confusion for those 

trying to understand WM. This is particularly problematic considering the pervasiveness of 

the multicomponential model. 

While Baddeley and Hitch’s model was critical to extending WM beyond passive 

storage, the ambiguities of the central executive (for attention and processing) and the 

episodic buffer (for relational integration) have proven consistent issues. The episodic buffer, 

while a necessary addition, was a band aid solution. Although the multicomponential model 
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explains the functions and limitations of the storage systems, contemporary theories have 

begun to demonstrate that central executive functions (attention, manipulation, integration) 

explain more variance in WM capacity than storage aspects (Halford et al., 1998; Oberauer et 

al., 2008; Shipstead et al., 2016), so we cannot rely on a system that only details storage. 

Although there have been other models focusing on storage aspects of WM (Colom, Shih, 

Flores-Mendoza, & Quiroga, 2006), the primary reason for considering other models beyond 

Baddeley and Hitch’s is the ambiguity surrounding the central executive and the episodic 

buffer. Therefore, the remaining theories considered in this chapter tend to focus more on 

processing.  

2.2. The Attentional Control Model 

Emerging from the insufficiency of Baddeley’s model to explicate the central 

executive, Engle and colleagues conducted research highlighting the importance of controlled 

attention (Engle & Kane, 2004; Engle, Kane, et al., 1999; Kane, Bleckley, Conway, & Engle, 

2001). Engle (2002) suggests that WM capacity is not based on storage capacity (in the sense 

of the number of elements that can be stored) but is instead based on the ability to control 

attention, focusing on task-relevant elements while preventing proactive interference from 

both on-task information (e.g., elements already recalled) and off-task information (e.g., 

‘what’s for lunch?’). In this way, WM capacity is measured just as much through recall of a 

single element as it is through recall of seven elements. According to this view, complex span 

tasks (Daneman & Carpenter, 1980) are not good assessments of WM because they ‘combine 

storage and processing’ (the two functions of WM into the primary and secondary tasks) but 

rather, because they load highly on the ability to sustain and shift attention (between the 

primary and secondary task). Similarly, a controlled attention view accounts for dual task 

performance where those ‘low’ in the ability to sustain attention are more easily distracted 

(Colflesh & Conway, 2007; Conway, Cowan, & Bunting, 2001).  
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At times, the attentional control approach to experimental research in WM is to divide 

participants into low and high WM capacity (Engle, 2018) based on performance on WM 

tasks (usually complex span) – lower and upper quartiles representing ‘low’ and ‘high’ 

capacity individuals, respectively. ‘Low’ participants demonstrate numerous difficulties in 

controlling attention compared to ‘high’ participants (Engle, 2002). The issue with this 

approach is that the cut-offs are arbitrary and implies that the researcher is confident both that 

the measures (complex span tasks) are measuring the full range of abilities, and that the cut-

offs (quartiles in this case) represent a qualitative difference, despite often using highly 

educated university student samples. Engle and Kane (2004) acknowledge this limitation of 

the extreme-group paradigm, and yet Engle (2018) still patronizingly refers to the ‘low’ WM 

group as being distracted by “pretty butterflies” (p.191). Attentional control theorists have 

also used latent variable analysis for more comprehensive research into individual 

differences, with Engle, Tuholiski, Laughlin, and Conway (1999) finding attention control 

critical for WM to predict fluid intelligence, while STM alone could not (but see Colom, 

Shih, et al., 2006). Findings such as this makes it no wonder that researchers are questioning 

the term working memory in favour of the term working attention (Baddeley, 1993). 

The premise of attention control theories appears more elegant than 

multicomponential theories because all variance boils down to the use of executive attention, 

rather than storage capacity with some unknown contribution of the central executive. 

However, this does raise additional questions about (a) how information is stored in WM and 

(b) the processes used to direct attention. Unsworth and Engle (2007a) propose a distinction 

between primary and secondary memory. Primary memory consists of the elements stored in 

central attention, while secondary memory consists of activated elements temporarily kept 

outside the focus of attention. For instance, during a complex span task, to-be-remembered 

elements are encoded into primary memory but must be quickly displaced to secondary 
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memory in order to deal with the processing task (Unsworth, Spillers, & Brewer, 2010). The 

concept of primary and secondary memory is analogous to the distinction between active and 

passive storage, which is prominent in both the following relational WM theories (Cowan’s 

and Oberauer’s) and thus, the preferred terminology in this thesis (used primarily in Chapter 

IV). In terms of redirecting attention, Shipstead et al. (2016) propose two functions: 

maintenance of the currently attended element and disengagement from irrelevant 

information, with engagement of attention through attentional capture or top-down executive 

signals. Shipstead et al. acknowledge the similarity to a relational integration binding system 

(Oberauer, 2002): binding, maintaining, and unbinding reflective of engagement, 

maintenance, and disengagement. 

The controlled attention view has made substantial progress in distinguishing working 

memory from the multicomponential system, detailing the role of executive functions such as 

attention. Engle’s (2002) paper reviewing evidence for controlled attention was seminal. 

However, like Baddeley’s influence, Engle’s review has spread beyond cognitive psychology 

and, like Baddeley’s homunculus analogy, this may be because it was written to be easily 

understood by a wide audience. It is unfortunate to see that history may be repeating itself as 

(also like Baddeley) the attention control approach may have become pervasive, with the 

theory’s defining paradigm (the complex span) frequently producing statistical 

inconsistencies such as correlating more with short-term memory measures than WM 

measures (Colom, Rebollo, et al., 2006) and poor correlations to other supposed WM tasks 

like the n-back (Redick & Lindsey, 2013). Engle’s (2002) review also sparked the belief that 

WM capacity is thoroughly distinct from, and can predict, fluid intelligence (Gf). Although 

there is a longstanding, consistent, and powerful relationship found between WM and Gf 

(Ackerman et al., 2005), this belief implies that the WM and Gf stand as independent 

constructs. As Shipstead et al. (2016) state, this view treats WM as “something concrete and 
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elemental, while fluid intelligence remains a divine outcome” (p.772). Engle (2018) concedes 

that it was wrong to predict Gf through WM tasks as in his 2002 review, now agreeing that 

performance on both Gf and WM tasks come about through similar functions. For Engle and 

colleagues, this means attentional control. Despite the considerable overlap between the 

attentional control model and the relational models (presented later in this chapter) in their 

predictions, the two perspectives often have only a modest amount to say on one-another 

 (Cowan, 2017; Shipstead et al., 2016). Because the primary perspective of this thesis is of a 

relational WM, it is unfortunately likely that this thesis will also underrepresent attentional 

control theories. Wherever feasible, differences between the two perspectives are identified 

and contrasted (see Chapters III, V, and particularly, VI) but it should be concluded (once 

more) that the two perspectives are more similar than they are different. 

2.3. Cowan’s Model of Generic Working Memory and theory for chunking 

Cowan (1988) maintains that working memory is ultimately about temporarily 

accessing a limited amount of information. Similar to Baddeley (2000), generic views of WM 

(Cowan, 2017) tend to be agnostic towards processing aspects, stating that WM must have a 

repertoire of functions for processing information but we do not yet know enough to explicate 

these beyond a central executive. Unlike modular views, a generic view does not see WM as 

a distinct system with distinct subsystems (e.g., an auditory store and a visual store). Rather, 

WM is the activated portion of LTM (embedded within LTM, see Figure 2.2) (Cowan, 1988), 

where information is temporarily accessible to executive processing (attention or 

manipulation). In this way, WM and LTM cannot be functionally separated, and it may be 

better to consider the system simply as ‘memory’, while terms like WM and LTM only help 

to delineate levels of activation within ‘memory’. Cowan (2001) highlights this by noting that 

attention to exogenous information still involves activating representations in LTM – 

listening to another person speak does not involve representing the acoustic waveforms in 
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WM but rather, they activate the meaningful symbolic representations connected to the 

sounds from LTM (Cowan, Winkler, Teder, & Näätänen, 1993).  

 

Figure 2.2. Diagram from Cowan (2001), representing WM as an activated portion of LTM. 

This contrasts with models of WM from Atkinson and Schiffrin (1968) and Baddeley (2000), 

where WM and LTM are distinct components. 

Generic views of WM are cautious about dividing functions through experimental 

task manipulations. For instance, whether information is lost as a result of decay or 

interference is a difficult question to answer empirically (Cowan, 2001), though there has 

been success with computational modelling (Lewandowsky et al., 2010). Similarly, it makes 

little sense to experimentally divide processing and storage components (Daneman & 

Carpenter, 1980) because even the most basic storage tasks involve activating WM and 

forming an ordered list. This can explain why researchers find success in measuring WM 

using tasks without a clear processing aspect (Colom, Shih, et al., 2006) or without a clear 

storage aspect (Bateman, 2015; Chuderski, 2014; Oberauer et al., 2008). The current research 

hopefully makes it clear that the storage aspect being ‘experimentally removed’ is 

specifically passive storage-over-time (stored outside the focus of attention), as a general 
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storage aspect cannot ever truly be removed from WM (activated representations must be 

stored active). 

Cowan’s most significant contribution was his refinement of Miller’s (1956) chunking 

theory. Consistent with an inexact, generic view of WM, Cowan (2001) defined a chunk 

simply as “a collection of concepts that have strong associations to one another and much 

weaker associations to other chunks concurrently in use” (p. 89). This broad definition 

allowed for dynamic chunking (e.g., cat could be linked more closely to dog than tiger 

through ‘domesticated’, or more closely to tiger than dog through ‘feline’, depending on 

which association was active) and aligned with an ‘activated LTM’ view of WM. Cowan 

proposes that chunks are the base unit of measurement for capacity limits (rather than 

individual units or elements). Remembering a list of words is not about encoding each word 

as a new representation into memory. Rather, it is about activating words that are already 

established in LTM and temporarily generating associations3 between them to assist in the 

simultaneous activation of many words beyond the limits of activation. Thus, storage 

capacity is based on how many associations can be constructed and held.  

Cowan believed it was unfeasible to get a truly accurate measure of storage capacity, 

because chunks cannot always be identified (i.e., we cannot reliably identify how many 

elements or even what elements are part of each chunk). Instead, he proposed a distinction 

between estimates of capacity limits (number of chunks) and compound estimates (number of 

elements), then outlined steps that could be taken to identify chunks (and thus, the base unit 

of measurement for capacity limits). This proposal meant that when chunks could not be 

identified, compound estimates could be employed as a more accurate representation of the 

operational measurement (e.g., the number of to-be-remembered objects presented) with the 

 

3 Note that Cowan’s associations resemble the relations discussed in Chapter I. For this section, Cowan’s 

preferred term will continue to be used but outside of this section, relations will be the preferred term. 
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trade-off that the ‘true’ capacity in terms of chunks was unknown. Cowan’s methods of 

identifying chunks included overloading information (diverting attention), blocking recoding 

of elements (preventing rehearsal), and discontinuous performance at certain levels (e.g., 

marked drops in performance for enumerating more than four objects, but not less). He also 

suggested that established associations (from LTM) should be strong within the chunk and 

weak between chunks, encouraging participants to chunk in a certain way. For instance, it is 

far easier to identify the chunks being employed in a recall list like cat-tiger-leopard-van-

plane than it is to identify the chunks in cat-dog-tiger-mouse-leopard. The former sequence 

clearly delineates two associations (animals and vehicles) while the latter involves several 

overlapping associations (animals, felines, domestic, wild). In a recall task, we would expect 

most participants to follow the well-established associations in the first sequence, while 

participants vary in how they chunk the second sequence, meaning we cannot identify the 

chunk capacity limit and cannot compare individuals by “capacity limits”. Similar clear 

delineation could be achieved by exogenous cues like Gestalt grouping principles or 

punctuation (McLean & Gregg, 1967). 

Cowan’s (2001) substantial review of the literature led to the conclusion that the 

average capacity of WM is four chunks. This was made with several provisos. For one, 

Cowan suggested that chunks could hold a theoretically endless amount of information by 

incrementing on the associations to include more information. Asking for the free recall of 

any words associated with the word cat could result in dozens or even hundreds of associated 

words being recalled through long-term associations but asking for the specific recall of 

words only presented in a span task is probing a chunk that was only generated at the time of 

the task. This is like the system described in Section 1.2, where associated words like doctor-

nurse-hospital could be recalled using either a novel relation (serial order from the task) or 

recall using the well-established ‘medical’ relation. Another proviso was the related strategy 



RELATIONAL INTEGRATION  31 

 

of elaboration (Cowan, 2001): where no well-established association exists, associations can 

be recoded using elaborative rehearsal, forming images that associate elements in some way. 

This is the key behind mnemonic systems allowing the recall of large sequences of elements 

(e.g., a deck of randomized cards) through elaboration of intermixed episodic associations 

(Bower, 1970). The final and crucial proviso is that the chunk capacity limit (of four) is a 

limit in the focus of attention, rather than WM per se. Many (if not infinite) representations 

can be passively activated, but only a maximum of four (±~1) can be active within the focus 

of attention. In this way, Cowan’s model aligns with controlled-attention models in that 

ultimately, capacity is based on limits of attention rather than passive (secondary) storage. 

This approach also helped Cowan (2001) to suggest a teleological account of capacity limits, 

as a limited focus of attention would benefit search procedures (through hierarchical 

organization of elements) and comparative judgements (differences are exaggerated when 

using small sample sizes, compared to large sample sizes). This proviso also forms one of the 

only differences between Cowan’s model and Oberauer’s model (featured in Section 2.4): 

Oberauer (2009a) see the focus of attention limited to only a single binding but with a limited 

region of direct access accounting for the remaining active bindings. 

Compared to multicompential models, Cowan’s (2001) model simplified memory into 

one system based on activation rather than storage capacities, being careful to delineate what 

we know and what we do not. Cowan also provided a framework for chunking that illustrated 

how associations between elements were ultimately the basis of capacity limits, and how they 

could be measured. It remains a general model of WM, careful not to explicate processing. 

The next two sections outline models that aim to conceptualize processing and tie it all 

together to explain WM completely. 
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2.4. Oberauer’s Concentric Model 

Because Section 1.2 provided an outline of Oberauer’s (2009a) model, this section is 

devoted to additional theoretical details. As a reminder of Section 1.2, Oberauer (2009a) 

states that representations in memory exist in two types of nodes: content nodes (including 

representations of objects, words, or events, such as elements in a series) and context nodes 

(including representations of roles or positions, such as place within a series). Content nodes 

are bound to context nodes to signify an element’s role in the relation. Together, a set of 

content-context bindings constitute a relation with each binding representing one argument in 

the set. Instantiating and comprehending a relation thus means that the bindings have been 

integrated. Because any content node can be bound to any context node, an infinite 

combination of relational structures can be constructed, with the only limitation being the 

number of bindings that can be held active at any one time. 

Like Cowan’s model and the attentional control view, Oberauer’s concentric model 

(Oberauer, 2002, 2009a; Oberauer et al., 2007) centres on attention providing temporary 

access to memory. The concentric model divides memory into tiers based on the level of 

attentional activation. Figure 2.3 demonstrates this model visually (Oberauer, 2009a). The 

highest level of activation is the focus of attention, where a single binding (i.e., a tethered 

content-context dyad) is held in immediate conscious awareness. The binding in the focus of 

attention is the strongest, shielded from interference by conscious attention. It is also the most 

flexible, as binding and unbinding of these representations can occur most freely at this level. 

The next level is the region of direct access. At this level, a set of related 

representations are activated above threshold, granting a privileged status where they are 

available to immediately be brought into the focus of attention when demanded. To be 

activated to this level, content representations are bound to contexts that signify a shared 

relation. Rather than decaying over time, elements are unbound when they are no longer 
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related to the currently activated relation. This is because new, unrelated representations may 

be brought into the direct access region and cause attentional interference (Oberauer, 

Lewandowsky, Farrell, Jarrold, & Greaves, 2012), causing the focus of attention to struggle 

to maintain the most activated element. This shares Cowan’s teleological argument for 

capacity limits. However, unlike Cowan’s theory, the extra layer (the direct access region) 

means that unwanted representations may cause interference, but not necessarily will cause 

interference. Novel relations are also generated in this direct access region, with binding 

occurring serially on each element until a relation is constructed. In a problem-solving 

situation, this novel relation may be congruent with the problem solution (in an analogy task), 

or it may produce a novel element congruent with the problem solution (in most other tasks). 

Below this level (outside the direction access region) are representations that have 

some activation above baseline. This could be because they were recently activated to a 

higher level or because they are implicitly associated with representations currently active in 

the direct access region. For instance, a fire truck representation in the direct access region 

may provide some activation above baseline to firefighter, ambulance, and red even though 

none of those elements have been within the direct access region or central attention recently. 

This associative activation allows for quicker and easier access (as in priming), though aside 

from this associative activation, there is nothing qualitatively separating these activated 

elements in LTM from elements in LTM with no activation. However, importantly, activated 

representations outside the direct access region are qualitatively distinguished from elements 

within the direct access region in that they are not bound to contexts (roles). Well-established 

relations propagate activation between common representations (content and/or contexts) but 

representations are not bound until they reach the region of direct access. This allows these 

above-baseline representations to still be recalled (as in a span task) through cued retrieval by 

associating activation of targets with cues, or as a list by cascading gradients of activation 
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levels through the list items (Oberauer, 2009a). Crucially, these methods are not as reliable as 

preserving the original bindings because the associations may be too weak to spread 

activation, but they may be the only option when processing is significantly diverted (as in 

complex span tasks). 

 

Figure 2.3. An architecture of declarative working memory from Oberauer (2009a), with 

labels added. Circles represent individual representations (/elements) in long-term memory 

and bidirectional arrows representing associations between representations. Currently, 

elements A, B, and C (represented within content nodes) are all bound (dashed lines) to roles 

within an interconnected relation (represented within context nodes; lined triangle) within the 

direct access region (the rectangular frame). Element B is currently within the focus of 

attention (cone). The bound elements propagate activation to associated elements, though 

these elements may or may not necessarily be activated above baseline (depicted by shading). 

A final point to consider in Oberauer’s model is dimensionality. Like the concept of 

dynamic chunking in Cowan’s model, memory elements can be represented in several 

dimensions. For instance, fire truck could be represented on dimensions for physical space 

(next to us or far from us), hypothetical space (within a fire station or on a road), colour (red 

or white), as a category (emergency vehicles or land transport), or a theoretically infinite 

other number of dimensions. LTM stores associations on all these dimensions but when the 

element is represented in the direct access region (i.e., when it is bound), only a limited 
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subset of these dimensions is activated. For instance, fire truck could be bound to the vehicle 

category in a relational instance of drives(driver,vehicle) and, although associations on many 

other dimensions are tangentially activated (e.g., red, ambulance), the dimension of the 

current binding promotes activation of elements that share the dimension of the active 

relation like firefighter to fill the driver role. One merit to our highly flexible generative 

memory system is that any element could fill the driver position, but it may require some 

creative and effortful thinking to construct and comprehend the relation. For instance, dog 

could fill the driver role, but it would not make much sense unless we also manipulate the 

dog to take on unnatural attributes like paws that can reach the pedals or work a gear shift. 

Dimensionality allows the memory system to be capable of generative thought while also 

promoting common, logical declarative thought.  

2.5. Halford’s Relational Complexity Framework 

The final theory to consider is Halford’s Relational Complexity (RC) model (Halford, 

Baker, McCredden, & Bain, 2005; Halford et al., 1998). This model differs from previous 

models in that it was not developed as a model of WM per se but rather, a framework for 

assessing processing aspects of WM. Despite this, it has been a strong influence in future 

models of WM (Cowan, 2001; Oberauer, 2009a). Where Baddeley’s model is insufficient in 

explaining the central executive, Halford designed RC as a metric for quantifying processing 

capacity. As it turns out, the pervasiveness of chunking in quantifying WM capacity means 

that RC may be a more appropriate method for measuring WM capacity in general, not just 

the processing features of WM.  

In this framework, processing capacity is defined as the number of arguments that 

must be simultaneously represented to instantiate a relation between the arguments. Like 

similar theorizing (Hummel & Holyoak, 2001; Oberauer, 2009a), arguments are bound dyads 

(elements bound to roles, slots to fillers, contents to contexts). A relation of binary 
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complexity would consist of two arguments. For instance, comprehending a relation of size 

between a rat and a mouse (RC=2, because there are two arguments) involves instantiating4 a 

relation between rat and mouse, such as rat-larger, mouse-smaller allowing us to 

comprehend that the rat is larger than the mouse. Each additional level of RC involves an 

additional argument: ternary relations involve three arguments, quaternary relations involve 

four, and so on. Unary relations consisting of a single argument are also possible, but they 

only allow the isolated comprehension of an element’s category (e.g., rat-rodent) or attribute 

(e.g., firetruck-red) which do not act as an operator to the relation. 

Transitive inference problems are a clear way of showing how RC level can increase 

systematically. For instance, given the premises “John is taller than Mary” and “Mary is taller 

than Anne”, we can construct relations using John, Mary, and Anne as elements and their 

heights as roles. Comparing John and Mary or Mary and Anne involves instantiating a binary 

relation because we need only consider one of the premises (two arguments): John is taller 

than Mary or Mary is taller than Anne (each are given in the premises) Conversely, 

comparing John and Anne would involve instantiating a ternary relation because both 

premises (all three arguments) must be simultaneously considered to deduce that John is 

taller than Anne: John is taller than Mary and Mary is taller than Anne, therefore John must 

also be taller than Anne. Once this ternary relation has been comprehended and we know that 

John is taller than Anne, we can compress the relationship between John and Anne into a 

simpler binary relation, with the proviso that this new binary relation cannot (on its own) 

offer information on how Mary fits into this equation. 

 
4 Instantiating a relation, constructing a relation, and generating a relation can be considered largely 

synonymous though there are subtle differences which dictates their use in this thesis. Halford prefers 

instantiation as a verb as it is similar to representing the relation in memory (you instantiate a relation as you 

would represent an element within WM), while Oberauer prefers the more processual term constructing which 

demonstrates that the relation is built through a set of bindings. Thus, this thesis will use ‘instantiate’ for the use 

of representing a relation in WM, and ‘construction’ for the more general building of a relation, while 

‘generation’ will be preferred for times when a novel relation is constructed, such as for novel problem-solving. 
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Halford et al. (2005) present evidence that quaternary (RC=4) relations represent the 

typical upper limit of complexity that humans can process (uncoincidentally similar to 

Cowan’s (2001) chunk limit of four). An important caveat to the RC framework is that the 

content of the elements or roles are distinct from the complexity of the relations, as is the 

format of the task. We could, for instance, make individual arguments more difficult to 

comprehend (e.g., by blurring the rat so it may be confused with the mouse, or by describing 

John’s appearance rather than simply naming him) but this increase in difficulty would be on 

a separate scale to the difficulty being represented by RC. In this way, a task requiring binary 

integration could be more difficult (as in the likelihood of answering correctly) than one 

requiring quaternary integration, because there are factors independent on RC influencing the 

difficulty. Systematically increasing RC means keeping these other sources of difficulty 

constant across levels of complexity, else we introduce noise in the metric. In general, we 

cannot directly compare relations of equal complexity across tasks because there are many 

other factors that play into the difficulty of a task. For instance, solving the simple arithmetic 

problem 3+5=? involves instantiating a ternary relation5 between three arguments: 3-addend, 

5-addend, ?-sum, through which the simple incrementing of 3 to 5 results in 8, which can be 

retrieved and bound to the sum position for the solution. Conversely, a task like Raven 

matrices (J. Raven, 1989) also involves ternary relations but is unquestionably more difficult 

than one-digit arithmetic because, although the RC remains at three throughout the test, items 

range dramatically in difficulty due to the range of unknown rules (Carpenter et al., 1990) 

and the embedding of complexity in superimposed (3x3) sets of ternary relations (Birney, 

 
5 I acknowledge that one-digit addition likely involves immediate retrieval of solutions in adults due to over-

learnt associations between single integers, but mental arithmetic is theoretically a ternary process (Halford et 

al., 1998). If this scenario seems unrealistic, consider the same example but with two-digit numbers. 
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2002). Thus, it is not advised to compare complexity across tasks but, with all else equal, 

increases in RC should equate to increases in binding capacity required. 

2.6. Synthesizing the discussed theories 

Five models of WM have been discussed in detail. Although each provide a 

perspective on WM, a synthesis is warranted to justify the understanding of WM used in this 

thesis. The vision of WM in this thesis is primarily based on Oberauer’s concentric model, as 

it is the most comprehensive for investigating relational integration. While Halford’s RC 

framework also applies, it was developed more as a metric for quantifying processing 

complexity in tasks (and will be used in this thesis as such). Cowan’s model predicts similar 

outcomes to the concentric model but is purposely more general than Oberauer’s. The 

attentional control view also predicts largely similar outcomes, but with a focus on the 

attentional aspects rather than the relational aspects of WM. 

Overall, these models generally predict quite similar outcomes. Although several 

studies in this thesis attempt to distinguish relational theories from attentional control theories 

(in particular, Chapter VI), it may be disappointing to readers to see that the outcomes of the 

studies do not always conclusively rule one as superior. It is therefore important to point out 

again that the intention of this thesis is to demonstrate the usefulness of a relational 

integration approach to understanding WM, which has otherwise been underrepresented in 

the shadow of overlapping attentional theories. In Cowan’s (2017) definitions of WM, 

attentional control models are separated only because they come from a large (and largely 

segmented) body of research that focuses on central attention; not necessarily because they 

disagree with generic definitions where WM is simply an activated portion of LTM. 

Recently, Shipstead et al. (2016) appreciated the usefulness of “temporary associations 

(bindings)” (p. 782) from Oberauer’s (2002) concentric model to the attentional control view: 

flexible bindings between elements and a schema map create associations between elements 
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(allowing for novel combinations). The bindings thus involve disengagement and 

engagement – central processes to the attentional control’s perspective on capacity limits. 

Similarly, Cowan sees capacity limits in terms of chunk limits (associations) and Oberauer 

sees capacity limits in the number of bindings. All three models agree that WM capacity is 

best seen not as a restrictive capacity limit, but as a permissive buffer allowing only the most 

task-relevant information to be directly accessible.  

Although binding is clearly critical to capacity limits for all models, there are some 

differences in how the ability to establish or dissolve bindings manifests in tasks and how it 

translates to higher-order cognition. This thesis aims to contribute to this understanding. 

While Cowan remains cautious about commenting on the specific processes involved, 

Shipstead et al. (2016) see the ability to effectively unbind (disengage) as the critical 

variation between individuals, tying back to attentional control through task switching and 

inhibition of distractors. Oberauer sees a more general capacity in the direct access region 

represented by the ability to combine all the necessary elements. Halford’s RC metric relates 

closely to Oberauer’s vision, in that the complexity of a relation may exceed the binding 

capacity of WM and be simply impossible to instantiate without severe compromises. 

Oberauer and Halford are mostly in agreement in that the complexity of relations contributes 

to binding capacity, but complexity rarely tells the whole story of relational integration. This 

was made clear by the example comparison of the two ternary tasks, simple arithmetic to 

Raven matrices, given in Section 2.5. Consider also, the task of making an analogy such as 

“A is to B, as C is to ?” (A::B=C::?). This task requires mapping the A::B relation onto the 

incomplete C::? relation. All four elements involved contributes to the capacity limits of the 

direct access region, though the effective RC remains only binary because both relations 

involve only two elements. As discussed in Section 2.5, there are a multitude of factors that 

contribute to performance apart from complexity, and these factors include the number of 
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elements involved, not just the number of elements in the most complex relation. In 

concluding this section, it is worth quoting Oberauer’s (2009a) rather simple definition for 

binding capacity: the ability to “put [all the relevant pieces] together by binding them into a 

common schema” (p. 92). Despite the subtle differences in the models pointed out throughout 

this section, this definition sets up the broad aim of this thesis: to explore the determinants 

that contribute to this capacity for binding. As Shipstead et al. (2016) state, Oberauer’s 

(2002) model “bridges the gap” (p. 783) between perspectives, indicating that the unified 

understanding of WM that Baddeley (2012) is hopeful for may indeed be transpiring.  

2.7. The relationship between Working Memory and Fluid Intelligence 

Thus far, we have discussed the conceptual properties of WM and how binding 

processes can result in relational integration. During this discussion, occasional descriptions 

of tasks such as simple span, complex span, transitive inference, mental arithmetic, and 

Raven matrices have helped to illustrate a point. Before concluding this chapter, it is 

necessary to discuss how relational integration can be separated from other demands in tasks 

such as these, particularly in separating purely relational WM tasks from higher-order Gf 

tasks. 

Much of the work on relational processing in cognition has been approached from a 

reasoning, intelligence, or mental abilities perspective (Dumas, Alexander, & Grossnickle, 

2013), with educational research also seeing benefit in applying relational thinking to 

knowledge acquisition (Alexander, 2016; Resnick, Davatzes, Newcombe, & Shipley, 2016). 

While these approaches do not always discuss WM’s contribution to relational processing, 

they have confirmed that abstract reasoning tasks involving multi-layered relations are the 

best assessments of fluid intelligence: matrix reasoning tasks such as Raven matrices (J. 

Raven, 1989) or Wechsler’s (2008) matrix reasoning subtests are powerful predictors of 

general mental ability and scholastic achievement (Giofrè et al., 2017; Koenig, Frey, & 
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Detterman, 2008; Laidra et al., 2007; Matešić, 2000). Abstract reasoning tasks represent the 

current gold standard for measuring general fluid intelligence, and are thus often referred to 

as Gf tasks after Horn and Cattell’s (1966) general fluid (Gf) intelligence classification. The 

literature has preferred the use of the term ‘Gf tasks’ (Ackerman et al., 2005) rather than 

‘abstract reasoning tasks’, focusing on the novelty and non-verbal content of the tasks. The 

tasks are framed as culturally fair and intended to be administered to participants with no 

prior experience with the task. In reality, the evidence suggests that Gf tasks such as Raven 

matrices do draw on experience (Mervyn et al., 2002). In any case, given the high overlap 

between WM tasks and Gf tasks (Ackerman et al., 2005) and the contribution of relational 

integration to performance on both tasks, Gf represents a good platform to apply this research 

with ecological validity, even though evidence presented in this thesis indicates that relational 

WM tasks predict similar ecologically valid outcomes. From the conception of this thesis, the 

research was not yet there to circumvent Gf tasks entirely, but research by Birney, Bowman, 

Beckmann, and Seah (2012) and Krumm, Lipnevich, Schmidt-Atzert, and Bühner (2012) did 

presented initial evidence that relational WM tasks may be just as useful as Gf tasks for real-

world applications such as assessments. 

As briefly discussed in Chapter I, Gf tasks tend to involve multiple requirements, 

some of which can be isolated (Carpenter et al., 1990). For instance, perceptual information 

must be extracted, and a mental representation must be formed while non-relevant 

information must be inhibited. Attention must be sustained over time and goal-direction is 

necessary to orient and sustain attention over steps of a problem. Each of these demands are 

represented in both Gf and relational WM tasks. These demands are present in most cognitive 

tasks and a failure in any of them will lead to an error in the task. In addition, there are two 

additional demands that are relevant to this thesis: rule induction and relational integration 

(i.e., binding capacity). They are of interest because these two demands regularly reoccur as 
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representing what is fundamentally different between WM and Gf tasks – rule induction; and 

what is fundamentally similar about them – relational integration. Although the prior 

demands (e.g., perceptual information, sustained attention) are also essential prerequisites of 

cognitive performance in both WM and Gf tasks, there is considerable evidence suggesting 

that the overlap with Gf can be explained by relational integration, and the gap to Gf can be 

explained through rule induction. The remainder of this section will highlight research 

contributing to this statement. 

Rule induction refers to inducing the rules that govern a pattern between elements in a 

series. Carpenter et al. (1990) suggests that one of the most difficult aspects of Raven 

matrices is rule correspondence: identifying the rule involved in each matrix. Consistent with 

this, Verguts and De Boeck (2002) found that participants exposed to one particular type of 

Raven problem were significantly more likely to solve a sequential problem if it had the same 

solution rule as the prior problem, compared to a different solution rule. Bui and Birney 

(2014) extended this with their finding that participants only benefitted from repeated 

exposure to the rule when they correctly answered an earlier problem governed by the rule.  

While there are a core set of rules governing Raven problems (Carpenter et al., 1990), 

the same rule can be represented with different surface features – using different shapes, for 

instance. Conversely, a different rule could be represented using a similar shape. Rule 

induction involves identifying the rule despite these surface variations. While Raven matrices 

tend to involve abstract shapes and patterns, a simpler example of the same principle is 

demonstrated by Vendetti, Wu, and Holyoak (2014) in their relational mapping task. 

Participants must recognise that an umbrella in one scene is analogous to a newspaper in 

another scene when they are both being used as shields from the rain, despite the second 

scene also containing an unrelated umbrella not being used as a shield. Gentner (1983) 
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describes this as a difference in attribute mapping (umbrellas look similar) and relational 

mapping (the umbrella and newspaper are being used for the same purpose). 

This research demonstrates that a significant portion of difficulty in Raven matrices 

comes from discovering the rules associated in a problem and knowing when to apply them. 

Thus, a crucial question to discern the relationship between WM and Gf is: what happens 

when the rules are given to participants? Loesche, Wiley, and Hasselhorn (2015) taught 

participants five of the core rules before taking Raven’s Advanced Progressive Matrices. As 

expected, the authors found participants had significantly higher performance on the task 

compared to controls with no training. However, they also found that participants in the 

given-rule condition had higher correlations to WM measures than control participants taking 

the normal task. This seems to indicate that rule induction is an aspect of Raven matrices that 

does significantly impact on performance, but it is a demand independent from WM. 

Although the WM-Gf correlation did not rise to perfect in the given-rules condition, this does 

give reason to suspect that rule induction is a central unique component that separates Raven 

matrices from other WM tasks. When this is removed, the similarities between the tasks (i.e., 

both relying on relational integration processes) are amplified.  

Additional support for this rule induction comes from the Latin-Square Task (LST; 

Birney et al., 2006). The LST is a matrix task that superficially appears similar to Gf tasks 

that also involve matrices. The LST is reminiscent of Raven’s in that it consists of solving 

incomplete matrices by working out which shapes fill the empty target cells. However, the 

core difference is that the LST involves a single rule that is made explicit to participants in 

the instructions: each row and each column may have only one of each shape. Previous 

research with the LST and Raven’s (Birney et al., 2012) finds that the LST has a strong 

correlation to Raven’s, but in general, the LST appears to sit somewhere between Gf and 

WM tasks. It has the relational integration components shared between WM and Gf (as well 



RELATIONAL INTEGRATION  44 

 

as the additional, lower-order demands listed above) but it does not have the rule induction 

component necessary to extend the task to Gf. An important caveat to this finding that may 

concern some readers is that the LST and Raven’s do, overall, correlate. However, the LST 

does not correlate more as the relational integration demands (as measured through RC) 

increase. Although this topic is explored more in our study on the LST (Chapter III), which 

indicates the RC demands in the LST may not entirely represent the demands of the task 

(despite being designed specifically as a manipulation of RC; Birney et al., 2006) for now, it 

is just worth pointing out that the increase in RC demands are not concomitant with the 

varying demands of Raven’s. In Raven’s, every problem only ever involves ternary relations, 

though difficulty can instead arise in the number of ternary relations that must be instantiated 

throughout a problem, or by the difficulty in identifying the ternary relations. Thus, it is not 

entirely unsurprising that increases in RC in the LST do not lead to increases in the 

correlation to Raven’s (but again, this point is explored more in Chapter III).  

One concern with the LST findings that is more valid is that the LST is a matrix task, 

so the LST and Raven’s may overlap due to this surface similarity. However, the given-rule 

approach has also been successful outside matrix tasks. Oberauer et al. (2008) employed 

remarkably simple tasks such as the finding squares task and the relation monitoring task 

(this task is analysed and validated in Chapter V). In the finding squares task, participants are 

presented with a grid of blank dots which light up intermittently. The task is to respond 

whenever four dots in a grid all light up to form a square. In the monitoring task, participants 

are presented with a 3x3 grid of numbers which change intermittently. The task is to respond 

whenever a row or column in the grid matches some given match rule (e.g., all numbers in a 

row or column are even). In both tasks, the rule is provided. However, both tasks do require 

relational integration to bind the elements (the dots or the numbers) into a coordinated 

relation (a square or a set of even numbers). Consistent with the current theoretical 
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perspective, Oberauer et al. (2008) found that these tasks (and similar ones with no rule 

induction) were the best predictors of Gf tasks, as compared to a large battery of more 

traditional WM tasks (such as complex span, which I have argued is indirectly measuring 

relational integration). Chuderski (2014) also utilized the relation monitoring task, finding it 

predicted Gf above-and-beyond other WM tasks. In addition, Chuderski found that increasing 

the number of bindings required in a relation decreased performance but did not influence the 

relationship to Gf (as with the LST). 

In summary, it appears that rule induction is what makes a Gf task distinct from a 

WM task, with both based in relational integration. Given the apparent reduction in noise 

when rules are provided, it seems that rule induction simply complicates the measurement of 

WM capacity. The freedom to approach a problem such as Raven matrices with or without 

knowledge of rules means that control over participant performance is clouded. Similarly, to 

prevent the same rule being tested over and over, the participant must be able to keep track of 

attempted solutions and represent them as an independent chunk. These would initially 

occupy space in the direct access region until they have been committed to LTM, similar to 

the burden of a distracting task like subvocalizing, which may further cloud the relationship 

between WM and Gf. 

Once we strip away rule induction, abstract reasoning tasks are essentially relational 

comparison tasks. These tasks typically manifest through rules such as those demonstrated in 

Figure 2.4. Despite the complex patterns and shapes that constitute a Raven’s problem (a 

‘complex’ abstract reasoning task), the patterns and shapes boil down to relational rules such 

as these. Once the rule is known, the demand is in the binding of the elements into a series. 

Typically, this results in generating the element that continues the sequence, relying on other 

given information in the task (e.g., other shapes) or knowledge from LTM that dictates the 

range of a sequence (e.g., letters, numbers, a limited set of shapes). 
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Figure 2.4. Example of common rules that require ‘abstract reasoning’. All abstract reasoning 

tasks employ a combination of one or more rules such as these that must be induced to solve 

each problem. In a relational integration theory of WM, the difficulty in these problems 

comes from having to bind all the elements into a coordination relation. Additional difficulty 

is provided by the rules being obscured or unknown at the outset, though this demand is 

distinct from the demands of relational integration and is what makes ‘abstract reasoning’ 

problems unique. 

In summary, although higher-order Gf tasks are complex and multi-faceted, they can 

be fundamentally understood through demands on rule induction and relational integration, 

only the latter of which is shared by relational WM tasks. 



RELATIONAL INTEGRATION  47 

 

III. STUDY 1: THE LATIN SQUARE TASK 

The previous chapters argued that WM capacity can be best conceptualized in terms 

of relational integration demands (Halford et al., 1998) rather than just generic storage 

demands; and that WM and Gf are most fundamentally connected via the joint demands for 

relational integration. The dominance of storage-based WM tasks where quantity of recall is 

the primary outcome (Ackerman et al., 2005; Colom, Shih, et al., 2006) has (as argued here) 

obfuscated the interpretation of WM capacity. While WM is a system that stores information 

over time, this does not necessarily mean simple storage capacity (how many elements can be 

held at one time) should be the primary measure of WM capacity. For one, this assumes that 

WM tasks must involve storage over time (i.e., storing elements and recalling them up to 

several minutes later). Two, this does not account for the important role of chunking in 

measurement of capacity (Cowan, 2001). The field has been reluctant to shift beyond 

complex span tasks (Redick et al., 2012), in no part thanks to the rise of attentional control 

conceptualisations (Engle & Kane, 2004) where they are employed routinely. One problem 

with complex span tasks is that it is reasonably difficult to distinguish storage from 

attentional control demands within the task, since the performance outcomes (quantity of 

recall) tap both. Unsworth and Engle (2007a) have attempted to resolve the overlap in storage 

and attentional control demands within complex span tasks by distinguishing primary active 

storage from secondary passive storage. Active storage are elements within active attention 

while passive storage are those out of the focus of attention. Because active and passive 

storage are delineated by attentional activation, this distinction has been useful to attentional 

control theories. However, the complex span task does not benefit greatly from this 

distinction, because the nature of the task involves the frequent displacement of to-be-

remembered elements from active to passive memory, making it difficult to determine the 

relative contribution of each type of storage to the end product (the recall). Although it could 
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be argued that the frequent switching between active and passive characterizes the task 

demands, the different types of complex spans (e.g., reading span, operation span) have 

different processing tasks, some of which can be considered so simple (e.g., pattern 

judgements) that they may not actually draw the to-be-remembered elements out of active 

memory at all. Relational WM theories make a similar distinction between active and passive 

storage by considering the elements inside direct access (active) vs. those activated in long-

term memory (passive), though it would primarily see the demands of the complex span as 

drawing from the capacity to form an ordering from the to-be-recalled elements (see Section 

1.2). Thus, there is a need to consider tasks that more clearly distinguish active from passive 

storage, and that distinguish storage from relational processing. The current study illustrates 

once such attempt at disentangling these task components using the Latin Square Task (LST). 

In Bateman (2015), I attempted to contrast active from passive storage demands in a 

variant of the LST by adding auxiliary storage demands to the task that were either active or 

passive in nature. The choice of task, despite its relevance to this chapter, was (at the time) 

somewhat tangential to this added storage-load manipulation, chosen mainly because it 

provided a way of contrasting the two storage loads in an auxiliary task (i.e., a storage load 

relevant to the task that must be kept active, and one irrelevant to the task that can be 

relegated to passive storage). In the LST (a more detailed description is provided in Section 

3.1), participants are presented with a 4 x 4 matrix, partially filled with shapes (circle, square, 

etc.). Participants must deduce which shape should be in a marked target cell (signified by a 

‘?’) using the one defining rule of the LST: each row and each column may have only one of 

each shape. This rule made it possible to operationalize the active and passive storage 

demands by contrasting whether the storage load (colour-marked cells of the matrix that had 

to be recalled after the actual item) was integral to the problem solution (active) or not 

(passive). Bateman (2015) found that if the added storage demands were passive, they were 
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virtually irrelevant; both to main task performance and to relating the task to Gf (as measured 

through Raven’s APM). The task became more difficult when performance was contingent 

on also recalling the added passive storage, but this still had no influence on the relationship 

to Gf. The added active storage demands meanwhile, both made the task more difficult and 

raised the correlation of the LST to Gf. In this condition, the added storage demands had to 

be kept active because they were involved in the main task. These results thus supported an 

attentional control explanation of WM-Gf, because it clearly demonstrated that added storage 

demands are only important to connecting the task to Gf if they are active in nature. Although 

this was not the original intention of the study, Bateman (2015) had somewhat ironically 

accomplished something using the LST (a relational integration task) that attentional control 

theories struggled with using the complex-span6 (though see Dilevski, 2016, for a more direct 

response to this research question, manipulating the complex-span). There were however, two 

main problems with concluding Bateman’s (2015) results using attentional control theories. 

First, is that the LST in itself is a relational integration task, not an attentional control task. 

This means that a more appropriate conclusion may be that the LST is relating to Gf because 

it measures relational integration, and the auxiliary attentional-control demands enhance this 

relationship, whereas auxiliary passive storage demands will not (also see Chapter V on the 

Relation Monitoring Task, which concludes a remarkably similar result). The second, far 

more pressing problem with an attentional control conclusion was that the added auxiliary 

demands were not the only manipulation of attentional control in this experiment. There was 

another manipulation of attentional control that reduced the attentional control demands of 

the task. The pressing problem with an attentional control conclusion is that the results of this 

other manipulation were in direct contention to this account. This other manipulation was 

 
6 It is also, of course, worth reminding the reader of the overlap between relational integration and attentional 

control theories frequently discussed in Chapter II. 
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‘Dynamic Completion’ (DC)7, which reduced the attentional control demands involved in the 

task by allowing partial solutions to be offloaded onto the visual display, reducing the load 

associated with keeping shape elements in active memory. That is, participants could insert 

shapes into empty cells, effectively solving the puzzle in parts rather than only providing a 

single response to the target cell. Interestingly, in complete contrast to the result of the 

auxiliary demands, this DC version not just made the task considerably easier (as expected), 

but it increased the correlation of the LST to Gf. This result goes against the auxiliary 

demands manipulation, at least in (attentional control) theory. It also goes against the 

common wisdom that increases in task difficulty will always lead to concomitant increases in 

demand of Gf resources (Stankov, 2000; Stankov & Crawford, 1993). Given that this DC 

result is both surprising and interesting, the goal of the first study of this thesis was to 

replicate the DC finding and, if it could be successfully replicated, uncover more about how 

and why it manifests by comparing it to additional criterion measures (more than just Raven’s 

APM). We first consider the LST in more detail before moving on to the current experiments. 

3.1. Introduction to the Latin Square Task 

The LST was developed following the principles of RC theory (Birney, Halford, & 

Andrews, 2006; see also, Perret, Bailleux, & Dauvier, 2011; Zeuch, Holling, & Kuhn, 2011). 

