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A generalized additive model approach to
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Abstract: This tutorial article demonstrates how time-to-event data can be modelled in a very
flexible way by taking advantage of advanced inference methods that have recently been developed
for generalized additive mixed models. In particular, we describe the necessary pre-processing steps
for transforming such data into a suitable format and show how a variety of effects, including a
smooth nonlinear baseline hazard, and potentially nonlinear and nonlinearly time-varying effects,
can be estimated and interpreted. We also present useful graphical tools for model evaluation and
interpretation of the estimated effects. Throughout, we demonstrate this approach using various
application examples. The article is accompanied by a new R-package called pammtools implementing
all of the tools described here.
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1 Introduction

In this tutorial, we introduce a general framework for fitting time-to-event data, that
is, the time until an event occurs, denoted by (the random variable) T. Classical
application examples, which we will discuss in more detail later, include time until
death of cancer patients and time until convicts are rearrested. When modelling such
data, the central property of interest is usually the survival function S(t) := P(T > t),
that is, the probability for an event occurring after time t. The modelling of such
data, however, generally focuses on the so-called hazard rate, in the following denoted
by �(t), which represents the instantaneous (normalized) risk of having an event in
t, given no event occurred up to time t. The corresponding mathematical, rather
technical definition of the hazard rate, is given as follows:

�(t) := lim
�t→0

P(t ≤ T < t + �t|T ≥ t)
�t

. (1.1)
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In the following, we demonstrate how a large class of models for time-to-event
data can be represented as generalized additive mixed models (GAMMs). Using
this representation, which requires a specific transformation of the original time-to-
event data (see Section 2.2 for details), all the methods and versatile software imple-
mentations available for GAMMs, many of which are covered in this special issue, can
be applied to survival analysis. In this way, the specification and penalized estimation
of, for example, nonlinear, spatial or random effects for time-to-event data becomes
routine and rather easy to do, equally so for (nonlinearly) time-varying effects.

The representation described here is not novel and known in the literature
as piece-wise exponential models (PEMs). Under certain assumptions, PEMs are
essentially Poisson generalized linear models (GLMs; Holford, 1980; Laird and
Olivier, 1981; Friedman, 1982) with likelihoods proportional to the (partial)
likelihood of a corresponding Cox model (see Cox, 1972 and Equation (2.1)).
The PEM representation was popular temporarily when implementations of GLMs
were more readily available in different statistical software packages compared to
implementations of dedicated algorithms for survival models (Whitehead, 1980;
Clayton, 1983), but most research in the field of survival analysis has concentrated
on the Cox model and its extensions or on models based on the counting process
representation of time-to-event data (Andersen et al., 1992; Martinussen and
Scheike, 2006).

The PEM representation requires a partition of the follow-up time into a finite
number of intervals and assumes that hazard rates are piece-wise constant in each
of these intervals. The arbitrary choice of cut-points defining this partition has
often been a point of criticism regarding PEMs. If the number of cut-points is too
small, the step function approximation of the hazard rate may be too crude. A large
number of cut-points, on the other hand, may lead to over-fitting and inefficient
estimation with unstable estimates, as the baseline hazard requires the estimation
of one parameter per interval. We are convinced, however, that the usage of PEMs
remains desirable, especially in situations where one wants to take advantage of
the methodological (Wood, 2011) and algorithmic (Wood, 2017) advances that
have been made for GAMMs over the last years, particularly whenever inclusion
of nonlinear, multivariate, spatial or spatio-temporal, or random effects is required.
Even more importantly, the current state of the art for additive models allows analysts
to largely avoid the ‘arbitrary cut-points’ problem of classical PEMs. Analysts can
simply use a large number of cut-points and estimate the baseline hazard and other
time-varying effects semiparametrically, while avoiding over-fitting and instability by
means of penalization. We call this extension of the PEM a Piece-wise exponential
Additive Mixed Model (PAMM).