Participants are presented with a partially filled 4 x 4 matrix (see Figure 3.1) that, when 

completed, contains exactly four instances of each of the four possible element types 

(typically circle, square, triangle, cross; but these could be a set of four colours, letters, or 

numbers, among other things) distributed according to the defining rule of a Latin square: 

that each row and each column must contain only one of each element type (because all 

experiments with the LST in this chapter use shapes, these elements are henceforth referred 

 
7 The term dynamic completion comes from Bowman (2006) who had earlier speculated on the benefits of 

employing such a manipulation to explore the LST. 
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to as shapes). The task is to deduce which shape fits a marked target cell according to this 

rule.  

There are at least two distinct sources of cognitive demand in the LST. (1) Binding of 

to-be-integrated elements into a completed relation – the demand of which is indexed by RC; 

and (2) active storage demands associated with maintaining integrated, interim (sub-goal) 

outcomes for problems that involve multiple processing steps. These two demands are 

explicitly defined by item characteristics, as seen in the ‘manipulations’ inset of Figure 3.1. 

Put simply, the RC manipulation is defined by the number of row or column dimensions that 

must be integrated to come to the solution, notated in terms of dimensions (e.g., the two-

dimensional binary problems are notated as ‘2D’); while the steps manipulation is the number 

of integration steps required to reach the target cell. If the two steps involved in a 2-step 

problem have different levels of RC (e.g., a 3D and a 4D), then the RC of that item is 

classified by the highest level of RC, in line with the axiom of RC theory that the overall 

complexity of a task is represented by the single most complex process involved in that task 

(Halford et al., 1998).  

 

Figure 3.1. Example LST items of three levels of complexity and associated RC analysis with 

underlining indicating independent dimensions to be integrated consistent with Birney, 

Halford, and Andrews (2006) using representational notation of Birney and Halford (2002). 
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Birney et al. (2006) found that the RC manipulation captures 64% of variability in 

item difficulty while the number of interim processing steps captures a further 16%, 

indicating that the task primarily loads on RC demands. Birney and Bowman (2009) 

investigated the RC and steps manipulations as a function of other tasks, such as Gf tasks as 

well as other RC and mental permutation tasks. Consistent with Birney et al. (2006), Birney 

and Bowman (2009) found evidence for a distinction between RC and interim steps. Higher 

Gf was associated with higher overall LST accuracy (average r = .47) however, contrary to 

expectations, this relationship was not moderated by RC level when collapsing over steps 

(p
2 = .01).  That is, as RC increased, the relationship with Gf did not increase concomitantly, 

as would be expected by a complexity effect (Stankov, 2000). On the other hand, collapsing 

over RC, the relationship between Gf and LST performance was statistically greater for 2-

step items than 1-step items (p
2 = .09). In other words, increasing the number of steps from 

one to two saw a sharp decline in performance for low Gf participants, but not for high Gf 

participants. Birney and Bowman concluded that the requirement for ‘serial processing’ was 

the component most likely linked to Gf. This conclusion aligns with theories where the 

overlap between WM and Gf represents attentional-control (Kane et al., 2004), in that interim 

information (the solution to the first step) must be kept active in the direct access region 

while processing on the next step is conducted. Because both steps must be solved to solve 

the problem, it is inextricable that a 2-step problem involves active storage of the interim 

solution (the outcome of the first step), as it must be used as part of the solution to the second 

step. In other words (and this following explanation will be relevant for thinking about DC), 

where a 1-step item involves integrating visually available shapes with the target cell, 2-step 

items involve integration of visually available shapes with the target cell and with a visually 

unavailable shape that is the outcome of the earlier processing step. This visually unavailable 

shape consumes capacity in the direct access region (aka active primary storage) because (a) 
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losing it would result in restarting the problem; and (b) relegating it to LTM (aka passive 

secondary storage) would simply require reinstating it to the direct access region for use in 

the next step of the problem. 

Thus, although the demands of the task seem more associated with RC (because the 

RC manipulation captures the vast majority of variability in item difficulty), the attentional 

control demands of the task (keeping visually unavailable representations active in direct 

access) seem more related to Gf. The future chapters will demonstrate that the lack of the RC 

by Gf covariation does not discredit relational integration but rather, contributes to the 

relational integration hypothesis: the theory that what fundamentally limits performance on 

Gf is relational integration, and even the most relationally simple version of the task can 

predict Gf just as well as more relationally complex versions – so long as they are still 

tapping relational integration. But even so, the significant Steps by Gf covariation (Birney & 

Bowman, 2009) seems to suggest that increased demands on attentional control can enhance 

the relationship to Gf. However, this interpretation is at odds with Bateman’s (2015) DC 

findings, where reducing the attentional control demands involved in this active storage of 

the interim step increased the correlation to Gf. The current chapter sought to confirm the 

source of demands in the LST and how they relate to Gf by replicating the DC effect. If the 

DC effect does not replicate (i.e., DC does indeed reduce the correlation of the LST with Gf), 

then it would indicate that Bateman’s (2015) finding was a one-off and attentional control is 

the critical component linking WM with Gf. On the other hand, if the associated Gf demands 

are in fact related solely to relational integration, we would expect the correlation between 

the LST and Gf to maintain in spite of the DC manipulation. This is because, where the 

standard LST entails relational integration demands (in generating the solutions to each step) 

and attentional control demands related to keeping the interim step outcomes active, the DC 

version removes these attentional control demands, leaving the only critical demand of the 
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DC version of the task as relational integration. An improvement in WM-Gf correlation 

would indicate that the LST has been purified as a measure of relational integration, lessening 

noise associated with attentional control demands (which, in this scenario, are actually 

detrimental to the relationship). 

3.1.1. Aims and hypotheses 

Because the DC findings appear to clash both with the 2-step findings of Birney and 

Bowman (2009) and the auxiliary cost findings in Bateman (2015), there is a clear need both 

of replication and of further theoretical analysis of the LST. The first study aimed to replicate 

the DC findings and add additional criterion WM measures to help determine the source of 

demands in the LST. In the first experiment, we included an additional WM measure (a 

complex-span) in addition to our Gf measure, Raven’s APM. The complex span task chosen, 

the symmetry span (SSPAN), involves alternating between remembering an element and 

solving a basic processing judgement, then recalling the series of elements in order at the end 

of each trial. This quantifies WM capacity demands but, as discussed (in Section 1.2 and 

earlier in this chapter) may tap either active or passive storage (or some combination of the 

two). If the Basic version of the LST (i.e., the standard LST seen elsewhere) correlates more 

with SSPAN than the DC version, it would indicate that the variance being taken out of the 

DC version is indeed related to attentional control demands. 

 An additional issue with Bateman (2015) was the ordering of the LST blocks. Due to 

the layering of the instructions (with complex instructions for the auxiliary load items), the 

DC block always came after the Basic (standard LST) block. It is thus possible that the Basic 

block predicted less variance in Gf than DC because of the additional noise attributed to on-

task learning induced by first exposure to the task. The DC block may have been a ‘purer’ 

measure simply because all participants had had experience with the task by that point. 

Learning has also been associated with APM performance (Bui & Birney, 2014; Lilienthal, 
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Tamez, Myerson, & Hale, 2013) but it is nonetheless an experimental issue to have the blocks 

presented in a fixed order. As such, the present study would counterbalance the block order 

by presenting them in a random order.  

Finally, the present study also recorded the number of ‘moves’ (empty cells filled) 

made by participants in the DC condition. If elaborate multi-step solutions were enabling 

strategic participants to solve DC, then it may indicate that strategy is related to Gf, and we 

would expect to see those scoring high in APM to be employing many moves in the DC 

condition.  

Thus, the present study has three novelties over Bateman (2015): the inclusion of the 

SSPAN, the counterbalancing of block order, and recording of the number of moves. 

However, overall, the main purpose of the experiment is to simply replicate the remarkable 

findings of my earlier work. For the hypotheses, the standard descriptive effects of RC and 

Steps were expected: increases in RC and Steps would each result in linear decreases in 

performance. Consistent with Bateman (2015), it was hypothesized that the DC variant of the 

LST will increase task performance compared to the standard version, and that this increase 

will be more pronounced (an interaction) for 2-step items compared to 1-step items (since the 

benefit of LST-DC is theorized to primarily apply to 2-step items). Also consistent with 

Bateman (2015), it was hypothesized that the DC effect would replicate such that the 

correlation between the LST and Gf will increase when using LST-DC rather than LST-

Basic, although both versions will correlate with Gf. The novel hypotheses were related to the 

additional classic WM measure added to the experiment, SSPAN. It was hypothesized that 

the difference in variability between the LST-Basic and LST-DC would be related to this 

classic WM measure, which is a task more representative of attentional control. In line with 

this, it was also hypothesized that the LST-DC would still correlate with Gf, above and 

beyond the variance already accounted for by the SSPAN. Further, in line with the relational 
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integration hypothesis, we expect to see no relationship between the average number of DC 

moves and APM performance. If we do, it would indicate that the relationship with DC may 

form through strategy, rather than a purification of the relational integration demands. 

3.2. Experiment 1: Method 

3.2.1. Participants 

The participants were 125 first-year psychology students at the University of Sydney 

who participated in exchange for course credit. There were 30 males and 95 females (76%) 

with an average age of 20.14 (SD = 4.43) years. Data from these participants are also 

reported in Chapter IV, though the focus of that chapter is the Arithmetic Chain Task (not 

reported here) rather than the LST. 

3.2.2. Measures 

Participants completed computerised versions of the LST (experimentally 

manipulated to include Basic and DC items), symmetry complex span (SSPAN), and Raven’s 

Advanced Progressive Matrices (APM). Participants also completed the Arithmetic Chain 

Task though these results are not reported here. All tasks were programmed with Inquisit Lab 

4 (Millisecond Software, 2014). 

Latin-Square Task (LST) 

Participants were presented 24 items adapted from Birney and Bowman (2009) across 

two blocks (basic and DC). All items used the same four shapes as element types (circle, 

triangle, square, cross) and each had a 2-minute time-limit (with a countdown displayed to 

participants). If the time expired, the item was recorded as incorrect and the next item 

presented. Bateman (2015) reported that only 0.2% of all LST items attempted were marked 

incorrect through timeout, indicating that 2 minutes is sufficient. Each item had an RC 

(RC=2D/3D/4D) and steps (steps=1S/2S) combination (e.g., 2D-1S). Each block had 12 

items with an equal distribution of RC*steps combinations (two of each combination). 
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Participants completed the basic block and the DC block in a random order, with the blocks 

visually differentiated by screen colour (white for basic; green for DC). There were separate 

instructions related to each (along with practice items) presented at the beginning of the 

experiment. 

LST Basic. Basic items included the matrix and response options in the centre of the 

screen (see Figure 3.2). When a participant clicked a shape in the response options, the 

background of the selected shape would turn pink and reset/confirm buttons would appear. 

This gave participants a chance to confirm or change their response before moving on to the 

next item. 

 
Figure 3.2. Example Basic item, as presented to participants. 

LST Dynamic Completion (DC). DC items allowed participants to fill in the matrix 

before solving the target cell. To fill a cell in the matrix, participants selected their desired 

shape from the options then clicked on an empty cell (see Figure 3.3). The shape would 

appear in the cell and the cell background would change to pink to indicate it was an interim 

shape they had inserted. Participants could fill as many cells as they wished, though the 

instructions asked they only fill as many cells as necessary. A ‘move’ was recorded as any 

time a cell was filled by the participant and moves continued to cumulate regardless of resets.  
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Participants indicated their solution by placing the desired shape into the target cell in the 

same way as an empty cell (in this way, the minimum moves for each item was one). Only 

when a shape was placed into the target cell would the reset/confirm buttons appear for them 

to confirm their answer. 

 
Figure 3.3. Slide from the DC instructions, demonstrating an example item. 

Symmetry Span 

Participants were presented with alternating storage and processing tasks, as in Kane 

et al. (2004). For the storage task, participants viewed a 4x4 grid where a sequence of red 

squares would appear in one of the 16 potential locations. Two to five squares would appear 

in each set with each square appearing for 850ms. For the processing task, participants judged 

whether a displayed pattern was symmetrical along the vertical axis. Participants first viewed 

one square in the set, then completed a symmetry judgement, then viewed another square, 

then made another symmetry judgement, and so on until the entire storage set of squares had 

been displayed. After solving the last symmetry judgement for that set, participants would 

attempt to recall the squares in the order they were presented. The score analysed was the 

total number of correctly recalled squares across the task (2 x each set size), resulting in a 
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possible range of 0-28. This partial scoring was favoured over a ‘span’ score (number of 

recalled squares within correctly recalled sets only) as it captures more variance (Redick et 

al., 2012). 

Raven’s Advanced Progressive Matrices (APM) 

Fluid intelligence was measured using a shortened 20-item version (odd items + items 

34 and 36) of set II of the APM (J. C. Raven, 1941). Participants had 20 minutes to solve as 

many items as possible. This 20-item version has shown excellent reliability as a shortened 

version of the APM as it is sufficient for participants to learn and apply the rules that govern 

APM items (Bui & Birney, 2014). 

Although a single task defines a construct such as fluid intelligence narrowly, this task 

was also chosen for its important surface and structural similarities to the LST. Both tasks 

employ a visuo-spatial matrix layout, and both are based on relational integration. The LST 

differs in that there is a single rule known to participants (the defining rule that only one of 

each type of shape can appear in each row and each column), while APM involves several 

unknown rules (Carpenter et al., 1990) that the participant must induce. In Chapter II, rule 

induction was identified as a defining characteristic of abstract reasoning tasks which set 

them apart from relational integration tasks such as the LST. However, APM elements are 

also generally more complex. Where the LST involves the same set of shapes (circle, 

triangle, square, cross) each time, APM elements are complex, with each element in a cell 

composed of multiple features. For instance, lines may, inter alia, be straight, wavy, dotted, 

and/or differ in orientation; shapes may, inter alia, differ in size, shading, numerosity, and/or 

form. Element complexity such as this is necessary to ensure the rules are being generalized 

across features. In the LST, changing the elements between items is unnecessary because the 

rules are given each time. Thus, although element complexity can be absolved into rule 
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induction, it is important to consider that the difference in complexity between the two tasks 

could contribute to additional discrepancy in their intercorrelation. 

3.3. Experiment 1: Results 

3.3.1. Overview of the analyses 

In line with the hypotheses, we first sought to determine the impact of RC 

(2D/3D/4D), Steps (1S/2S), and Condition (Basic/DC) on performance. To account for the 

low item size when breaking down the task by all three variables (which would be only two 

items per cell), the analyses are separated into one standard LST ‘family’ of effects (with the 

standard interaction of RC by Steps); then two DC ‘families’ that would be the focus of the 

DC hypotheses (RC by Condition; Steps by Condition). After the performance effects 

(accuracy), we then present the influence of Gf (through APM) on these performance effects. 

For replicating the standard LST family (RC and Steps), this is done using an ANCOVA 

because the RC and Steps variables are both theoretically continuous variables. For the Basic 

vs. DC comparison, this is done using a multiple linear regression because Basic and DC are 

not continuous. Instead, theoretically, Basic should constitute the same cognitive processes as 

DC, plus processes associated with additional attentional control demands. Thus, a regression 

is more appropriate for this comparison. We first begin with a presentation of descriptives. 

3.3.2. Descriptives and correlations 

Descriptive statistics for the tasks are provided in Table 3.1. Overall, the LST 

correlated with APM (r = .38, p < .001), and the DC condition had a slightly higher 

correlation to APM (r = .37, p < .001) than the Basic condition had to APM (r = .33, p < 

.001). As expected, the SSPAN correlated with LST-Basic (r = .29, p = .001) but not LST-

DC (r = .14, p = .137). The SSPAN also correlated with APM (r = .25, p = .005).  
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Table 3.1. Descriptives (proportion correct) and correlation coefficients for task measures in 

Experiment 1. 

 Descriptives Correlations 

 Mean  SD DC Total SSPAN APM 

LST-Basic 0.84 0.15 .62 .85 .29 .33 

LST-DC 0.89 0.15 - .90 .14 .37 

LST-Total 0.86 0.14  - .24 .38 

SSPAN 0.75 0.16   - .25 

APM 0.60 0.20    - 

N=125; bold coefficients p < .05.  

For moves, a sum total was calculated from all DC items. The average total number of 

moves was 48.42 (equating to an average of approximately four moves per item) but varied 

greatly between participants (SD = 29.72). This sum total moves was indeed positively 

correlated with performance in the DC condition (r = .30, p = .001), such that more moves 

led to, on average, higher performance; but the number of moves was not correlated with 

APM performance (r = .04, p = .124). 

3.3.3. Performance effects 

Consistent with Bateman (2015), there was a linear trend for RC, such that increasing 

complexity led to decreased performance (F1,124 = 127.72, mse = 0.633, p < .001, ηp
2 = .507). 

The effect of Steps was also significant, such that 2-step items were more difficult than 1-step 

items (F1,124 = 27.52, mse = 0.419, p < .001, ηp
2 = .182). The difference between Basic and 

DC on performance was also significant, (F1,123 = 20.46, mse = 0.400, p < .001, ηp
2= .143) but 

the effect was not moderated by an interaction with the linear trend of RC (F1,123 = 3.05, mse 

= 0.381, p = .083, ηp
2 = .024). In other words, the benefit of DC relative to Basic was not 

dependent on certain levels of RC. However, consistent with the hypotheses, there was a 

significant interaction between Condition and Steps (F1,123 = 5.61, mse = 0.575, p = .019, ηp
2 

= .044), such that 2-step items benefitted more from DC than 1-step items did. This 

interaction is depicted in Figure 3.4. 
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Figure 3.4. Mean proportion scores for LST conditions separated by 1-step and 2-step 

problems. Error bars indicate standard error (n=125). 

To determine the impact of RC and Steps on the shared demands with Gf, APM was 

entered as a covariate into an ANCOVA with RC and Steps as repeated measures. This 

replicates prior research on the standard LST (RC by Steps) using the ANCOVA method 

(Birney & Bowman, 2009). The linear effect of Steps was moderated by APM (F1,123 = 6.157, 

mse = 0.402, p = .014, ηp
2 = .048). Unlike past research (e.g., Birney & Bowman, 2009), the 

linear effect of RC was also moderated by APM, (F1,123 = 7.480, mse = 0.604, p = .007, ηp
2 = 

.057), such that increasing RC significantly increased the covariation of the task to Gf. To 

determine the relative contribution of each RC level to this linear effect, an additional 

regression was run with each RC level entered separately into a model predicting APM. From 

this regression, it was clear that the linear effect was being carried by 2D and 4D items. That 

is, the 2D items significantly predicted APM (ΔR2 = .086, p = .001) but the 3D items 

contributed virtually nothing additional (ΔR2 < .001, p = .986). The 4D items were then a 
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significant predictor above the other two levels (ΔR2 = .086, p < .001). In the final model, 

only 4D items were significant predictors of APM.  

3.3.4. Basic and DC regressions 

To determine the relative, unique contribution of Basic and DC against each other, the 

two conditions were entered sequentially (Basic first, then DC) into a regression predicting 

APM performance. The first step, with just Basic, accounted for 10.8% of variance in APM 

(R2 = .108, p < .001). Adding DC in the second step was a significant change (ΔR2 = .046, p 

= .012) and reduced the unique contribution of Basic to non-significance in this final model 

(Basic sr2 = .02, p = .137; DC sr2 = .05, p = .012). 

Next, the regression predicting APM was repeated except WM was controlled for by 

adding in SSPAN as an initial step (before LST-Basic). The results of this regression are 

provided in Table 3.2. SSPAN was added as the first step and this SSPAN-only model was 

significant (R2 = .063, p = .005). Adding Basic in a second step was a significant change 

(ΔR2 = .072, p = .002) and this addition caused the SSPAN to no longer have a significant 

unique contribution (SSPAN sr2 = .03, p = .060; Basic sr2 = .07, p = .002). This indicates that 

the variance associated with SSPAN (theorized to be storage-related) was subsumed by 

Basic, which itself added significant meaningful variance (theorized to be processing-

related). Finally, adding DC in a third step was also a significant change (ΔR2 = .050, p = 

.008); and one that subsumed the unique contribution of Basic. Interestingly, this addition 

caused the SSPAN to once more have a significant unique contribution (SSPAN sr2 = .03, p = 

.037; Basic sr2 < .01, p = .362; DC sr2 = .05, p = .008). Thus, the attentional control 

component shared by SSPAN and Basic was prioritized in the SSPAN; while the shared LST 

(relational) components in Basic and DC was prioritized by DC. 
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Table 3.2. Regression Model Predicting Gf with DC in Experiment 1. 

Model Predictor B t p sr2 R2 ΔR2 

1 Symmetry Span .221 2.84 .005 .063 .063 .063 

2 
Symmetry Span .149 1.90 .060 .026 

.135 .072 
LST-Basic .633 3.16 <.002 .072 

3 

Symmetry Span .161 2.11 .037 .031 

.185 .050 LST-Basic .226 0.91 .362 .006 

LST-DC .644 2.70 .008 .050 

N=125; bold coefficients p < .05. 

3.4. Experiment 1: Discussion 

Overall, the results of Experiment 1 replicated the DC purification effect of Bateman 

(2015). That is, although LST performance increased as a result of the DC manipulation, the 

relationship between the LST and APM also increased significantly. We also observed an 

expected Steps interaction with DC, such that 2-step items benefitted from DC more than 1-

step items. Although this is expected from DC, this interaction was not seen in Bateman 

(2015). Nonetheless, both experiments demonstrated a clear purification effect: the LST 

predicts APM better when attentional control demands are minimized by way of DC. These 

attentional-storage demands were further supported conceptually by a correlation between 

LST-Basic and SSPAN (a typical storage-focused WM task) that was not also seen between 

LST-DC and SSPAN. Indeed, the results of the first and second models of the regression 

predicting APM indicated shared variance between LST-Basic and SSPAN. Thus, LST-Basic 

does not appear to simply be a worse measure than LST-DC, it simply assess additional 

processes that overlap with complex spans, which we have observed may contribute noise to 

the prediction of Gf. The LST-DC appeared to tap a unique demand related to APM which 

we have theorized is a pure measure of relational integration.  

One possibility that we explored was that LST-DC was allowing for new strategies to 

emerge, as there are now more feasible ways to solve each problem which are otherwise 

hard-limited by the intense storage demands of multi-step pathways. We investigated this 
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possibility by analysing the number of moves made by participants. Although more moves 

generally led to better performance (as would be expected by additional solution pathways), 

the number of moves was not related to APM. Thus, the relationship between LST-DC and 

APM does not simply seem to be about enabling new strategies. 

A final point worth considering is that the linear RC effect did actually covary with 

Gf. That is, as RC rose, so did the correlation with APM. This was unexpected given prior 

research (Birney & Bowman, 2009) has failed to find this covariance, and because the RC 

analysis of the APM determined that the APM does not vary by RC. Given these inconsistent 

results, further research is needed to confirm if this finding can be replicated. 

Although the remarkable DC finding was replicated, the experiment was still 

somewhat limited by the number of tasks involved. The APM is a well-accepted measure of 

Gf (Conway, Cowan, Bunting, Therriault, & Minkoff, 2002) and the task format overlap 

(matrix-style) helped to isolate the DC effect from the Basic version (because all three tasks 

involve matrices). Nonetheless, the overlap in task format may concern some readers. For the 

next experiment, we added an additional verbal (i.e., non-matrix) Gf task, the Letter Series. 

We also added an additional WM measure, the n-back, and replaced the SSPAN with the 

Operation Span (OSPAN). The processing aspect of the SSPAN (judging the symmetry of 

patterns) can be completed using lower-order visual strategies, which is less processing-

intensive than the OSPAN (judging the veracity of arithmetic operations). Thus, the SSPAN 

may have simpler attentional control demands because the to-be-remembered elements can 

be kept exclusively in active storage. The OSPAN may better tap an attentional control 

demand because it requires more intensive processing and thus, should require more 

attentional demands in the frequent shifts of to-be-remembered elements between active and 

passive storage. The OSPAN is also the more common complex-span (Redick & Lindsey, 

2013) and tends to have higher reliability than the Symmetry Span (Redick et al., 2012). 
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Finally, because our main theory for LST-DC comes down to a ‘purification’ effect, 

we also considered an established relational integration task, the Relation Monitoring Task 

(RMT) (Oberauer et al., 2008). While the LST was designed and validated by RC theory 

(Birney et al., 2006), the DC variant is nonetheless still unknown. The RMT meanwhile, has 

shown remarkable success as a relational integration measure (Oberauer et al., 2008, 

Chuderski, 2014). Chapter V details the RMT in-depth but for now, the RMT is a suitable 

task as a pure measure of relational integration. We should expect that if the LST-DC is 

indeed drawing out the relational integration capabilities of the LST, then it should correlate 

with the RMT, which should in turn correlate with Gf. 

Once again, we predicted that DC would lead to an increase in performance and an 

increase in the correlation to Gf, as measured through APM and Letter Series, in comparison 

to Basic. We also expected the LST-DC to correlate with the RMT more than LST-Basic, but 

the LST-Basic would correlate more with the WM measures (n-back and OSPAN) than the 

LST-DC would. 

3.5. Experiment 2: Method 

3.5.1. Participants 

One-hundred participants (67 female, 33 male) took part in exchange for course 

credit. Their average age was 19.47 (SD = 2.12) years. Participants undertook six tasks: the 

LST (with Basic and DC blocks), two measures of WM (Operation Span, spatial n-back), two 

measures of Gf (APM, Letter Series), as well as the RMT, a measure of relational integration. 

Participants completed the tasks in a random order in 90-minute sessions, in groups of up to 

eight in computer labs at the University of Sydney. Data from these participants are also 

reported in Chapter V, though the focus of that chapter is experimental manipulations of the 

Relation Monitoring Task rather than the LST. In this experiment, we only consider total 

RMT scores. 
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3.5.2. Measures 

The same LST and APM from Experiment 1 was employed. The OSPAN replaced the 

SSPAN. We also added three additional criterion measures: the spatial n-back for traditional 

WM, the Letter Series for Gf, and the Relation Monitoring Task for relational WM. These 

additional tasks are described below. 

Operation Span 

Participants completed the Operation Span (OSPAN) with set sizes of 3, 4, 5, and 6 

(two sets of each). In each set, participants alternated between memorizing a letter and 

verifying the truth of a mathematical operation. Once all letters for that set had been 

presented, participants attempted to recall the letters in the order they were presented. Again, 

partial credit scoring using the total number of correct letters (OSPAN Letters) was preferred 

to capture more variance (Redick et al., 2012). 

Spatial n-back 

Participants viewed a 3x3 grid where a sequence of blue squares would appear in one 

of nine potential locations. The participants’ task was to respond when a square appeared in 

the same location as the trial n back from the current location. Each square appeared for 

500ms and there was a 2500ms interlude between each square, resulting in trial durations of 

three seconds. Participants received two 2-back blocks and two 3-back blocks. Each block 

consisted of 14 non-target trials and six target trials. The score analysed was the ratio of 

percentage of hits to match trials divided by percentage of false alarms to no-match trials, 

averaged across blocks. 

Letter Series 

Participants had four minutes to complete as many of 15 Letter Series items as they 

could. Each item involved a patterned sequence of letters followed by an underscore to 
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indicate that the task was to complete the pattern by inserting a single letter to the end of the 

sequence. Like APM, the items become progressively more difficult. 

Relation Monitoring Task 

The RMT (Oberauer et al., 2008) involved presenting a continuous 3 x 3 array of 3-

digit number strings. The task was to respond (with the spacebar) whenever an array 

matching the current match rule was presented. If the array did not match the current rule, the 

participant was to wait for the next array, which would replace some or all strings (depending 

on the condition) with new ones. Each array was presented for 5.5 seconds with a 100ms 

interval. Although there were several experimental manipulations administered in the RMT, 

these are not relevant here and as such, only the aggregate score is considered. For details on 

these manipulations, see Chapter V. 

3.6. Experiment 2: Results 

3.6.1. Overview of the analyses 

As was the case for Experiment 1, we begin the analyses by presenting descriptives 

and correlations, then performance effects of the LST manipulations. We then consider the 

influence of Gf on these performance effects using ANCOVAs (and an additional regression 

on the RC levels to consider non-continuous influence on RC). Finally, a series of regressions 

are conducted comparing the relative contribution of Basic and DC on predicting Gf while 

controlling for the criterion WM measures (OSPAN, n-back, RMT). 

3.6.2. Descriptives and correlations 

Descriptive statistics for Experiment 2 are provided in Table 3.3. Once again, the LST 

overall correlated with APM and it was stronger than in the prior experiment (r = .54, p < 

.001). As seen in Table 3.3, both Basic and DC had strong correlations with APM, though 

this time Basic had the higher correlation with APM (r = .51, p < .001), as compared to DC 

with APM (r = .46, p < .001). A similar pattern was seen in correlating the LST to Letter 
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Series: Basic (r = .46, p < .001) and DC (r = .40, p < .001). The two Gf measures, APM and 

Letter Series, correlated with each other (r = .42, p < .001), and together formed a Gf variable 

using principal axis factoring with varimax rotation (this variable accounted for 70.88% of 

variance in the two measures). The OSPAN and n-back did not correlate with each other (r = 

-.02, p = .817), but each correlated separately with Gf (OSPAN~Gf r = .23, p = .023; n-

back~Gf r = .49, p < .001). The OSPAN also did not correlate with either LST condition 

(Basic r = .05; DC r = .06) but did correlate with APM to a similar degree as the SSPAN in 

Experiment 1 (r = .24, p = .017); while the n-back correlated with both LST conditions (Basic 

r =.44; DC r = .41). Finally, the RMT correlated with both LST measures (Basic r =.46; DC r 

= .45) and correlated highly with Gf (r = .59). 

Table 3.3. Descriptives (proportion correct) and correlation coefficients for task measures in 

Experiment 2. 

 Descriptives Correlations 

 Mean  SD DC OSPAN n-back L-Series APM Gf RMT 

Basic .80 .18 .63 .05 .44 .45 .51 .57 .46 

DC .83 .18 - .06 .41 .40 .46 .51 .45 

OSPAN .83 .18  - -.02 .15 .24 .23 .13 

n-back 2.42* 1.64*   - .51 .32 .49 .44 

L-Series .69 .12    - .42 .84 .53 

APM .61 .19     - .84 .47 

Gf 0.00* 0.77*      - .59 

RMT .67 .13       - 

N=100; bold coefficients p < .05.  

*n-back mean and SD based on block-average hits minus false alarms, rather than proportion correct; Gf mean 

and SD based on factor score, rather than proportion correct. 

3.6.3. Performance effects 

Consistent with prior experiments, there was a linear trend for RC, such that 

increasing complexity led to decreases in performance (F1,87 = 103.86, mse = 0.819, p < .001, 

ηp
2 = .544). There was also a linear trend for Steps, such that 2-step items were more difficult 

than 1-step items (F1,87 = 23.86, mse = 0.355, p < .001, ηp
2 = .215). For the novel family 
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effects, DC resulted in significantly higher performance than Basic (F1,87 = 9.10, mse = 0.460, 

p = .003, ηp
2 = .095).  

Unfortunately, due to a programming error in this experiment, the item-level data of 

the LST was not recorded. That is, only composite scores of each RC level, averaged over all 

levels of Steps (and vice-versa), were recorded, rather than specific RC by specific Steps 

composites. In other words, the data provided composites such as “4D items” rather than 

composites such as “4D1S items”. This meant the interactions and covariation with Gf could 

not be perfectly replicated from the prior experiment (where RC and Steps were entered 

together in a single ANCOVA with Gf). Rather, each variable could only be entered 

separately, averaged across the other variable. This meant that, in general, the effects would 

be overestimated as compared to Experiment 1, since the measures had a larger range 

(because each measure constituted more items as a result of being averaged over the non-

considered manipulation). With this in mind, Steps significantly covaried with Gf, (F1,96 = 

12.722, mse = 1.369, p < .001, ηp
2 = .117). On its own, the linear effect of RC also 

significantly covaried with the Gf factor, (F1,96 = 52.662, mse = 1.073, p < .001, ηp
2 = .354), 

such that increasing RC led to higher correlations with Gf. In a regression predicting Gf using 

the separate RC levels, each subsequent RC level both increased R2 significantly and 

subsumed the contribution of prior RC levels. In the final model, only 4D items were 

contributing uniquely (Overall R2 = .410; 2D sr2 < .01; 3D sr2 < .01; 4D sr2 = .20). 

3.6.4. Basic and DC regressions 

For condition (Basic vs. DC), the same regression approach as with the prior 

experiment was used, except this time the predictor tasks were predicting the Gf factor rather 

than APM alone. The pattern of regression results using LST alone was similar to prior 

experiments, with LST-Basic accounting for 32% of variance in Gf (R2 = .321, p < .001), and 

adding DC significantly increased this to R2 = .359 (ΔR2 = 0.038, p = .020). In the final 
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model, both Basic and DC provided unique contributions (Basic sr2 = .10, p < .001; DC sr2 = 

.04, p = .020), a somewhat different outcome to Experiment 1, where DC subsumed the 

unique contribution of Basic. 

The next regression controlled for WM by adding OSPAN and n-back to a 

preliminary model which on its own did predict Gf (R2 = .304, p < .001), with both measures 

providing unique contributions (OSPAN sr2 = .06, p = .007; n-back sr2 = .25, p < .001). 

Adding LST-Basic was a significant increase (ΔR2 = .143, p < .001) though adding LST-DC 

on top of this was a marginally non-significant increase (ΔR2 = .021, p = .061). Running the 

same model again without LST-Basic demonstrated that LST-Basic and LST-DC were 

largely contributing the same variance, as LST-DC became a significant change on its own, 

above the two WM measures (ΔR2 = .108, p < .001). Finally, to determine the relative 

contribution of the RMT as a ‘pure’ relational integration measure, we added RMT to the 

predictors of the full model (OSPAN, n-back, Basic, and DC predicting Gf) to determine its 

relative impact on the existing predictors. The RMT was a significant increase in the variance 

predicting Gf (R2 = .523, ΔR2 = .056, p = .002), though did not change the significance of the 

unique contributions of the other predictors. The full results of this complete regression with 

the unique contributions of each predictor at each stage of the model is presented in Table 

3.4. This Table also demonstrates that, unlike Experiment 1, the LST-Basic did not subsume 

the variance of the WM measures in Model 2. 
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Table 3.4. Full Regression Model Predicting Gf in Experiment 2 

Model Predictor B t p sr2 R2 ΔR2 

1 
Operation Span .239 2.76 .007 .057 

.304 .304 
n-back .502 5.80 < .001 .252 

2 

Operation Span .206 2.65 .010 .042 

.446 .143 n-back .316 3.66 < .001 .081 

LST-Basic .422 4.87 < .001 .143 

3 

Operation Span .200 2.56 .011 .040 

.467 .021 
n-back .286 3.29 .001 .064 

LST-Basic .316 3.09 .003 .056 

LST-DC .190 1.90 .061 .021 

4 

Operation Span .170 2.30 .024 .028 

.523 .056 

n-back .213 2.49 .015 .033 

LST-Basic .248 2.50 .014 .033 

LST-DC .127 1.30 .196 .009 

RMT .291 3.24 .002 .056 

N=100; bold coefficients p < .05. 

3.7. Experiment 2: Discussion 

Overall, in Experiment 2, we still found encouraging results for the use of LST-DC, 

though they were slightly less remarkable than in Experiment 1. This time, the LST-Basic 

maintained a stronger position as a predictor of Gf, with the LST-DC adding a marginally 

non-significant contribution. The slightly lower sample size in this experiment (n = 100, 

compared to 125 in Experiments 1) may have resulted in a Type II error occurring on the 

LST-DC, though this in itself does not explain the now more substantial contribution of LST-

Basic. In general, the LST-DC also correlated better with the WM measures (n-back and 

OSPAN) than it did in the earlier experiments. Despite these differences, the result is still 

largely in line with the overall core finding of Experiment 1: that a DC variant of the LST, 

which substantially reduces the difficulty by the task by minimizing demands on active 

storage, still correlates well with complex Gf tasks. In fact, the only reason the results of 

Experiment 2 are perhaps surprising is due to the remarkable results of Experiments 1 and 
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Bateman (2015). Taken in isolation, Experiment 2 still demonstrates the power of LST-DC, a 

version of the task with minimal attentional control demands. 

Although the results of Experiment 2 are not completely divergent to the earlier 

experiment, the addition and replacement of several tasks nonetheless introduced some 

substantial changes to the experiment structure which may have affected the overall 

interpretability of the results, when taken together. For instance, although the SSPAN was 

criticized in Section 3.4 for having overly simple processing, the very reason it may have 

worked well as a correlate with LST-Basic and not LST-DC may be because of this simple 

processing. This simplified processing allows for more pure capture of active storage, rather 

than a switching demand associated with movement between active and passive storage 

which may be induced by the higher processing demands of arithmetic in the OSPAN. As 

such, the third experiment aimed to rectify doubts associated with the inconsistent task 

selection by including both the OSPAN and SSPAN, in addition to the n-back. Once again, 

both the APM and Letter Series acted as measures of Gf. 

It was hypothesized that LST-DC would lead to an increase in performance and an 

increase in the correlation to Gf, as measured through APM and Letter Series, as compared to 

LST-Basic. It was also hypothesized that LST-Basic would correlate more with the WM 

measures (n-back, OSPAN, and SSPAN) than LST-DC would. 

3.8. Experiment 3: Method 

3.8.1. Participants 

In total, 106 participants (74 females, 32 males) took part in exchange for course 

credit. The average age was 19.90 (SD = 3.85) years. Participants undertook seven tasks: the 

LST (with Basic and DC blocks), three measures of WM (Operation Span, Symmetry Span, 

and spatial n-back), two measures of Gf (APM, Letter Series), as well as the Swaps task, 

which is not reported here. Participants completed the tasks in a random order in 90-minute 
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sessions, in groups of up to ten in computer labs at the University of Sydney. Data from these 

participants are also reported in Chapter VI, though the focus of that chapter is the 

experimental manipulations of the Swaps task rather than the LST.  

3.8.2. Measures 

The same LST, APM, Letter Series, OSPAN, SSPAN, and spatial n-back were 

employed as in prior experiments. Participants also completed the Swaps task (Stankov & 

Crawford, 1993), which is not reported here. Participants completed as many tasks as they 

could in the time provided. The tasks were presented in a random order, except for the 

SSPAN, which was always presented last. This was because the SSPAN was deemed the 

least necessary task. In total, 26 of the 106 participants did not reach the SSPAN. A small 

minority of these 26 participants also failed to complete at least one other task (four for LST, 

one for n-back, and one for both APM and OSPAN). The implications on the missing data 

from the SSPAN are described in the Results (Section 3.9.2). 

3.9. Experiment 3: Results 

3.9.1. Overview of the analyses 

As was the case for the prior experiments, we begin the analyses by presenting 

descriptives and correlates, then performance effects of the LST manipulations. The influence 

of Gf on these performance effects are considered with ANCOVAs, then regressions are used 

to consider the relative contribution of Basic and DC on Gf. 

3.9.2. Descriptives and correlations 

As seen in Table 3.5, the means and standard deviations were generally as expected 

across the tasks. One exception of note is the difference between OSPAN and SSPAN: 

participants found the SSPAN considerably more difficult than the OSPAN, with an average 

of 3 less elements recalled in total. Because the same set sizes were used, there is no reason to 

suspect that SSPAN should be substantially more difficult. The more likely culprit was that 
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because participants always completed the SSPAN last, they may have felt more fatigue or 

felt more rushed to complete the task to end the session on time. Although the SSPAN 

descriptives themselves were not overly concerning, the potential that the participants who 

reached the SSPAN represented a different subset of participants than those who did not 

reach the SSPAN was concerning. In general, the scores of those who reached the SSPAN 

were slightly higher than those who did not across the other tasks (e.g., Swaps M = .63 to 

.58). Although none of these differences reached significance in independent samples t-tests, 

this was largely due to the high variance from the small sample that did not reach the SSPAN 

(n = 26), rather than due to the negligibility of the mean differences. Thus, due to concerns 

over selection bias in sampling only those who reached the SSPAN, the easier course of 

action was to simply exclude the SSPAN from the analyses to ensure the full sample of 106 

was used whenever possible. This was only possible because the SSPAN was always 

presented last and thus, did not contaminate the earlier tasks. Where possible, data on the 

SSPAN is still mentioned, but their findings should be interpreted cautiously.  

Once again, the LST overall correlated with APM (r = .45, p < .001). As seen in 

Table 3.5, both Basic and DC had strong correlations with APM, with DC having a slightly 

higher correlation with APM (r = .42, p < .001) than Basic with APM (r = .39, p < .001). 

This time, the Letter Series was more weakly, but still significantly, correlated with Basic (r 

= .21, p = .036) and DC (r = .23, p = .020). However, the two Gf measures, APM and Letter 

Series, still correlated with each to a remarkably similar extent as the prior experiment, (r = 

.42, p < .001). Together, a Gf variable was formed using principal axis factoring with 

varimax rotation, accounting for 71.09% of variance in these two Gf measures. The OSPAN 

and SSPAN were weakly correlated with each other (r = .22, p = .048). Each were more 

strongly correlated with the n-back, with the SSPAN and n-back correlation (r = .46, p < 

.001) being somewhat higher than the OSPAN and n-back (r = .32, p = .001), potentially 
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attributable to the spatial nature of the tasks but potentially also attributable to the subsample 

(n = 80) of those that completed all tasks. The SSPAN had a strong correlation to Gf (r = .55, 

p < .001), while the OSPAN had a weaker but significant correlation to Gf (r = .20, p = .044). 

In general, most correlations with Gf improved slightly as a result of reducing the sample to 

only the 80 who completed all tasks, despite the reduction in sample power. 

Table 3.5. Descriptives (proportion correct) and correlation coefficients for task measures in 

Experiment 3. 

 Descriptives Correlations 

 Mean SD DC OSPAN SSPAN n-back LSeries APM Gf 

Basic .81 .17 .67 .18 .25 .43 .21 .39 .37 

DC .88 .16 - .08 .26 .44 .23 .41 .38 

OSPAN .90 .14  - .22 .32 .19 .15 .20 

SSPAN** .78 .17   - .46 .32 .57 .55 

n-back 2.63* 1.68*    - .40 .48 .52 

L-Series .68 .15     - .42 .84 

APM .63 .18      - .84 

Gf 0.00* 0.77*       - 

N=106; **SSPAN sample N = 80; bold coefficients p < .05. 

*n-back mean and SD based on block-average hits minus false alarms, rather than proportion correct; Gf mean 

and SD based on factor score, rather than proportion correct. 

3.9.3. Performance effects 

Once more, we begin the analyses with a replication family (RC by Steps) followed 

by two novel families testing the Basic vs. DC comparison (RC by Condition; Steps by 

Condition). Consistent with prior experiments, there was a linear trend for RC, such that 

increasing complexity led to decreases in performance (F1,100 = 119.71, mse = 0.591, p < 

.001, partial-η2 = .545). There was also a linear trend for Steps, such that 2-step items were 

more difficult than 1-step items (F1,100 = 35.20, mse = 0.414, p < .001, partial-η2 = .260). For 

the novel family effects, DC resulted in significantly higher performance than Basic (F1,100 = 

21.60, mse = 0.611, p < .001, partial-η2 = .178). Contrary to Experiment 1, there was a 

(marginally) significant interaction between this linear trend for RC and Condition, such that 
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the linear trend of RC was more pronounced for Basic than for DC (F1,100 = 4.05, mse = 

0.413, p = .047, partial-η2 = .039). Also contrary to Experiment 1, there was no interaction of 

condition with the linear trend of Steps (F1,100 = 0.33, mse = 0.610, p = .568). 

To investigate covariation, the same approach as the prior experiments was used, with 

ANCOVAs for the RC and Steps effects. Steps covaried with Gf (F1,97 = 5.422, mse = 0.395, 

p = .022, ηp
2 = .053), with increased correlation to Gf for 2-step items compared to 1-step 

items. The linear effect of RC also again covaried with Gf (F1,97 = 7.966, mse = 0.549, p = 

.006, ηp
2 = .076), with higher RC levels having a higher correlation to Gf.  However, once 

again, the regression isolating the effect of each RC level replicated Experiment 1 with 4D 

items producing a unique contribution to the model (sr2 = .06), while 2D and 3D items 

appeared to be sharing variance because 3D items did not significantly improve the model 

(ΔR2 = .020, p = .139) that contained 2D items alone (R2 = .092, p = .002). 

3.9.4. Basic and DC regressions 

For the regression with conditions, this time, the LST-Basic alone accounted for a 

smaller (relative to prior experiments) but still significant 14% of variance in Gf (R2 = .135, p 

< .001), and adding DC was a marginally non-significant increase to R2 = .166 (ΔR2 = 0.031, 

p = .060). In the final model, neither Basic nor DC provided unique contributions (Basic sr2 = 

.02, p = .133; DC sr2 = .03, p = .060). Although this was different to the prior experiment, it 

was clear that these results may have been due to the now considerably weaker correlation 

between Letter Series and the LST. The correlation between Letter Series and APM gave no 

reason to be suspicious of the Letter Series acting strangely in this experiment, but the 

regression was nonetheless repeated using just APM as the dependent variable, to help situate 

the results in the context of all experiments. With this approach, the LST-Basic alone 

accounted for a significant 15% of variance in APM (R2 = .149, p < .001). Adding the DC 

increased this significantly to 20% (ΔR2 = 0.055, p = .012). In the final model, only DC 
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uniquely contributed significantly (Basic sr2 = .02, p = .092; DC sr2 = .05, p = .012). Thus, 

the regression replicated prior experiments, but only when considering APM in isolation as 

the Gf indicator.  

Next, we controlled for WM by adding OSPAN and n-back to a preliminary model, 

which on its own predicted the Gf factor (R2 = .339, p < .001), with n-back providing a 

unique contribution, but not OSPAN (OSPAN sr2 < .01, p = .423; n-back sr2 = .27, p < .001). 

Adding LST-Basic was a marginally non-significant increase (ΔR2 = .024, p = .064) and 

adding LST-DC above this also did not change the predictive power of the model (ΔR2 = 

.002, p = .624). Replicating this regression predicting just APM (rather than the Gf factor) 

resulted in a largely identical pattern, except that LST-Basic was a significant, unique 

contributor in the second model (ΔR2 = .033, p = .038) but remained a non-significant unique 

predictor in the final model with LST-DC. These two regressions, one predicting Gf and one 

predicting APM, are presented in Table 3.6 and Table 3.7, respectively. Running the 

regression predicting APM without LST-Basic once again demonstrated that LST-Basic and 

LST-DC were largely contributing the same variance, as LST-DC became a significant 

change on its own, above the two WM measures (ΔR2 = .030, p = .045).  

Of note, when the same regression was run with SSPAN included as an additional 

WM measure, the pattern of results changed somewhat. With SSPAN, the addition of LST-

Basic became a significant increase in the prediction of Gf in the second model; while for the 

model predicting APM, it was LST-DC that was a significant unique predictor in the final 

model, rather than LST-Basic in the second model. Although, generally, the results of this 

regression (including SSPAN) are slightly more in line with the hypotheses, the concerns 

over using the subsample (who completed all tasks) was reason to prioritise the no-SSPAN 

analyses. This also keeps the approach consistent to that used in Chapter VI, where the same 

dataset is used to analyse the Swaps task. Nonetheless, because the SSPAN-included version 
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of the regressions was run, in the interest of transparency, these results are available in 

Appendix A, though we proceed with this chapter with the no-SSPAN results in mind. 

Table 3.6. Full Regression Model Predicting the Gf factor in Experiment 3 

Model Predictor B t p sr2 R2 ΔR2 

1 
Operation Span .014 0.80 .423 .005 

.339 .339 
n-back .290 6.22 < .001 .272 

2 

Operation Span .013 0.73 .467 .004 

.363 .024 n-back .240 4.51 < .001 .139 

LST-Basic .070 1.88 .064 .024 

3 

Operation Span .014 0.79 .432 .004 

.364 .002 
n-back .234 4.28 < .001 .126 

LST-Basic .055 1.13 .260 .009 

LST-DC .023 0.49 .624 .002 

N=101; bold coefficients p < .05. 

 

Table 3.7. Full Regression Model Predicting APM in Experiment 3. 

Model Predictor B t p sr2 R2 ΔR2 

1 
Operation Span .003 0.03 .976 < .001 

.285 .285 
n-back 1.331 5.75 < .001 .251 

2 

Operation Span -.005 -0.06 .950 < .001 

.317 .033 n-back 1.052 4.00 < .001 .117 

LST-Basic .390 2.11 .038 .033 

3 

Operation Span .006 0.07 .949 < .001 

.323 .006 
n-back .999 3.71 < .001 .101 

LST-Basic .253 1.06 .293 .008 

LST-DC .207 0.91 .368 .006 

N=101; bold coefficients p < .05. 

3.10. Experiment 3: Discussion 

The DC effect was again replicated, though once again, there were some differences 

in this experiment compared to the prior two. When predicting APM alone, the DC effect was 

clearly replicated, with DC purifying the LST. This was demonstrated by the DC once again 

subsuming the unique contribution of Basic in the LST regression model, demonstrating that 

the additional difficulty of the Basic is primarily noise when predicting APM. When using Gf 

rather than just APM (Gf defined through a factor representing both APM and Letter Series), 
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the DC effect was trending but not significant. Unlike Experiment 2, the Letter Series was not 

significantly correlating with either LST condition, dragging down the overall LST-Gf 

correlation. Although the introduction to Experiment 2 (Section 3.4) argued for this 

possibility due to the differences in the spatial nature of the Letter Series and APM (where 

LST is closer to APM in modality), the results of Experiment 2 demonstrated quite clearly 

that modality was not an issue. In this experiment however, it has become a potential issue, 

seeing as the Letter Series appeared to have appropriate descriptive statistics (and correlations 

to tasks other than the LST were also normal). This indicates that the DC effect may be less 

reliably observed when considering non-visuospatial tasks such as the Letter Series. Given 

that the DC effect has been observed over three experiments using APM, it does at least 

appear that the APM is a robust dependent variable for the DC effect to emerge, even if there 

are some concerns over the overlap in appearance of the tasks. 

Another unusual finding was the relationship between the ‘traditional’ WM tasks. The 

SSPAN and n-back displayed strong correlations, both to Gf and to each other; yet the 

OSPAN did not, with weaker correlations across the board. It was expected that the OSPAN 

would provide a better index of attentional control than SSPAN, given the processing task is 

more intensive (arithmetic verification as opposed to symmetry judgements). It was argued 

that the symmetry judgements may be tapping lower-level processing that can be done 

without requiring a switch of the stored elements to non-active memory. While the SSPAN in 

this experiment was tainted by always being last in the task set (meaning only the most 

capable participants completed it), the SSPAN in itself nonetheless had a considerably better 

showing in Experiments 1 and 3 than the OSPAN in either Experiment 2 or 3, despite this 

apparent concern with the symmetry judgements. It may be the case that the SSPAN is 

actually a better measure of attentional control because it primarily measures active storage, 

rather than some combination of active and passive storage (or switching between the two) 
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that is required in the OSPAN. However, there are reasons to be hesitant over the SSPAN 

findings in Experiment 3. First, is that the OSPAN has had higher mean performance than the 

SSPAN in both cases (comparing across Experiments 1 and 2; and within Experiment 3). If 

the SSPAN did truly require low-level processing, we would expect the mean performance of 

SSPAN to be higher than the OSPAN, with the more challenging processing. This is a 

difficult concern to resolve, particularly since the scoring method (total elements rather than 

total sets), processing threshold (80%+), and the set sizes remained constant across both 

tasks. The decision to keep the SSPAN for last in the task order was a pragmatic one, over 

fears that participants would not complete all the tasks in 90 minutes. Rather than risk the 

participants not reaching one of the more important tasks (like LST) with a fully randomized 

order of tasks, we instead chose to always put the SSPAN last, so that would be the first 

sacrificed should participants not reach the end. Although this seemed reasonable at the time, 

the results now seem to suggest that the subset of 80 participants who actually did complete 

all tasks may have been qualitatively different from the 26 participants who did not reach the 

end. That is, the downside of making a “if you get to it” task is that only a certain type of 

participant “gets to it”. Even past the sampling segmentation issue, it is also an issue to have 

the OSPAN and SSPAN in a fixed order. Given the overlap of the task format between the 

two, participants approach the SSPAN with the experience of having already completed the 

OSPAN. Although this does not explain the higher mean scores of the OSPAN compared to 

the SSPAN, it may have induced a feeling of boredom or fatigue at having to complete such a 

similar task again, particularly given it would be towards the end of the testing session, where 

participants may have been in more of a rush to finish. All considered, this issue makes the 

SSPAN data in Experiment 3 questionable but does not take away from the curious difference 

observed between the SSPAN and OSPAN across the first two experiments. 
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Despite these potential issues, it was once again observed that the LST could 

contribute above-and-beyond the WM measures in predicting Gf. This time however, this 

result was substantially weaker, in part due to the low correlation between LST and Letter 

Series; and in part due to the remarkably high correlation observed between the n-back and 

Gf. In this experiment, the Basic and DC shared most of the variance that was contributed to 

the Gf model. This means that it may have been a contribution of task format (visuospatial). 

However, using our theoretical explanation of the added load in Basic, it is also possible that 

the active storage demands of the Basic condition have already been accounted for by the 

WM measures (mainly n-back). Thus, the remaining variance to be predicted is the relational 

integration that is contributed by both Basic and DC. Overall, the remarkable DC effect has 

been largely replicated over the course of three experiments, though there were some changes 

to the strength of the effect and, particularly, to the way it manifests with regards to 

predicting tasks other than APM and predicting alongside other, varying WM tasks. 

3.11. Experiment 4: Introduction 

For the final experiment on the LST, we changed the method of analysis to try and 

determine more specifically what factors contribute to performance. Rather than looking at 

task-level performance and correlates, the final experiment used an eye tracking approach to 

determine what parts of the task space were contributing to performance. Time spent gazing 

at certain areas of each item may indicate the strategies and challenges that participants face 

when solving LST items. For instance, it is possible that weaker participants simply do not 

know where to look when solving 4D items. However, if they are looking in the right areas 

but simply cannot solve the problem, it would indicate that their issue is more based in 

capacity limits: they simply do not have the binding capacity to engage in the relational 

integration required to solve the problem. On the other hand, if active storage demands are 
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indeed the issue in solving 2-step items, it is possible that participants will be frequently 

returning to the interim cell to resolve or remind them of the interim solution.  

Thus far, there has been little work on eye tracking in matrix tasks that links areas of 

interest directly to performance. One study by Laurence, Mecca, Serpa, Martin, and Macedo 

(2018) found that the only area that seemed to predict performance was the response options 

(i.e., the options below the matrix that participants choose between as their response). This is 

not particularly surprising in itself given that participants need to look to their answer before 

submitting it. However, interestingly, Laurence et al. (2018) found it was not so much the 

actual time spent on the response options that mattered but rather, the number of ‘toggles’ 

between the matrix and the response options (i.e., shifting gaze between the matrix and the 

options). On average, high toggling rates led to a significantly decreased test score. 

Although interesting, there are two problems with Laurence et al.’s (2018) findings 

that Experiment 4 would look to resolve. First, is that the regression analyses were predicting 

total score rather than item success thus, gaze data and the dependent variable were both 

aggregates. Although this is less of a problem for their choice of task (Wiener Matrizen-Test 

2) because there is less dramatic shifts in difficulty, it is something that needs to be 

considered for the LST, where items differ in complexity and steps. To solve this issue, the 

regression analyses will predict item success, rather than aggregate total score. The second 

issue is that the choice of task (a matrix style task similar to APM) meant that the matrix 

itself differed substantially between each item – there were little systematic areas of interest. 

An advantage to using the LST is that each item involves the same rule, and a certain amount 

of information must always be present (e.g., the target cell, the filled cells involved in the 

target relation, and any interim cells involved in order to reach the target cell). By identifying 

these cells in each item, more specific areas of interest (AOIs) can be analysed. The full list 
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of AOIs and the way they are calculated are provided in Section 3.12.1, but an overview is 

provided here to explain the hypotheses. 

3.11.1. Area of Interest hypotheses 

Of interest to the hypotheses, the ‘relational cells’ are the filled cells (i.e., contain 

shapes) with information that must be integrated to come to the outcome of that relation (i.e., 

the final solution or the interim step solution). ‘Final’ relation cells are the relation cells 

involved in the final step, while ‘interim’ relation cells are those involved in the interim step 

(only relevant to 2-step items). It was hypothesized that increased gaze time on both types of 

relational cells will raise the probability of item success, because these cells are needed to 

solve the item. If participants cannot identify the cells required to solve the item, then their 

chance of success falls. ‘Distractor’ cells meanwhile, are filled cells that are not necessary to 

solve the item. These distractor cells could be empty, and the item can still be solved in the 

same way. In contrast to relation cells, gaze time on distractor cells indicates that the 

participant cannot identify the solution pathway and thus, lowers the chance of success. In 

line with Laurence et al. (2018), it was also hypothesized that higher number of revisits to the 

response options will also lower item success rate, as it indicates uncertainty. Gaze duration 

on the ‘final answer response option’ specifically (the option corresponding to the answer) 

was also predicted to significantly increase item success, because participants need to look 

here to input their (correct) answer. Although gaze duration on the ‘interim answer response 

option’ may also relate to item success, it is confounded by participants looking to incorrectly 

use that option as a response, so no hypotheses are given relating to that metric (but gaze 

there is likely to inversely relate to success). Item characteristics (RC and Steps) were also 

included in the analyses, and interactions between gaze data and item characteristics should 

indicate any differences in predictiveness of the gaze data as a function of item 

characteristics. It was hypothesized that both these item characteristics (RC and Steps) would 
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contribute strongly to item success, as seen in past studies. Although not interesting in itself 

in this study, these item characteristics are important to include in the analyses to ensure that 

the large variance in gaze duration between items is accounted for by item characteristics, 

leaving only more meaningful variance in gaze duration. 

3.12. Experiment 4: Method 

3.12.1. Participants 

Fifteen participants (nine females) participated in exchange for course credit as part of 

their first-year summer school program. The average age was 21.94 (SD = 3.30) years. All 

had normal or corrected-to-normal vision. An additional two participants completed the task, 

but their data was excluded from the analyses due to concerns over their eye tracking data. 

One was excluded because they could not pass the calibration test (described in the next 

section) and one was excluded because their average eye tracking data quality was 74.20%, 

below the minimum 80% recommended (iMotions Biometric Research Platform, 2018). 

These participants still completed the LST, but their data is not included here.  

3.12.2. Measure and Apparatus 

Participants completed the full 36-item version of the LST (Birney et al., 2006). All 

the items were standard LST items (i.e., Basic items). Participants completed the task using a 

14” laptop fitted with an infrared eye tracker (Tobii X2-30) which samples both eyes at 30 

Hz. The screen resolution was set to 1366 x 768. Participants sat at whatever range was 

comfortable to them so long as the eye tracker could pick up their eyes within the reasonable 

recommend distance of 50cm to 95cm. Participants were calibrated with a standard nine-

point procedure to ensure their gaze could be accurately detected within 0.5 degrees. The 

iMotions software (iMotions Biometric Research Platform, 2018) was used to record eye 

movements and responses to the LST. The average eye tracking data quality was 92.71% (SD 

= 6.58%). Although this was above the recommended threshold of 80%, the use of an item-
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based analysis allowed us to specifically exclude trials below this threshold. Overall, 30 of 

the 540 items were below 80% data quality and were thus excluded from the analyses. After 

this adjustment, the average data quality was 93.76% (SD = 4.94%). 

3.13. Experiment 4: Results 

3.13.1. Approach to the analysis 

Analyses used participant gaze data within areas of interest (AOIs) as the measure of 

interest. As seen in the example item in Figure 3.5, the cells of the matrix and the response 

options were used to create an AOI template applied to all items. The value of each AOI was 

the total gaze time spent within that AOI on that item for that participant. These values were 

then transferred to a set of dynamic AOIs, created for each item using an index of item 

attributes. For instance, for the example in Figure 3.5, item 03, cell 2B is the final target cell 

(the cell with the ‘?’ that must be solved), and so the gaze time value of the final target cell is 

equal to the gaze time value of the cell 2B for that item (whereas for item 04, the ‘?’ cell is in 

cell 4B, so the final target cell for that item is taken from the gaze time for cell 4B). In 

addition to final target cell, the other dynamic AOIs within the matrix were distractor cells 

(filled cells which have no impact on the solvability of the item), final relation cells (filled 

cells involved in the relation of the final step), interim target cell (the cell that must be solved 

in the first step of a 2-step item, i.e., the interim step), and interim relation cells (filled cells 

involved in the relation of the interim step). In addition, two dynamic AOIs corresponding to 

the response options were calculated: final-answer-RO (the response option with the answer 

to the item) and interim-answer-RO (the response option with the answer to the interim step). 

For distractor cells, interim relation cells, and final relation cells (all of which may have 

more than one cell per item), the value was a sum of all the cells that corresponded to that 

attribute for that item.  
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The target, relational, and interim cells were derived from Birney et al.’s (2006) RC 

analysis of the LST, though an additional item analysis was then conducted for each item to 

determine if there were alternate solution pathways. For some items, there were indeed 

multiple solution pathways, which made calculating distractor and relation cells difficult. For 

these, we first assumed that the most relationally simple pathway was taken. In the event of a 

tie (e.g., an item where two binary solution pathways were available), each separate solution 

pathway was calculated separately, and the final value of the relation cells was equal to the 

highest gaze duration solution pathway used by each participant. For distractor cells, the cells 

were only summed if they did not contribute to any potential solution pathways. In other 

words, distractor cells were filled cells that, if removed and turned to empty cells, would not 

affect the solvability of the item regardless of the pathway taken. Although this approach 

may result in some loss of gaze data if participants switch solution pathways through the 

problem, it was the most straightforward solution to ensuring there was only one set of 

relation and distractor cells per item for use in the analyses.  
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Figure 3.5. Areas of interest (AOIs) for the LST. The matrix on the left displays the AOI 

template analogously applied to all items. These template AOIs are converted to dynamic 

AOIs for each item, as demonstrated by the example matrix on the right. For 1-step items, 

there is no interim target cell, interim relation cells, or interim answer RO (response option). 

Distractor cells are shape-filled cells that have no impact on the solvability of the item (i.e., 

they could be turned to empty cells and the item would have the same solution pathway). For 

items with multiple paths to solution (e.g., two sets of relation cells per target cell), the set of 

relation cells with the highest amount of gaze duration (per participant) are recorded as the 

relation cells for that item. 

Finally, we also included RO-revisits, a measure of the number of times a participant 

returned to the response options on each item. Although not a measure of gaze duration, 

revisits is nonetheless a gaze metric, one which Laurence et al. (2018) found was the best 

predictor of test scores on a similar, matrix-style reasoning task. 

The program recorded gaze duration data in milliseconds, but values are reported in 

seconds for interpretability. Hypotheses were tested using binary logistic regression on item-

level data, using item metrics (RC, steps) and gaze metrics (e.g., final target cell, final 

relation cells, RO-revisits, etc.) for each item predicting success on that item (0 for incorrect, 

1 for correct). Coefficients for each predictor were recorded and evaluated statistically by the 
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change in log-odds. Confidence intervals for odds ratios are reported, for ease of 

interpretability (CIs containing 1 indicate non-significance). 

3.13.2. Gaze time descriptives and logistic regressions 

Overall, performance was similar to that described in the earlier experiments for RC 

(2D M = .94, SD = .24; 3D M = .83, SD = .37; 4D M = .58, SD = .50) and Steps (1S M = .82, 

SD = .38; 2S M = .75, SD = .43). Descriptives for gaze metrics are provided in Table 3.8. 

These mean values demonstrate that, on average, about 3.5 seconds were spent on final 

relation cells of each item, while 4.9 seconds were spent on interim relation cells. The high 

variance in these descriptives is to be expected, considering they average across item types. 

Table 3.8. Gaze time metric descriptives. 

 Mean SD 

Final answer RO 0.97s 0.74s 

Interim answer RO (2S only) 0.67s 0.85s 

Final target cell 2.21s 3.22s 

Interim target cell (2S only) 1.75s 2.19s 

Final relation cells 3.54s 4.00s 

Interim relation cells (2S only) 4.90s 5.29s 

Distractor cells 1.87s 2.96s 

RO Revisits 4.22 5.32 

N = 510 (15 x 36) item responses (255 for 2S only metrics) 

For the first regression, item success was predicted using RC, Steps, final answer RO, 

final target cell, final relation cells, distractor cells, and RO revisits. As hypothesized, RC 

was a significant predictor of item success (CI95% = [0.172, 0.400], p < .001), as was Steps 

(CI95% = [0.216, 0.802], p = .009), both lowering the chance of success with increases. For 

the gaze metrics, final answer RO was a significant and very powerful positive predictor of 

success (CI95% = [17.77, 90.95], p < .001), though this was unsurprising, as it was 

attributable to the fact that participants needed to input their answer by clicking the 

corresponding response option. Final target cell was also significant (CI95% = [0.801, 
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0.983], p = .022), though in a negative direction: for every 1 second spent looking at the final 

target cell, there was, on average, a 12.3% reduction in the chance of correctly answering the 

item. The distractor cells were also significant (CI95% = [0.750, 0.935], p = .002) in a 

negative direction: for every 1 second spent looking at distractor cells, there was, on average, 

a 16.3% reduction in the chance of correctly answering the item. The number of RO revisits 

(toggling rate) was also significant (CI95% = [0.736, 0.867], p < .001) in a negative direction: 

for every additional revisit to the response options, there was, on average, a 20.1% reduction 

in the chance to solve the item correctly. Contrary to the hypothesis, the final relation cells 

were not significant predictors of item success (CI95% = [0.966, 1.112], p = .001). Table 3.9 

displays the full output of this regression. 

Table 3.9. Output of Binary Logistic Regression with Item Characteristics, Gaze Time on 

Areas of Interests (AOIs), and Revisit Rates predicting Item Success (1S and 2S items). 

 Exp(B) CI-Exp(B) Sig. 

Relational Complexity 0.263 0.172, 0.400 < 0.001 

Steps 0.416 0.216, 0.802 0.009 

Final-answer Response Option (sec) 40.207 17.774, 90.952 < 0.001 

Final-answer Target Cell (sec) 0.887 0.801, 0.983 0.022 

Final relation cells (sec) 1.036 0.966, 1.112 0.323 

Distractor cells (sec) 0.837 0.750, 0.935 0.002 

Response Option Revisits (#) 0.799 0.736, 0.867 < 0.001 

Constant 329.65  < 0.001 

χ2 =240.17, df = 7, p < .001    

Classification Accuracy = 88.8%    

Nagelkerke R2 = .582    

N = 510 items 

The second regression included the same predictors as above, but also added interim 

gaze metrics as additional predictors (interim answer RO, interim target cell, interim relation 

cells). Because interim gaze metrics were only calculated for 2S items, only 2S items were 

included. This regression was conducted over two models. The first model aimed to replicate 

the results of the first regression (i.e., interim AOIs were not included), while the second 



RELATIONAL INTEGRATION  91 

 

model added the interim AOI metrics. The first model mostly replicated the previous 

regression. However, this time, the final-answer target cell was not a significant predictor of 

item success, (CI95% = [0.748, 1.090], p = .288); but the final relation cells were 

(CI95% = [1.005, 1.416], p = .044), such that for every 1 additional second spent looking at 

the final relation cells, there was, on average, a 19.3% increase in the chance of solving the 

item correctly. In the second model, the pattern of predictions for the previous predictors 

remained the same. Of the three new predictors, only interim answer RO was a significant 

predictor, in a negative direction (CI95% = [0.108, .813], p = .018. However, as with the 

other response option AOIs, this should be interpreted with caution, since those looking to 

input their answer look towards the response options (in this case, inputting the interim 

response would result in an incorrect answer, so the chance of success decreases). Contrary to 

hypotheses, the other two predictors, interim target cell and interim relation cells were not 

significant predictors, p’s > .05. 

3.14. Experiment 4: Discussion 

The overall purpose of Experiment 4 was to further elucidate the processes involved 

in successful performance on the Latin Square Task. As it turns out, most of the AOI 

predictors ended up being related to unsuccessful performance, with longer gaze on certain 

metrics related to higher failure rates. The predicted impact of RC and Steps was found, with 

a large detriment as these item characteristics increased. This is not at all surprising given the 

earlier experiments on the LST but was nonetheless necessary to account for what would 

otherwise be noise in our more subtle analysis of the eye tracking metrics. Of the gaze 

metrics, we found the same toggling findings as Laurence et al. (2018), where the number of 

revisits to the response options was inversely related to success. This may indicate that 

unsuccessful participants are more unsure of their answer, frequently returning to the 
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response options to search for possible solutions. Successful participants meanwhile, 

understand the rules, and are only looking to the response options to confirm their response. 

The analyses on gaze duration metrics were more novel, with no work (until now) 

being done that specifically identifies areas of interest related to success on the LST. Of 

particular interest was the relational cells, which are necessary to solve the item. These were, 

contrary to the hypotheses, not related to item success overall. This could be because the 

clear, singular rule of the LST (that each row and column must contain only one of each 

element) and the presence of the ‘?’ in the target cell makes it easy for all participants to 

eventually identify the relational cells, though only successful participants then know what to 

do with these important cells. Although the relational cells become less obvious at the higher 

complexity of 4D items, there are often fewer filled cells in general in 4D items, so 

identifying the appropriate cells is still common to all participants. This conclusion is 

somewhat incomplete, particularly when considering the important findings on the distractor 

cells. Distractor cells are cells that are filled with shapes but are in no way necessary to solve 

the item. Perhaps the most insightful finding in this experiment is that gaze time on these 

distractor cells was significantly negatively related to item success, with (on average) every 1 

second of gaze time spent on distractor cells leading to a substantial 16.3% decrease in the 

chance of solving the item correctly (when controlling for item characteristics and other 

AOIs). Taken in isolation, the distractor cells finding seems to indicate that success may 

indeed be related to identifying the important cells (relational cells) among the filled cells. 

However, taken together with the non-significant relational cells finding, the results suggest 

that all participants eventually identify the important cells, but those who linger on the 

distractor cells are the ones that fail. Successful participants can identify the important cells 

and swiftly disregard the distractors, making their solution process more effective. Failing 
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participants can also identify the important cells, but they appear to have more trouble 

disregarding the distracting information given in the matrix. 

The results of the interim steps on 2-step items were also insightful. The fact that 

neither the interim target cell nor the interim relation cells predicted success seems to indicate 

that failing participants could identify the initial step despite the target ‘?’ not helping them 

with this identification. In this case though, the final relation cells did predict success. This is 

particularly interesting since the interim target cell is not marked, so if participants were 

struggling to find the solution pathway, the gaze data on this cell would indicate this is where 

unsuccessful participants are getting stuck. However, it appears that successful participants 

are the ones that not just identify the interim cell, but successfully move on from it to the 

second step. Either that, or they are working backwards – using the ‘?’ to identify what cells 

are required to solve the item. Whichever it is, it is something unsuccessful participants are 

failing to do. Of course, once again, the distractor cells also related negatively to success. 

Experiment 4 provided another perspective from which to analyse the LST. Analysing 

eye tracking results necessarily involves some assumptions about the data being made. For 

instance, although it appears distractor cells are causing problems for failing participants, it is 

possible that failing participants are simply looking all over the matrix. This could also 

explain why relational cells were not significantly related to success – both successful and 

unsuccessful participants look at the relational cells, but for different reasons: successful 

participants identify the relational cells are integral to the solution while unsuccessful 

participants are simply looking everywhere. Thus, it may not necessarily be the distractor 

cells causing them issues but rather, gaze time on distractor cells are an outcome of their poor 

capability to solve the item. It should also be said that the data here is limited to a small 

sample size, and how these gaze metrics relate to individual differences variables, such as 

performance on Gf tasks, would be of interest in future research. Nonetheless, these eye 
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tracking results are (to the best of my knowledge) the first to be conducted on the LST and 

certainly the breadth of metrics that can be considered in the LST indicate it may be a fruitful 

task for future gaze analysis (in comparison to Laurence et al. (2018) who was largely limited 

to just response option revisits due to the choice of task). In addition, they certainly 

contribute additional insight into the DC effect found throughout Experiments 1-3, which we 

turn to in the next section. 

3.15. General Discussion 

The overall goal of this first chapter was to replicate Bateman’s (2015) remarkable 

DC finding and discover more about how and why it manifests. The DC effect is a 

phenomenon observed in the LST where a ‘dynamic completion’ version of the task which 

minimizes passive storage demands both (unsurprisingly) increases average performance on 

the task and (surprisingly) increases the correlation with more complex abstract reasoning 

(Gf) tasks such as Raven’s matrices (APM). Over the course of three experiments, the DC 

effect was largely replicated each time, with some differences in the strength of the effect and 

how it manifested. Table 3.10 provides a summary of the major findings of these first three 

experiments. As seen in rows 8-9 of Table 3.10, the DC effect was clearly replicated across 

all three studies in that LST-DC (row 9) had a strong unique contribution over-and-above 

LST-Basic (row 8). There were some differences with how this manifested across the three 

studies. In Experiment 2, LST-Basic retained a unique contribution. Experiment 2 was also 

the only study where LST-Basic was a stronger unique predictor of Gf than LST-DC. 

Differences between the findings also emerged when controlling for WM (rows 10-11), 

though this is not entirely surprising given the change in WM criterion tasks throughout the 

experiments: generally, the DC effect (controlling for WM) got weaker as the WM task set 

became more comprehensive. 
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Table 3.10. Summary of the major findings with the LST in Experiments 1-3. 

   p 

  
 

Study 1 

(n = 125) 

Study 2  

(n = 100) 

Study 3  

(n = 106) 

1 ANOVA Linear trend for RC (accuracy) < .001 < .001 < .001 

2 ANOVA Linear trend for Steps (accuracy) < .001 < .001 < .001 

3 ANOVA DC accuracy higher than Basic < .001 .003 < .001 

4 ANOVA Interaction of RC x Condition .381 - .047 

5 ANOVA Interaction of Steps x Condition .019 - .568 

6 ANCOVA Linear RC covaries with Gf .007 < .001* .006 

7 ANCOVA Linear Steps covaries with Gf .014 < .001* .022 

8 Regression 
LST-Basic unique contribution in final 

model predicting Gf (LST only) 
.137 < .001 .092 

9 Regression 
LST-DC unique contribution in final 

model predicting Gf (LST only) 
.012 .020 .012 

10 Regression 
LST-Basic unique contribution in final 

model predicting Gf (controlling for WM) 
.362 .003 .260 

11 Regression 
LST-DC unique contribution in final 

model predicting Gf (controlling for WM) 
.008 .061 .624 

ANOVA p-values (rows 1-5) are significance tests of F values from ANOVA comparing accuracy; ANCOVA 

p-values (rows 6-7) are significance tests of F values from ANCOVA comparing accuracy with APM/Gf added 

as a covariate; Regression p-values (rows 8-11) are significance tests of the semi-partial correlations (sr2) of the 

predictor (LST-Basic / LST-DC) in the final model, either with LST only (rows 8-9) or with WM criterion 

measures controlled for (SSPAN/OSPAN/n-back; rows 10-11). Significant p-values are highlighted in green for 

ease of comparison between studies. 

RC = Relational Complexity; DC = Dynamic Completion; APM = Raven’s Advanced Progressive Matrices (20 

item); Gf = APM (Experiment 1) or latent variable extracted from APM and Letter Series (Experiments 2+3). 

* These p-values are derived from separate two separate ANCOVAs with either RC or Steps (i.e., not both 

together). The increased item size (and increased range in potential scores) leads to an overestimation of the 

covariance effect in Experiment 2, relative to Experiments 1 and 3.  

In Experiment 1, the DC effect was clearly replicated in predicting APM, and this 

effect persisted despite the addition of classic WM tasks such as the complex-span being 

added to the predictive model. The shared variance between the Basic LST and complex-span 

(not seen in the DC LST) demonstrated that these tasks do indeed share components which is 

theorized to be an active storage demand related to attentional control. The fact that the DC 

condition predicts APM over-and-above this active storage component demonstrates that 

attentional control is not integral to tapping into APM; and the fact that the correlation 

actually increases indicates that these attentional control components may only serve to add 
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noise (i.e., residual variance) to predicting APM. The DC effect “purifies” the task, isolating 

only the most important components – theorized to be related to relational integration. In 

Experiment 2, there was once again a strong correlation between DC and Gf, though this 

time, it was not higher than Basic. Nonetheless, the addition of the Letter Series to the Gf 

factor and the n-back to the WM factor helped to confirm that the DC effect largely persisted 

beyond consideration of merely APM. It was somewhat unfortunate then, that the DC effect 

was unexpectedly weakened by the addition of the Letter Series in Experiment 3 (which did 

not occur for Experiment 2). This indicates that the DC effect may not be completely robust 

to changes in the criterion tasks, though it nonetheless remained a remarkable finding given 

what DC does to the difficulty of the LST. 

Unfortunately, the DC result was not completely straightforward to interpret, due to 

the inconsistent interaction with Steps. The DC effect and Steps effect are in contrast to one 

another, with one loading on active memory (Steps) and the other reducing the impact of 

active memory (DC). It was thought that DC was acting on the LST by reducing the impact 

of the Steps manipulation, but this does not seem to be the case, as the DC effect did not 

always show an interaction with Steps. That is, DC was often impacting on 1-step items as 

well as 2-step, even though only 2-step should show the benefit if the DC is as simple as a 

reversal of the additional load incurred by 2-step. 

Unexpectedly, the linear RC effect (RC covarying with Gf) did emerge, though once 

again, this seemed to largely be a result of a qualitative difference between 2D and 4D items 

rather than a perfect linear effect going from 2D to 3D to 4D. This was evident because, 

when placed in a regression, 2D and 4D items tended to predict unique variance in Gf while 

3D items consistently did not. That is, the 2D and 3D items seem to predict the same share of 

variance in Gf, separate from 4D. Thus, although it was theorized that the LST and Gf 

primarily share variance through relational integration, it cannot simply be measured by 
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varying relational complexity demands. This is because (at least in adult populations), RC 

does not manifest as a linear increase in demands but rather, a qualitative difference between 

4D items and items of lower complexities. Although the overall linear trend is significant and 

would indicate this to be the case, the linear effect is driven completely by 4D items 

undergoing a substantial drop in performance rather than a smooth linear performance decline 

across the three levels. This could be because 2D and 3D items can be solved by simply 

applying a sequential shape-based application of the fundamental rule (each row and column 

may have only one of each shape), adding each different type of shape (e.g., square, circle, 

triangle...) to the running list of integrated shapes and leaving only one shape left that must be 

the answer (cross). 4D items meanwhile, cannot be solved using this sequential approach and 

instead, must be solved by considering only one type of shape (e.g., cross) and applying a 

dimension-based approach focusing on the indirect interpretation of the fundamental rule 

(each row and column must have one of each shape). Although the differences in approach 

means there may be a strategic component to success at the LST (which is to be explored), 

the two approaches (shape-based vs. dimension-based) are nonetheless also different in 

relational integration demands, at least in theory (Birney, 2002). This is because, in the 

shape-based approach, the elements in question (shapes) can be systematically chunked while 

the dimensions (rows and columns) cannot (Birney, 2002). Thus, the DC effect may manifest 

because it allows items that would normally be restricted to dimension-based approaches to 

also be solved using shape-based approaches. For example, consider the items in Figure 3.6 

(from Bateman, 2015). Item 43 can be solved either with a single 4D step using a dimension-

based approach (left of Figure 3.6) or using a long, multi-step pathway that heavily loads on 

storage demands but does not require levels of relational complexity above 3D (middle of 

Figure 3.6). In contrast, item 46 (right of Figure 3.6) cannot be solved in any way except for a 

single 4D step using a dimension-based approach. Although there is overall less variance 
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when employing DC (average performance is closer to ceiling and standard deviation 

decreases), the variance that remains is only variance resulting from the high relational 

integration demands involved in the dimension-based approach, as in item 46. Item 43 

meanwhile, is introducing unhelpful noise because participants can be solving it either using 

a dimension-based approach (loading heavily on relational integration and related to Gf) or 

using a shape-based approach (loading heavily on active storage and unrelated to Gf). DC is 

effectively eliminating this residual variance and maximizing the contribution of only the 

most important items to Gf, like Item 46. 

 
Figure 3.6. Taken from Bateman (2015). Example of how dynamic completion enables 

intricate, multi-step ‘shape-based’ solutions not normally intended for the LST. Item 43 (left 

and middle) is a 4D1S item intended to be solved with one ‘dimension-based’ 4D step, but 

DC enables a long 6-step chain of simpler relations. Item 46 (right) meanwhile, is also a 

4D1S item but can only be solved with one 4D step and DC does not enable any additional 

solution pathways. 

A limitation on this explanation is that we cannot conclusively say whether the failure 

to employ dimension-based approaches is due to limitations in binding capacity or simply 

because failing participants cannot identify that the dimension-based strategy is required. An 

experiment could help solve this by inducing strategies through the instruction. For instance, 

highlighting a change in the fundamental rule from “each row and column may contain only 

one of each shape” to clearly specifying “each row and each column must contain one of each 

shape” could be enough to induce participants towards a dimension-based approach. The 



RELATIONAL INTEGRATION  99 

 

exact wording of the rules is something that would need to be determined, as would the 

presence, contiguity, and quantity of reminders of these rules. Although this suggested 

experiment would be ideal for answering the strategy question, there are novel results from 

eye tracking that can support this conclusion. 

In Experiment 4, a different approach – eye tracking – was used to attempt to discover 

how the Basic task is solved. It was expected that (because of DC), time spent on the cells 

involved in the target relation could be related to DC. It turned out the results were not this 

straightforward. Gaze time on target relation cells had no relationship with item performance, 

which could be because (a) even unsuccessful participants can identify the target relation 

cells, or (b) successful participants tend to be more efficient and do not require long gaze 

time on the target relation cells. More insightfully, time spent on distractor cells (filled cells 

not relevant to the solution) was inversely related to item success. Although all participants 

can identify the required relational cells, successful participants are better at maintaining 

focus on these and resisting distraction from irrelevant cells. This is further supported by 

toggling rates (revisits to response options) also being inversely related to success. Together, 

these results indicate that more successful participants are better at sticking to goal-relevant 

information and are more efficient at coming to the solution – they know their answer before 

they look at the response options, and only look to the response options to confirm their 

already-known answer. Unsuccessful participants, meanwhile, are distracted by goal-

irrelevant information and tend to use the response options to try to work out the answer, 

either as a process of elimination or in order to remind them of the shapes involved in the 

relation. This latter possibility means unsuccessful participants may be less aware of the task 

rules or shapes involved (requiring reminders of the shapes in each set) but seems less likely 

considering they also identify the correct relational cells within the matrix itself. 
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Although goal orientation is related to attentional control (Kane et al., 2004), the goal 

orientation used here is more strategic in nature rather than a vigilance aspect commonly 

considered in attentional control theories. That is, the results of the eye tracking supplement 

the DC findings by demonstrating that unsuccessful participants are looking for other solution 

pathways. This is either because they are unable to identify the dimension-based approach or 

because they lack the binding capacity to engage in the high-complexity dimension-based 

approach; or even, potentially, as some combination of both in recognition of their low 

binding capacity which would implicate a metacognitive strategy component that can also be 

related to their choice of solution pathway. In any case, this search for other solution 

pathways leads to unsuccessful participants stumbling upon the distractor cells more often (as 

we observed in the gaze analysis). Sometimes these alternate solution pathways work and 

sometimes they do not, contributing noise to the Basic LST. The DC effect manifests 

primarily by magnifying the effect of items with only a single high-complexity dimension-

based solution. Although it would have been ideal to compliment the eye tracking results 

with criterion tasks (Experiment 4 lacked the sample to do this), the results nonetheless give 

some indication of why DC works. Taken together, these results also have practical 

applications for the future use of the LST, demonstrating that factors beyond just RC and 

Steps are important for deploying the LST. Factors such as the ratio of filled cells to empty 

cells8 and the ease of alternate, shape-based approaches to high-complexity items are factors 

that must also be considered when employing the LST, particularly when trying to relate the 

task to Gf. If these explanations of the DC and eye tracking data is correct, then they would 

predict that a version of the task which completely removes distractor cells may be just as 

 
8 The number of empty cells was considered briefly by Birney (2002, p.95). It did not seem to impact on item 

difficulty though there was a slight increase in response times as a result of fewer empty cells. Simply given the 

increase in raw visual information required to process (more shapes fill the matrix), a slight delay in response 

times is unsurprising. However, given the subtlety with which DC manifests (primarily through a select few 

items, such as Item 46 illustrated in Figure 3.6), to truly conclude on the impact of distractor cells may require 

more specific item-level breakdowns rather than aggregates. 
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effective as DC at isolating the relational integration effect in high-complexity items through 

reduction of storage-related noise. This version would also not require the additional 

instructions and complex task coding and scoring that was required by the DC condition. 

3.15.1. Limitations 

Some limitations are worth discussing. Obviously some of the explanations made 

above are contingent on assumptions made somewhat indirectly from the current data. For 

instance, the two approaches (shape- vs. dimension-based) have not been directly contrasted 

in an experiment, though there is some evidence from verbal protocol data that high-

performing participants tend to look for the most efficient solution pathway rather than 

simply trying to solve it any way they can (Birney, n.d.-b). Another issue was the relative 

lack of items in each condition: Basic and DC each only had the same 12 items representing 

them in each experiment. Although these items were chosen randomly (Bateman, 2015) from 

the original set of 36 (Birney et al., 2006), it is plausible that the DC items chosen just happen 

to be ones that best capture variance in Gf, even in spite of the DC manipulation. Although 

unlikely, the low number of items (12) means this is a possibility, since the effects are less 

likely to average out. Replicating the study using additional items in each set, or by using 

different items in each set, or even simply inversing the items used in Basic and DC could 

resolve this concern by determining that the DC effect is not tied to the 12 items being 

deployed. Although not a methodological limitation per se, a caution that is worth repeating 

is that the DC effect was not consistently replicated when predicting Letter Series, a non-

visuospatial Gf task. In Experiment 2, DC effortlessly predicted Letter Series, with little 

difference between whether APM or Letter Series was used as a Gf measure; while in 

Experiment 3, it was clear that the DC effect only emerged when predicting APM and not 

Letter Series. Although even generally the DC effect should look to be replicated with 

additional Gf tasks, the very fact that a non-visuospatial dependent task can produce such 
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inconsistent results highlights a need to reconsider the DC effect beyond just predicting 

APM. Beyond criterion tasks, it would also be of interest to consider DC in tasks other than 

the LST. However, part of the theorizing on why it works so well for the LST is because the 

LST is a task based on relational integration – something that the DC condition does not take 

away. It is difficult to find tasks that are founded so fundamentally in relational integration 

where the storage demands can be so elegantly removed. One example of this was seen in the 

original demonstration of ‘monitoring’ tasks by Oberauer et al. (2008), who compared 

storage vs. no-storage versions of the monitoring tasks. Much like the current study, Oberauer 

et al. found that non-storage versions of monitoring tasks were equally as good at predicting 

Gf as storage-loaded versions. 

3.15.2. Conclusion 

Despite the cautions mentioned above, the DC effect nonetheless remains an 

important phenomenon in the LST, going against conventional wisdom that the more difficult 

a task is, the more it should relate to advanced higher-order constructs like Gf (Stankov, 

1993). A task that becomes more difficult may increase the correlation with Gf, but this is 

manifesting through psychometric properties, such as an increased range removing ceiling 

effects and better capturing the full range of abilities in the population. What the current 

study has repeatedly demonstrated is that if a task becomes more difficult through the 

increase in load on components unrelated to Gf (such as storage), it will decrease the 

correlation, and this is in spite of the otherwise better psychometric properties like reducing 

the ceiling effect. This is because the increased range is only a result of increased noise. The 

current experiment demonstrates that careful consideration of the theoretical components 

underlying a task should be prioritised before optimising the psychometric properties of the 

task. 
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IV. STUDY 2: THE ARITHMETIC CHAIN TASK 

This chapter is published in Bateman and Birney (2019). [Bateman, J. E., & Birney, D. P. 

(2019). The link between working memory and fluid intelligence is dependent on flexible 

bindings, not systematic access or passive retention. Acta Psychologica, 199, 102893]. There 

are minor changes to terminology and flow to fit the thesis. 