This idea has been utilized in many recent publications. For example,
Rodrı́guez-Girondo et al. (2013) use this approach to discuss model building
strategies, including double shrinkage methods. Argyropoulos and Unruh (2015)
discuss a variant of this method, which they call Poisson generalized additive
model (GAM) using a Gauß–Lobato quadrature rule to partition the follow-up.
They also give a thorough overview of methods for flexible parametric inference
for time-to-event data as well as an overview of previous research on the Poisson
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model for survival analysis. Sennhenn-Reulen and Kneib (2016) use PAMMs to
fit LASSO-penalized multi-state models, while Gasparrini et al. (2017) extend
distributed lag nonlinear models known from time-series analysis to the analysis of
time-to-event data. Despite these recent publications and applications, the general
idea of using GAMMs in the context of survival analysis is still not widely known
by practitioners in substantive sciences, and the application of PAMMs is hindered
by the lack of readily available clear-cut instructions on practical details such as data
transformation and dedicated software that facilitate preparation and evaluation of
such models.

Thus, the goal of this tutorial is to introduce and describe the general idea of
the classical PEM as well as its semiparametric extension, the PAMM, and illustrate
their use, starting from data transformation and standard models to more advanced
applications. This tutorial is aimed at practitioners and focuses on building intuition
and providing applicable advice rather than methodological detail and mathematical
rigour. References for further reading are provided throughout. All results presented
in this tutorial can be reproduced using the instructions and code in the vignettes
of the add-on package pammtools (Bender and Scheipl, 2017), as described in
Section 4.

In the following sections, we give a brief introduction to the PEM (Section 2)
and its mathematical representation as a Poisson GLM (Section 2.1), as well as the
data transformation required for its estimation (Section 2.2). We then describe the
transition from PEMs to PAMMs in Section 2.3 and briefly outline the advantages
of this approach. In Section 3, several examples for the application of PAMMs are
provided, ranging from very simple (baseline hazard, time-constant effects) to more
advanced models (stratified baseline hazards, nonlinearly time-varying effects, etc.).

2 Piece-wise exponential (additive) models

PEMs represent an alternative to classical approaches for continuous time-to-event
data like, for example, the Cox model. If the partition of the follow-up time is
selected with care, PEMs allow analysts to take advantage of all of the methodological
and algorithmic advances that have been made for GAMMs over the last decades.
In particular, it is fairly easy to include diverse types of effects such as nonlinear,
multivariate, spatial, spatio-temporal or random effects in existing software packages
for GAMMs.

Figure 1 illustrates the basic idea of a PEM for time-to-event data by applying it
to survival times drawn from a Weibull distribution. To estimate the true underlying
Weibull hazard rate (left panel), the follow-up is partitioned into a fixed number
of intervals (here J = 5) with interval cut-points �0 = 0 < · · · < �J = 4 (mid panel)
and a constant hazard is estimated for each interval (right panel). Thus, the name
piece-wise exponential—the hazard rate of an exponential distribution is constant
over time. The approximation in Figure 1 appears rather crude, but given enough
cut-points, PEM and PAMM estimates are very similar (or even equivalent) to Cox
regression estimates, as demonstrated in Section 3.
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Figure 1 Hazard rate of a Weibull distribution (left panel); partitioning of the follow-up into J = 5 intervals
(mid panel); estimate of the hazard rate via interval-specific piece-wise constant hazards, obtained by
fitting a PEM to the data (right panel)

The difference between a PEM and a PAMM then results from the different
approaches for the estimation of the baseline hazard and other smooth, potentially
time-varying effects. It is important to note that although PAMMs model the baseline
hazard using a smooth, nonlinear function, the resulting (estimated) hazard rate is
still piece-wise constant (see Section 2.3).