In Chapter II, the growth of working memory (WM) theories was discussed, evolving 

from traditional views of a multi-componential system, comprised of static ‘slave’ stores with 

an overarching executive processor (Baddeley & Hitch, 1974) to an attentional system which 

provides temporary access to representations within memory based on their level of 

activation (Baddeley, 1993; Oberauer, 2009a; Shipstead et al., 2016). Relational theories such 

as Oberauer et al.’s (2007) see this temporary activation as based on bindings, where 

elements are bound to schema within a coordinative system that conveys relations among the 

elements. In this way, the ‘capacity’ of WM is not dictated by the raw number of elements 

that can be stored but rather, by the number of bindings that can be simultaneously 

established. The binding view has implications for the often-reported link between WM and 

Gf (Ackerman et al., 2005), where the intricacies underlying this relationship are not fully 

understood. The current study utilizes the Arithmetic Chain Task (ACT) from Oberauer, 

Demmrich, Mayr, and Kliegl (2001) in order to determine task factors associated with WM 

performance and the link to Gf. We replicate the Oberauer et al. (2001) findings that actively 

accessing previously stored information during processing impacts processing performance, 

while passively storing unrelated information does not. However, we also extend these 

findings by considering the effect of systematic chunking of this stored material. We find that 

a condition which prevents systematic chunking (by forcing the access of stored bindings in a 

random order) is critical to linking the ACT with a composite measure of the shared WM and 

Gf variance defined by prototypical tasks. 
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Consistent with Oberauer et al.’s (2007) concentric model (also called the ‘three-

embedded-component’ model), the recent work of Chuderski (2014), and the theorising of 

Shipstead et al. (2016), rather than seeing WM as a subordinate process of Gf, we begin with 

the premise that there is a mechanism (or set of mechanisms) that is common to both WM and 

Gf. Like Oberauer (2009a), we see this mechanism as having the ability to dynamically 

establish and maintain bindings within WM. Our view is that capacity is dictated by the 

strength and flexibility of these bindings. In this way, WM is not simply about storing static 

information and executing processes on the information system. Rather, WM is a 

coordinative system that provides access to information by binding elements or chunks of 

elements (Cowan, 2010) to positions within a relational schematic (Oberauer, 2009a). For 

instance, recalling previously listed letters such as A-J-L may involve constructing a relation 

of the running sequence where A is bound to position 1, J to position 2, and L to position 3. 

These bindings are held within a region of ‘direct access’, where central attention (the focus 

of attention) can be redirected between bindings (Oberauer, 2009a). Because elements must 

be bound to be represented in the direct access region, active elements are necessarily 

connected by some common relation (Cowan, 2001); in this example, the temporal order of 

the running sequence. Recall and recognition tend to be superior when the common 

connecting relation is intuitive (i.e., the elements are naturally grouped by form or position in 

a display or by semantic similarity in a list) but this also means WM can be easily fooled if 

changes are made to the display or sequence that maintain the active relation (Roediger & 

McDermott, 1995). Representations outside the direct access region are relegated to long-

term memory, but can be more or less easily brought into the direct access region based on 

the level of associative activation, akin to connectionist models (Anderson, 1983; Collins & 

Loftus, 1975). 
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A binding approach such as Oberauer's (2009) changes how we consider traditional 

WM tasks. For instance, the complex-span approach (e.g., Daneman & Carpenter, 1980) is 

seen as a hallmark WM assessment paradigm (Unsworth & Engle, 2007b). Participants 

alternate between storing some element (e.g., a letter) and a simple processing task (e.g., 

verifying an arithmetic problem) before being asked to recall the sequence of elements. In 

modular views of WM where storage and processing are clearly segmented, it makes 

theoretical sense that the task procedure is also segmented. The storage component of the task 

represents the capacity while the processing is there to occupy and distract central attention in 

order to prevent active rehearsal. When considering a capacity based on bindings, the 

alternating nature of the complex-span task becomes theoretically more insightful because the 

distracting processing disrupts the building and maintenance of the relation representing the 

running sequence. Distractors must be encoded and active to be processed, but they must also 

be kept distinct from the relation of the primary running sequence, which is easier if the 

distractors are of a different modality (Oberauer, Farrell, Jarrold, Pasiecznik, & Greaves, 

2012). Good performance is thus about establishing strong bindings that persist despite 

central attention being frequently drawn to auxiliary processing; and about efficiently 

dissolving the unrelated bindings involved in the auxiliary processing once the processing is 

complete. 

In the current experiment, we aim to contribute to understanding of capacity limits in 

the binding system by comparing (a) the relevancy of the auxiliary task to the primary task; 

(b) the systematicity of the link between the auxiliary task to the primary task; and (c) what 

effects these task manipulations have on the relationship to a prototypical WM task: the 

complex-span; and a prototypical Gf task: Raven’s Progressive Matrices (J. Raven, 1989); as 

well as a common factor that represents their shared components. In the remainder of the 
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introduction, we outline our choice for the Arithmetic Chain Task and explain the task 

manipulations. 

4.1. Introduction to the Arithmetic Chain Task 

Interesting results have emerged from research investigating the link between the 

auxiliary task and the primary task in WM paradigms. Oberauer et al. (2001) explored the 

difference between access to stored information and mere passive retention of stored 

information on arithmetic processing. Using the Arithmetic Chain Task (ACT), Oberauer et 

al. found that processing was impaired by a storage load only when the stored information 

had to be accessed and used as part of the processing. In the ACT, participants are shown, 

operator by operator, a simple arithmetic equation involving a number of digits, three of 

which have been replaced by the letters, XYZ (e.g., 5 + 7 – X + Y + 3 + Z – 4). In the control 

condition, a key showing the numeric values of X, Y, and Z is displayed above the equation 

(e.g., X=2; Y=4; Z=1). In the retention condition, prior to the arithmetic phase, participants 

are also briefly shown to-be-remembered variable-value mappings associated with different 

letters, ABC (e.g., A=4, B=3, C=7). These ABC mappings were not relevant to the arithmetic 

but must be recalled after the equation is solved. The retention condition is otherwise 

identical to the control condition with the XYZ mappings displayed above the equation. In 

the access condition, the direct numeric XYZ mappings were not displayed on the screen, 

instead they were displayed indirectly as additional mappings to the previously presented 

ABC mappings (e.g., X=B, Y=C, Z=A). In this way, the only difference between the 

retention and access conditions is whether the stored information must be accessed during the 

arithmetic processing. It is the access condition that is the focus of our investigations. 

Oberauer et al. (2001) predicted performance declines in the access condition only, 

because the ABC load cannot be relegated to long-term memory for the duration of the 

arithmetic. Instead, the load must be kept active in the region of direct access. Indeed, 
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Oberauer et al. found that arithmetic performance was only significantly degraded when the 

XYZ mappings had to be accessed through the task-critical ABC load as in the access 

condition, indicating that maintaining direct accessibility to the bindings was a detriment to 

active processing, as compared to passively retaining the task-irrelevant ABC load in the 

retention condition. However, because the XYZ variables were mapped to ABC in a random 

order in the access condition, it is possible there was a significantly increased demand in 

having to restructure the mappings for use in the processing. That is, in the retention 

condition, the digit-to-ABC mappings can be systematically chunked and retained with only 

one binding (ABC = 437), while the XYZ mappings are available at all times during the 

arithmetic (X = 2 / Y = 4 / Z = 1). Conversely, in the access condition, the ABC mappings 

cannot be chunked with only binding (as in ABC = 437) because the relational information 

defining each separate mapping is necessary in order to independently match them to the 

randomly-ordered XYZ mappings (e.g., X = B / Y = C / Z = A). If the ABC mappings are 

chunked into one binding as in the retention condition (ABC = 437), the relational 

information defining each separate variable-value mapping (e.g., A = 4) is rendered 

inaccessible (Halford et al., 1998), as only the entire chunk is accessible when represented as 

such in WM (ABC = 437). In practice, this means the strategy of storing a single binding 

(ABC=437) breaks down when randomly-ordered, because the ABC mappings cannot be 

systematically applied to XYZ (XYZ=ABC=437) as the ordering of the chunk changes 

(randomly) with every new item (e.g., X = B, Y = C, Z = A). 

An ACT access item with randomly-ordered mappings requires independent relational 

information for each mapping or at least, the rearrangement of the order of the chunk during 

the problem (as the ABC-XYZ mapping orders are only apparent once the problem begins). 

This requires either three separate bindings to be active or the ability to retrieve and rearrange 

the bindings, respectively. Thus, the additional cost incurred may not be due to access over 
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retention, but due to the additional demands placed on binding due to the inability to 

systematically chunk the variable mappings into an easily accessible, ordered form. If the 

increased demand of access only emerges in a random-access version (e.g., ABC=YZX), as 

opposed to a fixed-access version (i.e., ABC=XYZ), it would indicate performance on the 

task relies on the flexibility of the bindings during processing, rather than merely accessing 

the stored information. 

Thus, in the current study, the format for control, load, and access conditions were 

adopted but in addition, we consider two types of access: fixed (i.e., ABC=XYZ) and random 

(e.g., ABC=YZX). The following task analysis fully explains our rationale and how 

systematic ordering (systematicity) can bypass binding demands of the fixed-access variant of 

the task, but not the random-access variant. 

In the ACT, the primary demands are in the construction of arithmetic relations such 

as addition (e.g., 2 + 3 = 5). Addition is a relation formed through the binding of three 

variables within a schema: two addends (2 and 3) and a sum (5), and is explicitly classified as 

a ternary relation in Halford, Wilson, and Philips’ (1998) Relational Complexity (RC) 

scheme (p. 808). Where the sum would normally require derivation, the simple arithmetic of 

single-digits can be bypassed using the knowledge of over-learnt relationships acquired early 

in schooling (e.g., between |2,3| and |5|). In this way, the effective complexity of single-digit 

addition can be systematically chunked into a binary relation. 

Processing in the control condition of the ACT thus amounts to analogous 

instantiations of a series of such binary relations, one for each operand. Additional active 

storage load is generated by the requirement to maintain interim outcomes for use in the next 

calculation, after which the previous answer can be discarded, freeing resources to update 

bindings and interim outcomes to facilitate progress to the next addend. This is central to an 

attentional control conceptualisation of WM (Kane et al., 2001). While the ABC variable-
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value mappings introduced in the retention condition appear to contribute to WM demands 

(by taking up bindings), they do not require direct access at any point until after the equation. 

Thus, these can be relegated to a long-term store during the processing. Meanwhile, the 

access condition introduces an additional step to solving the equation, in that the XYZ 

mappings are linked to the previously presented ABC mappings (i.e., rather than XYZ=143 

as in the control and retention mappings, the access mappings are XYZ=ABC=143), 

requiring constant direct access to the ABC mappings. In the RC framework, this results in 

embedded relations that cannot be easily chunked without an appropriate strategy (Halford et 

al., 1998) and which must be kept directly accessible throughout the problem. In a fixed-

access condition, where the XYZ variables are mapped in a consistent, linear order to ABC, 

there is systematicity. The constant, directly intuitive mappings between the ABC bindings 

(e.g., A=1, B=4, C=3) are systematically mapped to the fixed-order XYZ bindings (e.g., 

X=A, Y=B, Z=C). Systematicity exploits this common, natural ordering of fixed mappings, 

resulting in strategic reduction of the load on WM (e.g., ABC can be represented as the 

simple order 143, and XYZ can be directly mapped to this order as 143, also). The facilitation 

provided by this simplified representation manifests in a single, durably bound chunk. In a 

random-access condition, where the XYZ variables are mapped in a different alphabetical 

ordering (randomly) to ABC, systematicity breaks down. Each separate mapping (A=1, B=4, 

C=3) must be kept independent so they can be flexibly adapted to the random order of XYZ. 

Figure 4.1 represents these conditions schematically, demonstrating how only random-access 

requires a higher capacity for relational integration. 
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Figure 4.1. Schematic representation of the mappings required in fixed-access vs. random-

access. In fixed-access (A), the constant order of XYZ results in systematicity, because it 

matches directly to the ordering of ABC. This systematicity can be exploited so that only one 

binding is kept active during the arithmetic (XYZ=143). In random-access (B), the 

systematicity of the constant XYZ order breaks down: the ABC order cannot be chunked 

down because participants do not yet know which order XYZ will appear in. For random-

access, participants have two options: either maintain three separate bindings [A(1,X), 

B(4,Y), C(3,Z)] or rearrange the bindings into the updated YZX ordered chunk of 431. In 

either option, relative to fixed-access, there is an additional cognitive load generated which 

we argue is the binding load that those with a higher capacity for relational integration will be 

better able to manage. 

In sum, the psychological implication for random-access is that an additional source 

of uncertainty in mappings is introduced. The convenience of naturally ordered, fixed 

mappings cannot be applied to random mappings, forcing a need for multiple, separate 

bindings. In related work, Chuderski (2014) found that the largest contributor to task 

performance on a relation monitoring task was the number of bindings that needed to be 

established simultaneously. In the monitoring task, participants have to monitor a 3x3 grid of 

strings and respond whenever a match (e.g., across a horizontal or vertical line) occurred that 

corresponded to a pre-determined match rule. Chuderski found that when the match rule 

necessitated independent bindings (e.g., when all matching strings had to be different) which 

could not be systematically chunked, performance was drastically impaired as the number of 

strings involved in the match increased; while match rules that could be systematically 
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chunked (e.g., when all matching strings had to be the same) did not suffer this same 

cumulative penalty as the number of strings increased. In a similar way, we expect the largest 

detriment to performance under random-access condition, as it requires three independent 

bindings, rather than one systematically chunked binding. 

Finally, we consider the relationship between WM and Gf. Commonly, WM has been 

viewed as a subordinate system to the more ethereal and (purportedly) immutable Gf, with 

measures of WM used to predict (Ackerman et al., 2005) or train (Jaeggi, Buschkuehl, 

Jonides, & Perrig, 2008) performance on Gf tasks. However, there is a growing consensus 

that similar limiting factors act on both WM tasks and Gf tasks (Oberauer et al., 2007; 

Shipstead et al., 2016). Although Gf tasks typically involve additional complexities and 

demands, a limit in the number of bindings that can be established causes similar detriments 

to performance in both WM and Gf tasks. A binding explanation of the complex-span was 

provided earlier, but consider the quintessential example of a Gf task, Raven's Advanced 

Progressive Matrices (APM). The APM initially involves inducing complex relations among 

patterns. Individual elements are complex, as each cell is composed of multiple features such 

as lines or shapes. Lines may inter alia be straight, wavy, dotted, or differ in orientation; 

shapes may inter alia differ in size, shading, numerosity, or form. The specific rules that 

dictate how APM element features are related (or not) within a cell, or across rows or 

columns, must be induced by the participant (Verguts & De Boeck, 2002), then applied to the 

response options to derive the solution. At the simplest level, APM entails induction and then 

application of multiple unknown but discoverable rules about relations. However, WM is 

involved to the extent that these rules can be represented as a relational structure within the 

direct access region. Insufficient binding capacity limits the problem space available. Where 

rules can be represented as a schema, the integration of features (e.g., line or shape features) 

with rules is then required to generate the corresponding end-piece of the pattern (Oberauer et 
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al., 2008). Thus, Gf tasks overlap with simple WM tasks to the extent that they both involve 

establishing temporary bindings. However, the more complex Gf tasks also require an initial 

induction of rules. 

Oberauer et al. (2008) put forth considerable evidence for a binding conceptualization 

of the WM-Gf overlap, finding that relational integration tasks could explain variance in Gf 

over-and-above that accounted for by more traditional store-and-process WM tasks. Further, 

this predictive ability was not contingent on whether there were storage demands involved in 

the relational integration tasks, implicating the establishment of bindings or the construction 

of the relation as more important to the relationship than merely storing information over 

time. Similar outcomes were found in Chapter III, where the Latin Square Task (a matrix-

style relational integration task with active storage components) performed better as a 

predictor of Gf when storage demands in the task were stripped by allowing participants to 

dynamically fill interim cells of the matrix. These results indicate the Latin Square Task can 

function as a more complex WM task (e.g., Birney et al., 2012) but that it may function better 

when the active storage demands are minimized and the task primarily measures relational 

integration. Additional evidence was contributed by Chuderski (2014), as the relation 

monitoring task (described earlier) also predicted Gf over-and-above other WM tasks, despite 

having no explicit storage requirements. Interestingly, Chuderski also found that, despite task 

performance being dictated by the number of bindings, the number of bindings did not 

differentially predict variance in Gf (as measured by APM). A similar result was concluded 

in Chapter III, where the LST seemed to provide qualitative differences at the 2D and 4D 

level, rather than a linear difference including the 3D level. Despite these studies agreeing 

that relational integration is important in both WM and Gf tasks, it does not seem that 

increasing the number of bindings necessarily increases the link between the two constructs. 

Conversely, the current study’s manipulation of random-access against fixed-access in the 
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ACT would directly contrast three item-specific bindings to one generic binding (natural-

order). 

The studies described here indicate that the WM and Gf tasks share common 

resources in binding capacity. In the current experiment, we aim to contribute to 

understanding on this common mechanism of binding by demonstrating how manipulations 

of bindings in the ACT impact on task performance and on the relationship to classic 

measures of WM (complex-span) and Gf (APM). The covariability between the complex-

span and APM should represent the common resources shared by WM and Gf, which 

research (Chuderski, 2014; Oberauer et al., 2008) indicates is binding and relational 

integration. 

The hypotheses for this experiment are associated with explaining how variability in 

ACT item response differentially demands resources common to the binding in WM and Gf. 

If different variants of the ACT demand this common resource differently, then we expect 

different patterns of associations. Hypotheses 1a and 1b are replication tests of Oberauer et al. 

(2001) while hypothesis 1c is a test of the additional binding demand incurred through 

random access as opposed to fixed access. The second hypothesis set is based on our task 

analysis of the ACT and moderation predictions focused on testing the common functions of 

WM and Gf. 

Hypothesis 1: Identifying task demands (Costs) 

The first hypothesis set compares the difficulty of the conditions to identify which 

manipulation produces the greatest demand and thus, has the greatest performance cost 

associated with it. Following from Oberauer et al.’s (2001) finding that a storage load only 

impacted processing performance when it had to be accessed during the processing, it was 

hypothesized (H1a) that retention items will incur no cost compared to (i.e., be no different 

from) control items because the ABC storage load can be relegated to long-term storage 
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during the processing. Also following Oberauer et al., it was hypothesized (H1b) that access 

items will incur a cost over (i.e., be more difficult than) control and retention items, as the 

ABC storage load must be kept active in the direct-access region during the processing, as 

opposed to being relegated to a long-term store. Finally, for our novel manipulation of 

random-access vs. fixed-access, it was hypothesized (H1c) that random-access will incur a 

cost over (i.e., be more difficult than) fixed-access items, as the random administration 

necessitates three independent mappings that cannot be systematically chunked. This follows 

the results of Chuderski (2014), who found additional bindings greatly increased task 

demands. 

Hypothesis 2: Predicting WM and Gf through Costs 

The second set of hypotheses are concerned with identifying the functional source of 

the aforementioned costs. Each cost described has been conceptualised and operationalized to 

specifically demand secondary storage (outside the direct access region; retention-cost), 

direct access (access-cost), and independent binding costs (binding-cost). Each of these costs 

have been considered common to both WM and Gf (Shipstead et al., 2016) and layering these 

costs within a single task allows us to isolate the contributing function. We operationalise the 

WM-Gf commonality as a binding factor representing the variance shared by APM and a 

complex-span task. We predict that individuals' performance on this factor will moderate 

costed performance (i.e., retention-cost (H2a), access-cost (H2b), and binding-cost (H2c)) to 

the extent that the cost is common to WM and Gf.  

4.2. Method 

4.2.1. Participants 

This study is structured as a multi-level, within-person design with binary responses. 

Intended sample-size was estimated using Optimal Design (Raudenbush et al., 2011) for 

power = .80. Effect size estimates were taken from Experiment 1 (Figure 2, n = 36) of 
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Oberauer et al. (2001). Mean proportion correct for the control and retention conditions (≈ 

.95). The access items were slightly more difficult (≈ .78). The ‘reasonable range’ was 

estimated from these values.  While each person responded to 24 items in total, cluster size 

for estimation was set at the more conservative range of 6 items (smallest interaction and 

main effect cluster size). With these parameter values, estimated sample size for H1 on the 

main effects (costs) was 60. We first attempted to meet this recommendation with surplus, 

collecting 64 participants. While we were generally confident with the capacity for a robust 

experimental test of H1 with this sample size, there is little data against which to reliably 

estimate the moderation effect-size for H2, and thus we recognise the possibility of a type 2 

error (not finding significant differences where differences exist). We attempted to account 

for this possibility by collecting a further 58 participants, bringing the total to 122, a more 

typical sample size for individual differences research (Detterman, 1989; Marszalek, Barber, 

Kohlhart, & Holmes, 2011). These two sets of participants were collected in separate batches. 

Because we conducted the analysis on the first batch before collecting the second batch, this 

method of split-batch data collection raises the risk of a type 1 error. In line with the 

recommendations of Simmons, Nelson, and Simonsohn (2011), we outline our method of 

recruitment and the results of these first analyses to be fully transparent on the potential risk 

of our split-batch recruitment. Our method of recruitment allows for approximately 65 

participants to be recruited per research period. Thus, the intended sample size was not 

decided arbitrarily but with the intention of collecting maximum participants within two 

research periods. When accounting for some potential loss of sample, this aligned with our 

H1 parameter estimates (60) and with our intended sample for H2 (100+). The results of the 

first analysis (n = 64), which follow the same pattern of results as those presented here, are 

included in Appendix B. 
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The participants were 128 first-year psychology students at the University of Sydney 

who participated in exchange for course credit. Participants had 90 minutes to undertake the 

three key tasks (and two additional tasks not reported here). Three participants were removed 

from the analyses as they did not attempt one or more of the key tasks (ACT, SSPAN, or 

APM) in the time provided. A further three participants were removed for scoring 

unreasonably low (< 3 SD of mean) on at least one task while also having unreasonably short 

total time taken (< 1 SD mean) on that task, indicating they were not properly engaged in the 

task. Finally, 6 participants who scored less than 80% correct on the processing component of 

the SSPAN task, indicating they did not follow task instructions, were excluded. Because 

most analyses incorporated the SSPAN, for simplicity, we simply excluded these participants 

from all analyses also. This resulted in a final sample size of 116 (90 females) with a mean 

age of 20.06 (SD = 4.09) years. 

4.2.2. Measures 

Arithmetic Chain Task (ACT) 

Participants completed four ACT blocks of problems (one for each condition: control, 

retention, fixed-access, and random-access), presented in a random order. Participants 

received instructions on each of the problem types (the same set of instructions were given 

for access-fixed and access-random) and received reminders before each block on these 

types. Trials were randomly generated such that all displayed digits were between 1 and 7, 

and intermediary and final answers were between -9 and +9. Participants were informed of 

these restrictions. There were six items generated for each block, totalling 24 unique items. 

Two scores were derived from the ACT for each item; accuracy (0-1) and, for items with a 

recall component, recall (0-3). Responses were self-paced, but the program terminated after a 

total of 30 minutes. 
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Control items were standard problems that entailed mentally substituting variable-

value relations (e.g., X=2, Y=1, Z=4) provided in the top half of the screen into equations 

where each operand was displayed one-at-a-time at a pace controlled by participants (see 

Figure 4.2). Participants continued to press the spacebar until all 7 operands had been 

displayed, at which point a textbox would appear allowing the participant to type in their 

answer. Participants had to incorporate the variable-value mappings displayed above the 

equation in order to derive the solution. The variables (X, Y, and Z) were integrated into the 

arithmetic chain at random. Correct answer feedback was displayed for two seconds, before 

moving on to the next item. Unlike Oberauer et al. (2001), there was only one mode of 

presentation: all operations stayed on the screen until the equation was solved.  

 
Figure 4.2. Graphical representation of an item in the task. From left-to-right: in all 

conditions except control, participants memorize the ABC mappings for 6s. Participants then 

solve the arithmetic which incorporates the XYZ mappings. In the control and retention 

conditions, the XYZ correspond directly to numbers. In the access conditions, the XYZ 

correspond to ABC (either in fixed order or, as shown here, random order). Finally, in all 

conditions except control, participants recall the ABC mappings. 

Retention items were identical to control items, with the exception that the 

participants were given 6 seconds prior to engaging in the arithmetic to memorise three 
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variable-value mappings (e.g., A=6, B=3, C=1) to be recalled at the end of the trial. Feedback 

was given after each recalled response. 

Fixed-access items were similar to retention items, except that the XYZ variable-value 

mappings were directly and consistently linked to the ABC variable-value mappings (e.g., 

A=6, B=3, C=1; and always, X=A, Y=B, Z=C). Again, participants were asked to reproduce 

the digits corresponding to ABC after the equation had been solved. Thus, unlike the retention 

condition, the ABC mappings were required for the mental arithmetic. 

Random-access items were similar to fixed-access items, so much so that they did not 

have a separate set of instructions or notifications. The only difference to fixed-access was 

that the XYZ variable-value mappings were directly but randomly linked to the ABC variable-

value mappings (e.g., A=6, B=3, C=1; and say, X=B, Y=C, Z=A). As for the other 

conditions, participants were asked to reproduce the digits corresponding to ABC after the 

equation had been solved. 

Symmetry Complex-Span (SymSpan) 

The same SymSpan reported in Experiment 1 of Chapter III was used here, based on 

the complex span task reported by Kane et al. (2004). Consistent with the CSPAN paradigm, 

the processing component entailed judgments (yes/no) of whether a displayed pattern was 

symmetrical along the vertical axis. The storage component was a spatial-memory updating 

task in which the location of a red square randomly presented in a 4x4 grid for 850ms needed 

to be remembered and recalled at the end of the set. Set sizes varied between two and five 

squares. The score analysed was the total number of correctly recalled squares across the task 

with a theoretical range of 0 – 28. This ‘total squares’ partial scoring method was preferred to 

pick up additional variance that would be otherwise discarded by only considering fully 

correct sets (Redick et al., 2012). As described earlier, participants needed to score at least 

80% on the processing (symmetry) component to be included in the analyses. 
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Raven’s Advanced Progressive Matrices 

Gf was measured using the abbreviated 20-item version (odd items + items 34 and 36) 

of set II of the APM (J. C. Raven, 1941), as in Chapter III. Participants had 20 minutes to 

complete as many of the 20 items as possible. 

Relational Binding (RB) 

A factor analysis (with principal factor extraction) of the APM and SSPAN scores 

was conducted using the R package ‘psych∷fa’ (Revelle, 2018) to derive common-factor 

scores to represent what is common to both WM and Gf in these prototypical measures of 

these constructs (Shipstead et al., 2016). We refer to this as RB, a relational binding factor. 

Empirically, this represents the intersection between the tasks (Shipstead et al., 2016); 

conceptually, this represents a participants' capacity for binding (Oberauer, 2009a). Although 

we have argued extensively for our theoretical position (that this intersection represents 

relational binding), there are of course other interpretations of this WM-Gf overlap (e.g., Kane 

et al., 2001) that may be applicable. For those interpretations, our reference of this RB factor 

can serve simply as a label for ‘the overlap between WM (SSPAN) and Gf (APM)’. The 

eigenvalue of the first component accounted for 60.48% of the total variance, and 20.90% of 

the extracted shared variance. The variable was then the extracted factor scores using 

regression. 

4.3. Results 

There was a small number of ACT item-level data missing at random (2.6%) from 

incomplete timeouts. In total, the data analyses were based on 2744 observations from 116 

participants (a complete data set would have provided 24 items x 116 participants = 2784 

observations). All analyses were performed with R version 3.5.2 (R Core Team, 2018). Plots 

were produced with the ‘sjPlot’ (Lüdecke, 2017) and ‘ggplot2’ (Wickham, 2009) packages. 

Hypotheses were tested by modelling item responses using a mixed-effects logistic regression 
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approach as implemented in the ‘glmer’ procedure from ‘lme4’ (1.1.17) package (Bates, 

Maechler, Bolker, & Walker, 2017). Effects of each condition was conceptualized as costs 

(demands on WM) and costs were operationalized using contrasts as the decrease in log-odds 

chance of getting an item from a given test condition (e.g., retention) correct compared to the 

chance of getting an item from the reference condition (e.g., control) correct. The relationship 

with RB was then considered by modelling RB as an interaction term with each contrast to 

determine the extent to which RB moderated the influence of each cost. A random-intercept 

model with condition as both a fixed and random effect (Model 1) was used to derive 

estimate of the overall descriptive statistics for each condition as reported in Table 4.1 and 

the relationship with RB as plotted in Figure 4.4. Model 2 tested orthogonal effect-contrasts 

consistent with the stated hypotheses (contrast coefficients are provided in Table 4.2 

alongside the main analyses). We first analyse recall accuracy for the ABC variables. 

4.3.1. Recall accuracy 

Recall of the ABC variable-value mappings was above 85% in all conditions, the cut-

off typically used for the secondary complex-span task. However, a linear-mixed effects 

regression analyses of mean recall accuracy on condition dummy coded (with subjects as 

level 2) revealed expected differences. Recall of the ABC mappings on retention items was 

significantly poorer than both types of access items (Access-F: β = 0.27, CI95% = [0.20, 0.35], 

p <.001; Access-R, β = 0.19, CI95% = [0.11, 0.26], p < .001), and the two types of access 

items differed in recall accuracy (β = 0.08, CI95% [0.01, 0.16], p = .030). As seen in Figure 

4.3, this produced a different pattern of scores depending on whether recall accuracy was or 

was not factored into the scoring of the arithmetic, with retention seeing a notable drop in 

performance when making arithmetic performance for each item conditional on also perfectly 

recalling all three ABC mappings for that item (we refer to this as ‘absolute’ scoring, as in the 

item was absolutely correct in both arithmetic and recall). A series of paired t-tests revealed 
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all three experimental conditions suffered a detriment in accuracy (at p < .001) as a result of 

making accuracy conditional on both correctly answering the arithmetic and perfectly 

recalling the three ABC variables, with the largest effect in the retention condition (retention 

d = 1.03; Access-fixed d = .38; Access-random d = .47). Given these differences, it was 

worth discussion on which scoring method was preferred (arithmetic-only or absolute). 

Although generally only a minimum threshold of performance is needed (e.g., 85%+) for 

secondary tasks in complex-span paradigms, there was a substantial theoretical reason to 

prefer ‘absolute’ scoring in the ACT. By only looking at trials where recall performance was 

perfect, we could safely assume that all the correct trials have satisfied the basic maintenance 

component of the task (i.e., the ABC variables were successfully maintained and recalled), so 

any differences that emerge between conditions (e.g., access-fixed versus access-random) 

must be due to demands associated with the arithmetic. Given that our hypotheses are based 

on the unique, incremental demands of each condition, targeting the trials where the 

arithmetic response was incorrect despite correctly recalling the maintained variables would 

help to isolate the experimental effect of each condition. For instance, it is possible that a 

participant may incorrectly answer an access-random item either due to the binding cost 

impacting on the arithmetic or because they lost the ABC variables. Losing the ABC 

variables (e.g., through decay) gives the participant no chance of solving the item correctly, 

even if they are perfectly capable of handling the binding burden of access-random. Although 

the high recall performance (see Table 4.1) means these trials are not particularly common 

(i.e., the trials where a participant loses the ABC variables through reasons unrelated to the 

condition’s cost), using absolute scoring nonetheless provides a purer measure of the cost. 

This scoring method was also consistent with Oberauer et al. (2001), who used absolute 

scoring as standard for the analyses.  
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Figure 4.3. Plot of accuracy across four ACT conditions. The overlayed graph represents the 

difference when performance is also conditional on correct recall. Arithmetic-only scoring 

(light bars) is the proportion of trials where the arithmetic was correct disregarding recall 

performance, while absolute scoring (solid bars) is the proportion of trials where both the 

arithmetic and recall was completely correct. 

 

 

 
 

Figure 4.4. Relationship of each ACT condition to RB composite, split by (A) arithmetic-

only scoring and (B) absolute scoring. 
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Table 4.1. ACT Descriptive Statistics (with absolute scoring for accuracy) 

 Accuracy Recall 

 N Mean SD Mean SD 

Control 114 0.88 0.06 - - 

Retention 113 0.63 0.16 0.84 0.15 

Access-F 116 0.69 0.14 0.94 0.09 

Access-R 115 0.55 0.22 0.91 0.11 

SSPAN 116 0.75 0.16   

APM 116 0.61 0.19   

r(APM,SSPAN) = .22, p < .05 

 

4.3.2. ACT accuracy and RB demands 

As described prior, the following analyses use absolute scoring for the ACT. As seen 

in Figure 4.3, trends for item difficulty were generally in the theoretically expected direction. 

Control items were significantly easier than all other items on average (CI95% = [-1.832, -

1.289], p < .001). Contrary to H1a, there was evidence for the presence of retention-costs 

(performance decline on retention items relative to control items), CI95% = [-1.821, -1.201], p 

< .001, though this cost was marginally not significant when disregarding recall performance, 

CI95% = [-0.705, 0.017], p = .062. Figure 4.5A demonstrates that individual differences 

existed in these retention-costs though, contrary to H2a, these differences were not 

determined by RB (CI95% = [-0.798, 0.205], p = .247), as seen in Table 4.2. This suggests that 

the additional load of retention over and above standard ACT items that a participant may 

experience, is not a simple function of relational binding capacity.  

Contrary to H1b, there was no evidence for an access cost, as performance on access 

items overall was similar to retention items (CI95% = [-0.318, 0.171], p = .553; Table 4.2). As 

with retention-costs, although there were individual differences (Figure 4.5B), they were not 

determined by RB  (CI95% = [-0.064, 0.768], p = .097), thus failing to support H2b. 

Consistent with expectations of H1c, there was evidence for a binding-cost. 

Performance on access-random items was significantly poorer than that of access-fixed items 
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(CI95% = [-0.930, -0.391, p < .001; Table 4.2). However, unlike retention-costs and access-

costs, and consistent with H2c, there does appear to be evidence that the individual 

differences in binding-costs (Figure 4.5C) can be understood to some extent by demands on 

RB capacity (CI95% = [0.102, 1.043], p = .017). 

 

Figure 4.5. Density distributions of individual differences for (A) retention costs, (B) access 

costs, and (C) binding costs. Access costs (relative to retention) are decomposed to (D) 

access-fixed only and (E) access-random only. 
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Table 4.2. Fixed and Random Effects Estimates of Planned Contrasts (ACT absolute scoring) 

    Fixed Effects 
Random 

Effects 
 Contrast Coding 

Predictors Model Log-odds se CI p tau  Control Retention 
Access-

Fixed 

Access-

Random 

(Intercept) 1 0.946 0.088 0.774, 1.119 <0.001 0.62  - - - - 

Retention (vs Control) Cost 1 -1.511 0.158 -1.821, -1.201 <0.001 0.25  -1/2 1/2 0 0 

Access (vs Retention) Cost 2 -0.074 0.125 -0.318, 0.171 0.553 0.52  0 -2/3 1/3 1/3 

Binding (Fixed vs Random) Cost 1 -0.661 0.138 -0.930, -0.391 <0.001 0.46  0 0 -1/2 1/2 

RB moderator 1 0.575 0.149 0.283, 0.868 <0.001 -  - - - - 

Retention (vs Control) Cost x RB 1 -0.296 0.256 -0.798, 0.205 0.247 -  - - - - 

Access (vs Retention) Cost x RB 2 0.352 0.212 -0.064, 0.768 0.097 -  - - - - 

Binding (Fixed vs Random) Cost x RB 1 0.572 0.240 0.102, 1.043 0.017 -  - - - - 

Fixed (vs Retention) Cost 3 0.256 0.134 -0.007, 0.520 0.056 0.38  0 -1/2 1/2 0 

Fixed (vs Retention) Cost x RB 3 0.066 0.225 -0.376, 0.508 0.771 -  - - - - 

Random (vs Retention) Cost 4 -0.404 0.150 -0.699, -0.110 0.007 0.89  0 -1/2 0 1/2 

Random (vs Retention) Cost x RB 4 0.638 0.261 0.127, 1.149 0.014 -  - - - - 

Control vs Rest 2 -1.561 0.138 -1.832, -1.289 <0.001 0.13  -3/4 1/4 1/4 1/4 

Access vs Rest 1 -0.830 0.111 -1.046, -0.613 <0.001 0.32  -1/2 -1/2 1/2 1/2 

Control vs Rest x RB 2 -0.062 0.222 -0.497, 0.373 0.781 -  - - - - 

Access vs Rest x RB 1 0.204 0.185 -0.159, 0.567 0.272 -  - - - - 

orthog1 3 - - - - -  -2/3 1/3 1/3 0 

orthog2 3 - - - - -  1/4 1/4 1/4 -3/4 

orthog3 4 - - - - -  -2/3 1/3 0 1/3 

orthog4 4 - - - - -  -1/4 -1/4 3/4 -1/4 

N = 2,744 observations; Conditional R2 = .304   σ2= 3.29      

Notes: To test the contrast of interest, two sets of orthogonal contrasts were needed. The column Model indicates which model the estimates have come from and the 

notation below specifies the full model (orthog1-4 were needed to ensure orthogonality). Binding was tested in models 1 and 2 and as expected, produced identical estimates 

for all effects in both models. The follow-up effects of access-fixed vs retention and access-random vs retention were tested in Models 3 and 4. Models tested are as follow: 

Model 1: glmer(ACT ~ 1 + bindingC*RB + retentionC*RB + AccessVrestC*RB + (1 + bindingC + retentionC + AccessVrestC | subject)  

Model 2: glmer(ACT ~ 1 + bindingC*RB + accessC*RB + ControlVrestC*RB + (1 + bindingC + accessC + ControlVrestC | subject) 

Model 3: glmer(ACT ~ 1 + accessFC*RB + orthog1*RB + orthog2*RB +  (1 + accessFC + orthog1 + orthog2 | subject)   

Model 4: glmer(ACT ~ 1 + accessRC*RB + orthog3*RB + orthog4*RB +  (1 + accessFC + orthog3 + orthog4 | subject)  
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Thus, of the three theoretical loads investigated, there was evidence for retention-

costs and binding-costs on accuracy.9 However, only binding-costs were associated with 

individual differences in our composite RB factor, which was defined as what is common to 

the APM and symmetry CSPAN tasks. Table 4.3 displays the simple correlation matrix, 

which makes the pattern between RB, the constituent RB measures (APM and SSPAN), and 

the ACT conditions clear: retention correlates with SSPAN (r = .24, p = .010) but not APM (r 

= .02, p = .867); while access-fixed correlates with APM (r = .28, p = .003) but not SSPAN (r 

= .06, p = .531). Access-random however, is the only ACT condition that correlates with both 

SSPAN (r = .23, p = .014) and APM (r = .35, p < .001). A linear regression with the four 

ACT conditions predicting RB revealed that access-random was the only condition to predict 

a significant, unique proportion of the variance in RB (sr2 = .069, p = .004),10 solely 

predicting almost 40% of the total variance accounted for in RB (R2 = .174). 

Table 4.3. Simple correlations between ACT conditions and criterion tasks. 

 Control Retention Access-F Access-R SSPAN APM 

Control .25      

Retention .31** .52     

Access-F .33** .38** .51    

Access-R .33** .36** .43** .68   

SSPAN .13 .24** .06 .23* -  

APM .34** .02 .28** .35** .21* - 

RB factor .30** .16* .22* .37** .78** .78** 

Notes: * p < .05; ** p < .01; bold on diagonal represents reliability (Cronbach’s α) 

 
9 As with Oberauer et al. (2001), we also performed the analyses using response time (RT) rather than accuracy 

(log-transformed to adjust for long RT outliers). The pattern of results remained similar, with a clear linear 

increase in time taken similar to the arithmetic-only scores seen in Figure 4.3 (control M = 4.22s, SD = .12; 

retention M = 4.31s, SD = .14; access-fixed M = 4.43s, SD = 1.34; access-random M = 4.51s, SD = 1.45). This 

meant that, when using log-RT, there was evidence for retention-costs (CI95% = [0.11, 0.17], p < .001), access-

costs (CI95% = [0.27, 0.32], p < .001), and binding-costs (CI95% = [0.07, 0.10], p < .001). The presence of 

retention-costs was contrary to Oberauer et al.’s results, though may be related to the exclusion of manipulations 

on item-load and participant age. In an identical pattern to the accuracy results, RB appeared to determine the 

variability between participants seen in binding-costs (CI95% = [0.11, 0.17], p < .001), but not in retention-costs 

(CI95% = [-0.00, 0.05], p = .109) or access-costs (CI95% = [-0.02, 0.03], p = .910). Although interesting, we have 

no specific hypotheses related to RT and the results are similar enough to those seen in the accuracy data, so we 

do not mention RT further.  
10 Control sr2 = .027, p = .065; Retention sr2 < .001, p = .890; Access-Fixed sr2 < .001, p = .708. 
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4.4. Discussion 

Rather than working memory capacity acting largely as a distinct subordinate function 

of fluid intelligence, there is an emerging consensus that the WM-Gf link (e.g., Ackerman et 

al., 2005; Engle, Tuholiski, et al., 1999; Kyllonen & Christal, 1990; Unsworth & Engle, 

2005) can be understood as the outcome of common functions dictated by the strength and 

flexibility of relational bindings between integrated representations (Chuderski, 2014; 

Oberauer et al., 2007; Shipstead et al., 2016). In the current study, we manipulated a single 

task (the Arithmetic Chain Task; Oberauer et al., 2001) in order to differentially demand 

retention, access, and binding. The layering of manipulations allowed us to pinpoint the 

contributing functions while reducing task artefacts typically present in comparing multiple 

task formats. Our manipulations began on a similar premise to Oberauer et al. (2001), in 

distinguishing retention from access by comparing how stored contents (the ABC mappings) 

were assessed during arithmetic performance: either passively (recalled at the end of the task 

only) or accessed during active processing (incorporating the mappings as part of the 

arithmetic). We extend on Oberauer et al.’s (2001) research by comparing fixed-access to 

random-access which prevents systematic chunking (Halford et al., 1998). Our findings 

partially replicated Oberauer et al. by finding that access does incur a larger cost to arithmetic 

processing over passive retention – but we have demonstrated this only occurs if the stored 

variable mappings must be accessed in a random order. This indicates that Oberauer et al. 

would not have found their results (that access incurred a greater load than retention) if they 

had made the seemingly minor change of not randomly ordering the XYZ=ABC mappings. 

This is demonstrated most clearly in Figure 4.5, where breaking down the access cost (Figure 

4.5B) into its constituent access conditions (Figures 4.5D and 4.5E) produced markedly 

different outcomes: only random-access shows a significant cost over retention (the 

distribution is centred below 0). Critically, we also discovered that performance on random-
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access specifically (i.e., layered over an otherwise identical task format in fixed-access) is 

uniquely influenced by what is common to WM and Gf – which we have argued is the 

demands of binding (Chuderski, 2014; Oberauer et al., 2008).  

Figure 4.6 adapts Oberauer’s (2009) concentric model, including the source of 

demands specific to each version of the ACT presented in the current study. Retention costs 

were defined as the demand imposed by encoding and maintaining additional task-irrelevant 

mappings for later recall. These mappings are theorized to be stored in long-term memory 

(outside the region of direct access) for the duration of the task. Although we identified a 

retention cost that Oberauer et al. (2001) did not, this cost was largely driven through a 

failure to recall these task-irrelevant mappings, as opposed to a load influencing the 

arithmetic itself (see Figure 4.3). In contrast, access costs incorporated task-critical 

mappings, requiring establishing and maintaining bindings within the direct access region of 

WM throughout the task. We introduced an additional cost associated with ensuring multiple, 

flexible bindings in the direct access region by restricting systematicity through random 

rather than fixed mappings. Our proposition was that the systematicity that facilitates a single 

strong schema set where mappings are in a fixed serial order cannot be exploited when 

mappings are random, necessitating maintaining access to multiple independent bindings 

(Chuderski, 2014). The breakdown in systematicity results in unstable bindings that must be 

flexibly bound and unbound in light of the updated ordering only indicated during the 

executive processing of the primary arithmetic. 
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Figure 4.6. Diagram of Oberauer’s (2009) concentric model of WM adapted to specify task 

manipulations in the featured Arithmetic Chain Task. Each small circle depicts a 

representation within memory, which can either be active (filled circle) or inactive (unfilled 

circle). The larger oval represents the region of direct access, a capacity-limited store where 

representations are active above threshold and available for immediate binding and further 

processing. Representations in the direct-access region can be connected into a common 

schema set by binding them into a related context. In the ACT, retention costs involve 

passively storing ABC mappings (e.g., A = 6) outside the direct-access region during the 

arithmetic processing. Access costs are incurred by ABC mappings which must be kept active 

in the direct-access region for use in the arithmetic processing (called upon in cases like X = 

A). Binding costs are incurred by ABC mappings which must be flexibly unbound and 

rebound into an updated order during the arithmetic processing (cases such as X = B). 

Based on work such as Oberauer et al. (2008) and Chuderski (2014), we defined a 

relational binding (RB) factor as what is common to WM and Gf (defined by the SSPAN and 

APM, respectively). While it is unusual to run a factor analysis on just two variables, we 

argued that this was more appropriate than including the SSPAN and APM separately in a 

regression analysis, where their respective regression coefficients would reflect unique 

contributions, and the common features would be obscured as shared variance without direct 

assessment. Thus, the EFA was used to a create a simple RB indicator from prototypical 

measures to approximate what is common to WM and Gf. Performance on the RB factor 
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indicates the extent to which participants performed well on what is common to WM and Gf – 

theorized to be the capacity for flexible binding.  