2.1 The Poisson-likelihood of a PEM

Following Bender et al. (2016), we now introduce PEMs more formally. We start with
a general proportional hazards (PH) model given by

�i(t|xi) = �0(t) exp(xT
i ˇ) , i = 1, . . . , n, (2.1)

where n is the number of subjects under study, xi = (xi,1, . . . , xi,p)T is the row vector
of time-constant covariates for subject i, and ˇ the vector of corresponding regression
coefficients. In the framework of the Cox PH model, the parameters ˇ are estimated
via partial likelihood, while the baseline hazard �0(t) is estimated non-parametrically
via the Nelson–Aaalen estimator. A PEM is obtained by partitioning the follow-up
period (0, tmax], where tmax denotes the maximal (observed) follow-up time, into
J intervals. To this end, we define J + 1 cut-points 0 = �0 < · · · < �J = tmax. The
j-th interval is then given by (�j−1, �j]. Assuming a constant hazard rate within each
interval j, that is, �0(t) = �j ∀t ∈ (�j−1, �j], t > 0, (2.1) simplifies to

�i(t|xi) = �j exp(xT
i ˇ) , ∀ t ∈ (�j−1, �j]. (2.2)

If the underlying time-to-event data is structured in a certain way, that is, containing
event indicators ıij and offsets oij for all intervals j in which subject i is under risk, it
can be shown (Friedman, 1982) that the likelihood of the Poisson regression model
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E(ıij|xi) = exp(log(�j) + xT
i ˇ + oij) (2.3)

is proportional to the one of model (2.2). Consequently, the two models are equivalent
with respect to the ML estimator of ˇ. In practice, when fitting the respective Poisson
GLM, log(�j) is incorporated in the linear predictor xT

i ˇ, such that the design matrix X
contains J additional dummy coded columns, where column j takes value 1 in rows
representing observations in interval (�j−1, �j] and 0 otherwise. The oij are simply
added to the linear predictor as a so-called offset, which is usually of little interest,
but note that the offset contains the information on the actual observed survival
time in each interval, and thus makes the PEM a model for continuous time-to-event

data, such that (2.3) can be reformulated as �i(t|xi) = E(ıij|xi)
tij

= �j exp(x′
iˇ) (where

tij = exp(oij); cf. Section 2.2). For the remainder of the article, we will omit the offset
oij from the model specification, but it is important to stress that the offset must be
included at the estimation stage.

Note that if the survival time is in fact discrete, was only observed on a discrete grid
or can be reasonably discretized without loss of information, most of the methods
and strategies presented here are equally applicable to discrete-time models. These
are described in detail in the tutorial by Berger and Schmid (2018), which is also part
of this special issue.

In the next section, we illustrate how to transform time-to-event data to be in
accordance with the model specification (2.3).

2.2 Data transformation

To fit the PEM introduced in the previous section, time-to-event data needs to be
transformed and restructured in a specific way. First, for each subject i let Ti denote its
true survival time and Ci its (non-informative) censoring time. Then, ti := min(Ti, Ci)
represents the observed right-censored time under risk for subject i. Given intervals
1, . . . , J and observed right-censored times ti, for each time interval j that subject i is
under risk, one has to create

(a) the binary response ıij as interval-specific event indicator, with ıij = 1, if both,
{ti ∈ (�j−1, �j]} and {ti = Ti}, and ıij = 0 else ;

(b) the offset oij = log(tij), based on the time subject i is under risk in interval j,
which is given by tij = min(ti − �j−1, �j − �j−1).

We illustrate the data transformation here for the simple case of survival data without
covariates. Consider, for instance, the survival times of the two subjects in Table 1.
The same data in the format of piece-wise exponential data (PED) is shown in
Table 2. Each subject has as many entries (rows) as the number of intervals for which
the subject is included in the risk set. Note that these rows can then be treated as
independent (given covariates) within the estimation scheme. The intervals (�j−1, �j],
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Table 1 Example of (conventional) time-to-event data for two subjects, i ∈ {1, 2}. Subject i = 1 is censored
at t1 = 0.5 and subject i = 2 experienced an event at t2 = 2.7

i ti ıi

1 0.5 0
2 2.7 1

Table 2 Data in the piece-wise exponential format with one row per interval in which a subject was in the
risk set. Intervals are defined by J + 1 cut-points �0 = 0 < · · · < �J = 4; ıij is the status of subject i in interval
j , tij the time subject i spent in interval j ; the offset is denoted by oij = log(tij )

i j (�j−1, �j ] ıij tij oij = log(tij )