Retention costs did produce a significant impact on performance over the control 

condition when recall was considered as part of the scoring, yet these costs were not 

associated with the RB factor. In the retention condition, passive storage demands were 

incurred by encoding a set of task-external mappings at the beginning of the trial and 

recalling them at the end of the trial. In this way, the unrelated storage could be relegated to 

long-term memory outside the direct-access region. The current results indicate that this 

passive retention is not associated with the RB factor. This manipulation of retention is 

different from traditional CSPANs, where repeated unrelated, trial-specific processing 

temporally overlaps with storage in which the running sequence of list items must be updated 

regularly. Since our retention involved encoding at the beginning and recall at the end, this 

storage was more passive than that required by the within-trial updating of CSPAN where the 

direct-access region is frequently probed with intermittent processing. Despite this, the 

CSPAN included in the current experiment correlated substantially better with retention than 

any of the other ACT conditions, while also providing a version of the ACT similar enough 

to the access conditions where the specific effect of access could be isolated. 

In contrast to retention, access costs represent ABC mappings which must be kept 

active in the direct-access region during the arithmetic processing. The present results suggest 

that the direct-access region may be a source of capacity limits, but it is one that can be 

circumvented with systematic chunking of consistently-ordered bindings. We speculated that 

exploiting the fixed-order of mappings could systematically reduce the number of bindings 

from three to one. To account for this, we contrasted two access conditions: fixed and 

random. The conceptual difference between fixed and random is the flexibility of the 

bindings necessary to respond to the yet-unknown order. Although both access conditions put 
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demands on the direct-access region, only the random-access requires maintaining three 

independent bindings. It is possible a systematic rearrangement of mappings could occur 

before the arithmetic processing has begun (but after the random order is revealed), but this 

still requires rapid binding and unbinding – a clearly isolated function above and beyond the 

otherwise identical fixed-access condition. There is a higher chance of losing the bindings 

during this rearrangement, and we observed small statistically significant differences in recall 

performance between the access conditions. While loss is a contributing factor, crucially, and 

consistent with Oberauer et al. (2007), Wilhelm, Hildebrandt, and Oberauer (2013), and our 

own task analyses incorporating systematicity (Halford et al., 1998), binding costs were 

significantly related to the RB factor, and this is by way of the random-access condition. 

Given that the fixed and random manipulations use an otherwise identical task format, this 

provides supporting evidence that what is common to WM and Gf is a capacity for flexible 

binding. It is worth reiterating the insights provided by this result. The binding costs inferred 

through the random-access condition already account for all other aspects of the ACT format. 

That is, the mental arithmetic involved in the core task and the additional burden of encoding, 

accessing, and recalling the ABC mappings through the task have already been accounted for. 

The exclusive component of random-access that remains after this incremental cost-analysis 

is the restriction that multiple bindings cannot be systematically reduced by way of fixed 

ordering. This restriction necessitates multiple bindings, and our results indicate that this is 

associated with the common factor between WM and Gf. As predicted by Oberauer et al.’s 

(2008) hypothesis, performance on WM tasks appears to be dictated by the binding capacity 

of the direct-access region. Here, we further demonstrate that the ability to rapidly establish 

and dissolve flexible bindings uniquely explains what is common to WM and Gf. In the 

current analyses, we labelled this commonality RB to represent our theoretical position. It is 

of course possible this commonality could be interpreted differently (e.g., controlled 
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attention; Kane et al., 2001), though these interpretations would also need to provide a 

theoretical account of the difference between fixed-access and random-access, as we have 

done using systematicity (Halford et al., 1998). 

4.4.1. Conclusion 

In conclusion, our data suggest that it is not mere passive retention, nor systematic 

access, that defines the common WM-Gf link but rather, the ability to establish and maintain 

flexible bindings. In this way, CSPAN is a useful tool not simply because it taps storage 

capacity, but because the interim processing frequently interrupts the strength and stability of 

bindings of to-be-remembered elements. Passive retention of the to-be-remembered elements 

does not appear important, but providing direct access to durable, flexible bindings is. A 

version of the ACT which incorporates the temporal overlap of processing and storage (seen 

in CSPANs) between ABC mappings and the arithmetic may provide further insight into this 

notion, as may an RB factor defined through additional tasks. For now, our results provide 

preliminary but insightful evidence of the importance of a binding flexibility function in WM. 
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V. STUDY 3: THE RELATION MONITORING TASK 

This chapter is published in Bateman, Thompson, and Birney (2019). [Bateman, J. E., 

Thompson, K., A., & Birney, D. P. (2019). Validating the relation monitoring task as a 

measure of relational integration and predictor of fluid intelligence. Memory & Cognition, 47 

(8), 1457-1468]. There are minor changes to terminology and flow to fit the thesis. 

In the previous chapters, we found promising results for a relational approach to 

understanding WM and Gf. In Chapter III, the LST was found to perform even better as a 

predictor of Gf when active storage demands were minimized and instead, focus was placed 

on the relational demands. In Chapter IV, while the ACT involved either active or passive 

storage demands, the key manipulation of access-fixed against access-random demonstrated 

that increased binding demands associated with random ordering of to-be-remembered 

elements was crucial to linking the task to Gf. While these studies were mostly successful, 

they involved either a substantial manipulation of an established task (the LST) or an intricate 

manipulation of basic arithmetic (the ACT). In the current chapter, we turn towards a less 

well-known task (the Relation Monitoring Task) that has shown promise as a pure relational 

integration measure (Oberauer et al., 2008; Chuderski, 2014). The development of a 

relational integration task with inherently minimal storage demands and no superficially 

similar overlap with Gf matrix-style tasks is essential to establishing relational integration as 

a construct for measurement, more widely beyond simply understanding WM. Although the 

Relation Monitoring Task has shown success in prior studies as a measure of relational 

integration (Oberauer et al., 2008; Chuderski, 2014), the exact task specifications differ 

between studies. Thus, it is not yet known what is required in administering the task to make 

it a successful measure of relational integration. The aim of the current chapter is to validate 

the Relation Monitoring Task as a pure measure of relational integration and determine the 

task factors that contribute to its performance as a measure of relational integration. 
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5.1. Introduction to the Relation Monitoring Task 

The Relation Monitoring Task (RMT) involves monitoring a grid (typically 3 x 3) of 

periodically changing stimuli (e.g., words or digits) and detecting relational matches that may 

appear across rows or columns, according to a pre-determined match rule (e.g., three numbers 

end in same last digit), before the array is updated with new stimuli. This simple task is 

hypothesized to load on a capacity for relational integration (Chuderski, 2014; Oberauer et 

al., 2008): the ability to connect multiple elements within working memory (WM). Relational 

integration is thought to be the cornerstone of higher-order intelligence (Chapter IV; Halford 

et al., 1998; Oberauer et al., 2008), required in well-established measures of fluid intelligence 

(Gf) (J. Raven, 1989), and forming the premise of analogical reasoning tasks (Sternberg, 

1977). Indeed, the RMT has demonstrated a remarkable ability to predict performance on 

intelligence tasks (Chuderski, 2014; Krumm et al., 2009; Oberauer et al., 2008), despite 

involving no explicit (i.e., controlled) storage of information over time. This implies that the 

often-cited link between WM and Gf (Ackerman et al., 2005) may inadequately capture the 

important role of relational integration in Gf. However, because the RMT also involves rapid 

scanning, it is difficult to rule out theories of attentional control altogether (Engle & Kane, 

2004). Although Chuderski’s (2014) experimental manipulations of visual interference have 

indicated that attentional control has minimal impact on RMT performance, these results are 

preliminary and the theoretical aspects of the task are still largely equivocal. 

The purpose of the current report is to (a) replicate previous findings demonstrating 

the RMT predicting Gf over-and-above classic WM tasks; and (b) more comprehensively 

understand the factors that influence RMT performance and the relationship to Gf. To this 

end, three theoretically aligned RMT manipulations were developed and implemented. First, 

we varied the complexity of relations to be integrated, because the capacity to deal with 

complexity has been recognised as a core determinant of intellectual function (Birney & 
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Bowman, 2009; Stankov, 2000). Second, the amount of new information present in each trial 

was manipulated in an attempt to tease apart the role of visual scanning and attentional 

control in the RMT and its relationship with Gf. Finally, to explore the role of inhibition, we 

manipulated the amount of visual interference presented in each trial (Chuderski, 2014). In 

the following sections, we describe the background of the RMT and detail the rationale for 

these manipulations. Our experiment replicates prior research demonstrating the RMT’s 

remarkable ability to predict Gf and reveals that attentional control does contribute – though 

is not imperative – to this ability. Instead, it appears that the core demand of the task – the 

ability to bind multiple elements into an integrated relation – is what is paramount to the 

relationship with Gf.  

The RMT was originally featured in Oberauer, Süß, Wilhelm, and Wittman’s (2003) 

analysis of WM. Participants are presented with a 3 × 3 array of three-digit strings (see 

Figure 5.1 in the Method). In the standard version of the task, participants are asked to 

validate whether there is a row or column in which a particular rule holds (e.g., all digit 

strings end in the same last digit). In Oberauer et al. (2008), a re-analysis of the data revealed 

strong correlations with latent constructs of intelligence, particularly Gf, typified by Raven’s-

style (J. Raven, 1989) abstract reasoning tasks. Buehner, Krumm, Ziegler, and Pluecken 

(2006) and Krumm et al. (2009) found similar correlations between the RMT and Gf. The 

strong overlap between the RMT and Gf is supportive of a theory we are terming the 

relational integration hypothesis: the theory that performance in Gf is most fundamentally 

and ultimately limited by the capacity for relational integration, a sentiment that is being 

shared by a growing number of researchers (Chuderski, 2014; Halford et al., 1998; Oberauer 

et al., 2008). The RMT appears to be an ideal exemplar of the relational integration 

hypothesis, given its remarkably simple concept and administration, and equally remarkable 

correlations with Gf. 
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Given the impressive RMT-related findings, it is perhaps surprising that it was not 

until Chuderski (2014) that a more formal analysis of the task was conducted to better 

understand the basis of these correlations. Chuderski manipulated the complexity of the 

relations to-be-considered by including a five-match condition (each relation involved 

binding five elements in the array for comparison, rather than the typical three) and by 

introducing a different match rule. The standard match rule, up to that point, required 

searching for identical stimuli (e.g., all digit strings end in the same last digit) whereas the 

different rule involved searching for distinct digits (e.g., all digit strings end in different last 

digits). The five-match condition produced an interaction effect with the different condition, 

such that performance dropped substantially more moving from three- to five-match with the 

different rule than with the same rule. Chuderski hypothesized that this was because non-

identical digits could not be chunked the same way identical digits could be, leading to a 

much higher concurrent relational processing load moving from three to five digits to-be-

integrated. The results of this manipulation strongly suggested that the task was primarily 

demanding relational integration. This was further supported by Chuderski finding no impact 

of visual interference (high interference involved arrays with many identical digits) on task 

difficulty. Together with the facts that (a) there is typically sufficient time to fully scan the 

array (over 5 seconds) and (b) not all stimuli are replaced when the array is updated (we 

henceforth refer to this feature as string-preservation meaning that some strings are preserved 

from trial-to-trial), this indicates that the task does not load heavily on attentional control. 

Chuderski again found an overall good correlation between the RMT and Gf (r = ~.41), 

though none of the experimental manipulations appeared to impact the magnitude of this 

correlation. Thus, it seemed that even the most basic form of the task could produce a valid 

measure of relational integration and, by extension, fluid intelligence. 
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The current study aimed to replicate and extend on our understanding of the features 

of the RMT that contribute to its success in predicting Gf. The end-goal is a clearer 

appreciation of the importance of relational integration in higher-order cognition. Three 

theoretically aligned RMT manipulations are investigated – cognitive complexity, attentional 

control, and inhibition. We consider each in turn. 

Relational Complexity: To corroborate Chuderski’s (2014) finding on match 

complexity, we also incorporated the same vs. different manipulation, but added an additional 

novel ascending condition. Before explaining the ascending manipulation, it is worth 

reiterating how same and different manifest in the task, what they convey theoretically, and 

why ascending may help round out the complexity manipulations. In the same condition, the 

match rule is “all strings within a row or column end in the same digit” while in the different 

condition, the match rule is “all strings within a row or column end in different digits”. The 

same condition has a lower theoretical relational complexity (Halford et al., 1998) than the 

different condition because the first two end-digits in a same match [same(4,4,4)] can be 

systematically chunked together [same(4,4)], and distinguishing between these first two end-

digits is not paramount to verifying whether the third end-digit (4) is also part of the relation 

– we need only know that the first two digits are the same and that both of them is (4). 

Contrarily, a different match [different(5,8,7)] cannot be chunked because, although together 

they can form the relation [different(5,8)], their unique identities must be kept available in 

order to verify that the third digit (7) is different from both the (5), as in [different(5,7)], and 

the (8), as in [different(8,7)]. Thus, according to the chunking principle in relational 

complexity theory (Halford et al., 1998), different matches requires more complex ternary 

relational integration than the binary relational integration involved in a same match. If we 

replicate earlier findings (Chuderski, 2014) demonstrating that the different match is more 

difficult than the same match, it would provide supporting evidence that the demands of the 
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task may well lie in relational complexity. However, it is also possible that the two identical 

digits in the same condition are easier to chunk simply because they are identical, meaning 

lower-level visual identification strategies can be used for chunking, whereas the different 

condition necessitates higher-order relational integration. To clarify this, we included the 

ascending match condition: “at least one row or column has strings all ending in 

consecutively ascending digits”. Theoretically, an ascending match should have the same 

complexity as a same match (binary) because the first two digits can be chunked together. 

Consider the ascending relation [ascending(2,3,4)]. According to the relational systematicity 

principle (Halford et al., 1998, p. 808), the relational information between the (2) and (3) can 

be systematically chunked as [ascending(2,3)] because we do not need to know the difference 

between (2) and (3) in order to integrate the following relation [ascending(3,4)]. Rather, we 

need only know that both separate binary relations are ascending. To reiterate the earlier 

complexity analysis, this is different from the relation [different(5,8,7)] because each element 

(5), (8), (7) must be kept available in order to verify that each digit is different from both the 

other two digits. Thus, while both ascending and different have three unique elements 

involved in the relation, the effective complexity is only higher than same for different and 

not ascending. If the task is primarily demanding relational integration, we should see no 

difference in performance between same and ascending, but different should follow the same 

substantial drop in performance as in prior studies. Alternatively, a more linear decline 

between the three conditions (same > ascending > different) may indicate that both sources of 

demands are applying (visual identification and relational complexity). 

Attentional Control (Scanning): Our second core experimental manipulation was on 

scanning demands. In the past, the RMT has always involved string-preservation where some 

of the nine strings present in the current array carry over to the next array (Chuderski, 2014; 

Krumm et al., 2009; Oberauer et al., 2008), reducing the amount of new information 
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presented on each new array. Theoretically, this helps to minimize the amount of attentional 

control demands and maximize the relational integration demands. Operationally, the number 

of new stimuli that must be attended to is reduced and the primary demand remaining is in 

rapidly binding the strings into the target (match) relation. Although this task feature is 

theoretically meaningful, there has yet to be a clear experimental manipulation to determine 

how much this feature (attentional control) actually contributes to performance and to the 

relation with Gf. Kane et al. (2001) propose that the ability to actively maintain goal-relevant 

information in the face of irrelevant information is what connects WM tasks to Gf. Further 

findings by Kane and Engle (2003) on the Stroop task suggest that poor goal maintenance 

was a major factor in low WM participants struggling on WM tasks. Being frequently 

bombarded with arrays of completely new information in the RMT would require the ability 

to rapidly determine which strings are goal-relevant and efficiently dismiss irrelevant strings, 

on top of the relational integration demands already present in the task. To test the effects of 

attentional control through goal maintenance, our experiment includes both a string-

preservation condition (some strings persist between arrays) and a string-replacement 

condition (all strings are replaced between arrays). The string-preserve condition and the 

string-replace condition should only differ in their association with Gf insofar as the 

attentional control demands of the task are related to Gf. In other words, if the string-replace 

condition significantly increases the relationship to Gf compared to string-preserve, it would 

indicate that attentional control is a significant component in Gf. To go one step further, if the 

task relies on string-replace to correlate with Gf, it would indicate that the RMT’s ability to 

predict Gf is being driven entirely by attention control, rather than the core relational 

integration demands of the task. 

Inhibition (Visual Interference): Our final manipulation was to follow Chuderski’s 

(2014) work on visual interference which manipulated the number of identical digits in the 
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array. In each of Chuderski’s arrays, one of the target string-ending digits was duplicated to 

non-string-ending positions. The theoretical idea was that these identical digits would act as 

distractors by increasing the similarity of targets (end-position digits) and distractors (non-

end-position digits), demanding not just relational integration but the ability to inhibit 

distracting interference in the visual search process. In particular, they should adversely affect 

the same condition more than the ascending or different conditions because the identical 

digits are crucial to the same match but not either of the other two matches (Chuderski, 

2014). Although Chuderski found no impact of interference on mean scores, one potential 

issue with his implementation of interference was that the high number of distractors (12 out 

of a possible 24 when excluding the progenitor’s string) could actually cue the participant to 

the target end-position digits, and thus cancel out any detrimental impact of the visual 

similarity. We explored this potential limitation by including three levels of interference with 

a similar target-duplication system: no interference had 0 digits duplicated, low interference 

had 6 duplicates (a novel condition), and high interference had 12 duplicates. We predicted 

that low interference, but not high interference, would produce a deficit in performance 

because it causes some visual interference without overtly cueing the participant to the target 

digits. Inhibition is also related to attentional control (Engle, 1996). Although inhibition 

usually refers to associative activation in long-term memory (Hasher & Zacks, 1988), explicit 

visual inhibition caused by visually identical stimuli can also have a strategic component 

related to task performance, in purposeful avoidance of the allocation of attention to 

distracting elements (Lu et al., 2017). Thus, a difference between the interference conditions 

in predicting variance in Gf can still represent the contribution of visual inhibition in the 

RMT’s relationship to Gf. 
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5.2.1. Aims and hypotheses 

The current study was conducted to systematically manipulate task features of the 

Relation Monitoring Task to determine what makes the task so good at predicting Gf over-

and-above classic “store-and-process” WM measures. We extend on Chuderski’s (2014) 

manipulations by further investigating the roles of attentional control demands through an 

elaborated visual interference manipulation and by comparing string-preservation with string-

replacement. We also further manipulated complexity with the addition of the ascending 

match type to remove the confound of identical digits contributing to lower-order visually-

oriented chunking. To provide a stronger conclusion in determining what the RMT shares 

with Gf, we included three Gf measures, so we could form a latent Gf measure. We also 

included two classic criterion measures of WM: a complex-span and an n-back. It was 

predicted that the extent of the relationship with Gf will be largely determined by the capacity 

of the RMT to measure relational integration (the relational integration hypothesis). 

Specifically, it was hypothesized (H1) that the different condition will increase the difficulty 

of the task and the relationship to Gf compared to same and ascending, as different matches 

require a higher relational complexity to integrate; while same and ascending have the same 

theoretical complexity, and so should have similar performance. It was also hypothesized 

(H2) that string-replace will add an additional unique component in predicting Gf over 

string-preserve, in line with the additional attentional control demands required in dealing 

with a full array of new strings. However, in line with the relational integration hypothesis, 

both versions of the task will predict Gf (i.e., string-replace is not necessary for the RMT to 

predict Gf). Finally, it was hypothesized (H3) that low interference but not high interference 

will decrease performance on the task, because it visually interferes with participants without 

overtly cueing them to the target. Again, in line with the relational integration hypothesis, all 

versions of the task will predict Gf. In summary, in all cases, we predict that the relational 
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integration demands of the RMT will predict Gf over-and-above the two criterion WM 

measures, which primarily measure classic “store-and-process” demands; and further 

increases will be concomitant with the respective theoretical demands of the manipulations. 

5.2. Method 

5.2.1. Participants and Procedure 

A total of 105 participants took part in exchange for course credit. Five participants 

were excluded due to unacceptably low scores on at least one measure, indicating they did 

not understand the task instructions or were purposely not engaging in the task.11 Of the 

remaining 100, 67 were female and 33 were male, with an average age of 19.47 (SD = 2.12). 

Participants undertook six tasks: the RMT, three measures of Gf (APM, Letter Series, Latin 

Square Task), a complex-span (operation-span), and an n-back (spatial n-back). Participants 

completed the tasks in a random order in 90-minute sessions, in groups of up to eight in 

computer labs at the University of Sydney. 

5.2.2. Measures 

Relation Monitoring Task (RMT) 

The RMT involved presenting a continuous 3 x 3 array of 3-digit number strings. The 

task was to respond (with the spacebar) whenever an array matching the current match rule 

was presented (see Figure 5.1). If the array did not match the current rule, the participant was 

to wait for the next array, which would replace some or all strings (depending on the 

condition) with new ones. Each array was presented for 5.5 seconds with a 100ms interval. 

 
11 Of the five participants excluded, two scored 0 for the LST-DC, two scored 0 for the Letter Series, and one 

scored 1 for APM (all these scores were more than 3 SDs below their respective means, with distribution plots 

demonstrating clear outliers). All three tasks included items ranging in difficulty, including particularly easy 

items that are expected to be trivial for university-level adults.  
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Figure 5.1. Examples of two arrays with the ‘same’ match rule from the Relation Monitoring 

Task. In the ‘match’ example (left), all three number strings in the bottom row end with the 

same digit, 2. In the ‘no match’ (right), there are no rows or columns where all three number 

strings end in the same digit.  

There were three experimental manipulations, balanced across one-another: 

complexity (same/ascending/different), string-preservation (string-preserve/string-replace), 

and interference (none/low/high). Each manipulation is detailed in the paragraphs below. 

Participants completed a total of six blocks, with a unique complexity and string-preservation 

combo: same-replace, same-preserve, ascending-replace, ascending-preserve, different-

replace, and different-preserve. Each block had 36 test trials, half of which were matches. 

Score was derived through the proportion of correct hits on match trials minus the proportion 

of false alarms on no-match trials (e.g., 15/18 correct matches and 4/18 incorrect false alarms 

would lead to a score of (.83 - .22 =) .61 for that block). The three levels of the interference 

condition (none/low/high) were balanced within each block. 

RMT: Complexity. The three match rules (representing complexity) are demonstrated 

in Figure 5.2. The same condition involved matches where three strings in a row or column 

ended in the same digit. The different condition involved matches where three strings in a 

row or column ended in different digits. For the new ascending condition, the match was 

whenever three strings in a row or column ended in consecutively ascending digits. 

Participants were given instructions and practice on each match type, including specific 

instructions on the ascending condition that made it clear that the ascending digits must be in 
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consecutive order (top-to-bottom for columns, left-to-right for rows). A reminder of the 

current match rule was always present to the left of the array.  

 
Figure 5.2. Examples of match arrays for each complexity condition. Same: at least one row 

or column with strings all ending in the same digit (match: top row). Ascending: at least one 

row or column with strings all ending in consecutively ascending digits (match: top row). 

Different: at least one row or column with strings all ending in different digits (match: middle 

row). 

RMT: String-preservation. The string-preservation parameter was manipulated by 

comparing the score of preserve blocks against replace blocks, averaged across complexity. 

In preserve trials, 1-4 strings (at random) persisted from one array to the next – this replicated 

Chuderski’s (2014) methodology. In replace trials, all strings were always replaced with new 

ones on each new array. 

RMT: Interference. The final manipulation was interference with three levels: Int-0, 

Int-1, and Int-2 (corresponding to none, low, and high, respectively). These levels are 

demonstrated in Figure 5.3. Int-0 were regular trials with no duplicated digits. Int-1 caused 

one random string-ending digit to duplicate six times across the array into non-string-ending 

positions. Int-2 was similar, except the progenitor digit duplicated twelve times. In match 

trials, the progenitor digit was always part of the target match, while in non-match trials, it 

was a random string-ending digit. Int-0 and Int-2 replicated Chuderski (2014), while Int-1 

was a novel addition. Each level of interference was presented an equal number of times per 

block such that for each of the 18 matches and each of the 18 non-matches in a block, there 
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were six Int-0, six Int-1, and six Int-2 arrays, distributed randomly amongst complexity and 

string-preservation. 

 
Figure 5.3. Examples of arrays with interference manipulation. 0: no digits replaced. 1: six 

digits replaced by a random string-ending digit. 2: twelve digits replaced by a random string-

ending digit. Int-1 shows a low level of visual overlap caused by the duplicated 8, while Int-2 

shows a high level of visual overlap caused by the duplicated 2. 

Raven’s Advanced Progressive Matrices 

Participants completed the abbreviated 20-item version of Raven’s APM (odd items + 

items 34 and 36) as an indication of Gf, as in earlier chapters. Participants had 20 minutes to 

solve as many items as possible. 

Letter Series 

Participants had four minutes to complete as many of 15 Letter Series items as they 

could. Each item involved a patterned sequence of letters followed by an underscore to 

indicate that the task was to complete the pattern by inserting a single letter to the end of the 

sequence. Like the APM, the items become progressively more difficult. 

Latin Square Task 

The Latin Square Task (LST) was employed as an additional criterion measure. In the 

LST, participants are presented with an incomplete 4 x 4 matrix, partially filled with four 

types of shapes (a circle, square, triangle, and cross) and including one target ‘?’ cell. 

Participants are informed of the one defining rule of the LST: that each row and column may 

only contain one of each of the four shapes from the set of shapes. The task is to determine 



RELATIONAL INTEGRATION  146 

 

which of the four types of shapes should be in the marked target cell. Items primarily vary in 

difficulty through complexity (how many rows and columns must be considered to derive the 

target cell). Based on task analyses in Chapters II and III, the LST is thought to relate more to 

relational WM than to Gf, because the only rule in the task is given. 

For this implementation of the task, we administered 24 items split evenly by 

complexity. Half of these items were standard LST items while half were dynamic 

completion (DC) items (see Chapter III), where participants could dynamically fill non-target 

cells of the matrix as they solved for the target cell. This manipulation was not central to the 

current study, so the two types of items are collapsed over. 

Operation Span 

Participants completed the OSPAN with set sizes of 3, 4, 5, and 6 (two sets of each). 

In each set, participants alternated between memorizing a letter and verifying the truth of a 

mathematical operation. Once all letters for that set had been presented, participants 

attempted to recall the letters in the order they were presented. Scores were calculated as total 

number of correct letters recalled (OSPAN Letters) rather than the number of correct letters in 

fully recalled sets (OSPAN Capacity). The partial scoring of OSPAN Letters is preferred 

because it accounts for the same variance picked up by absolute scoring with OSPAN 

Capacity, but also accounts for additional variance that would be otherwise discarded (Redick 

et al., 2012). 

Spatial n-back 

Participants completed a spatial version of the n-back with two blocks of 2-back and 

two blocks of 3-back. In each block, participants were presented with a 3 x 3 cell matrix. 

Every two seconds, a blue square would flash for one second inside a random cell. The 

participant’s task was to respond whenever a blue square appeared that was on the same cell 

as a blue square from n steps back (i.e., 2 squares back on the 2-back condition). Score was 



RELATIONAL INTEGRATION  147 

 

derived as number of hits minus number of false alarms, then averaged across the four 

blocks. 

5.3. Results 

5.3.1. RMT Manipulations: Performance effects 

Descriptives for the student sample are presented in Tables 5.1 and 5.2. The six RMT 

blocks demonstrated acceptable internal consistency, α = .79, despite differences in the match 

complexity of the conditions, which a repeated-measures ANOVA determined to be 

significant, F2,198 = 222.11, p < .001. Two planned contrasts revealed the matches with lower 

relational complexity (same and ascending) had higher performance than the match with 

higher complexity (different), F1,99 = 236.90, p < .001, p
2 = .71; yet the same condition also 

had higher performance than the ascending condition, F1,99 = 201.93, p < .001, p
2 = .67. 
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Table 5.1. Descriptives for all measures, with RMT split by match complexity and 

preservation. 

 

*Note: N-back DV reflected as raw score (block average hits minus false alarms) as task is not 

itemized. RMT conditions marked with ‘-P’ indicate the preserve variant, while those without the 

suffix indicate the replace variant. 

For interference (digits duplicated), there was no main effect on performance in a 

repeated-measures ANOVA, F2,182 = 1.24, p > .05, indicating that neither low nor high 

interference decreased performance. 

Measure Mean SD

Raven's APM 0.61 0.19

Letter Series 0.69 0.12

OSPAN (Letters) 0.83 0.18

N-back DV* 2.42 1.64

Latin Square Task 0.82 0.16

   LST-Basic 0.80 0.18

   LST-DC 0.83 0.18

RMT Grand Total 0.67 0.13

  RMT Same Total 0.87 0.11

     RMT Same 0.86 0.14

     RMT Same-P 0.87 0.11

  RMT Asc Total 0.64 0.18

     RMT Asc 0.62 0.20

     RMT Asc-P 0.65 0.21

  RMT Diff Total 0.50 0.20

     RMT Diff 0.50 0.22

     RMT Diff-P 0.51 0.24



RELATIONAL INTEGRATION  149 

 

Table 5.2. Descriptives for RMT split by interference. 

 

5.3.2. RMT Prediction of Gf: Controlling for Working Memory 

The purpose of this set of analyses were to verify that the RMT correlated with Gf 

over-and-above the two criterion WM measures, complex span and n-back. An initial Gf 

factor was derived through principal axis factoring with varimax rotation on the two Gf 

measures, APM (α = .80), Letter Series (α = .75); and the LST (α = .7612). As discussed in 

Chapters II and III, I acknowledge that the LST may lie somewhere short of Gf, so the 

analyses are repeated further on without the LST also. With the LST, this factor accounted 

for 65% of the variance in the three measures with an eigenvalue of 1.95; with factor loadings 

of .774 for LST, .691 for APM, and .602 for Letter Series. 

As demonstrated in Figure 5.4, the RMT had a considerable r = .61 with Gf – this is in 

comparison with r = .41 reported by Chuderski (2014). As seen in Table 6.3, the n-back also 

correlated with Gf (r = .53) but the OSPAN did not. As seen in past research (Redick & 

Lindsey, 2013), the n-back and OSPAN also did not correlate with each other (r = -.02). 

 
12 The LST reliability here is derived through three complexity subscales (2D/3D/4D) averaged across basic and 

DC LST variants. This produces a lower-bound estimate of the total scale α but is comparable to the LST total 𝛼 

= .79 reported by Birney et al. (2012) in a population of managers.  

RMT Condition Mean SD

RMT Grand Total 0.67 0.13

  Interference 0 0.65 0.16

    Same Int 0 0.84 0.16

    Asc Int 0 0.61 0.22

    Diff Int 0 0.50 0.25

  Interference 1 0.67 0.14

    Same Int 1 0.87 0.12

    Asc Int 1 0.63 0.20

    Diff Int 1 0.51 0.23

  Interference 2 0.66 0.14

    Same Int 2 0.87 0.11

    Asc Int 2 0.63 0.22

    Diff Int 2 0.46 0.24



RELATIONAL INTEGRATION  150 

 

Table 6.4 provides the full correlation matrix separating RMT conditions and tasks. Contrary 

to Redick et al.’s (2012) recommendation, using OSPAN Capacity rather than OSPAN 

Letters generally increased the OSPAN’s correlations across the board, though it remained 

the weakest predictor of Gf (r = .25). As per Redick et al.’s suggestion, the following 

regression analyses will continue to use OSPAN Letters. Regardless of whether OSPAN 

Letters or OSPAN Capacity is used as a predictor, the outcomes of the analyses do not 

change. 

 
Figure 5.4. Scatter plot with RMT total score (raw; out of 108) on X-axis and Gf factor on Y-

axis. 

 

Table 5.3. Correlation between WM measures and Gf factor 

 

RMT OSPAN N-back

Gf Factor .61** .17 .53**

RMT Total - .13 .44**

OSPAN (Letters) - -.02



   

 

Table 5.4. Full condition and task correlation matrix. 

 

* Significant at < .05; ** Significant at < .01.  

RMT = Relation Monitoring Task. LST = Latin Square Task. APM = Raven’s Advanced Progressive Matrices. L-Series = Letter Series. OSPAN = Operation Span (Letters).

RMT (T) RMT-Pres RMT-Repl RMT-Same RMT-Asc RMT-Diff LST APM L-Series N-back OSPAN

RMT (Total) -

RMT-Preserve .93** -

RMT-Replace .93** .73** -

RMT-Same .75** .65** .74** -

RMT-Ascending .81** .78** .74** .47** -

RMT-Different .86** .80** .79** .54** .47** -

LST .51** .51** .43** .39** .43** .42** -

APM .47** .51** .36** .35** .37** .41** .54** -

L-Series .53** .51** .47** .50** .45** .38** .47** .42** -

N-back .44** .44** .37** .50** .26** .38** .47** .32** .51** -

OSPAN (Letters) .13 .18 .06 .04 .09 .15 .06 .24* .15 -.02 -
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More important to our research question was to determine if the RMT’s relationship 

to Gf was demanding similar processes as the classic WM measures (n-back and OSPAN), or 

if it was indeed contributing its predicted variance over-and-above these typical WM 

measures. We conducted a multiple linear regression predicting the Gf factor with the first 

model containing the two classic WM measures and the second adding the RMT. As seen in 

Table 5.5, the classic WM measures predicted a considerable 31% of variance in Gf, mainly 

driven through the n-back (sr2 = .28, p < .001). The OSPAN also predicted a significant, 

though small, unique portion (sr2 = .03, p < .05). Importantly, once we added the RMT, the 

predicted variance increased to 48%, a significant change, ΔR2 = .166, p < .001. With the 

RMT in the model, the OSPAN now provided nothing unique, with its predicted variance of 

Gf subsumed by either the n-back or RMT. The n-back maintained some unique predictive 

variance of Gf (sr2 = .09, p < .001) though the RMT had the highest unique component 

predicting Gf, sr2 = .17, p < .001. 

Table 5.5. Multiple linear regression with the two classic WM measures predicting Gf (Model 

1) then adding RMT (Model 2) 

Model Measure β sr2 R2 ΔR2 

1: Classic WM Measures 
OSPAN (Letters) .185 .03* 

.310 .310** 
N-back .529 .28** 

2: Add RMT 

OSPAN (Letters) .122 .01 

.476 .166** N-Back .327 .09** 

RMT .459 .17** 

 

Although the LST has been used as a Gf measure (Birney et al., 2012), it was 

primarily designed to tap relational integration (Birney et al., 2006). As discussed in Chapters 

II and III, the lack of rule induction demands means the LST is unlikely to qualify as a full Gf 
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task. Thus, it is possible that the strong relationship13 between the RMT and our Gf factor is 

primarily a result of the LST being included in the Gf factor. To demonstrate that the 

relationship still holds without the LST, we reconducted the prior regression, this time 

predicting the common factor formed only from APM and Letter Series, using the same 

extraction method. This two-task Gf factor accounted for 70.9% of variance in the two 

component measures with an eigenvalue of 1.42. The results were largely unchanged from 

the three-task Gf regression (Model 1 R2 = .334; Model 2 R2 = .460). The only substantial 

change was that the OSPAN remained a significant unique predictor in the second model (sr2 

= .03, p = .02), though it was still the lowest of the three tasks (RMT sr2 = .15, p < .001; n-

back sr2 = .08, p = .001). Thus, the strong relationship between the RMT and Gf observed 

here does not appear to be inflated simply due to the inclusion of the LST in the Gf factor. 

Given the largely identical outcomes between the two-task and three-task Gf factors, we 

proceed with the remaining analyses using the three-task Gf factor. However, this does mean 

it may be more appropriate to think of the Gf factor as more of a relational integration factor 

than a full Gf factor per se, simply because one of the tasks involved does not capture the rule 

induction demands unique to Gf. 

5.3.3. RMT Prediction of Gf: Experimental manipulations 

The first regression analysis made it clear that the RMT does indeed have an 

impressive relationship to Gf, accounting for 16.6% of Gf variability over-and-above classic 

WM measures. Although this is substantially higher than Chuderski’s finding of 5.9%, it 

should be noted that he included additional WM measures. Our next regressions (which are 

the novel component of our experiment) aimed to uncover the parameters involved in the 

 
13 To the best of our knowledge, this is the highest correlation between the RMT and Gf observed in published 

research yet. 
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RMT that are substantive to this relationship. These include complexity (match type), 

inhibition (interference), and attentional control (string-preservation). 

For match complexity, we regressed (in order) same, then ascending, then different. 

The first model, containing just same, accounted for 24% of the variance in Gf, R2 = .244, p < 

.001. Adding ascending increased this to 33%, ΔR2 = .086, p = .001. Adding different then 

further increased this to 38%, ΔR2 = .044, p = .012. In this final model, all three predictors 

held small but significant unique contributions (same: sr2 = .04, p < .05; ascending: sr2 = .04, 

p < .05; different: sr2 = .04, p < .05) while still leaving the majority R2 = .26 as shared 

variance.  

For interference, we conducted similar analyses, iterating on the regression model as 

the task increased in interference. It is worth reiterating that there were no mean differences 

found between the interference conditions. The following results are thus particularly 

interesting. The first model, with only no-interference trials, accounted for 25% of the 

variance in Gf, R2 = .249, p < .001. The second model added low interference trials, and 

increased the explained variance in Gf to 49%, ΔR2 = .240, p < .001. However, the third 

model adding high interference trials, did not increase the variance explained in Gf 

significant, ΔR2 = .006, p > .05. In the final model, only the low interference provided a 

unique contribution, sr2 = .21, p < .001. 

Our final regression model considered the string-preservation parameter. Again, it is 

worth keeping in mind that string-preservation also had no impact on mean scores. The first 

model consisted solely of string-preserve trials (which theoretically minimizes attentional 

control demands) and accounted for a significant 26% of the variance in Gf, R2 = .259, p < 

.001. Adding the string-replace trials (which theoretically translates to higher attentional 

demands) increased this accounted variance to 39%, ΔR2 = .13, p < .001. In the final model, 

only string-replace trials had a significant unique contribution, sr2 = .13, p < .001. 
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5.4. Discussion 

The aim of the current study was to experimentally manipulate the RMT as a measure 

of relational integration by demanding different levels of relational complexity, attentional 

control, and inhibition to determine what task features are essential for the task to produce its 

impressive prediction of Gf. Overall, our results were consistent with prior research 

demonstrating a significant correlation between RMT and Gf (Chuderski, 2014; Krumm et 

al., 2009; Oberauer et al., 2008) and in fact, our RMT showed an even stronger correlation (r 

= .61) than prior findings (in the r = .3~.5 range). It is worth reiterating how remarkable such 

a powerful relationship is in individual differences research (J. Cohen, 1988; Gignac & 

Szodorai, 2016), particularly when considering the apparent simplicity of the RMT, which 

requires no explicit storage over time or advanced mental manipulation. This simple task can 

predict as much as 37% of variance in a latent Gf factor composed of advanced, abstract 

series completion tasks such as Raven’s, Letter Series, and the LST. Theorizing surrounding 

the RMT seems to indicate this result simply comes about due to the purity of the task in 

measuring a most fundamental aspect of WM: relational integration (Halford et al., 1998; 

Oberauer, 2009a). Our novel experimental manipulations illustrated that – in line with the 

relational integration hypothesis – all versions of the task could predict Gf. Although the 

majority of predicted variance in Gf was shared amongst the different RMT conditions, we 

did identify further unique components of the RMT related to increases in relational 

complexity and additional attentional control and inhibition demands.  

Our three RMT match conditions (same, ascending, different) appeared to be tapping 

a similar demand in WM – which is theorized to be relational integration – a conclusion 

emerging from high reliability and a large amount of shared variance between the complexity 

conditions accounted for in Gf (the match regression findings suggest over two-thirds of the 

variance was shared between conditions). Beyond this shared variance, and contrary to 
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expectations, all three levels of complexity provided something unique in predicting Gf. 

Although this was consistent with the mean differences (in that each match was more difficult 

than the last), our hypothesis was that ascending would offer nothing unique in predicting Gf 

over-and-above same because it has the same theoretical complexity (binary), because the 

first two elements in the series can be systematically chunked, unlike in a different match. 

Although same and different did indeed each have independent components related to Gf, 

ascending also did, indicating there may be some unique demand related to the ability to 

apply systematicity (Halford et al., 1998) to the relational integration process for elements 

which are different in appearance, but can be systematically chunked down. For instance, 

once the relation between the digits (4) and (5) has been verified as ascending, they can be 

systematically chunked down into a single binding [4,5] and ascending relation needs only to 

know that the next digit follows the order as (6). We hypothesized ascending required no 

additional demand over same because they both require sequential instances of binary 

relational integration (as opposed to different, which requires ternary relational integration). 

Although this may still be the case, our results indicate that the added challenge of applying 

systematic chunking to two visually distinct digits (4,5) may constitute a demand related to 

both performance and Gf. It is also possible that this unique ascending demand came about 

through the restriction on scanning: because the ascending matches were always consecutive 

and sequential, the matches were most easily checked by scanning left-to-right and top-to-

bottom. Although they could be scanned in opposite directions, it would require reversing the 

match being checked against to descending. Conversely, for same and different matches, 

participants could scan right-to-left or bottom-to-top with only the one rule.  

For the interference manipulation, again, the majority of variance explained in Gf was 

shared amongst the three conditions (Int-0, Int-1, Int-2). The interference levels were 

virtually indistinguishable on a mean difference level however, the low interference (Int-1) 
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provided a considerable, unique component in predicting Gf which was hypothesized to be 

the demand of dealing with additional attentional interference of multiple duplicated digits. 

Our actual hypothesis related to mean differences, in that high interference (Int-2) may have 

been cueing participants to the target match, while low interference represented a ‘sweet spot’ 

of interfering, but not cueing. This sweet spot still does not make an apparent difference in 

task difficulty (Chuderski, 2014), but it does appear to tap a unique demand related to Gf, 

independent from relational integration. Although such a demand would exist independently 

of the relational integration hypothesis, it could be explained by a visual search strategy 

where participants purposely allocated no attention to potential distractors (Lu et al., 2017) – 

the non-string-ending digits. The finding that this strategy could too relate uniquely to Gf is 

preliminary but plausible, given that tasks such as Raven’s often involve many distinct visual 

elements which must be considered independently across rows and columns (Verguts & De 

Boeck, 2002) and then ruled out as irrelevant (inhibited) or maintained for further 

consideration as appropriate (Carpenter et al., 1990). 

Our final manipulation, string-preservation, is perhaps the most important. It is a 

parameter often taken for granted yet with potentially critical implications concerning the role 

of attentional control in the RMT. Prior work with the RMT has included string-preservation 

(Chuderski, 2014; Krumm et al., 2009) to minimize the amount of new scanning required, 

thus maximizing the relational integration demands while minimizing the attentional control 

demands. Our results indicate that string-preservation (like interference) has no impact on 

overall task performance but does significantly change the relationship with Gf. That is, 

string-replace trials offered a unique contribution that substantially increased the relationship 

to Gf (accounting for exactly one-third of the variance in the RMT when compared to string-

preserve trials). This means that, in line with the relational integration hypothesis, the task 

functions perfectly well as a pure predictor of Gf with string-preservation, but the relationship 
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to Gf can be enhanced further by adding the incremental attentional control demands 

reflected in string-replacement, where rapid, flexible binding and unbinding is relevant. 

It is also worth reiterating that the RMT surpassed classic WM measures, predicting 

substantial variance over-and-above the unique and shared variation accounted for by 

complex-span and n-back. It has been frequently theorized (Krumm et al., 2009; Oberauer et 

al., 2008) that this is because the RMT taps a fundamental aspect of WM: relational 

integration, which is also captured (albeit impurely) in these traditional WM measures 

(Oberauer et al., 2008), which may instead more strongly reflect passive storage or updating 

components of WM (Chapter IV). Like Chuderski (2014), we contributed further evidence to 

the relational integration hypothesis – the suggestion that Gf can be most fundamentally 

captured by measuring relational integration – by finding that all experimental variations of 

the RMT tap a similar demand consistent with the ability to rapidly establish bindings 

between independent elements. 

Some future suggestions should be considered. On the topic of string-preservation, 

there is scope to further assess its impact on task demands. In our study, we replicated 

Chuderksi’s methodology of preserving 1-4 strings at random and contrasting it to our novel 

manipulation of replacing all the strings (i.e., preserving none of them). However, in 

Oberauer et al. (2008) and Krumm et al. (2009), only a single string was preserved between 

trials, but the task updated at a faster rate (every 2 seconds). In contrast to this 8-string 

preservation, our manipulation seems minor, and yet still made a significant unique 

contribution in the relationship with Gf after controlling for WM, with the 1-4 string-

preservation accounting for about one-third of the effect. That such a seemingly minor 

manipulation had such an impact indicates that comparing a wider range of string-

preservation (i.e., up to 8 strings, rather than 4) could elucidate a further substantive 

demarcation of relational integration and attentional control demands. It is possible that 
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although the increase in strings preserved (up to 8) may further minimize attentional control 

demands, but the 2-second response window may counteract this. A future task analysis 

could thus consider both string-preservation and response window independently.  

5.4.1. Conclusion 

In this experiment, we found encouraging results for the Relation Monitoring Task as 

an assessment of relational integration and predictor of fluid intelligence. Theoretically, the 

RMT is a task demanding relational integration but, functionally, it appears to be a powerful, 

reliable predictor of Gf. This is perhaps the most important implication of our results. Our 

battery of abbreviated Gf tasks took approximately 60-75 minutes to administer. A full 

battery typical of recruitment assessment can take 4-8 hours (Chuderski, 2014) or even 

several days (Robertson, Gratton, & Sharpley, 1987). Yet the RMT, which takes only about 

20 minutes to administer, predicts as much as 37% of variance in Gf – a correlation so high it 

is only seen in 2-3% of individual differences studies (Gignac & Szodorai, 2016). 

In summary, we replicated prior research demonstrating a powerful relationship 

between the RMT and more theoretically complex Gf measures. The RMT is an insightful 

task because it requires no explicit storage over time and no advanced mental manipulation, 

instead primarily measuring relational integration. We continued Chuderski’s (2014) 

breakdown of the task, supporting the notion that the task is a measure of the ability to 

rapidly establish bindings between multiple elements for relational integration. For the first 

time, we have also demonstrated that the task appears to have some attentional control 

demands associated with it, though these are not crucial to its relationship with Gf. Our 

results are thus strong evidence for the relational integration hypothesis (Bateman, Birney, & 

Loh, 2017; Chuderski, 2014; Halford et al., 1998; Oberauer et al., 2008) but may also 

coincide with a more attentionally-oriented perspective (Kane et al., 2001; Shipstead et al., 

2016). Our findings support both theories but suggest that each may serve a different purpose 
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in the prediction of Gf. Maintaining focus during a complex task (such as Raven’s) and 

orienting attention towards the goals of the item are helpful but represent a fundamentally 

different demand to the crucial ability to integrate a relation by binding elements in a mental 

workspace such as working memory. Ultimately, no matter how focused and well-oriented 

one is to the goals of the task, the capacity for relational integration can prove to be a 

cognitive obstacle only overcome with the capacity to strategically and systematically chunk 

(Halford et al., 1998). Abstract reasoning and Gf are certainly complex constructs, with 

prototypical tasks that tap a wide range of theoretically elusive cognitive demands. Latent 

variable analysis is the current gold standard for unravelling this constellation of demands but 

theoretically-driven experimental manipulations are key to determining what cognitive 

demands are most essential for inter-individual variation. The importance of Gf tasks in 

applied settings such as recruitment and aptitude highlight a need both to understand these 

cognitive demands and to consider how we can assess them in a way that is both cost- and 

time-effective. The RMT appears to be a task that can answer the theoretical questions on the 

source of demands and provides a pragmatic substitute for large-scale Gf batteries. 
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VI. STUDY 4: THE SWAPS TASK 

Working memory is a critical system that allows us to maintain information in a 

highly accessible state for further processing. Theories of working memory must answer 

three critical questions: what limits working memory, how these limitations vary between 

individuals, and how they can explain the link between working memory and fluid 

intelligence (Conway et al., 2007). Of these theories, two prominent perspectives that we 

have focused on throughout this thesis are theories of binding capacity (Oberauer, 2009) and 

theories of attentional control (Engle & Kane, 2004). Although both provide answers to the 

three critical questions, it has been difficult to demarcate the two perspectives experimentally, 

as they often share predictions and explanations. Thus far, we have found indications that 

binding capacity in relational integration appears to provide a more parsimonious answer to 

the third question – linking WM to Gf. In each of the three prior chapters, the relational 

integration explanation has accounted for the WM-Gf overlap while attentional control seems 

to be a supplementary but non-essential component. However, because attentional control is 

so broad, it is still difficult to fully distinguish from binding capacity. For instance, although 

increased binding demands in access-random in the ACT (Chapter IV) appear to support 

relational integration theories, the random ordering may also require more attentional control 

to keep more bindings active. In Chapter V, attentional control demands appeared relevant 

but not critical. However, the task in itself (the RMT) was designed to measure relational 

integration, so it possible that the binding interpretation was getting some benefit from the 

base task overlapping with Gf through positive manifold. For instance, if participants are 

motivated to do well on all tasks, then some correlation will appear between RMT and Gf just 

through that motivation and irrespective of any actual correlation the tasks have. In our 

analyses on the RMT, this motivation would have been subsumed into the binding 

interpretation. The study for this chapter was developed to provide a direct comparison 
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between binding capacity and attentional control demands by independently manipulating 

them in a single task, the Swaps task (Crawford, 1988). Both binding capacity and attentional 

control demands are expected to contribute substantially to performance in the Swaps task 

(something that was not seen in the RMT, where attentional control demands modestly 

influenced performance). The Swaps task involves mentally rearranging a series of letters 

according to a set of simple instructions. Thus, it also exemplifies the key difference found in 

the ACT between access-fixed and access-random. The rearrangement exclusive to access-

random was thought to load highly on binding capacity, because participants must juggle 

three independent bindings rather than one systematic binding. The Swaps task removes the 

arithmetic and access/retention components and focuses completely on this rearrangement. 

The remainder of this introduction explains the Swaps task, then describes how (i) our novel 

manipulation of Letters and (ii) the established manipulation of Steps represents 

manipulations in binding capacity and attentional control, respectively. 

6.1. Introduction to the Swaps Task 

In the Swaps Task (Crawford, 1988; Stankov, 2000; Stankov & Crawford, 1993), 

participants follow instructions on a screen that direct them to ‘mentally swap’ the order of 

three letters. For instance, the letters [J K L] may be presented simultaneously, accompanied 

by lines of instructions such as “Step 1: Swap 1 and 3 | Step 2: Swap 2 and 3”. To this item, 

participants should respond with [L J K] (because Swap 1: J K L to L K J; Swap 2: L K J to L 

J K) to answer correctly. This simple task is useful because the premise of the task is 

straightforward (requiring few instructions) and yet cognitive demands can be easily 

manipulated under the same rule scheme. There are two primary demands identified in the 

task. There are active storage demands in having to hold interim solutions over the course of 

the problem (across steps). There are also binding demands in having to unbind and bind 

letters to new positions in the order. In the original studies on the Swaps (Stankov, 2000; 
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Stankov & Crawford, 1993; Stankov & Schweizer, 2007), the primary manipulation of an 

increased number of swaps (i.e., Steps) both decreased performance and increased the 

relationship of the task to the more complex Gf measures. Because the actual number of 

elements involved in the problem remained fixed at three letters, the actual binding capacity 

demands remained consistent swap-to-swap (two being changed; and three in total). Instead, 

it is more reasonable to suggest that WM is being strained through the attentional control 

demands in having to maintain the current iteration of the order from swap to swap. Although 

this could also be related to a build-up of proactive interference making it progressively more 

difficult to maintain each binding from swap to swap (which would implicate binding 

capacity demands) (for a review, see Oberauer, Awh, & Sutterer, 2017), the performance 

trajectory of increasing steps is primarily linear (see the next section for details) rather than 

exponential. Thus, when Stankov (2000) finds that the linear effect of Steps covaries with Gf, 

it is reasonable that he also concludes that Gf is related to attentional control demands. 

However, there are reasons to suggest that this conclusion may be incomplete. The following 

sections present a task analysis on the Swaps task, first analysing the Steps manipulation, 

then introducing the novel Letters manipulation. 

6.1.1. Steps 

The classic manipulation of difficulty in the Swaps task is to increase the number of 

steps. For instance, rather than requiring only two swaps to reach the solution (two steps), a 

more difficult problem may require three or even four swaps. Stankov (2000) found that the 

increase in Steps produced a smooth decrease in accuracy as steps increased, with the average 

percentage correct falling by approximately 8% for each additional step (from 90% at 1-step 

to 66% at 4-step). Although there was not a large enough range of steps in Stankov’s (2000) 

study to determine if this decrease plateaus, Bowman (2006) then provided additional data 

with steps ranging up to eight. Interestingly, Bowman found no plateauing effect, with the 
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steady decrease in accuracy continuing through to eight steps. This seems to indicate that 

attentional control demands do not simply ‘run out’ at some point (causing outright failure), 

as may be indicated by an attentional ‘capacity’, but rather, the steady increase is reflective of 

concomitant increases in the duration that attention must be kept controlled. This also means 

the increase in steps is unlikely to be simply due to a build-up of proactive interference 

(which may implicate binding capacity demands), because we would expect this proactive 

interference to become exponentially more detrimental as it accumulates throughout the 

problem.14 However, it must be cautioned that Bowman presented items in the Swaps task in 

order of sequentially increasing steps (i.e., participants started with 1-step, then moved on to 

2-step, and so on...). This means an asymptote related to attentional ‘capacity’ limits may 

have been mitigated by a learning effect (Jensen, 1977), as participants systematically learnt 

to deal with the steadily increasing demands (this point will become particularly relevant in 

the Discussion of this chapter). 

Nonetheless, it appears that each additional step is more demanding of attentional 

control than of binding capacity, because attention must be kept active and controlled for 

longer for each increase in steps. This bodes well for an attentional control view of Gf, since 

both Bowman (2006) and Stankov (2000) found a linear covariance effect for the number of 

steps relating to Gf. That is, as the steps increased, so too did the relationship of the task to 

Gf. Stankov concluded that attentional control was the most likely WM demand linked to Gf. 

However, there are problems with this conclusion. For Bowman’s (2006) data, as discussed, 

the number of steps increased sequentially throughout the task (rather than being presented in 

a random order) and thus, the increase could be more related to a learning aspect (Jensen, 

 
14 It is possible that the proactive interference demands remain consistent because they are replacing themselves 

rather than growing but the potential combination of orders invariably increases as the number of steps increase. 

It takes a minimum of six steps to experience all possible combinations of three letter orders (six possible 

orderings) but this does not account for repeats, which can occur on every non-adjacent step. 
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1977) than to an increase in attentional control demands. Stankov (2000), meanwhile, did 

randomize the order of items, solving that concern for attentional control explanations. 

However, although the overall linear performance covariance of Steps with Gf was 

significant, a closer look at the correlations reveals the trend is not as smooth as the 

performance effect. Rather, there is a large jump going from 1-step (r = .248) to 2-step (r = 

.401) but then it quickly plateaus at 3-step (r = .429) and 4-step (r = .414). Thus, there may 

be a qualitative difference between 1-step and 2-step unrelated to attentional control 

occurring. This difference could be as simple as the visual presentation of the ordering for the 

first step. That is, in the first step, the letters to-be-rearranged are given on the screen. In 

every subsequent step, the letters to-be-rearranged are ‘presented’ only in the active, direct-

access region of WM. Thus, 1-step problems may be qualitatively different in their 

attentional control demands, not because they require a stepwise, linearly decreasing amount 

of attentional control; but because they only need to be enacted on a visually presented and 

accessible arrangement of letters. It is also possible the qualitative difference is an artefact of 

the ceiling effect occurring on 1-step items. Although the success rate of 1-step items is not at 

ceiling (90% accuracy), the task does appear quite simple and this deficit from perfect 

performance may simply indicate a failure to understand the instructions. Regardless, to 

circumvent the confound of visual presentation,15 the current experiment included the 

manipulation of steps with three levels, all requiring active representation of the letter 

arrangement in direct access: 2-step (2S), 3S, and 4S items. We expect to see a linear 

decrease in performance associated with the linear increase in steps, because the attentional 

control demands are prolonged as steps increase. However, we expect to see no covariance of 

 
15 A pilot test also revealed the 1-step items were virtually unusable in the analyses, with near-perfect 

performance (M = 98%). Thus, although there was theoretical reason not to consider 1-step items, there was also 

a practical reason in maximizing the value of participant time. 
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this linear effect with Gf because research in prior chapters (Chapter III on the LST and 

Chapter V) have indicated that increasing attentional control demands are not related to Gf. 

6.1.2. Letters (and Systematicity) 

The second manipulation is (to our knowledge) a novel one for the Swaps task. The 

traditional implementation of the Swaps task includes a fixed three letter arrangement (e.g., T 

Q X) with varying number of swap steps (Stankov, 2000). However, as described earlier, this 

manipulation relates primarily to attentional control, since the actual binding demands of the 

task remain the same regardless of the step that the respondent is up to: there are always three 

letters to work with. By increasing the number of letters, we increase the number of 

constituent elements (letters) involved in each step – the binding capacity required is 

increased. Although each independent step still only requires the exchange of two letters (two 

letters are being unbound, exchanged, and bound to new positions), the ‘capacity’ demands of 

the task are increased because the full set of letters constitute additional bindings in the direct 

access region: more letters (contents) and more positions (contexts) need to be worked with 

throughout the problem. It should be cautioned now that the distance of these swaps and the 

resulting systematicity does impact on these capacity demands – this section will return to 

this point shortly. For now, it is simply important to outline that the current experiment 

includes three levels of letters, including the default level (3-letter/3L) and two additional 

levels (4L and 5L); reflecting (all else being equal) increases in binding capacity. We expect 

to see decreases in performance as the number of letters increases, as with other binding 

increases (e.g., Chapters III-V). Unlike steps (attentional control), we do expect to see 

covariation of this linear performance effect of Letters with Gf, because the additional 

bindings increase the capacity demands on the direct access region (Oberauer et al., 2007), 

which we have observed in earlier chapters. The additional bindings demanded in the access-

random over access-fixed (three to one) in the ACT related to Gf, as did the increase in RC in 
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the LST in 4D items compared to 2D items (though this was not a linear complexity effect 

because 3D items failed to consistently differentiate from 2D items).  

There are two provisos to consider for the Letters manipulation. The first is that the 

number of letters could be considered raw storage capacity, rather than binding capacity. As 

detailed throughout the thesis, the current perspective is that the direct access region is 

limited through limits on binding capacity, rather than the more ambiguous ‘storage 

capacity’. Through earlier studies in this thesis, we concluded that ‘storage’ capacity could 

refer to both active and passive elements (i.e., bound within direct access, and passively 

activated but outside direct access), but passive elements did not seem to relate to Gf 

(Bateman, 2015; Chapter IV). Binding capacity more specifically refers only to active 

relations in the direct access region. The next concern then, is whether it is possible that some 

letters within a letter set of a Swaps problem could be considered ‘passive’. This is related to 

the second proviso.  

The second proviso is more complex, to the point it requires an additional 

experimental manipulation. As we have identified in earlier chapters, problems of high 

complexity can be systematically chunked down, depending on how systematic the elements 

are. This is particularly important to a manipulation of Letters. In the basic Swaps task, there 

are only three letters. All three letters must be used in problems containing two or more steps, 

because if only two letters are used, then consecutive steps would simply be repeating (or 

reversing) the prior step, cancelling both steps out. For instance, in the item [T Q X | Swap 1 

with 2 | Swap 2 with 1], the answer is simply [T Q X] because the two swaps used the same 

two letters. Thus, all three letters must be used within two consecutive steps to ensure this 

does not occur. This same restraint does not apply to items with more than three letters, 

because the three-letter logic that ensures steps are not repeated can be applied to four letters, 

effectively leaving the fourth letter out of all the steps. This also applies to five letters, except 
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that now two of the five letters can be excluded from the instructions. This has important 

implications for our interpretation of the Letters manipulation as being differentially 

demanding of binding capacity because, as we know from the ACT (Chapter IV), the 

systematic reduction of capacity demands can lead a three-binding problem to be completed 

as a one-binding problem. In this case, a five-letter problem can be solved as a three-letter 

problem with the simple application of systematicity. For instance, consider the item [T Q X 

B L | Swap 1 with 2 | Swap 3 with 2 | Swap 1 with 3]. In this item, the two adjacent letters of 

[B L] can be kept systematically fixed throughout the problem. The item can be solved as a 3-

letter item with [T Q X] becoming [X T Q], then the [B L] can simply be addended to the 

response after the steps have been resolved as [X T Q B L]. Although the 4L and 5L 

conditions are novel, prior evidence from the Swaps task demonstrates the importance of 

considering the position of Letters. Unpublished data collected by Birney (n.d.-a) indicates 

that the distance of the swap determines the likelihood of the error: a distant swap (Swap 1 

with 3) leads to higher error rates than a close swap (Swap 1 with 2). Our findings from the 

ACT study in Chapter IV indicate this could be another example of the impact of 

systematicity (Halford et al., 1998) where the isolated digit in the close swap (e.g., the ‘3’ in 

Swap 1 with 2) reduces the binding demand because it can be held systematically fixed 

during the unbinding/rebinding process (like our access-fixed condition). Although the 

current study does not specifically consider the positioning, this Birney (n.d.-a) data 

nonetheless demonstrates the important of considering how the increase in the number of 

letters influences more than just the overall binding capacity demands.  

Although we can record the steps of each item, the nature of increasing letters means 

that items of higher letters and fewer steps have a higher chance of incidental systematicity. 

Because the Swaps problems would be randomly generated, this may result in inadvertent 

bias in items of higher letters on aggregation of the conditions just due to the increased 
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number of permutations that exclude one or two letters. Thus, instead of letting systematicity 

occur naturally, we experimentally manipulated the presence of systematicity as a third 

manipulation (Steps, Letters, Systematicity). Systematic items were generated using 3L 

generation logic only, effectively reducing the binding demands of all systematic items to 3L. 

Specifically, 4L systematic items would have one letter fixed in position (not used in any 

swap steps) while 5L systematic items would have two adjacent letters (a bigram) fixed in 

position (not used in any of the swap steps).  Non-systematic items were generated with code 

that ensured all letters were used where possible. Because 3L items must use all letters in the 

swaps (otherwise they simply reverse the same swap repeatedly), 3L items would not be 

included in analyses of systematicity (i.e., 3L items are generated identically in the 

systematicity ‘on’ and systematicity ‘off’ conditions). Although we do not have any 

theoretical reason to suspect that 4L and 5L should differ (since both rely on 3L logic), the 

fixedness of one letter as opposed to a bigram may still cause some differences. Thus, we first 

consider 4L and 5L items independently for the purpose of verifying their equivalence in the 

further investigation of systematicity. We expect trials with systematicity on to be easier than 

those with it off. The increase in accuracy for having systematicity on for 4L and 5L items 

should end up with performance similar to that seen in 3L items, minus any deficit related to 

the additional storage of a single letter (4L) or bigram (5L), which we do not anticipate being 

substantial. There may however, be an interaction with Steps, as the benefit of systematicity 

is amplified for items with higher steps, because the fixed letters are held in place for longer. 

Given the results of the ACT, we would expect participants higher in Gf to be more capable 

of dealing with non-systematic items, where the binding capacity demands are highest. 

6.1.3. Hypotheses 

The current experiment was designed to further specify the demands associated with 

binding capacity and attentional control in WM. Specifically, we aimed to uncouple the 



RELATIONAL INTEGRATION  170 

 

frequently seen overlap between binding capacity and attentional control. In aim of this goal, 

we also consider the important role of systematicity, which we identified in Chapter IV as an 

important determinant relating to the true binding capacity demands of the task. As with 

studies in prior chapters, the approach was to experimentally manipulate the core task (the 

Swaps task) to differ in theoretical demands and observe how these experimental 

manipulations changed the variance in prototypical tasks representing key constructs such as 

Gf. Unlike prior experiments the manipulations (Letters and Steps) in the Swaps task are 

expected to be quantitative in nature.16 Thus, rather than using each condition as separate 

predictors in a linear regression, we use an analysis of covariance (ANCOVA) for each 

hypothesis, with the expectation that the Letters and Steps manipulations can be plotted as 

linear functions. We then compare how latent variables of Gf and WM covary with these 

linear functions. 

For Steps (attentional control), we hypothesized a linear decrease in performance 

associated with increases in the number of steps (2S > 3S > 4S), as seen in Stankov (2000). 

However, unlike Stankov (2000), we do not predict that steps will covary with Gf, because 

the lack of 1-step items removes the qualitative difference that occurs as a result of arranging 

letters visually presented (as opposed to those only in the direct-access region). In other 

words, although attentional control demands increase consistently and linearly with increases 

in Steps (as they require longer attentional control), these demands are hypothesized to be not 

related to Gf. Thus, increased steps will not increase the relationship to Gf. Similarly, 

Bowman’s (2002) sequential ordering of Steps means the linear covariance with Gf observed 

by him may simply be due to learning (Jensen, 1977). However, attentional control demands 

 
16 RC in the LST is theorized to be, and was expected to be, a quantitative manipulation also, with the pattern of 

2D > 3D > 4D. However, the analyses consistently revealed a pattern more like 2D = 3D > 4D, and the task 

breakdown provided in discussions indicate a more qualitative difference between 4D items and the other two 

RC levels. For the RMT, the same, different, and ascending conditions were never theorized to be a continuous 

scale, only that the binding demands in different were theorized to be higher than those in same and ascending, 

though same and ascending still differed in the visual similarity of the elements to-be-integrated. 
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are more likely to be tapped through traditional WM tasks such as complex spans (used often 

by, e.g., Engle, 2018), so we do expect this linear function of Steps to covary with our WM 

factor. 

For Letters (capacity), we hypothesized a linear decrease in performance associated 

with increases in the number of letters involved in the problems (3L > 4L > 5L). Although 

this is a novel manipulation, the prediction comes from increased binding load on the direct 

access region. Previous chapters have observed a decrease in performance related to 

increased binding demands (access-random vs. access-fixed in the ACT; different vs. same in 

the RMT). 

Unlike Steps, we do expect to see a covarying effect of Gf, such that increases in 

letters are associated with concomitant increases in the relationship to Gf. This covariation 

has been somewhat seen in earlier chapters. Although this has not been consistently 

demonstrated, various reasons have been explored for why this is not showing consistently, 

including that Gf tasks may not necessarily differ in binding capacity demands, even though 

they do, more generally, tap a fundamental binding function. The overall implication of 

binding theory is that relational integration demands acts upon both WM and Gf (the 

relational integration hypothesis). Although these demands are assumed to be through the 

number of active bindings in the direct access region (Oberauer et al., 2007), it is not yet clear 

whether this can be most appropriately observed through linear increases in binding 

‘capacity’ demands (as Chapter V failed to find this difference between same vs. different). 

In the current experiment, we assume they are (Oberauer et al., 2007) and expect to see the 

linear effect of Letters leading to concomitant increases in covariation with both Gf and WM. 

Finally, for Systematicity (fixedness of letters and bigrams throughout 4L and 5L 

problems, respectively), we predict that systematic items will lead to higher performance than 

non-systematic items, and this effect will be amplified for items benefitting the most from 
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systematicity, which is those of higher steps. This performance increase should put 

systematic 4L and 5L items on the same performance level as 3L items, minus any deficit 

associated with carrying the fixed letters across the problem steps or reintegrating them with 

the final step (these demands are anticipated to be minimal). In line with the results from the 

ACT (Chapter IV), we also hypothesize that items with systematicity OFF will correlate more 

with Gf than items with systematicity ON, because they increase the binding demands of the 

problem (in line with the prior ‘capacity’ hypothesis). Specifically, systematic 4L and 5L 

items should correlate with Gf similarly to 3L items, while non-systematic 4L and 5L items 

will correlate more with Gf in correspondence with the increasing binding capacity demands. 

6.2. Method 

6.2.1. Participants 

There were 106 participants who participated in exchange for course credit. The mean 

age was 19.90 (SD = 3.85) and there were 74 females (69.8%). This is the same dataset from 

Experiment 3 of Chapter III on the LST, though the focus of the analyses in that chapter are 

on the LST rather than the Swaps task. 

6.2.2. Measures 

Swaps Task 

Participants completed 36 items of the Swaps Task as described in Stankov (2000). 

On each item, participants were presented a problem page with a set of letters (e.g., B K M) 

arranged towards the top of the screen and below, several lines of instructions (steps) that 

instructed the participants to swap the order of letters (e.g., “Swap 1 with 2 | Swap 1 with 3”).  

The number of Letters varied between three to five. The number of Steps varied 

between two to four. Letter arrangements were randomly generated by selecting from any of 

the consonants of the English alphabet with the only constraint that all letters in a problem 

had to be unique. Swap steps were generated randomly with one constraint: two consecutive 
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swaps could never cancel each other out (i.e., “Swap 1 with 3” could never be followed by 

“Swap 1 with 3” or “Swap 3 with 1”). This constraint meant that step generation would 

naturally prioritise using letter positions that had not previously been used. There were 12 of 

each number of letters (3L/4L/5L) and 12 of each number of swaps (2S/3S/4S) generated to 

make up the 36 items for each participant, mixed evenly across the two variables (i.e., there 

were four 3L2S items, four 3L3S items, and so on) and presented in a random order.  

The final manipulation was systematicity. When systematicity was off, the items were 

generated randomly using the above logic. When systematicity was on, the same logic was 

applied except that 4L and 5L items used the steps generation of 3L items to produce the 

instructions, such that only three of the four/five letters were actually used in the problem. An 

additional constraint ensured that the one/two excluded letters were chosen randomly from all 

available letters rather than always excluding the far-right letters. For 5L items, the two 

excluded letters were always adjacent, making it an excluded bigram. Systematicity was 

applied evenly, such that half of each type of item (e.g., half of 4L, half of 2S) had 

systematicity off and half had systematicity on (for 3L items, systematicity being on does 

nothing because it uses the same 3L logic either way). 

When participants were ready to respond, they pressed spacebar which progressed the 

program to a response page that was blank apart from a textbox where they could type and 

submit their response. This is different from previous research (e.g., Bowman, 2006) which 

presented the possible response options (all possible orderings) to choose from. The current 

method was preferred to prevent guessing and because it would be unpractical to display the 

120 possible combinations of letters for the novel 5L items (as opposed to only six 

combinations in 3L items). Feedback was given on each item along with the answer. 
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Gf Tasks 

The same 20-item version of Raven’s APM from earlier chapters was included. The 

same Letter Series from earlier chapters was included. The LST from Chapter III 

(Experiment 3) was also administered but the data is not included in the analyses presented 

here, primarily because the lack of rule induction makes it unsuitable as a Gf task (as 

described in Chapter II). 

WM Tasks 

The same spatial n-back, Operation Span (OSPAN) and Symmetry Span (SSPAN) 

from earlier chapters were included. For both OSPAN and SSPAN, the dependent variable 

was total number of elements (letters/squares) recalled across the task and the processing cut-

off was set at 80% accuracy. Scores below this threshold were removed and set as missing 

data. 

6.2.3. Procedure 

Participants were tested in groups of one to ten in computer labs at the University of 

Sydney. The testing sessions were 90-minutes long and participants were instructed to 

complete as many of the seven tasks as possible in the 90 minutes. The tasks were presented 

in a random order, except for SSPAN which was always presented last. This was because the 

SSPAN was thought to be the most disposable in the analyses, considering the OSPAN was 

already included. In total, 80 of the 106 participants completed all tasks including the 

SSPAN, while a small amount (two to four participants) completed five of the seven tasks, 

missing one other task. The implications of this missing data on the SSPAN are described in 

the Results. 
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6.3. Results 

6.3.1. Descriptives and performance effects 

Descriptives for all tasks are presented in Table 6.1. As can be seen among the Swaps 

descriptives, performance was considerably better than chance in all Letter conditions, 

despite chance level changing across the manipulation (i.e., 1 in 6 (16.7%) for 3L, compared 

to 1 in 120 (0.8%) for 5L17). Means and standard deviations were generally as expected 

across the tasks, with similar distributions to those seen in the prior studies. It is important 

here to once again point out the difference between OSPAN and SSPAN that is likely a 

symptom of the choice to set the SSPAN as always last in the task order (as opposed to 

randomized with the other tasks). The implications of this task ordering, and related 

subsample issues are described in detail in Section 3.9.2 (which used the same dataset). For 

consistency and due to concerns over selection bias, the same approach to analyses has been 

used in this study. That is, SSPAN is excluded from the majority of analyses to ensure the 

full dataset (n = 106) is employed. Where possible, data on the SSPAN is still mentioned, but 

findings on this subset should be interpreted cautiously. 

 
17 This chance level calculation assumes that participants know what letters were involved in each problem. 

Actual chance level may be somewhat lower than this, considering the letters were randomly generated 

throughout the problem. 
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Table 6.1. Descriptives for each Swaps condition (averaged over other variables), and the 

criterion measures for Gf (APM, Letter Series) and WM (n-back, SSPAN, OSPAN). The ‘n’ 

column refers to participants who completed the task (max is 106). 

Task Condition Mean SD n 

Swaps 

Total (proportion correct) .62 .19 106 

3-Letter (3L) .72 .19 106 

4-Letter (4L) .61 .22 106 

5-Letter (5L) .52 .25 106 

2-Step (2S) .77 .17 106 

3-Step (3S) .62 .25 106 

4-Step (4S) .47 .25 106 

Systematicity OFF (4L+5L only) .55 .23 106 

Systematicity ON (4L+5L only) .58 .24 106 

Raven’s APM Total (proportion correct) .63 .18 104 

Letter Series Total (proportion correct) .68 .15 105 

OSPAN Letters Total (proportion recalled) .90 .13 101 

SSPAN Letters Total (proportion recalled) .79 .16 80 

n-back DV* 2.63 1.68 105 

*n-back mean is reported as dependent variable (hits minus false alarms) rather than proportion of 

items correct. 

As seen in Figure 6.1, performance was affected by both letters and steps, with linear 

decreases in performance as either variable went up. A repeated-measures ANOVA was 

performed to test these performance effects statistically. The linear effect of letters was 

indeed significant, F1,104 = 105.54, p < .001, ηp
2 = .504, such that as letters increased, 

performance decreased. The linear effect of steps was also significant, F1,104 = 158.60, p < 

.001, ηp
2 = .604, such that as steps increased, performance decreased. There was also a 

significant interaction between these two linear effects, F1,104 = 5.96, p = .016, ηp
2 = .054, 

such that the increase in steps led to sharper decreases in accuracy for higher letter conditions 

(see Figure 6.1). Neither quadratic effect was significant (F1,104 = 2.27, p = .135, ηp
2 = .021 

for Letters; F1,104 = .018, p = .895, ηp
2 < .001 for Steps). 
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Figure 6.1. Accuracy (proportion correct) split by Steps and Letters. Error bars represented 

standard error. Line graphs are plotted because both variables are theoretically linear. 

To determine the influence of systematicity, a repeated-measures ANOVA was run 

again, this time including systematicity as a third variable. 3L items were removed from the 

Letters variable (because they are unaffected by systematicity18), meaning letters varied only 

between 4L and 5L. Overall, systematicity did not affect performance, F1,105 = 3.38, p = .069, 

ηp
2 = .031. However, as seen in Figure 6.2, there was a significant interaction between 

systematicity and the linear function of steps, F1,105 = 15.73, p < .001, ηp
2 = .130, such that 

systematicity made items of higher steps disproportionately easier than items of lower steps. 

There was also a significant interaction between systematicity and the quadratic function of 

steps, F1,105 = 4.83, p = .030, ηp
2 = .044. As seen in Figure 6.2, these linear and quadratic 

interactions are represented by the sharp decrease in performance going from 2S to 3S and 

 
18 There was indeed no difference between systematicity ON (M = 1.40) and systematicity OFF (M = 1.46) for 

3L items, F1,105 = 0.30, p = .587, ηp
2 = .003. 
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then the more subtle decrease from 3S to 4S when systematicity is on, which is not replicated 

when systematicity is off. The interaction between letters and systematicity was not 

significant, F1,105 = 0.04, p = .851, ηp
2 < .001, nor was the three-way interaction with steps 

included, F1,105 = 1.76, p = .187, ηp
2 = .017. However, in comparing the 3L line in Figure 6.1 

to the systematic 4L and 5L lines in the right of Figure 6.2, it is evident that systematicity did 

not, in fact, make the 4L and 5L items equivalent to 3L items in difficulty. A repeated-

measures ANOVA comparing Letters (3L vs. a composite of systematic 4L and systematic 

5L items) and the linear effect of Steps (2S vs. 3S vs. 4S) confirmed this was the case, with 

3L items having significantly higher accuracy than the systematic composite, F1,105 = 57.88, p 

< .001, ηp
2 = .355; and this difference was not influenced by an interaction with Steps, F1,105 

= 0.14, p = .714, ηp
2 = .001. 

 
Figure 6.2. Accuracy (proportion correct) split by steps, letters, and systematicity. Error bars 

represented standard error. 3L items omitted as they are unaffected by systematicity.  

6.3.2. Covariation with WM and Gf factors 

Given that both letters and steps influenced performance, the next step was to 

determine whether these linear functions (and the systematicity*steps interaction) were 

moderated by performance on the Gf or WM tasks. A Gf factor was created with principal 

axis factoring with varimax rotation on the two Gf measures: APM and Letter Series. 
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Together, the extracted factor accounted for 71% of the variance in the two measures. 

Similarly, a WM factor was extracted (with the same method) on n-back and OSPAN 

(SSPAN excluded for reasons detailed above). The WM factor accounted for 66% of the 

variance in the two measures. 

Task-level correlations are presented in Table 6.2. To test the moderating effects of 

Gf and WM, two separate ANCOVAs were run replicating the initial ANOVAs on Letters 

and Steps with either Gf or WM added as a covariate. Gf was a significant moderator of the 

linear function of Letters on performance, F1,101 = 7.69, p = .007, ηp
2 = .071, suggesting 

influence of Gf on the ability to deal with additional letters, thought to represent binding 

capacity demands. Gf was not a significant moderator of the linear function of Steps, F1,101 = 

2.37, p = .127, ηp
2 = .007, suggesting that Gf has no influence on the attentional control 

aspects of the task. Neither quadratic functions were significantly influenced by Gf, nor was 

there a three-way interaction between Letters, Steps, and Gf, all p’s > .05.  

Table 6.2. Correlations for task measures. 

 Gf APM L-Series WM n-back OSPAN SSPAN 

Swaps .58 .52 .46 .58 .52 .35 .31 

Gf - .84 .84 .49 .52 .20 .55 

APM  - .42 .41 .48 .15 .57 

L-Series   - .40 .40 .19 .32 

WM    - .81 .81 .43 

n-back     - .32 .46 

OSPAN      - .22 

SSPAN       - 

N=106; bold coefficients p < .05. Gf is the factor extracted from APM and L-Series. WM is the factor extracted 

from n-back and OSPAN. 

Repeating the analysis with WM as a covariate resulted in a significant moderating 

effect of WM on the linear function of Letters, F1,97 = 6.46, p = .013, ηp
2 = .062. WM did not 

moderate the linear function of Steps, F1,97 = 0.025, p = .875, ηp
2 < .001; though WM did 

moderate a positive quadratic function of Steps, F1,97 = 8.76, p = .004, ηp
2 = .083, such that 
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3S items were most strongly influenced by WM. There was no three-way interaction between 

Letters, Steps, and WM, F1,97 = 0.744, p = .390, ηp
2 = .008. The two hypothesized 

relationships (Gf by Letters and WM by Steps) are plotted in Figure 6.3, demonstrating the 

present but inconsistent linear covariation of Gf with Letters. More specific condition-level 

breakdowns are provided in Table 6.3, which demonstrates how the relationship to Gf 

changes little with differences in Steps but does generally increase with Letters. 
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Figure 6.3. Scatter plots of the two hypothesized covariation effects: that (top) Letters would 

covary with Gf; and (bottom) Steps would covary with WM. For the top graph, the trendlines 

demonstrate that the hypothesized covariation of Letters with Gf is present (primarily through 

the high correlation between 5L and Gf) but weak (because of the weaker correlation between 

4L and Gf). The bottom graph demonstrates that the covariation of Steps with WM fails 

because the 4S items have the weakest linear correlation to WM. 
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Table 6.3. Condition-level squared correlations (predictor in bold at top-left cell of each 

inset table) 

r2 Gf 2S 3S 4S Total r2 WM 2S 3S 4S Total 

3L .15 .08 .12 .22 3L .10 .21 .07 .21 

4L .06 .16 .13 .21 4L .14 .23 .10 .27 

5L .21 .22 .22 .36 5L .25 .22 .13 .30 

Total .22 .23 .24 .32 Total .29 .33 .16 .35 

N=106.  

Finally, for systematicity, overall the correlation between Gf and the Swaps task was 

higher when considering systematic items (r = .552) compared to non-systematic items (r = 

.469). However, both of these correlations were significant, and the two correlations did not 

significantly differ from one another, z = -1.19, p = .117. Based on the results of the accuracy 

ANOVA (which found an interaction between systematicity and steps (both linear and 

quadratic), but not between systematicity and letters), closer analyses on systematicity were 

considered by excluding the effects of Letters (4L and 5L items were grouped and 3L were 

excluded altogether, such that the dependent variable was averaged across 4L and 5L items) 

and comparing different levels of Steps. As a reminder, the mean scores between the Steps 

levels with Systematicity ON and OFF can be seen in Figure 6.2, which demonstrates a 

marked increase in performance at 4S items with systematicity ON, but not at lower steps. 

However, in an ANCOVA with Steps and Systematicity as within-subject effects and Gf as a 

covariate, Gf did not significantly moderate systematicity overall, F1,101 = 0.366, p = .546, ηp
2 

= .004; nor did it moderate either the linear (F1,101 = 2.091, p = .151, ηp
2 = .020) or quadratic 

functions (F1,101 = 1.754, p = .188, ηp
2 = .017) of Steps. None of the interactions between 

Steps, systematicity, and Gf were significant, p’s > .05. Thus, overall, systematicity did not 

seem to influence the relationship with Gf, even at its most impactful level (4S).  
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6.4. Discussion 

The study presented in Chapter VI was aimed at demarcating attentional control and 

binding capacity demands in the Swaps task. Although earlier chapters have made a 

compelling case for the importance of binding capacity as in relational integration, it has been 

difficult to fully demarcate relational integration explanations of the results from attentional 

control. The Swaps task was chosen as an ideal measure, as it allowed us to systematically 

manipulate attentional control demands separately from binding capacity by manipulating the 

number of steps and the number of letters in each problem, respectively. While the actual 

binding demands remained the same between steps, the attentional control demands increased 

simply because the active elements had to be kept in their right place for longer with more 

steps. Binding capacity meanwhile, was manipulated through the number of elements 

involved in each problem (the number of letters). Thus, an item could be low in attentional 

control demands (with fewer steps) but high in capacity demands (with more elements 

involved). Chunking was also accounted for by considering systematic and non-systematic 

problems, which kept some elements in each problem systematically fixed, effectively 

mitigating the capacity demands to match items of lower letters.  

The overall goal of distinguishing attentional control from binding capacity was 

successful. Increases in steps (attentional control) and letters (capacity) both produced steady 

and substantial increases in difficulty (refer to Figure 6.1). Although there was an interaction 

between the two variables, this is not surprising given the difficulty in uncoupling attentional 

control from capacity. Overall, the difficulty range of the Swaps task with these two 

manipulations was ideal. That is, the easiest items sat comfortably below ceiling (M = 84%) 

and the hardest items sat comfortably above the floor (M = 36%). 

In terms of cognitive correlates, we compared both a WM and a Gf factor to these 

linear performance effects. For the WM factor, it was hypothesized that both Letters and 
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Steps would relate to WM (but only Letters to Gf). The results indicated that there was 

Letters by WM covariation, but not Steps by WM. This puts some doubt over the attentional 

control demands represented by the increasing Steps, since prolonged attention is required in 

both increases in Steps and increases in the set size of our criterion tasks, operation span and 

n-back. It is possible that the way the steps are quantified do not match evenly to the 

increasing demands of our criterion tasks, OSPAN and n-back. As illustrated in the 

introduction, the increasing steps do not widen the scope of attention control, they only 

ensure that attentional control on the same select number of elements must be maintained for 

longer – which is what Kane et al. (2001) claims to be a defining characteristic of attentional 

control. The increase in difficulty is not related to changes in the number of items, only how 

long it must be maintained. In this way, it differs from OSPAN where both the duration and 

the number of elements increases as the set size of each trial goes up. While the n-back does 

keep the element size consistent (at n), considerable, incremental demands are also incurred 

by having to drop (unbind) the memory element n - 1 steps back. This can be particularly 

difficult when the element is several steps back, where the memory system is reliant on an 

ongoing chunk being formed. In the Swaps task, only the prior step is being dropped as the 

memory system remains active on the current step. Thus, the fairly crude prediction that 

Steps would covary with traditional WM measures simply came about through theoretical 

convenience though we see, once again, the problems with taking a latent variable analysis in 

favour of a more thorough task analysis. 

With that said, the results for Gf were more convincing. Overall, there were strong 

correlations between Swaps and our Gf measures, APM (r = .52), Letter Series (r = .43), and 

the latent Gf variable (r = .58). However, our main goal (as always) is to relate the separate 

manipulations of the primary task (Swaps) to Gf in line with the hypotheses. On one hand, 

the linear effect of Steps did not covary with Gf: all three Steps levels resulted in similar 
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correlations to the latent variable of Gf. If increased attentional control demands are related to 

Gf (e.g., Kane et al., 2001), the increased attentional control demands in the higher Steps 

levels should have drawn on more Gf resources, but this was clearly not the case. On the 

other hand, there was a more positive result for binding capacity views, as Gf did 

significantly moderate the relationship between Letters and performance, such that increased 

Letters led to a higher relationship with Gf. This result needs some caution though as, like 

what was has been seen before (in the LST), this effect was not a result of a clear linear 

pattern. Rather, a sudden jump in the correlation occurred for 5-letter items, while 3-letter 

and 4-letter items had similar correlations to Gf. This monotonic effect was the same 

criticism leveraged against Stankov’s (2000) attentional control explanation in the 

introduction. Thus, there may be some qualitative difference occurring at 5-letter items. 

Although the incorporation of systematicity and the binary swaps occurring in the 

swaps task (i.e., each step only involves two elements changing regardless of the number of 

letters) makes it somewhat difficult to align the task to capacity theories such as Cowan 

(2001) or Halford et al. (1998), it is nonetheless intriguing that the qualitative difference 

occurs at 5-letters, when in both Cowan and Halford et al.’s theories, four elements is the 

‘magical’ number that represents the upper limit of capacity. This difference between four 

and five letters is thus worth considering in more depth, as it may represent the difference 

between items that fall within a natural capacity against those that exceed capacity limits. 

A capacity limit of four does provide more context to our findings on systematicity. 

As theorized in the introduction, and discussed in-depth throughout this thesis, findings on 

binding capacity cannot be concluded without also considering the role of systematicity: the 

ease at which a set of bindings can be systematically reduced to fewer bindings. In the 

standard 3-letter Swaps task, systematicity is not relevant. There are only three elements in 

the problem and every step involves exactly two elements. Because every second step 
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involves an element combination that must be different from those in the prior step, every 

element is used within one step of its prior usage. Thus, all three letters are used on every 

consecutive step, demanding exactly three bindings for the entirety of the problem. This 

changes with additional letters, because the number of elements in the problem goes up but 

the number of elements in each step remains at exactly two. Thus, using 3-letter swap logic, a 

4-letter item could forgo one of the elements entirely in all the steps of the problem (and a 5-

letter item can forgo up to two of its elements entirely). Thus, to fully consider increases in 

letters, systematicity had to be accounted for. Rather than leaving it to random item 

generation (which would bias systematicity towards higher steps and higher letters), we 

introduced a systematicity variable to contrast the effects of systematic and non-systematic 

items, to determine the impact of systematicity on letters and steps. It was hypothesized that 

systematicity would effectively turn 4L and 5L items into 3L items (in terms of difficulty). 

This is because systematic 4L and 5L items can be solved using a 3L approach, with the fixed 

letters addended afterwards when the response is actually entered. The actual results were not 

this simple. Systematic 4L and 5L items were still considerably more difficult than 3L items, 

and the benefit of systematic 4L and 5L items (over non-systematic 4L and 5L items) was 

mostly marginal except for 4S items. At 4S, the benefits of systematicity were more clearly 

apparent (see Figure 6.2). As it turns out, 4S items also represent the items where the 

emerging systematicity is more clearly apparent to participants. At 2S for instance, the 

benefit of systematicity is low (because elements are only held over two steps) and may be 

easily offset by an unexpected ‘usage’ benefit as a result of actually using the element, as 

opposed to not using it. This could well be the case, considering that recall for the ABC 

variables in the ACT study was superior when the ABC variables were actually used as part 

of the problem (access) compared to when they were not (retention). This conundrum 

between systematicity benefits and access benefits in low-step items could possibly be 
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answered by a more in-depth response analysis. For instance, if erroneous responses tend to 

contain only elements that were actually used, it would indicate a benefit for usage that is not 

seen in fixed letters. 

These unexpected (but potentially explainable) results described above make it quite 

difficult to come to interpretations about the overall point of the systematicity variable, which 

was to see if the linear effect of Letters (capacity) is diminished or enhanced by systematicity. 

It is however, particularly important to fully dissect the systematicity effect, since (as 

described above) an initial hypothesis was that only high Gf participants would be able to 

deal with the higher binding demands involved in high-letter items, provided that all 

participants were being facilitated by systematicity. This hypothesis was due to the results of 

the ACT, where restricting systematicity (necessitating higher binding demands) led to the 

task increasing its correlation with Gf. We did not find this same effect in the Swaps task, as 

both systematic and non-systematic items correlated with Gf. If anything, the effect was 

reversed because the systematic items had a higher correlation than the non-systematic items. 