1 1 (0, 0.8] 0 0.5 log(0.5) = −0.69
2 1 (0, 0.8] 0 0.8 log(0.8) = −0.22
2 2 (0.8, 1.6] 0 0.8 log(0.8) = −0.22
2 3 (1.6, 2.4] 0 0.8 log(0.8) = −0.22
2 4 (2.4, 3.2] 1 0.3 log(0.3) = −1.20

j = 1, . . . , J are specified by the user. Here, we chose equidistant intervals of length
0.8 as in Figure 1. Readers familiar with survival analysis will recognize this data
structure to be very similar to the ‘start-stop’ format used to fit time-varying effects
or effects of time-dependent covariates (TDCs) in the extended Cox regression model
(Thomas and Reyes, 2014), with �j−1 and �j as start and stop times, respectively.
Further details and illustrations on transforming conventional time-to-event data into
the format suitable to fit PEMs are provided in the data-transformation vignette (cf.
Section 4 for details).

Note that another major advantage of this data structure is that (piece-wise
constant) TDCs, that is, covariates that change their value over the follow-up period,
can be incorporated naturally. In this case, the interval cut-points �j must additionally
include all time points at which changes in the TDC are recorded and model
(2.2) is extended to the form �i(t|xij) = �j exp(xT

ijˇ) (cf. Section 3.4). Furthermore,
time-varying effects, where the association between a covariate and the hazard rate is
allowed to change over the follow-up, can be incorporated by including an interaction
term of the covariate with time t in the linear predictor (for more details, see
Sections 3.3.2 and 3.3.3). This requires defining a TDC for time itself, for example,
by setting tj := �j in the respective rows of the transformed data set.

Similarly, estimation of left-truncated data can be easily accommodated by
excluding intervals before the respective left-truncation times as described by Guo
(1993).

2.3 Piece-wise exponential Additive Mixed Model

Model (2.3) can be extended to include nonlinear or smoothly time-varying effects of
time-constant or TDCs by incorporating semiparametric effects, that is, moving from
a Poisson GLM representation to a Poisson GAMM representation. In reference to
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the acronyms for PEMs and GAMs, we denote this model type by PAMM (piece-wise
exponential additive mixed model). For a general PAMM, the hazard rate at time t
for individual i with covariate vector xi is given by

�i(t|xi) = exp

(
f0(tj) +

p∑
k=1

fk(xi,k, tj) + b�i

)
, ∀ t ∈ (�j−1, �j] , (2.4)

where f0(tj) represents the log-baseline hazard rate (cf. Section 2.3.1) and fk(xi,k, tj),
k = 1, . . . , p, denotes very general effect types, possibly of different complexity and
potentially depending on both a covariate and time. In particular, smooth nonlinear
and smoothly time-varying effects (cf. Section 2.3.2) of the time-constant confounders
x•k = (x1,k, . . . , xn,k)T are included. The time variable tj is constant over each interval
to ensure that the estimated hazard rates still correspond to a PEM. Typical choices are

interval end-points tj = �j ∀ t ∈ (�j−1, �j], or interval mid-points tj = �j + �j−1

2
∀ t ∈

(�j−1, �j]. Additionally, b�i
denote random intercept terms (Gaussian frailty), where

�i, � = 1, . . . , L is the cluster to which subject i belongs. We do not discuss these terms
in this tutorial, but an example application is provided in the pammtools vignette
frailty (cf. Table 7).