Despite this reversal, these results do not completely contradict the ACT findings. For a start, 

the only manipulation in the ACT was the ABC mappings (i.e., the only independent variable 

was how the ABC set was involved in the arithmetic) while the Swaps had other 

manipulations (steps and letters) that coincided with the systematicity manipulation. The 

downside of this in the ACT was that we could not demarcate binding from attentional 

control demands, but it did make the operational outcome of the task cleaner than what was 

observed in the Swaps task.  

The possible trend towards a systematicity by Gf interaction observed in the Swaps 

task indicates that there may be more strategic exploitation of the systematicity occurring. 

That is, in the ACT, everyone improved as a result of the systematic bindings (i.e., everyone 

is taking advantage of systematicity) but only high Gf participants could deal with the 
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additional bindings in non-systematic trials. The active retention of the ABC variables in the 

ACT was pivotal to item success because once they were lost, the item was doomed. Being 

presented with a systematic, fixed ordering (ABC=XYZ) made this active retention 

immediately and noticeably more comfortable. As seen in the distribution of costs (Figure 

4.5d, in Chapter IV), everybody was taking advantage of systematicity. Where individual 

differences were more often seen (the flatter, wider cost distribution in Figure 4.5e) was in 

the cases where systematicity could not be used. This is where capacity was stretched, and a 

truer proxy of Gf was obtained. Compare this to the Swaps task. It is possible that low-Gf 

participants were not even identifying the benefits of systematicity, because it was not 

immediately obvious that it would confer a benefit. For instance, if the letter sequence [B L K 

D J] is presented with [K D] systematically fixed, lower-Gf participants may still attempt 

each swap step with the full sequence [B L K D J], incurring maximum capacity cost. Higher-

Gf participants meanwhile, may appraise the sequence of steps and recognise the 

systematically fixed bigram. This would allow them to work through each step with the fixed 

bigram excluded, [B L – J]. After the final step, they can then re-insert the bigram. A strategy 

like this has some minor additional costs (appraising the item, removing the bigram, re-

inserting the bigram) but the benefit is a working binding demand of only three elements. 

Because these additional costs are applied regardless of the number of steps, this strategy 

may not even be worth doing at low steps but gains purely profitable benefits for each 

additional step in the item. Of course, this is speculative, given that we cannot tell whether 

high-Gf participants were actually ‘appraising’ the item. It may instead be possible that high-

Gf participants are better or quicker at learning to take advantage of systematicity over the 

course of the task. This speculation could be confirmed with an item-based analysis that 

considers the trajectory of performance through item ordering; or with an experimental 

manipulation that adds a condition where only one step is visible at a time (restricting the 
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ability to initially appraise the step sequence in full). Nonetheless, it is still important to 

(where possible) consider the difference between high-Gf and low-Gf participants in respect 

to systematicity, on aggregate.  

Given the importance of this test in resolving the contrasting findings of the ACT with 

the Swaps, a post-hoc analysis was performed to determine how many participants were 

actually taking advantage of systematicity. The participant pool was mean-split (high Gf > 

0.00 on the Gf factor; low Gf <= 0.00) to produce two independent samples: high-Gf and 

low-Gf participants. Their relative performance on each type of item was then considered and 

the results are presented in Table 6.4.  

Table 6.4. Comparison of systematicity advantage for High-Gf participants compared to 

Low-Gf participants (with cells critical to the hypothesis highlighted in blue). 

Low Gf  

(n = 51) 
3L items 

4L+5L Sys 

OFF items 

4L+5L Sys 

ON items 

Systematicity 

Advantage 

Shortfall to 

3L items 

2-Step items 78% 62% 65% +3% -13% 

3-Step items 64% 48% 41% -7% -23% 

4-Step items 52% 26% 33% +7% -19% 

Total 64% 46% 46% 0% -20% 

High Gf  

(n = 55) 
3L items 

4L+5L Sys 

OFF items 

4L+5L Sys 

ON items 

Systematicity 

Advantage 

Shortfall to 

3L items 

2-Step items 89% 85% 79% -6% -10% 

3-Step items 81% 66% 67% +1% -14% 

4-Step items 70% 40% 61% +21% -9% 

Total 80% 64% 69% +5% -11% 

 

In line with the theory, high Gf participants overall, gain an advantage from 

systematicity (+5%) where low Gf participants do not (0%). In particular, high Gf 

participants gain a considerable systematicity advantage in 4-step items (+21%) – items 

which are theorized to benefit the most from systematicity. There is even a slight 

disadvantage to 2-step items for high Gf participants (-6%), in line with the suggestion that 

there is an additional cost to undertaking a strategy that exploits systematicity (in this case, 
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with no benefit or even a slight cost). The rightmost column in Table 6.4 also demonstrates 

that the gap between 3L items and items of higher letters was also smaller in all cases for 

high Gf participants (-11%) compared to low Gf participants (-20%). We hypothesized that 

the gap to 3L items would be small when systematicity is on, but this was also assuming that 

everybody was taking advantage of systematicity. These results indicate that this is not the 

case – only high Gf participants are taking advantage of systematicity, and they only gain 

benefits from it at higher steps19, because the systematicity takes time to emerge across steps 

in the item. This also relates back to a potential upper limit of binding capacity of four 

(Cowan, 2001; Halford et al., 1998). These post-hoc results demonstrate that true five-

binding items may indeed be difficult, even for high Gf participants, and only through 

exploitation of strategies can they be made feasible. Combining the Swaps and ACT data 

indicates that binding capacity may be related to Gf with a two-fold explanation. The Swaps 

task indicates that high Gf participants are more likely to exploit systematicity; while the 

ACT task indicates that, when systematicity cannot be exploited, high Gf participants are also 

better able to cope with increased binding demands.  

Thus, although the systematicity findings on the ACT and the Swaps task are in 

opposite directions, there does appear to be reasonable explanations for how the contrasting 

results occurred that is still harmonious with a relational integration perspective. In any case, 

once again, there was minimal evidence produced that attentional control relates to Gf 

(assuming that attentional control is properly operationalized by the increase in Steps). These 

explanations also demonstrate how important it is to carefully consider each task. The Swaps 

task was chosen because it seemed to exemplify the rearrangement (or ‘mental permutations’; 

 
19 Independent samples t-tests confirmed that there was a significantly higher systematicity advantage (i.e., the 

difference between systematic 4L+5L items and non-systematic 4L+5L items) for high Gf participants, as 

compared to low Gf participants (t103 = 2.11, p = .037) in 4-step items. The systematicity advantage for items of 

lower steps was not significant. 
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Stankov, 2000) aspect that was crucial to the success of the ACT. However, we have seen 

that in changing the task format to prioritise rearrangement of positions, the loss of the 

mapping aspect of the task has taken away the obvious fixed ordering that was required for 

low Gf participants to notice. A point that was discussed in Chapter II was Cowan’s (2000) 

suggestion for measuring working memory: to truly measure and compare capacity, chunking 

opportunities should be clearly obvious to all participants or there should be no opportunity 

for chunking. This is an essential point because, as we have seen in this study, if the chunking 

opportunity is not completely obvious, only a subset of participants will take advantage of the 

chunking; and, as we have seen in the ACT study, this subset seems to have considerable 

overlap with the type of participants who tend to have higher capacity to deal with additional 

bindings. Without careful consideration of these chunking opportunities, apparently 

paradoxical findings can emerge, where both systematic and non-systematic presentations 

can relate to Gf. In all cases, high Gf participants are more capable of solving the problems, 

but without careful task analysis, the reason for their success may remain elusive. 

It is also possible that the systematicity advantage (exclusive to high-Gf participants) 

discovered in these post-hoc analyses can be related to the induction aspect of Gf identified in 

Chapter II. This induction aspect is theorized to be somewhat independent from the relational 

integration aspect and the sole defining factor of Gf tasks, as compared to WM tasks. In the 

current study, we have observed how a WM task such as Swaps can have a potential 

inductive aspect, relating to the emerging systematicity. Thus, it is unlikely we can ever truly 

separate WM and Gf tasks even if we were certain of the overlap (relational integration) and 

the difference (induction), because they act upon one-another. Inductive processes ‘exclusive’ 

to Gf still supports relational integration through an increased sensitivity as to what must be 

bound in the representational system. 
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6.4.1. Conclusion 

In the current chapter, we explored a task manipulation that aimed to separate 

attentional control from binding capacity. A theory throughout the thesis has been that 

relational integration (as measured through binding capacity, here) is related to Gf, where 

attentional control is not; but the two perspectives have been difficult to distinguish 

operationally. The Swaps task was an ideal measure for demarcating the two perspectives. 

Although there was some interaction between the two, the majority of variance in the Swaps 

task was associated with independent manipulations of capacity (through the number of 

letters involved in each problem) and attentional control (through the number of steps 

involved in each problem). However, as hypothesized, the variance associated with 

increasing demands on binding capacity were related to Gf, while the increasing demands 

associated with attentional control were not. A closer analysis on systematicity revealed this 

could at least partially be explained by high Gf participants taking advantage of systematicity, 

exploiting fixed elements to effectively reduce the capacity demands of higher-letter 

problems. On the surface, these results appear to go against the findings of the ACT (Chapter 

IV), but a comparative task analysis demonstrates that weaker participants may not have 

recognised the advantage of the fixed ordering in the Swaps, which was obvious and 

necessary for success in the ACT. This is a reasonable explanation considering that 

exploitation of systematicity in the Swaps task does involve an initial up-front cost associated 

with dissociating the fixed elements from the letter set. Thus, while the results are not 

perfectly in line with the hypotheses, the Swaps task nonetheless provided considerable 

insights above and beyond the previous studies. These insights are both theoretical, with the 

decoupling of attentional control from capacity; and pragmatic, demonstrating the importance 

of task analysis. 
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VII. STUDY 5: THE CHANGE DETECTION TASK 

This chapter is published in Bateman, Ngiam, and Birney (2018). [Bateman, J. E., Ngiam, W. 

X. Q., & Birney, D. P. (2018). Relational encoding of objects in working memory: Change 

detection performance is better for violations in group relations. PLoS ONE, 13 (9), 

e0203848]. There are changes to terminology and flow to fit the thesis. 

The four studies explored thus far have used an experimental-differential approach to 

simultaneously answer the two core research questions: how can relational integration 

explain limitations in working memory and how do these limitations relate to fluid 

intelligence? One prominent assumption made by the binding approach is that bindings in 

active memory are inherently tied together by some relation connecting the bindings. If this is 

true, then it would suggest that memory for relations are strong but memory for details 

unrelated to the relations are weaker. This suggestion can be exploited by using a change 

detection paradigm where the task is for respondents to notice if a change occurs between 

two sets of similar stimuli (which may or may not actually be different). In most change 

detection paradigms (Rensink, 2002), the stimuli are temporally separated with a first, initial 

exposure to a “probe” display followed by a “test” display. The probe and the test displays 

may or may not actually be the same, and the participants’ task is to judge whether the 

displays are the ‘same’ or ‘different’. Participants often experience ‘change blindness’ during 

change detection tasks, even for seemingly large changes (Rensink, 2002). Of relevance to 

the current topic, if participants can more easily notice changes to relational aspects of a 

scene, but not to changes that maintain the relational aspects, it would indicate that active 

storage is indeed based fundamentally on relations. 

Although change detection, and even the use of relations in change detection, has 

been explored in visual short-term memory research (Jiang, Olson, & Chun, 2000), the 

current study investigates this phenomenon from a working memory perspective in a large 

sample of undergraduate students. The large sample size allowed for particularly intricate 
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analyses on learning effects, and other manipulations such as presentation time to be 

considered, to demonstrate that working memory is fundamentally based on relational 

integration. The introduction below outlines the change detection paradigm in further depth 

and explains how the current manipulations extends the literature. 

7.1. Introduction to the Change Detection Task 

Change detection paradigms have been employed to investigate visual short-term 

memory (Rensink, 2002). Using change detection, Jiang et al. (2000) discovered participants 

tended to remember individual objects in relation to the object’s surroundings, even when the 

surroundings were task-irrelevant or when the target had been explicitly cued. Specifically, 

Jiang et al. had participants respond with either ‘same’ or ‘different’ to a probed target object 

which either did or did not change colour. The key experimental manipulation was whether 

the background to the object (consisting of additional objects) also changed or remained 

consistent. The backgrounds were irrelevant to the actual decision of the participant, but 

Jiang et al. found performance fell substantially if the background changed (e.g., if the 

background objects changed location or were no longer present on the test phase). This 

‘relational grouping’ (encoding the configural relationships between objects into memory) 

has been shown to enhance recall (Rensink, 2000b; Ridgeway, 2006), suggesting that 

relational grouping is a necessary aspect of maintaining individual units of information 

(elements) in working memory (N. J. Cohen & Eichenbaum, 1993; Cowan, 2001; Halford et 

al., 1998; Oberauer, 2009a). The current thesis supports the suggestion that short-term 

memory is another description for the direct access region of WM and even these so-called 

‘visual short-term memory’ tasks are demanding similar relational-based constraints. The 

current study aims to demonstrate this by employing the change detection paradigm to show 

that performance on change detection is fundamentally dictated by the level of relational 

grouping, and that the format of the task can enhance or detract from this tendency for 
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relational grouping. Specifically, we examine the impact of relational grouping on change-

detection performance by manipulating whether the change maintains the relational structure 

of the target group rather than changing the background stimuli (as in Jiang et al., 2000). 

Further manipulations to task format including the exposure times are considered, to 

determine how they influence the tendency to rely on relational information. 

The short-term memory system is responsible for maintaining temporary information 

in a highly accessible state over a short period of time (typically in the realm of seconds and 

minutes), whereas working memory (Baddeley & Hitch, 1974) often refers to maintaining and 

manipulating information. This distinction is not often made in perceptual experiments (Luck 

& Vogel, 1997) where visual WM is the preferred term. Visual WM research involves brief 

exposure times (less than one second) (Vogel, Woodman, & Luck, 2006) and simple displays 

to assess immediate encoding performance while cognitive WM research typically allows 

participants to study elements (Cowan, 2001). As discussed in Chapter II, contemporary 

cognitive theories20 of WM see the maintenance and manipulation of information inherently 

intertwined (Cowan, 2001; Oberauer, 2009a; Shipstead et al., 2016), such that capacity limits 

in WM are simply limits on how information is integrated into chunks of information 

(Cowan, 2001). Although WM is often defined by the manipulation of information, cognitive 

WM theories posit chunk-formation involves relational integration processes. Given the 

importance of this integration process to cognitive WM theories, the current study focuses on 

this chunk-formation. 

 
20 I use the term ‘cognitive theories of WM’ here to distinguish from visual short-term memory (VSTM) 

theories also related to the current study’s paradigm. Cognitive theories of WM include all the theories 

discussed in Chapter II, which theorize on the cognitive architecture of WM and consider how individual 

differences in capacity limits relate to higher-order processes. Conversely, VSTM theories are more concerned 

with explaining how visual information is encoded and capacity limits are almost exclusively related to the 

construction of the objects encoded (e.g., features, shape, orientation). In other words, the role of the individual  

is much more important to cognitive WM theories and rarely relevant to VSTM theories, but both domains of 

theories are interested in explaining how and why capacity is limited. 
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As described in Chapter II, Cowan (2001) suggests that chunks or the individual 

elements wherein are not directly related to the capacity of WM but are stored as a relation to 

some concept. For instance, recalling the sequence of letters “F-K-L” involves instantiating a 

relation to the concept of serial order. Similarly, Oberauer (2009a) proposes that information 

is maintained in WM by binding elements into a coordinated relational schema. For example, 

the recall elements F-K-L can be maintained through a schema of temporal order with F 

bound to temporal position 𝑥1 such that: F1, K2, L3. Halford et al. (1998) holds a similar 

‘binding’ view of WM but puts an emphasis on the contribution of processing limits to the 

ability to instantiate new relations. For Halford et al., the capacity of WM is limited by the 

maximum number of elements that must be simultaneously considered to comprehend the 

relation that connects them. Although these theories (Cowan, 2001; Halford et al., 1998; 

Oberauer, 2009a) each have some unique aspects, they share the view that WM capacity is 

based on relational information rather than individual pieces of information. In these 

approaches, the ostensibly ‘un-manipulated’ maintenance of information is still subject to 

‘processing-like’ limitations because the elements are stored via a common relation that must 

be instantiated.  

Analogous perspectives in the visual short-term memory literature also highlight the 

importance of relational information. Vidal, Gauchou, Tallon-Baudry, and O'Regan (2005) 

suggest that relational information is gleaned from the visual display and form a ‘structural 

gist’. Changing a feature of a non-target (i.e., background information that is not part of the 

decision) changes the ‘structural gist’ and impairs change detection despite not being actually 

being operationally relevant to the target information (i.e., information critical to the 

decision). Similarly, Rensink (2002) proposes that relational information between a set of 

objects is pooled into a ‘nexus’ that contributes to higher-level decision-making (i.e., 

decisions about the group, rather than the object). The nexus is similar to the initial pooling of 
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information in the structural gist process, though whereas the nexus exists as a separate 

source of information, the gist is bound with individual object information. The visual short-

term memory approaches are quite similar, though the nexus (Rensink, 2002) suggests a more 

economical explanation, and accounts for the finding that it is easier to detect a change 

(among a group of non-changing objects) than it is to detect the absence of a change (among 

a group of changing objects) (Rensink, 2000a). Despite this difference, both the structural gist 

and nexus theories offer similar predictions on the importance of relational information, as do 

cognitive WM theories. 

Considerable work has been devoted to determining the nature of storage and 

processing limits, and how relational information changes this capacity (Gabales & Birney, 

2011; Miyake & Shah, 1999; Oberauer et al., 2003; Rensink, 2000b; Wilhelm et al., 2013). 

As noted however, the maintenance of elements through relations means that binding is an 

essential aspect to even basic storage-over-time tasks that have little higher-order processing. 

The impact of a relational integration theory of WM (based on binding capacity limits) on 

even simple storage-over-time experiments is understated, because WM theories are typically 

concerned with explaining the link between WM and higher-order abilities such as reasoning 

or problem-solving (Halford et al., 1998; Oberauer et al., 2008), rather than basic visual tasks. 

The current study was devised to strip things back to the basics of simply how information is 

maintained over time, supporting and extending on literature that suggests even this basic 

maintenance is fundamentally dependent on relational information. 

7.1.1. Manipulations in the Change Detection Task 

Jiang et al. (2000) demonstrated that change detection for a cued target worsened 

when unrelated background stimuli was altered, indicating that accurate memory for the 

identity of individual objects is influenced by the object’s seemingly irrelevant surroundings. 

One constraint on Oberauer’s (2009a) binding framework is that elements must be bound into 



RELATIONAL INTEGRATION  198 

 

a relation to be mentally represented in WM. A singular object can be bound in a unary 

relation of space but there is no frame of reference with which to compare changes. By also 

binding the target object’s surroundings, altered relations between the object’s surroundings 

cue the observer that a change has occurred. Indeed, Jiang, Chun, and Olson (2004) found 

that the poor performance associated with tampering with the surroundings could be 

attenuated by providing an invariant frame of reference (e.g., gridlines) as an additional 

context for the target to be bound alongside.  

Although Oberauer’s (2009) cognitive-relational WM can account for these results, 

both Jiang et al. (2000) and Jiang et al. (2004) involved brief exposures times (under 1 

second) typically used when researching visual WM. Dent (2009) employed longer exposure 

times (2 seconds) in the realm of cognitive WM, manipulating whether changes to a target 

object were coordinate-only (a shift in position that maintained relations between objects) or 

categorical (a shift in position that violated the categorical relationship, e.g., above-of became 

below-of). Despite both types of changes being identical in veridical magnitude (in terms of 

change in visual angle), the categorical changes were detected at a higher rate than the 

coordinate changes. Dent’s displays were simple in nature (only four objects per display) and 

changes were always a single object moving. In the current study, we similarly employed 

longer display times but investigated change detection with multiple clusters of objects, to 

better determine the effects of an integrated chunk of objects. If a cluster of objects is bound 

together, the rate of correct change detection should be drastically different depending on 

whether the objects move together or independently. Consider Figure 7.1. If we assume 

clustered objects are bound together, then we should see enhanced detection ability if the 

change occurs to a single object (the blue change in Figure 7.1A), because the test display has 

now arranged the cluster in a way that violates the bindings in WM. Alternatively, if 

individual objects are stored without bindings to other objects, the cluster change (red change 
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in Figure 7.1B) should have enhanced detection, because it has three times as many objects 

violating the representation of the display in WM.  

 

Figure 7.1. Example of relational encoding during the proposed change-detection task. Probe 

objects (grey crosses) are encoded as chunks of objects, due to proximity. The encoded 

relational information means a single-object change (indicated in blue, in panel A) would be 

easier to detect than a cluster of objects changing (indicated in red, in panel B), despite more 

objects overall moving in the cluster change.  

In sum, if WM is primarily based on relations, we would expect a single-object 

change to produce a greater detection rate than the cluster-object change. Unlike Dent (2009), 

who focused on small set size displays and contrasted the position of two singular objects 

against one another, our displays involved large set sizes that clearly exceed the capacity of 

WM, but which were spatially arranged into clusters of objects. It was predicted that multi-

object cluster changes, despite involving a change of a larger (surface) magnitude (i.e., more 

objects shift location providing more cues for detection), would be harder to detect than 

single-object changes as the spatial relation of the cluster is maintained. We designed the 

displays to encourage chunking of clusters: objects of the same cluster were the same shape 

(e.g., squares) and were closer in proximity to each other than to objects of other clusters (van 
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Lamsweerde, Beck, & Johnson, 2016; Woodman, Vecera, & Luck, 2003). This encouraged 

elaborated encoding: the high number of objects could be offset by grouping them into 

manageable chunks (Brady & Alvarez, 2014) that were clearly defined. This “encouraged 

chunking” allowed more control over participants’ approach to the problem, mitigating the 

use of unconventional strategies like chunking with the borders which would contribute to 

error outside the core manipulation (Cowan, 2001). Nonetheless, because participants tend to 

adapt strategies over time to suit the demands of a task (Lohman & Lakin, 2011), it was a real 

possibility that these unconventional strategies quickly become the preferred approach to 

dealing with cluster changes. That is, once participants recognize that half of the changes 

involve a cluster moving, they may shift their grouping strategy to not rely on bindings 

provided by an integrated cluster. To account for this, we consider the data at the item level, 

with the order of trials added as a predictor variable in our regression model. If working 

memory is fundamentally relational (Oberauer, 2009a), we would expect a large detriment for 

cluster change detection compared to single-object change detection, as cluster changes 

maintain the relation. However, over time, as participants learn to use adaptive strategies 

which help specifically with cluster changes (such as binding to the screen border), we expect 

the difference in performance between cluster and single-object changes to minimize. 

Two additional manipulations were included to help explore the effects of relational 

grouping on the change detection task. These included two between-subjects variables: (i) 

exposure duration, and (ii) direction of single-object changes. These variables had the 

potential to damage the integrity of the core manipulation (cluster vs. single-object change 

detection), but the between-subjects variation meant we could easily cut certain conditions 

that did not function as expected. The rationale for these two variables are described below. 

Exposure duration: Because Dent’s (2009) experiment was closest in nature to the 

current experiment, we also allowed participants multiple seconds to study the probe, as 
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opposed to the sub-1s exposures featured in Jiang et al. (2000). Considering the increased set 

sizes of the objects relative to Dent (2009), we allowed an additional second (3s instead of 

Dent’s 2s). Pilot testing indicated that participants still struggled to perform above chance at 

3s exposure duration. However, it was of interest to determine if this chance performance was 

driven by certain manipulations (e.g., cluster changes being impossible to detect at brief 

exposures), so we varied probe durations at 3s and 5s, expecting that the increased study time 

in 5s would allow for more elaborate encoding strategies that accommodate cluster change 

detection. 

Single-object change direction: Single-object changes can involve the target object 

shifting away or moving closer towards its cluster. Consider Figure 7.2. Changing whether 

7.2A or 7.2B is the probe (and the other display is the test) varies whether the target is 

distancing or uniting relative to the cluster. 

 

Figure 7.2. Example of the two types of single-object changes: distancing vs. uniting. If the 

display on the left (A) is the probe and the display on the right (B) is the test, then the target 

object has distanced itself from its cluster. Conversely, if 2B is the probe and 2A is the test, 

then the target object has united with its cluster. 

According to cognitive WM theories (Cowan, 2001; Oberauer, 2009a), if all objects 

of a cluster are bound together, there is no particular reason to suspect that distancing or 

uniting should lead to different detection rates, because both changes violate the relation. 

However, if the cluster is initially easier to encode as a chunk (i.e., the probe is 7.2A), we 
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would expect distancing changes to have higher detection rates than uniting, simply because 

the cluster binding was more often complete in the distancing condition. Because the objects 

are more dispersed in 2B, the spatial relation might not be as easily encoded (Brady & 

Tenenbaum, 2013) and as such, the violation of the relation is more likely to be missed 

because the relation was weakly encoded initially. 

7.1.2. Hypotheses 

The core goal of this experiment was to demonstrate the inherent reliance on 

relational information when performing a simple lower-order task like change detection.  

H1: Changes which violate an encoded relational structure of a display will be easier 

to detect than changes which maintain the relational structure. Operationally, this means 

single-object changes will be easier to detect than cluster changes. This is the target change 

variable. 

The remaining hypotheses were dedicated to the goal of determining how this 

inherent reliance on relational information manifests.  

H2: The inherent reliance on relational information can be overcome with practice 

and experience. Operationally, the difference between cluster changes and single-object 

changes will minimize over the course of the practice items (i.e., an interaction between item 

order and target change). 

H3: The inherent reliance on relational information will be more vulnerable when 

there is insufficient exposure time to perform more elaborate encoding. Operationally, the 

difference between cluster changes and single-object changes will be larger for 3s exposure 

duration compared to 5s (i.e., an interaction between exposure duration and target change). 

Although both types of target changes will suffer a detriment in detection performance in 3s 

relative to 5s, cluster changes should experience a larger decrease because there is 

insufficient time to incorporate non-intuitive encoding of clusters using other elements such 
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as screen borders, while single-object changes can still be detected using the intuitive 

relational strategy. 

H4: Uniting single-target changes will be harder to detect than distancing single-

target changes, because the intended cluster is less likely to be encoded as a group due to the 

increased distance between each object. 

7.2. Method 

7.2.1. Participants 

Undergraduate students participated in the study in tutorial groups as part of an 

assignment for their psychology course and were asked at the end of the study whether they 

consented to contribute their data to further research purposes. This method of recruitment 

was approved by the Human Resources Ethics Committee at the University of Sydney as an 

amendment to the ethics approval for the thesis project. Only the data of those who consented 

are presented here. In total, 95221 first-year psychology students (70.2% female) at the 

University of Sydney participated. The mean age was 19.42 (SD = 3.22) years.  

7.2.2. Measure and Procedure 

Participants completed a change detection task, programmed using Inquisit Lab 5 

(Millisecond Software, 2017) and administered via desktop computer. Participants were 

tested in tutorial groups of 15-25. On each item, participants first viewed a probe image 

consisting of various shapes for either 3 or 5 seconds. Following a 3 second inter-stimulus 

interval, the test image was displayed, and participants responded whether this test image was 

the same (using the ‘A’ key) or different (using the ‘L’ key) to the probe presented 

previously.  

 
21 The large sample was the result of convenience. We acknowledge that this results in high power for the study, 

potentially exaggerating the results. As such, we reran the regression analyses five times using randomly 

selected subsets of the data (n = 200 each). Overall, none of the main effects changed significance during any of 

these subsets. Interactions occasionally fell out of significance, though this was more due to increased variability 

in the confidence intervals than the size of the effect itself (odds ratio). 
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Items were designed such that 10-12 objects were arranged on an invisible 10 x 10 

grid, centred on the screen. Each space on the grid was 2 x 2 cm and each object was 1 x 1 

cm. Objects could not fall in the outer cells of the grid but could appear on grid intersections. 

The objects were shapes of four kinds (circles, squares, triangles, crosses) and grouped into 

four clusters. The clusters were grouped both proximally and by kind of shape. That is,  

objects of the same group were closer in proximity to each other than to objects of other 

groups; and objects of the same cluster were all the same kind of shape (i.e., all squares). 

These design constraints were to facilitate grouping as a strategy to circumvent the otherwise 

large set size, allowing us to bias which groups were being formed by participants. 

Participants first viewed task instructions which specified that the change would only 

ever concern location (objects moving, rather than changing identity) with demonstrations of 

both single-object and cluster changes. Twelve items were then administered as a ‘practice’ 

set (this set forms the analyses presented here). After the twelve practice items, a further 32 

items were administered as ‘test’ items which introduced additional task manipulations and 

accompanying instructions. These additional manipulations turned out to be more impactful 

than anticipated and warped the results of the test set, making the data substantially more 

complex and challenging to interpret. For transparency, a brief summary of these additional 

manipulations can be found in Appendix C (along with descriptive results) but for now, the 

remainder of the chapter focuses on the practice set only, of which there were three core 

manipulations, described in turn. 

Target change: Half of the items were no-change trials and the other half were 

change trials. The change always involved one or more objects shifting location by 1.5 

spaces22 (of the 10x10 grid; 2.5cm) in one of the eight cardinal or intercardinal directions. 

 
22 Pilot testing of different movement lengths indicated this was a sufficient degree of change to elicit responses 

above chance but below ceiling. 
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Half of the change trials (a quarter of all trials) were cluster changes, where a clustered group 

of objects changed location in the same direction together. The other half of change trials 

were single-object changes, where a single object changed location (i.e., a single object 

changed independently of its cluster, which remained the same). Figure 7.3 demonstrates the 

target change manipulation with the three types of trials (same, cluster change, single-object 

change).  

Exposure duration: Participants were randomly allocated to a probe exposure duration 

of either 3 seconds or 5 seconds. 

Direction of single-object changes: Participants were randomly allocated to a 

direction condition, such that single-object changes for half the sample involved the object 

distancing from its cluster while for the other half, the object united towards its group. 
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Figure 7.3. Example item demonstrating the three types of trials: same (no change), cluster 

change, and single-object change. In the example above, the target shape is triangle. 

7.2.3. Approach to the analyses: Signal detection vs. proportion correct 

Although it is common to use signal detection theory (Macmillan & Creelman, 1991) 

to form a dependent measure that accounts for sensitivity (such as A’ or d’), because our core 

independent variable manipulated type of change, we would need to use the same false alarm 

rate (i.e., proportion of incorrect same trials) for both cluster and single-object conditions. 

This would mean every effect comparing cluster and single-object detection rates would be 

comparing two measures of which exactly half of each measure is perfectly overlapping with 

the other. This would raise multicollinearity and substantially reduce the size of any effect. 

Thus, instead of using a signal detection measure, we simply use raw proportion correct as 

the dependent measure. The main limitation of using raw accuracy, rather than a signal 
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detection measure, is that signal detection considers the tendency for participants to favour 

one response over the other. For instance, if participants favour pressing ‘different’ over 

‘same’, their raw accuracy for change trials will be high but at the cost of low raw accuracy 

for no-change trials. This would normally be a problem if we are only comparing accuracy of 

change trials to no-change trials, because this bias may not be apparent. However, because 

we are primarily comparing one type of change trials to another, it is less of a concern. In any 

case, there are also two further reasons to suggest that participants were not particularly 

biased. First, participants were explicitly told in the instructions that roughly half of the trials 

will contain changes and the other half will not. Second, the normal distribution indicates that 

the majority of participants were unbiased (six ‘same’ responses out of 12) or only slightly 

biased (seven ‘same’ responses). Figure 7.4 shows a histogram of how much participants 

favoured the ‘same’ response over the ‘different’ response. Although there is a lean towards 

‘same’ responses (of, on average, 0.83 of an item), this is not surprising given the challenging 

nature of the cluster change trials. Thus, there is little reason to be overly concerned by using 

raw accuracy as a dependent measure. 
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Figure 7.4. Histogram representing the number of ‘same’ responses each participant gave in 

their set of 12 trials, indicating a bias towards ‘same’ responses rather than ‘different’ 

responses (mode = 7). The bias is to be expected given the difficulty of detecting the cluster 

change items. The normal distribution indicates that participants were not overly biased, 

alleviating concerns over the use of composite accuracy scores rather than a signal detection 

score. 

7.3. Results 

7.3.1. Performance trajectories 

Analyses of the practice set were conducted by modelling item responses using a 

mixed-effects logistic regression approach, to determine the influence of each variable 

alongside performance trajectories (trial order). The analyses were conducted using the 

‘glmer’ procedure from ‘lme4’ (1.1.17) package (Bates et al., 2017) and performed with R 

version 3.5.0 (R Core Team, 2018). Plots were produced with the ‘sjPlot’ (Lüdecke, 2017) 

and ‘ggplot2’ (Wickham, 2009) packages. In total, 952 participants provided 11,436 data 

points for analysis (excluding same items: 5,718 data points). The overall proportion of 

correct trials was .819 for same items, .635 for cluster changes, and .729 for single-object 

changes. Figure 7.5 demonstrates these proportions split across direction and exposure times. 

Collapsing over direction and exposure time, the difference between change types was 



RELATIONAL INTEGRATION  209 

 

statistically significant (χ2 = 365.64, p < .001), such that accuracy was greater in same trials 

than single-object trials (OR = 2.65, se = 0.14, CI95% [2.39, 2.94], p < .001), and (consistent 

with H1) single-object accuracy was greater than cluster accuracy (OR = 1.56, se = 0.09, 

CI95% [1.39, 1.75], p < .001).  

 
Figure 7.5. Average proportion correct for target change types in the Practice Set, broken 

down by (a) direction and (b) exposure. Error bars represent 2 x standard errors. 

As the focus of our analyses is on differences between single-object changes and 

cluster changes, subsequent analyses of the practice set excluded same items. All variables 

(i.e., target change type (single-object, cluster), single-object direction (distancing, uniting), 

exposure duration (3s, 5s), and trial order) and their interactions were regressed on accuracy. 

The regression coefficients are reported in Tables 7.1 and 7.2 and trial-order trajectories are 

demonstrated in Figure 7.6. 

There was no main-effect for exposure (OR = 1.13, se = 0.08, CI95% [0.98, 1.30], p = 

.101) and exposure did not interact with any of the other variables including change type 

(contrary to H3). There was a significant main-effect for direction (OR = 0.77, se = 0.06, 

CI95% [0.67, 0.89], p < .001), such that accuracy was higher for distancing items than 

uniting items. Although the direction x change interaction was not significant (OR = 1.17, se 
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= 0.14, CI95% [0.92, 1.48], p = .200); the three-way direction x change x trial order 

interaction was (OR = 1.08, se = 0.04, CI95% [1.01, 1.16], p = .026). As can be seen in 

Figure 7.6a, this pattern of results indicates that single-object performance is worse for 

uniting than distancing (consistent with H4) but only for earlier trials: by the end of the 12 

items, the difference between distancing and uniting for single-changes has closed. 

 
Figure 7.6. Model plots of interactions (conditional on all other variables) for (a) Direction, 

and (b) Exposure. Shaded areas 95% CI. 

Trial order was a significant predictor of accuracy (OR = 1.07, se = 0.01, CI95% 

[1.39, 1.75], p < .001), with participants becoming more accurate in detecting change across 

the 12 items. Overall, the trajectory was more pronounced for single changes than cluster 

changes (OR = 1.06, se = 0.02, CI95% [1.02, 1.10], p = .001). Although the presence of an 

interaction is line with H2, Figure 7.6 demonstrates that the interaction was in the opposite 

direction to the one predicted. That is, the interaction was primarily a result of detection rates 

improving faster for single changes as opposed to cluster changes closing the gap to single 

changes (as was hypothesized). Thus, contrary to H2, the two types of changes had more 

similar performance to begin with and grew more dissimilar over the course of the 12 items. 

As seen in Figure 7.6a, this interaction effect was more pronounced for direction being 
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uniting rather than distancing (OR = 1.08, se = 0.04, CI95% [1.01, 1.16], p = .026). Simple-

interaction analyses (on this three-way interaction) indicated that the single change trajectory 

was significantly more pronounced than the cluster change trajectory for uniting items (OR = 

1.10, se = 0.03, CI95% [1.05, 1.16], p = <.001) but not for distancing items (OR = 1.02, se = 

0.02, CI95% [0.97, 1.07], p = .460); but again, as seen in Figure 7.6a, neither type of 

direction resulted in the hypothesized effect (H2: single and cluster performance becoming 

closer over the course of the 12 items). 

Table 7.1. Regression coefficients for all main effects and interactions, averaged over 

direction. 

 combined 

 Odds Ratio CI std. Error p 

Fixed Parts     

(intercept) 2.24 2.09, 2.40 0.08 < .001 

direction (uniting vs. distancing) 0.77 0.67, 0.89 0.06 < .001 

exposure (3s vs. 5s) 1.13 0.98, 1.30 0.08 .101 

change type (single vs. cluster) 1.62 1.44, 1.82 0.10 < .001 

trial order (mean centered) 1.10 1.08, 1.12 0.01 < .001 

direction x exposure 1.18 0.89, 1.56 0.17 .255 

direction x change 1.17 0.92, 1.48 0.14 .200 

exposure x change 1.16 0.92, 1.47 0.14 .208 

direction x trial order 1.09 1.05, 1.13 0.02 < .001 

exposure x trial order 0.99 0.96, 1.03 0.02 .671 

change x trial order 1.06 1.02, 1.10 0.02 .001 

direction x exposure x change 1.25 0.78, 2.00 0.30 .357 

direction x exposure x trial order 1.02 0.95, 1.10 0.04 .540 

direction x change x trial order 1.08 1.01, 1.16 0.04 .026 

exposure x change x trial order 0.99 0.92, 1.06 0.04 .823 

direction x exposure x change x trial order 1.09 0.94, 1.25 0.08 .256 

Random Parts  

τ2, subject 0.371 

N, subject 952 

ICC, subject 0.101 

Observations 5718 

Deviance 6221.116 

Note: All variables are mean-centred. 
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Table 7.2. Regression coefficients for all main effects and interactions, split by direction. 

 Uniting (reversed)  Distancing (standard) 

 Odds 

Ratio 
CI 

std. 

Error 
p  

Odds 

Ratio 
CI 

std. 

Error 
p 

Fixed Parts          

(intercept) 1.96 1.77, 2.18 0.10 < .001  2.55 2.32, 2.81 0.12 < .001 

exposure (3s vs. 5s) 1.23 1.00, 1.51 0.13 .053  1.04 0.86, 1.26 0.10 .711 

change (single vs. cluster) 1.75 1.47, 2.08 0.15 < .001  1.50 1.28, 1.76 0.12 < .001 

trial order (mean centered) 1.14 1.12, 1.18 0.02 < .001  1.05 1.03, 1.08 0.01 < .001 

exposure x change 1.30 0.92, 1.84 0.23 .138  1.04 0.76, 1.43 0.02 .802 

exposure x trial order 1.00 0.95, 1.06 0.03 .888  0.98 0.94, 1.03 0.02 .436 

change x trial order 1.10 1.05, 1.16 0.03 < .001  1.02 0.97, 1.07 0.02 .461 

exposure x change x tr. order 1.03 0.93, 1.15 0.06 .540  0.95 0.87, 1.05 0.05 .309 

Random Parts       

τ2, subject 0.363  0.377 

N, subject 426  527 

ICC, subject 0.099  0.103 

Observations 2556  3162 

Deviance 2843.202  3377.964 

Note: All variables are mean-centred. 

7.4. Discussion 

The current study was devised to reinforce the basic suggestion that WM is inherently 

relational. Additionally, we tested task parameters (probe exposure duration, direction of 

change) and considered them alongside an analysis of trial order to assess how the basic 

relational change detection finding (that changes that maintain relations are harder to detect 

than changes that violate relations) manifested over the course of the task. The core 

manipulation was successful: single-object changes which violate the relation of grouped 

objects were more likely to be detected than cluster changes where the relation is maintained. 

The study thus contributes further evidence to the current thesis that WM stores and 

maintains information through relations. These results are consistent with Dent’s (2009) 

findings on singular objects that categorical changes (changing relation) are easier to detect 

than coordinate changes (maintaining relation). Thus, although grouping efficiently 

maximises the amount of information that can be stored at any one time (Cowan, 2001), the 

present data indicates that this can come at a cost: visual changes where the relation between 
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the changed objects is maintained can be missed. This effect is demonstrated despite cluster 

changes involving changes of a larger veridical magnitude (overall, more objects change 

location) than single changes.  

Even though change detection tasks are typically seen as visual STM paradigms, the 

cognitive-relational WM built towards in this thesis (Cowan, 2001; Oberauer, 2009) applies 

suitably to these results also: participants encoded objects as part of a larger structure, rather 

than situating individual items at particular coordinates. This is also consistent with Jiang et 

al.’s (2004) finding that changing task-irrelevant objects hinders performance not due to a 

general interference effect but because this disrupts the structure of the display.  

A large sample that was unfamiliar with the task allowed us to assess naïve 

approaches and how that changed across trials. Cluster changes were initially difficult to 

detect but participant performance improved rapidly over the 12 trials. Although uniting 

cluster changes were initially more difficult than distancing cluster changes, both uniting and 

distancing cluster changes had similar levels of performance by the end of the task. This 

suggests that participants were becoming aware of the types of changes to expect (both in 

terms of cluster changes and in their respective direction), and potentially changing their 

approach to the task as a result. Although performance for cluster changes was initially 

worse, single-object change detection performance improved at a faster pace. It must be 

cautioned that this interaction was qualified by a three-way interaction with the change type 

and trial order suggesting this improvement was faster for uniting trials than for distancing 

trials (Figure 7.6a). It appears that uniting single-object changes are initially more difficult to 

naïve participants than distancing single-object changes, indicating there may be effects of 

ease of initial encoding (Brady & Tenenbaum, 2013). When objects are more disperse, it may 

be more difficult to form an accurate relation compared to when the objects form a tighter 

structure. The violations with the uniting changes are then less likely to be noticed, not 
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because they act as fundamentally different relations, but because they have never been 

encoded as the same chunk in the first place. Interestingly, participants improved in 

performance on uniting single-object changes faster than those detecting distancing single-

object changes, indicating that these encoding effects are quickly overcome with task 

familiarity. That is, once participants were aware of the nature of the groups (all the same 

shape), they were able to encode the target as part of the cluster despite the increased 

distance. This theory could be confirmed by employing another condition where the target 

object starts out at distance from the group (like the uniting condition) but moves even further 

away. Thus, this condition would still be ‘distancing’ but the initial chunk to encode would 

also be distant. Alternatively, or in addition, the improvements may be a result of increasing 

understanding of task requirements and consolidation of more effective strategies, which may 

be prone to related individual differences that have not been explicitly investigated here.  

We found no difference in overall change detection performance or learning trajectory 

when comparing display exposure times (3 vs. 5 seconds). This suggests that 3 seconds was 

sufficient time to consciously encode chunks despite having as many as three times the 

number of objects as Dent’s (2009) displays. This is consistent with Rensink’s (2000b) 

finding that 12 items can be processed in approximately 1.5 seconds. The grouping cues of 

proximity and shape identity likely aided pooling of the objects (Rensink, 2002). If this is the 

case, then it is unlikely the extended probe duration equated to elaboration. Because both 

single-object and cluster performance improved over the course of the test, it is also possible 

that two levels of structure were formed simultaneously: one level encoding relations 

between items and one level encoding relations between clusters; with 3 seconds being 

sufficient to encode both levels. Hence, both single-object and cluster performance improved 

over time (albeit with single-object performance improving faster), because both levels of 

structure were being fine-tuned over the course of the task. If a lower exposure duration (e.g., 
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1 second) produced different trajectories (e.g., single-object performance improves, but 

cluster performance does not), it would confirm that two levels of structure are present. 

It should be cautioned that the learning trajectories presented here are based on naïve 

participants and limited to 12 trials. Because performance did not reach asymptote in either 

single-object or cluster conditions, it is possible that performance trajectories could have 

continued or changed. Nonetheless, what we have demonstrated is that the learning 

trajectories of the two types of changes start out similar and quickly grow dissimilar (standard 

errors between the conditions generally lose their overlap by the third trial). Although we 

cannot say if this trend continues past 12 trials, it does indicate that initial learning of the task 

widens the gap between detection rates of single-object and cluster changes. Although this 

goes against our initial hypothesis (that participants would start with a performance 

advantage for single changes over cluster changes), it does instead support a conclusion that 

the detection of changes which violate relational structures is learned more intuitively than 

changes which maintain relational structure.  

7.4.1. Conclusion 

It is clear that structure and relation are critical to memory (Cowan, 2001; Halford et 

al., 1998; Oberauer, 2009a) and form the cornerstone of higher-order intelligence (Gentner, 

2003; Krumm et al., 2009; Oberauer et al., 2008). Oberauer (2009) suggests that 

representations are only maintained within immediately accessible memory by the binding of 

an individual element to a context within a relational schema. As a result, actively 

maintaining elements is dependent on relational information. Single-object change detection 

was better than cluster change detection, but we cannot conclude that memory is entirely 

limited by this dependency, as performance on single-object changes was not close to ceiling 

and performance on cluster changes was above chance from the very beginning of the task. 