A common way to specify unknown smooth functions like f (x, tj) is to use splines,
which are represented by a weighted sum of M basis functions. A univariate function,
such as the baseline hazard f0(tj), can be expanded as f0(tj) = ∑M

m=1 �0mBm(tj), with
spline coefficients �0m and basis functions Bm(tj) (for a detailed description of splines,
see, for example, Ruppert et al., 2003). Increasing the number of basis functions
for such terms increases their flexibility and also the danger of overfitting, while an
excessively low number of basis functions might not provide the necessary flexibility.
In PAMMs, this trade-off is resolved by specifying a relatively large number of basis
functions and then penalizing ‘wiggliness’ of the estimate (e.g., by penalizing the
difference between neighbouring basis coefficients in P-splines; Eilers and Marx,
1996). Technically, the penalization strength is controlled by separate smoothing
parameters for each additive term, which are estimated simultaneously with all
other model coefficients, for example, using restricted maximum likelihood (REML)
estimation (Wood, 2011). This has the advantage that no strong assumptions about
the shapes of such smooth effects are necessary in order to specify the model. Instead,
they are estimated based on the data.

This idea can be extended to bivariate interaction surfaces, such as the fk(xi,k, tj)
terms in Equation (2.4), through the use of tensor product bases of the form
f (xi,k, tj) = ∑M

m=1

∑L
�=1 �m�Bm(xi,k)B�(tj). By specifying an interaction of covariates

x•k with the (discretized) time tj, we can model (piece-wise constant) time-varying
effects of different grades of complexity, the most common of which are summarized
in Table 3. Section 3.3 provides examples for most of these effects illustrated on widely
known data sets. Note here that the effect types in Table 3 are merely a small subset of
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Table 3 Overview of potentially smooth nonlinear and/or smoothly time-varying effect specifications in
the analysis of time-to-event data

Effect Specification Description

ˇk xi,k + ˇk :tj · xi,k · tj : Linear, linearly time-varying effect
fk (xi,k ) : Smooth nonlinear, time-constant effect
fk (xi,k ) · tj : Smooth, linearly time-varying effect
xi,k · fk (tj ) : Linear, smoothly time-varying effect
fk (xi,k , tj ) : Smooth, smoothly time-varying effect

potential effect types. Further extensions such as spatial effects can be incorporated
into Equation (2.4) just as easily, but they are beyond the scope of this tutorial.

Next (cf. Section 2.3.1), we illustrate the estimation of the baseline hazard with
PEMs and PAMMs, and compare the results with the respective Nelson–Aalen
estimates.

2.3.1 Baseline hazard
In the original definition of PEMs in (2.3), the baseline hazard is modelled by a step
function with interval-specific hazards �j, which are estimated by including dummy
variables for each interval in the design matrix. This has two major drawbacks:

1. the choice of the interval cut-points as well as the number of intervals is rather
arbitrary (c.f. Demarqui et al., 2008); and

2. if a large number of cut-points is used, (too) many parameters need to be
estimated and the individual estimates �̂j can become unstable. If the estimation
of time-varying effects is required as well, this problem is exacerbated further.

In PAMMs, the baseline hazard is modelled as a regression spline over time, using
a suitably discretized time variable tj as earlier defined. Choosing a sufficiently large
number of intervals and spline basis functions, the baseline hazard can then be
estimated very flexibly. At the same time, over-fitting is avoided via penalization and,
hence, smooth and stable estimates are obtained.

In many real life applications, the (baseline) hazard changes quickly at the
beginning of the follow-up and less so towards the end. In these cases, a fixed penalty
for the whole spline may be too restrictive; thus an estimation of the baseline hazard
using adaptive spline smooths, where the penalty applied to the basis coefficients can
itself change over the course of the follow-up (i.e., smaller penalty at the beginning,
stronger penalty towards the end) may be preferable (Wood, 2011). This, however,
also implies a higher computational burden.