Although it is likely that relational information was still being used even during this naïve 



RELATIONAL INTEGRATION  216 

 

cluster change detection in some way (e.g., borders or nested clusters), we cannot specifically 

say we have evidence for a complete dependency on relational information in WM. Because 

our experiment was based on changes in spatial position, we also cannot necessarily 

generalize these findings to other visual properties or verbal information. Alterations to the 

task procedure (such as informing participants of the target shape) or measurement methods 

(such as incorporating biometric measures like eye tracking) may prove more conclusive. 

Nonetheless, the present results, together with a cognitive approach to WM (extending on 

more perceptual accounts of visual WM), produces interesting implications for our 

understanding of the process and constraints involved in grouping spatial information. The 

current results indicate that grouping information is an effective way to bypass capacity 

limits, but it comes at a cost: changes that maintain the relational structure of the display are 

more likely to go undetected. Multi-object groups can shift unbeknownst to participants if 

their spatial relation is maintained. It appears that maintaining information in WM is 

dependent on the relations that connects that information, as a single object changing 

independently of its relation is conspicuous.  
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VIII. GENERAL DISCUSSION 

8.1. Discussion 

Ultimately, the goal of this project was to demonstrate that working memory (WM) 

can be best understood as a system for relational integration, the process by which 

independent representations in memory are connected via their place within a common 

relation (Oberauer, 2009; Halford et al., 1998). Traditional storage-based theories of WM 

(e.g., Baddeley & Hitch, 1974) require significant amendments to explain the pervasive 

ability to chunk (Cowan, 2001). A relational integration theory respects the importance of 

chunking by building its foundation around the connections that bind elements together. WM 

enables representations to be stored over time but in itself is not a system based on the 

capacity to store representations, but to connect them. In this way, WM capacity is not 

restrictive, but permissive. 

Relational integration theories align both with theories of higher-order cognition that 

explain abstract reasoning performance (Hummel & Holyoak, 2003) and beyond, to theories 

of comparative cognition that asks what make humans unique (Gentner, 2003). Despite the 

overlap with theories outside WM and despite the intuitive explanation of chunking, 

distinguishing the relational integration view as a pre-eminent theory of WM has been 

challenging (Cowan, 2017). This is in no part due to the difficulty in demarcating it from 

other general views of WM where task performance is restricted by broadly construed 

attentional processes. To aim in this distinction of relational integration, the current thesis 

looked to answer two fundamental questions (Conway et al., 2007) in WM theory: (i) what 

limits capacity in working memory, and (ii) how these limitations are related to performance 

on fluid intelligence (Gf) tasks. To accomplish this, we employed an experimental-

differential approach (Birney & Bowman, 2009; Deary, 2001), where tasks are 

experimentally manipulated to vary in their theorized cognitive demands, then compared to 
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established measures of Gf to determine which manipulations best explain the well-document 

overlap between WM and Gf. Overall, performance on our experimental tasks was 

consistently and concomitantly influenced by the changing demands on relational integration, 

answering the first research question on capacity limitations. Direct access capacity, as 

measured through the number of bindings that had to be simultaneously established, 

frequently linked to accuracy, with more bindings requiring higher demands and reduced 

performance. However, we also frequently found performance costs involved in varying 

attentional control demands, at times to a similar extent as the binding capacity demands. 

Critically however, the answer to the second research question, relating task manipulations to 

Gf, was regularly in favour of a relational integration view, with varying demands on binding 

capacity specifically and concomitantly linked to Gf task performance. The core of the 

remaining Discussion reflects on the implications of these findings. 

8.1.1. Measuring Working Memory through Relational Integration: Capturing true binding 

capacity 

A frequent challenge for WM researchers has been the measurement of storage 

capacity in a way that accounts for the ability to chunk information. The complex span 

paradigm attempts to solve this by using intermittent unrelated processing that hopes to pull 

attention away from conscious chunking efforts. The current thesis indicates that this 

unrelated processing is unlikely to fully prevent chunking but rather, simply taxes an 

additional attentional control demand that is (in some ways) related to capacity limits. We 

frequently found evidence for ‘true’ binding capacity limits of around three to five bindings. 

As examples, these capacity limits emerged in the Latin Square Task, with challenging 4D 

items; Swaps performance, with three to five bindings capturing a wide range of 

performance; and the Relation Monitoring Task, where relations usually involved three 

bindings. In all cases, these tests of binding capacity were sufficient to both extract 
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systematic variance between individuals in the sample and link performance to higher-order 

Gf. The frequent, unrelated processing in the complex span paradigms is an indirect way of 

capturing binding demands, because chunking is not prevented by the nature of the elements, 

but (one hopes) by the format of the task. This means the complex span is unreliable in 

capturing WM because it allows for variation in the chunking strategy, which Cowan (2001) 

recommends should be limited to maximise variation attributable to the number of active 

bindings – a higher fidelity measure of actual binding capacity. This thesis has frequently 

argued that inductive components of a task (including development of strategic knowledge 

and on-task learning) more closely align to Gf than WM, and may represent the unique 

component of Gf that is independent from WM. Thus, although induction allows for 

frequently observed overlap between WM and Gf tasks, it obfuscates the interpretation of 

capacity limits in WM.  

We were more often successful with manipulations of tasks that required every 

element to be simultaneously involved in the process or the outcome of the task in such a way 

that the elements could not be chunked. This premise was put forth generally by Cowan 

(2001) and shared by the more specific Relational Complexity (RC) theory (Halford et al., 

1998). Often, we employed RC theory in the task analyses to ensure that every element had to 

be independently represented in the solution process. For some tasks, this worked well but it 

was not without limitations. In the RMT and LST, the problem solution is the outcome of a 

relational instance requiring two to four independent bindings (in line with RC theory). RC 

theory overall predicted the performance results for these two tasks quite well but rarely told 

the full story. Eye tracking analyses in the LST indicated that distractor cells (unrelated to the 

RC of an item) factored into item success, while the novel addition of the ascending 

condition in the RMT proved to be substantially more challenging than same despite having 

similar theoretical RC demands. These exceptions do not necessarily detract from the RC 
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theory, which clearly cautions that RC is only valid when all other demands are controlled. 

However, these results do indicate that there are frequently times when increases in RC level 

can produce unintended interactions that make it impossible to truly control for all these 

demands. In the LST, the theoretical RC level increases linearly and in even intervals. In 

practice, the change required in going from 3D to 4D is substantial and catalytic to 

performance, while the change going from 2D to 3D is largely negligible, at least in a 

university population. In this case, this difference was theorized (in Chapter III) to be a result 

of interaction with a shift in strategy required for 4D items (from a shape-based to a 

dimension-based strategy). Therefore, despite the LST being a task borne from RC theory, 

RC theory failed to explain a majority of the story.  

Different troubles for RC occurred in the Swaps task, which was highly demanding 

for participants, despite the core task involving fewer elements (typically three) than most set 

sizes of the complex span (which range from two to seven). This demand was actualized in 

the Swaps task via the constant rearrangement of letters, frequently requiring letters to be 

bound separately and simultaneously. Although each individual swap only ever involved two 

letters, it was argued that the format of the task necessitated multiple independent bindings 

because there was rarely a chance to take advantage of fixed bindings beyond a single step 

(only in the systematic condition). This (letters) variable ended up being remarkably 

successful in performance demands, yet RC theory could not be applied because the outcome 

of the task was not a clear outcome of a relational instance requiring independent bindings. 

Rather, the task itself was loading on binding processes through frequent binding and 

unbinding and the outcome was conceptualized in terms of the number of bindings in the 

direct access region (Oberauer et al., 2007; Oberauer, 2009a). Thus, although Cowan’s 

(2001) theory of chunking capacity is far more general than RC theory, it may be more 

applicable to a lot of the studies observed throughout this project, where demands were 
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frequently placed on the binding process itself, rather than the outcomes of the binding 

process. Overall, we still preferred to frequently employ the RC theory because of its 

commendable specificity on complexity and instantiation, but this also led to its insufficiency 

when it could not comprehensively explain results in a way that a more general model could. 

Together though, this indicates that specifying factors involved in the binding process (e.g., 

the strength or flexibility of the bindings) could lead to meaningful task analyses that allow 

us to re-evaluate binding capacity demands throughout a task. 

A clear recommendation that comes from this research is to follow Cowan’s (2001) 

advice: minimize variation in chunking and maximize variation in the chunks. While this has 

always been the case, the current research presents several successful examples of this 

principle. The RC metric (Halford et al., 1998) ended up being most useful for identifying 

situations where bindings could be systematically chunked down. The subtle difference 

between access-fixed and access-random in the ACT was an example of systematicity. It 

required no additional instructions, yet precisely captured a component shared by WM and 

Gf, allowing us to conclude that only those high in Gf could deal with the additional bindings 

required by access-random. However, the results were not always this clear. In the Swaps 

task, which focused solely on the rearrangement of bindings, systematic items produced the 

strongest link to Gf, but that appeared to be because high Gf participants were taking 

advantage of the systematicity resulting in variance related to induction, rather than (only) 

binding. In this case, there was a failure to minimize the variation in chunking (strategy), 

which resulted in inflation of the WM-Gf correlation for the systematic condition: the 

induction component theorized to be unique to Gf was bleeding into the WM task. Although, 

at a task-level, a higher correlation may seem ideal; at a condition-level, it makes it harder to 

conclude the processes underlying WM. Thus, it is important to be vigilant with task analyses 
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and consider variation both in chunking (strategy), and in the chunks themselves (Cowan, 

2001). 

8.1.2. Demarcating attentional control demands from binding capacity in the prediction of Gf 

One of the difficulties in measuring binding capacity is that the active attention placed 

on the direct access region means predictions often coincide with attentional control theories. 

The studies in this thesis regularly tried to distinguish the two theories (despite the 

acknowledgement that they do overlap). In Chapter III on the LST, ‘dynamic completion’ 

was theorized to reduce attentional control demands by allowing participants to offload 

partial solutions. This condition successfully maintained the relationship to Gf, theorized to 

be because it still captures binding capacity involved in integrating the elements, despite the 

reduction in variance associated with attentional control demands.  

In Chapter V, the Relation Monitoring Task (theorized to be a pure measure of 

relational integration) was validated by considering binding and attentional demands 

separately. While binding demands were captured through varying performance via the match 

type, the attentional control demands rarely led to changes in performance. One of the 

unknowns surrounding the task was whether strings needed to persist between arrays, in order 

to ‘reduce the amount of new information’ to be appraised (Oberauer et al., 2008). Although 

theoretically this seems reasonable (to load more highly on relational integration, rather than 

scanning), there was yet to be any experimental validation that this was necessary. If it turned 

out that the task performed worse as a predictor of Gf without string-preservation, it would 

imply that the task’s contribution to Gf is less about relational integration and more about 

attentional demands, such as scanning. Our results were encouraging for a relational 

integration perspective, with both versions of the task (string-replace and string-preservation) 

showing strong predictions of Gf over-and-above typical WM tasks (complex-span and n-

back). The string-replace version did predict a slightly higher amount, attributable to a unique 
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attentional component. Thus, although these results are still consistent with theories of 

attentional demands, they nonetheless appear to be non-essential demands in predicting Gf. 

We found similar results when employing interference (duplicated digits across the arrays): 

non-essential but a slight, significant unique contribution.  

Finally, Chapter VI on the Swaps task was designed from the start with the aim to 

directly distinguish attentional control from binding capacity, via the independent 

manipulations of steps and letters. We found both steps and letters contributed to 

performance, but only increases in letters was related to increases in the correlation to Gf.  

The most fitting conclusion to these findings then, is that both relational integration 

and attentional control can uniquely explain task performance. Each appear to produce 

independent contributions to task demands. However, only relational integration uniquely 

overlaps with Gf. The times when attentional control overlaps with Gf are either marginal or 

non-essential contributions (as in the RMT string-replacement and interference), can be 

explained through an overlap with binding capacity (as in the ACT), or can be explained 

through inductive processes related to on-task learning (as in the complex-span). Despite all 

this, it must be cautioned that the scope of this thesis clearly aligns with a relational 

integration view and thus, has inevitably been somewhat insufficient in representing 

attentional control to the same degree as relational integration. With that said, relational 

integration has itself been underrepresented compared to attentional control in the wider 

literature23, so the hope for the studies presented here is that they provide a compelling reason 

to consider relational perspectives of WM in more depth. 

 
23 A simple comparison of search terms demonstrates this. In PsycINFO, as of December 2019, “relational 

integration + working memory” has only 27 results, while “attentional control + working memory” has 479. At 

least some of this disparity can be attributable to the (current) lack of established terminology for relational 

integration and the tendency to not use it in the title or keywords of articles (which is in itself a problem for 

developing the theory). 
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8.1.3. Measurement issues and additional contributions 

Although the primary purpose of this thesis was to contribute to the two core research 

questions (which were answered in the prior two sections), there are a number of other points 

worth remarking on, as they provide additional contributions that may prove insightful to 

researchers yet did not have a place within any individual chapter. This includes unpublished 

data from additional studies that did not warrant a place within the main chapters of the thesis 

and a discussion to address pressing measurement issues that are universal to the entire thesis 

(and the WM literature as a whole).  

In all, one of the most powerful findings was simply the raw correlation between the 

RMT and our Gf factor at r = .61. Considering the complexity of Gf tasks like the APM, 

which have still not been conclusively deciphered, it is remarkable that such a comparatively 

simple task like the RMT can predict nearly 37% of the variance in APM. Although the RMT 

and the APM take about a similar time to administer (20 minutes), a full WM and Gf battery 

can take upwards of a full day of testing. Further, the RMT is, on the surface, a simple 

matching task. Some evidence suggests that complex Gf tasks induce more test anxiety than 

ostensibly simpler tasks (Gimmig, Huguet, Caverni, & Cury, 2006). This is particularly 

relevant considering that ‘matrix-style’ tasks (like Raven’s) are well known intelligence tasks 

used in recruitment and aptitude testing (Carpenter et al., 1990). Thus, perhaps one of the 

most practical implications for the project has been to validate and promote the use of the 

RMT as an assessment both within and beyond the WM research body. 

The next point relates to measurement issues. Across the studies employed, a wide 

variety of tasks were employed. Some had conditions that bordered on too easy (LST) and 

some too hard (Change Detection), while others were just right (RMT, Swaps) with a range 

that seemed to capture the extent of abilities in our university-level populations. In all cases, 

we operationalized WM demands in these tasks with accuracy. As seen in the LST-DC, even 
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conditions with very high performance (near or at ceiling) could still be insightful if what 

variance remained was meaningful (i.e., the items demanding the most relational integration). 

The RMT and Swaps task had more ideal difficulty ranges, and yet the conclusions of how 

the variance within these tasks linked to the variance within Gf tasks were not necessarily 

easier to interpret than in the LST. Better psychometric properties does make for more 

powerful (statistical) effects (as described earlier with the RMT), but careful task analyses are 

still required to interpret these effects. In all, what this indicates is that a task with clearly 

defined cognitive demands will be more meaningful than an ambiguous task, even if the 

ambiguous task has more ideal psychometric properties. Of course, a bare minimum of 

variance is required to provide any meaningful individual differences (i.e., perfect 

performance across all participants is not useful except to prove that the population is beyond 

the threshold of task demands). And of course, the ideal is to both clearly define tasks and to 

achieve good psychometric properties, but even a psychometrically ideal task is not useful 

without a meaningful decomposition of the cognitive processes involved. 

Another extreme example of the need for careful measurement of accuracy comes 

from additional data from the Change Detection task. As mentioned in Section 7.2.2, the data 

presented in Chapter VII was from the ‘practice’ set of the task (12 items), and there was an 

additional ‘test’ set of data with additional items (32 items). The test data did not make it into 

the main analysis, because it included an overly powerful experimental manipulation that 

pervaded the other analyses. This manipulation was an ‘ignore instruction’ that appeared 

either before or after exposure to the probe display and instructed participants to ‘ignore’ any 

changes that occurred to a certain type of shape (e.g., “triangle”). The intention with this 

manipulation was to determine the relative difficulty of binding vs. unbinding elements in the 

direct access region. The theory was that pre-probe instructions would result in higher 

performance than post-probe instructions, because there is additional difficulty in selectively 
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unbinding one cluster (post-probe) as opposed to never binding the cluster in the first place 

(pre-probe). Unfortunately, this instruction timing variable was also confounded simply be 

the fact that pre-probe instructions reduced the set size to be remembered (from 10-12 to 8-9). 

Thus, although the hypothesis was ‘correct’ (pre-probe had higher performance than post-

probe), this could have simply been a set size effect. More problematically was that this 

manipulation turned out much more powerful than anticipated and warped the outcomes of 

the other manipulations (including the core target change manipulation). This variable could 

not be averaged over (as was done in other aggregate manipulations like in the LST) because 

this variable contributed such extreme variance to performance that it rendered most other 

effects non-significant. That is, the timing of the instruction was so powerful that it had to be 

included in every analysis just to explain the large variance that would otherwise have been 

attributed to random error variance. This also reduced the item size representing each effect 

to unreasonably low amounts (k = 2, in the worst case) meaning some hypotheses simply 

could not be resolved. In this case, the lack of a careful task analysis that could have 

identified the demands in the timing conditions crippled the test data. For full transparency, 

the analyses conducted on the test data are provided in Appendix C. Although this 

manipulation in the Change Detection task suffered the most, aggregation caused some issues 

elsewhere. In the Swaps task, the systematicity variable was difficult to decipher (on 

aggregate level) because it interacted both with the Letters and the Steps manipulations (i.e., 

the effect of systematicity only really emerged at 4-step items, and only in 4- and 5-letter 

items). In the case of the Swaps task, this was less damaging to our interpretation because the 

other manipulations (Letters and Steps) were strong enough to allow for further task 

breakdowns to provide insight (as was done, i.e., in Section 6.4 deconstructing the 

systematicity advantage in each condition). A solution to these issues is to not overextend the 

experiment to include so many manipulations. In the case of the Swaps task, the systematicity 
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variable was a necessary inclusion as an outcome of the task analysis conducted on the 

Letters variable. In this case, systematicity was going to influence the results regardless of 

whether we included it or not, so we opted to have full control over it by manipulating it as 

part of the experiment script. The reasoning for the Change Detection task was more fallible, 

as the manipulations were more a result of being tempted by the large sample size (n = 900+) 

than via a careful task analysis. In any case, a better (potential) solution to these issues is to 

consider effects both at the item level and the participant level through, e.g., linear mixed 

effects modelling. Predicting item success rather than aggregate performance (as was the case 

with the ACT in Chapter IV) allows for conclusions based on statistical approaches with 

more power. Although this approach could not have salvaged the test set of the Change 

Detection task, it is nonetheless an approach that better accounts for potential issues with 

particular items. 

Although all the tasks presented here used accuracy, it is worth mentioning another 

method of measurement that was attempted: response time. A pilot version of the Swaps data 

suffered from ceiling effects (using only 3-letter and 2-step items), so we attempted to use 

response speed instead. In another study (not described in this thesis) aiming to measure 

implicit binding, response speed was used to gauge the effect of primed binding. Although 

speed worked better than accuracy for both of these studies, it was nonetheless difficult to 

interpret the scores. This is because we could not determine how much of the variance seen in 

speed was due to the hypothesized task effects or due to tendencies to take time with 

problems, to make recalculations, or to achieve perfection rather than satisfactory 

performance. Each of these tendencies are influenced by strategic differences (and related to 

speed-accuracy trade-offs) but the presented experiments were aiming to isolate specific 

cognitive processes associated with the manipulations. Although obviously strategy does 

account for variance in accuracy (as discussed in each chapter), the problems with response 



RELATIONAL INTEGRATION  228 

 

speed are that (a) it is harder to identify the influence of strategic differences (because it 

influences multiple ‘tendencies’, as described above) and (b) these strategic differences often 

have a far greater impact on the outcome of the data (in terms of systematic variance). For 

instance, whereas an accuracy error may be spotted by a vigilant and patient participant once 

in every 10 problems, the additional delay in response speed adds up on every trial. 

Appropriate difficulty was not always easy to get right (the initial version of the CD task was 

even harder before a pilot test, with performance bordering on chance in all conditions) but 

ultimately, perfect difficulty is not needed. It is only important that performance is above 

floor and below ceiling, with enough meaningful variance between individuals. A recurring 

fear for many of the studies was that the most difficult version of the task would be the one 

correlating with Gf, but we repeatedly observed this was unfounded. The DC version of the 

LST, the simple same matches in the RMT, and items of low Steps in the Swaps, were all 

among the best predictors of Gf in their respective experiments, despite also being among the 

easiest conditions in terms of accuracy. 

Another measurement issue to consider was the potential for positive manifold to 

make it difficult to infer the relative importance of cognitive processes (Jensen, 1998), 

because it is impossible to truly strip a task of all “Gf-related” components. There are two 

reasons to be unconcerned with positive manifold affecting the interpretations. First, a pilot 

version of the RMT specifically aimed to address this by considering a ‘sensory 

discrimination’ condition where participants simply needed to identify one different number 

in the entire array. This was over potential concerns that any positive manifold was not just 

due to a general mental ability (Jensen, 1998) but due to motivation to engage in the tasks. 

Motivation was more concerning than general abilities because it could interact with the tasks 

being used. If motivation was carrying some of the correlations seen in Gf (i.e., more 

motivated participants are engaging in both Gf tasks and the predictor tasks), this sensory 
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discrimination condition would help control for that by including it in the analyses, as it was 

assumed that the sensory discrimination required no ability and would thus only represent 

motivation. As it turned out, this condition had a virtually 0.0 correlation to Gf and was 

redundant for the full task that ended up in Chapter V. Thus, it seems there needs to be at 

least some threshold of task complexity to draw on resources in such a way that would lead to 

positive manifold. In the end though, these concerns were probably also unfounded. In 

several of the studies, a basic effect of positive manifold was already accounted for by the 

base task. For instance, the basic arithmetic in the control ACT had a significant correlation 

with Gf, though this was accounted for in the analyses by only considering what was unique 

to the experimental conditions. Thus, the second reason to be unconcerned was simply 

because we observed substantially different correlations both within tasks (e.g., between 

RMT conditions) and between tasks (e.g., between the RMT and complex-span), indicating 

that positive manifold – even it did exist – was not a problem for our approach as the specific 

processes in specific conditions and tasks were often isolated. 

A final noteworthy contribution was the reliability (or lack thereof) of other, 

paradigmatic tasks. Despite the experimental modifications to the core task of each chapter, 

our approach throughout the thesis was to compare these modifications to established tasks to 

situate the conditions in the wider literature. Tasks included OSPAN, SSPAN, n-back, Letter 

Series, and, most commonly, Raven’s APM. Our mileage with these tasks varied greatly. 

Considering our aims (to situate our results in the wider literature), the most important aspect 

of these tasks was consistency. Raven’s APM was used often, partly because it is a well-

respected measure in the wider literature (Carpenter et al., 1990), but also because it 

resoundingly achieved this goal of consistency. We repeatedly found a mean accuracy of 

around 60% with a standard deviation of around 20%, and a uniform distribution of scores 

with the upper range (scoring near perfectly) and lower range (scoring only a few items) seen 
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in our university populations. Despite using a shortened 20-item version of the task, our 

distributions were remarkably consistent. The shortened version was also useful because it 

required an average of only 12 minutes to administer. The n-back also fared quite well with 

some strong correlations to expected tasks, though the scoring method of hits minus false 

alarms averaged over blocks meant the scale was not consistent with most other measures 

(proportion correct). The difficulty range on the n-back was also not as smooth as in Raven’s 

APM or other WM measures, because each additional n caused such a substantial jump in 

difficulty (as opposed to difficulty increasing over 20 items in APM or from three to seven 

items in complex span). In general, we tended to use a 2-back set and a 3-back set because 

pilot testing indicated 1-back was too easy and 4-back too difficult though the lack of this 

range may have contributed to its more inconsistent correlations between studies. 

Nonetheless, the n-back tended to perform reasonably well. Our use of complex span tasks, 

comparatively, was frequently poor. Despite following the advice of prior research (Redick et 

al., 2012), the complex span paradigm consistently failed to meet the correlations observed 

elsewhere with both other WM tasks and APM. Although the lack of a correlation between n-

back and complex span was expected, the failure to also correlate with the APM was 

somewhat concerning. Although this thesis has made arguments for why the complex span is 

unreliable (e.g., allows too much variation in chunking strategies), there was nonetheless 

some concern that we may have been administering the task wrong, given its frequent 

failings. However, the complex span did show hypothesized correlations with certain 

conditions (like ACT-retention and LST-Basic), they just tended to be weaker and more 

unreliable than expected. The occasional positive results indicate that it was employed 

correctly, but that it may simply not be the ideal WM task and Gf predictor that it is touted to 

be (Ackerman et al., 2005). Rather, it requires latent variable analysis with multiple versions 
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(i.e., operation span, reading span, etc.) to smooth out these inconsistencies (discussed in 

more depth in the next section). 

8.1.4. The future of Working Memory 

A final point to consider is the possibilities for the future of this area of research. 

Working memory is an incredibly important topic to research. In lay understandings, it can be 

seen as ‘what we are thinking about at any one time’ or simply consciousness (Persuh, 

LaRock, & Berger, 2018). More advanced understandings extend that definition to include 

things recently thought of (with less activation) as well as the processes that enable the access 

and manipulation of these things. Given the importance of WM, it is no surprise that it is 

often a major topic of introductory psychology, often grouped in the broad term ‘memory’ 

(Griggs & Jackson, 2013). However, these topics typically limit discussion of WM to 

Baddeley’s model and (somewhat confusingly) separate WM from the discussion of 

chunking in short-term memory (e.g., Weiten, 2010). While the topic of WM has to be 

simplified for introductory psychology, the prolific nature of Baddeley’s model has gone far 

beyond textbooks and often represents psychologists’ only interpretation of WM (for those 

outside of WM research).24  

Often, researchers outside WM that need to employ a WM task rely on Baddeley’s 

model and the task that was designed to simultaneously tap the two components of 

Baddeley’s model: the complex span paradigm. Engle’s (2002) addition of executive 

attention into the WM understanding proved seminal (with over 2,000 citations); probably 

because it addressed much of the insufficiencies over the central executive in Baddeley’s 

model. For researchers looking for a quick understanding of WM, frustration over the 

ambiguity of central executive would have been met with Baddeley’s (2003) admission that it 

 
24 A frequent challenge in presenting this research to other psychologists (e.g., at conferences) was overcoming 

the view that working memory is primarily a storage system with a central executive. 
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is indeed ambiguous and largely a placeholder. For these researchers, a brief, simple, and 

well-written review (Engle, 2002) on a very human construct that intuitively should be 

related to WM (executive attention) was a perfect replacement citation. Particularly so, 

because it still advocated for the use of complex span paradigm, presenting research in all 

sorts of modalities (reading, operation) with the same basic premise: store information while 

processing other information. As discussed (and observed) throughout this thesis, the 

complex span appears inadequate for measuring WM, at least in isolation. It can lead to 

similar conclusions as simple spans (Colom, Rebollo, et al., 2006), despite missing the 

component that makes it integrally WM. The processing components across the specific tasks 

(e.g., symmetry vs. operation) are not made equally (i.e., symmetry judgements vs. 

mathematical operations) and the correlations between the variations of the tasks are not 

particularly strong (Conway et al., 2005). In all, complex span tasks in themselves are quite 

impure measures of WM and the way to resolve this impurity is to use latent variable analysis 

with multiple complex span tasks, purifying the tasks by extracting what is shared (Conway 

et al., 2005). In this way, the complex span paradigm is not just the general task procedure of 

‘storage with intermittent processing’; but rather, the paradigm must necessarily include the 

latent variable extraction performed on multiple tasks with the ‘storage with intermittent 

processing’ procedure. Admittedly, our use of the complex span paradigm throughout this 

thesis lacked this latent extraction component, but for good reason (see Section 1.3.3.2). 

What was unexpected was that the complex span required latent extraction to perform as a 

measure of WM at all. The task analyses performed throughout this thesis have hopefully 

provided good reasons to consider cognitive processes at the task level, where task 

administration is pragmatic (requiring shorter testing times and potential reductions in 

fatigue) and the experimental manipulations can be directly related to cognitive demands, 

rather than related through shared processes across tasks. Although either approach is valid 
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(with theoretical accounts of the disparate/shared processes), the risk for the future of 

working memory is the interpretation of the shared processes as coming from established 

models (attentional control, multicomponential models) rather than from new, falsifiable 

models. For instance, Engle’s (2018) process-oriented account of more attention-focused 

tasks (like Stroop and anti-saccade) is much more compelling (than complex span 

approaches), with these tasks often being the most reliable among their arsenal.  

The complex span paradigm may indeed be a valid and reliable approach (with the 

necessary inclusion of latent variable analysis) but, as Conway et al. (2005) state, it should 

not represent the ‘gold standard’ of WM measures. The risk with a gold standard complex 

span, when coupled with a pervasive (i.e., widely understood) theory such as the 

multicomponential model (Baddeley & Hitch, 1974), is a risk of continued inertia in the field. 

Lay understandings of WM will continue to be difficult to reconcile with chunking theories in 

short-term memory, which in turn, make the leaps towards analogical reasoning accounts (on 

the higher end) and visual encoding accounts (on the lower end) harder than they need to be, 

despite both ends of the spectrum being so closely related to a foundation of relational 

integration in working memory. The current thesis has hopefully made these leaps more 

tangible, with discussion on analogical reasoning (throughout) and the lower-level accounts 

like visual WM (in Chapter VII) assimilated with the more balanced perspective of a 

cognitive-relational WM. The integration of somewhat distant approaches in the 

experimental-differential approach (experimental manipulations and individual differences) 

used here has led to insightful and powerful findings on working memory. A future for 

working memory may well depend on continued integration of disparate approaches (like 

analogical reasoning and visual WM) along with more process-oriented accounts of task 

performance, lest we continue to offer overly dominant but potentially confusing 

explanations, such as the central executive. 
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8.2. Conclusion 

Overall, the goal of this project was to demonstrate how working memory can be 

understood through relational integration. We have discussed how established tasks can have 

their loads conceptualized as binding capacity required for relational integration, rather than 

storage capacity required simply for keeping information active. Across five studies, we have 

demonstrated that tasks can be designed to place a premium on binding and unbinding 

processes required to integrate a connected relation. We have seen some evidence that this is 

the core of working memory across functioning humans (e.g., the change detection task 

which put a limit on performance with the design of items) but also that individuals can vary 

greatly in their relational integration ability, and that this may be the purest link to more 

complex constructs like fluid intelligence. While the ability to process relations and interpret 

analogies has no doubt been recognised as an important aspect of human cognition, the field 

of working memory has struggled to see past modular views separating storage, attention, and 

processing, particularly in operationalization of demands. While the gold standard for the 

field has been to use latent variable analysis to correlate already established tasks, the studies 

throughout this thesis demonstrate the potential of task analyses leading to experimental 

manipulations that can infer powerful judgements about the demands of working memory. 
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APPENDIX A 

The following analyses are the outcome of the regression models run in Section 3.9.4 

using the ‘SSPAN-included’ approach. This lowers the sample size to n = 80 and concerns 

over using this subsample are described in Section 3.9.2. In the interest of transparency, the 

results of this approach are nonetheless given below, in an identical format as to how it would 

have appeared in the chapter, including the text. 

 

We controlled for WM by adding SSPAN, OSPAN, and n-back to a preliminary 

model, which on its own predicted the Gf factor (R2 = .406, p < .001), with SSPAN and n-

back providing a unique contribution, but not OSPAN (SSPAN sr2 = .09, p = .001; OSPAN 

sr2 < .01, p = .856; n-back sr2 = .10, p = .001). Adding LST-Basic was a significant increase 

(ΔR2 = .031, p = .047) though adding LST-DC on top of this was not (ΔR2 = .017, p = .142). 

Replicating this regression predicting just APM (rather than the Gf factor) resulted in a 

largely identical pattern of results except that LST-DC was a significant, unique contributor 

in the final model (ΔR2 = .042, p = .016). These two regressions, one predicting Gf and one 

predicting APM, are presented in Table A1 and Table A2, respectively. Running the 

regression predicting Gf without LST-Basic once again demonstrated that LST-Basic and 

LST-DC were largely contributing the same variance, as LST-DC became a significant 

change on its own, above the three WM measures (ΔR2 = .043, p = .020). 
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Table A1. Full Regression Model Predicting the Gf factor in Experiment 3 using the SSPAN-

included sample only. 

Model Predictor B t p sr2 R2 ΔR2 

1 

Operation Span .003 0.18 .856 < .001 

.406 .406 Symmetry Span .054 3.32 001 .088 

n-back .210 3.54 .001 .101 

2 

Operation Span .002 0.09 .927 < .001 

.438 .031 
Symmetry Span .054 3.36 .001 .087 

n-back .170 2.77 .007 .059 

LST-Basic .078 2.02 .047 .031 

3 

Operation Span .006 0.32 .751 .001 

.454 .017 

Symmetry Span .055 3.42 .001 .089 

n-back .154 2.50 .015 .047 

LST-Basic .034 0.83 .410 .005 

LST-DC .073 1.45 .142 .017 

N=77; bold coefficients p < .05. 

 

Table A2. Full Regression Model Predicting APM in Experiment 3 using the SSPAN-

included sample only. 

Model Predictor B t p sr2 R2 ΔR2 

1 

Operation Span -.036 -0.42 .678 .001 

.431 .431 Symmetry Span .297 3.76 < .001 .109 

n-back 1.036 3.62 .001 .101 

2 

Operation Span -.044 -0.52 .607 .002 

.461 .030 
Symmetry Span .295 3.81 < .001 .107 

n-back .844 2.85 .006 .060 

LST-Basic .375 2.02 .047 .030 

3 

Operation Span -.013 -0.15 .880 < .001 

.503 .042 

Symmetry Span .299 4.00 < .001 .110 

n-back .721 2.48 .015 .043 

LST-Basic .069 0.32 .753 .001 

LST-DC .571 2.47 .016 .042 

N=77; bold coefficients p < .05. 
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APPENDIX B 

Table B1 demonstrates the first analysis conducted (Table B2 indicates contrast 

coding) in the ACT study from Chapter IV using n = 64. Note that these results use standard 

(disregarding recall accuracy) scoring rather than absolute scoring. 

Table B1. Model 1 and Model 2 Fixed and Random Effects Estimates 

    
Fixed 

Effects 

Random 

Effects 

Predictors Model OR se CI p tau 

(Intercept) 1 3.72 0.14 2.84 – 4.87 <0.001 0.78 

Retention (vs Control) Cost 1 0.99 0.27 0.58 – 1.69 0.978 0.44 

Access (vs Retention) Cost 2 0.26 0.23 0.16 – 0.40 <0.001 0.54 

Binding (Fixed vs Random) Cost 1 0.66 0.21 0.44 – 0.99 0.046 0.81 

RB moderator 1 1.47 0.14 1.11 – 1.94 0.008 0.09 

Retention (vs Control) Cost x RB 1 0.89 0.32 0.48 – 1.65 0.704 1.17 

Access (vs Retention) Cost x RB 2 1.40 0.26 0.83 – 2.35 0.205 0.75 

Binding (Fixed vs Random) Cost x RB 1 1.60 0.22 1.05 – 2.44 0.029 0.09 

Control vs Rest 2 0.40 0.20 0.27 – 0.59 <0.001 0.21 

Access vs Rest 1 0.26 0.17 0.19 – 0.36 <0.001 0.30 

Control vs Rest x RB 2 1.11 0.22 0.72 – 1.71 0.64 0.31 

Access vs Rest x RB 1 1.32 0.18 0.93 – 1.88 0.13 0.15 

N = 1,496 observations; Conditional R2 = .375          σ2= 3.29 

Notes: To test the contrast of interest, two sets of orthogonal contrasts were needed. The column Model 

indicates which model the estimates have come from. Binding was in both models and as expected, produced 

identical estimates for all effects in both models.  

Model 1: glmer(ACT ~ 1 + bindingC*RIcomposite2 + retentionC*RIcomposite2 + 

AccessVrestC*RIcomposite2 + (1 + bindingC*RIcomposite2 + retentionC*RIcomposite2 + 

AccessVrestC*RIcomposite2 | subject)  

Model 2: glmer(ACT ~ 1 + bindingC*RIcomposite2 + accessC*RIcomposite2 + 

ControlVrestC*RIcomposite2 + (1 + bindingC*RIcomposite2 + accessC*RIcomposite2 + 

ControlVrestC*RIcomposite2 | subject) 

 

Table B2. Effect contrast coding for Models 1 and 2 

Model 1 Effect Contrast Coding C R AF AR 

bindingC 0 0 -0.5 0.5 

retentionC -0.5 0.5 0 0 

AccessVrestC -0.5 -0.5 0.5 0.5 

Model 2 Effect Contrast Coding C R AF AR 

bindingC 0 0 -0.5 0.5 

accessC 0 -2/3 1/3 1/3 

ControlVrestC -3/4 1/4 1/4 1/4 

RIcomposite2 = standardized RB         
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APPENDIX C 

For the experiment presented in Chapter VII on the Change Detection task, the 

original task extended from the base 12 ‘practice’ items into another ‘test’ set of a further 32 

items. As discussed in Chapter VIII, this test data was contaminated by an overly powerful 

“ignore instruction” manipulation. The ignore instruction appeared either before or after 

exposure to the probe display and instructed participants to ‘ignore’ any changes that 

occurred to a certain type of shape (e.g., “triangle”).  

The data presented here are the results of analyses on the test set, documented here in 

the interest of transparency. 

 

The overall proportion of correct trials for the Test set was .799 for same items, .598 

for cluster changes, and .629 for single-object changes. Overall, difference in accuracy for 

single-objects changes compared to cluster changes was significant on a paired-sample t-test, 

t951 = 3.68, p < .001, but the effect was small, d = .15 (in contrast to d = .32 for the Practice 

set). In comparing the two sets in Figure C1, it is clear that that the addition of ignore 

instructions meant participants struggled more with the Test Set than the Practice Set, and 

Figure C2 indicates this is specifically due to the post-probe instructions. Using a repeated-

measures ANOVA, the interaction between target change type (cluster vs. single-object) and 

set (practice vs. test) was indeed significant, F1,951 = 20.90, p < .001, ηp2 = .022. Although the 

interaction itself is consistent with H2 (in that cluster and single change performance become 

more similar), the direction of the effect indicates that performance on single changes 

dropped to match cluster performance (rather than cluster improving to match single). 

However, as seen in Figure C2, this was (again) largely a result of the impact of the timing of 

the ignore instruction. In general, we underestimated the impact of this timing variable. When 

considering only pre-probe Test items, the H2 effect was in the hypothesized direction, with 
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cluster changes (M = .696) improving to match single changes (M = .700). That is, pre-probe 

Test single changes (M = .700) were more similar to Practice single changes (M =.729) than 

pre-probe Test cluster changes (M = .696) were to Practice cluster changes (M = .636), F1,951 

= 32.92, p < .001, ηp2 = .033. In other words, H2 did appear to come to fruition in the test set, 

but only when considering pre-probe.  

 
Figure C1. Average proportion correct for target changes types in Practice Set compared to 

the Test Set. Error bars represent 2 x standard errors. 

 

Figure C2. Average proportion correct for target changes types in the Test Set, broken down 

by (a) direction and (b) exposure. Error bars represent 2 x standard errors. 
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As seen in Figure C3, the pattern of results for H3 (Figure C3b) and H4 (Figure C3a) 

largely followed the (non-significant) pattern of results from the Practice items. For H3, a 

mixed ANOVA was conducted (with change type as a within-subjects variable and exposure 

as a between-subjects variable). The difference between single and cluster changes was no 

different for 5 seconds compared to 3 seconds (Figure C3b), F1,948 = 2.06, p = .152, consistent 

with the Practice items (i.e., both Practice and Test analyses are contrary to H3). The 

catastrophic impact of pre-probe vs. post-probe ignore instructions (see Figure C2) meant that 

it was necessary to clarify the H3 and H4 Test set effects by adding instruction timing as a 

within-subjects variable. However, this three-way interaction (exposure x change x timing) 

was also not significant, F1,948 = 1.86, p = .173, indicating that – regardless of timing – 

exposure did not influence the difference between cluster and single performance. 

For H4, an independent samples t-test was conducted. The difference between 

distancing and uniting participants on single change performance was significant, t950 = 2.43, 

p = .015, but the effect was small, d = .16. This small difference may indicate that the results 

were following the three-way interaction discovered by the Practice set which included trial 

order, where the difference between distancing and uniting for single changes was reducing 

as the task went on. However, when adding timing as a within-subjects variable, the mixed 

ANOVA revealed a two-way interaction between timing and direction on single change 

performance, F1,950 = 34.06, p < .001, ηp2 = .035, such that the difference between distancing 

and uniting was larger for pre-probe (distancing M = .742; uniting M = .648) than for post-

probe (distancing M = .545, uniting M = .574). Thus, single change performance was indeed 

significantly worse for uniting than distancing, but only for pre-probe. Post-probe, 

meanwhile, appeared to be suffering a floor effect. 
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Figure C3. Average proportion correct for target changes types in the Test Set, broken down 

by (a) direction and (b) exposure. Error bars represent 2 x standard errors. 

As described in the prior section, the impact of pre-probe vs. post-probe on the 

between-subjects variables was clear. Indeed, the difference in accuracy between pre-probe 

(M = .767, SD = .125) and post-probe (M = .645, SD = .129) was significant, F1,948 = 521.34, 

p < .001 (consistent with H5), and disruptively powerful, ηp2 = .355. The interaction between 

target change and instruction timing was also significant, F1,948 = 26.33, p < .001, ηp2 = .027, 

such that the difference between cluster and single-object changes was larger for post-probe 

trials than for pre-probe trials. In fact, as seen in Figure 7.8, pre-probe trials had virtually 

equivalent performance between the two types of change; while post-probe instructions 

caused cluster changes to fall to chance level (50%). This outcome thus seems to suggest that 

the difference in performance between the two types of target changes (cluster and single-

object) did indeed minimize (even equivalize) after the Practice Set after all (consistent with 

H2); but post-probe instructions were so difficult that the single-object advantage resurfaces 

(but only slightly rising above the chance-level performance seen in cluster changes). 

The catastrophic effect of timing would clearly impact on H6 (synchronous 

ignore~target changes should be superior for post-probe compared to pre-probe; 

desynchronous changes should be superior for pre-probe to post-probe) because pre-probe 

would always have superior performance to post-probe regardless of other variables. 
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However, it would still be of interest to see if the gap between pre- and post-probe is smaller 

in synchronous items compared to desynchronous items, because we would expect the 

detrimental impact of post-probe is weakened if the ignored objects (which are harder to 

unbind than they are to proactively ignore) are in sync with the target objects. A repeated 

measures ANOVA was conducted and, although the timing x synchronicity interaction was 

significant, F1,951 = 128.34, p < .001, ηp2 = .119; it was in the opposite direction to the 

prediction of H6. That is, the gap between pre-probe and post-probe accuracy was larger for 

in-sync changes (pre-probe M = .770, post-probe M = .590) compared to out-of-sync changes 

(pre-probe M = .764, post-probe M = .697). However, note that the purpose of this 

synchronicity analysis was solely the interaction with timing. Although it appears that 

synchronicity results in a general disadvantage (in-sync M = .680, out-of-sync M = .729), this 

result cannot be taken in isolation because in-sync items are weighted more heavily towards 

‘different’ items which are more difficult than ‘same’ items. When adjusting for this bias by 

weighting the same items equally to the different items, the expected advantage of 

synchronicity emerges (in-sync M = .740, out-of-sync M = .681); and the interaction with 

timing remains the same, with a larger gap between pre- and post-probe for in-sync, 

compared to out-of-sync. 

H7 and H8 were comparatively simple analyses, since they focus solely on false alarm 

rates for ‘same’ items (i.e., participant saying ‘different’ to a ‘same’ item). A repeated-

measures ANOVA indicated that changes to the ignored objects did change the false alarm 

rates for ‘same’ items, F3,2853 = 66.36, p < .001, ηp2 = .065. Two planned contrasts were 

conducted with Bonferroni correcting the error rate to .025. The first contrast comparing 

cluster to single-object changes was significant, F1,951 = 8.55, p = .004, but weak, ηp2 = .009, 

indicating a slightly higher false alarm rate for single changes compared to cluster changes 

(consistent with H7). Consistent with H8, the second contrast indicated that scatter changes 
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resulted in significantly more false alarms than the other three conditions on average, F1,951 = 

114.81, p < .001, and this effect was powerful, ηp2 = .108. Figure C4 depicts these false 

alarm rates, demonstrating a higher false alarm rate for scatter objects. 

 
Figure C4. False alarm rates for ‘same’ items based on the change in ignored objects. Error 

bars represent 2 x standard error. 

 