2.3.2 Smooth nonlinear, smoothly time-varying effects
The major advantage of PAMMs over currently available implementations of
Cox-type or Aalen-type models is that the entire flexibility and methodological
progress of GAMMs can be employed with regard to covariate effects, not only to
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the reliable and smooth estimation of baseline hazard rates. The summands fk(xi,k, tj)
in the second term in Equation (2.4) can represent a variety of different effect types,
ranging from simple linear, time-constant effects xi,kˇk to nonlinear, time-constant
effects fk(xi,k) and nonlinear and smoothly time-varying effects fk(xi,k, tj). Table 3
summarizes the most common and important of these effect types. Time-varying
effects are modelled as interaction terms between the covariate of interest, that is,
x•k, and the discretized time tj, that is, the corresponding interval end or mid-points.
All of these effect types can be specified fairly easily by the practitioner, for example,
within the syntax of the gam function from the R-package mgcv (Wood, 2017), if
the data is given in the format of Table 2 complemented by covariate information.

3 Applications and illustrations

In the following section, we describe and illustrate the application of PAMMs to
various settings in time-to-event analysis and compare the estimates obtained from
PAMMs with other established approaches on real data examples. For illustration,
we use a follow-up restricted (t ≤ 400) subset of the Veterans’ Administration lung
cancer study (Kalbfleisch and Prentice, 1980), which is available in the survival
(Therneau, 2015) package and is a widely used data example in the context of
time-to-event analysis. In this study, males with advanced inoperable lung cancer were
randomized to one of two treatment regimens for lung cancer, either standard or novel
chemotherapy, represented by the binary variable trt. In addition, the data set contains
several time-constant covariates, namely celltype (categorical) of the tumour, the age
(in years) at the beginning of treatment, the Karnofsky performance score (karno;
100 = good) and a dummy variable prior, indicating whether there had been a prior
therapy (0 = no, 1 = yes) along with survival time and censoring status (0 = censored,
1 = event). Within the scope of this study, it is of major interest how the two different
treatments in combination with the other covariates affect the survival of lung cancer
patients. An excerpt of the data can be found in Table 4.

We omit the respective R-code here for clarity and brevity, however, each section
refers to a dedicated vignette in the pammtools package that contains code showing
the practical work flow in full detail (cf. Section 4).

3.1 Estimating the baseline hazard

First, we demonstrate how to fit and visualize simple baseline models using the
pammtools package. We use both a PEM and a PAMM and compare the results
of the estimated baseline hazard to the conventional Nelson–Aalen estimator, which
can be obtained, for example, by applying the coxph function from the survival
package directly on the veteran data from Table 4. In order to fit PEMs and
PAMMs, however, we need to transform the data into the PED format, similar to
the exemplary data presented in Table 2 using the split data function from the
pammtools package.
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Table 4 Raw structure of the Veterans’ Administration lung cancer study data

trt celltype time status karno age prior

1 large 19 1 30 39 1
1 squamous 231 0 50 52 1
0 large 156 1 70 66 0
0 smallcell 51 1 60 67 0
1 smallcell 95 1 70 61 0
1 large 133 1 75 65 0

Table 5 Veterans’ Administration lung cancer study data after transformation to the piece-wise
exponential data (PED) format (first six rows of subject 1)

id tstart tend interval offset ped status trt . . . prior

1 0 1 (0,1] 0 0 1 . . . 1
1 1 2 (1,2] 0 0 1 . . . 1
1 2 3 (2,3] 0 0 1 . . . 1
1 3 4 (3,4] 0 0 1 . . . 1
1 4 7 (4,7] 1.1 0 1 . . . 1
1 7 8 (7,8] 0 0 1 . . . 1

Note that this data augmentation substantially increases the data set size: in
this case, the original data from Table 4 contain n = 131 individuals ( = rows),
while the data in piece-wise exponential format have 5 392 rows, if all unique
event and censoring times are used as interval cut-points. In addition, several
auxiliary variables are constructed, see Table 5. Based on the data from Table 5
and using the glm function, a simple baseline PEM can be fitted. The piece-wise
constant hazards for each interval are obtained simply by treating the intervals
themselves as a factor variable, which results in the model specification below (using
standard dummy coding, with (�0, �1] as the reference category): �(t) = �0(t) =
exp

(
ˇ0 +∑J

j=2 ˇ0jI(t ∈ (�j−1, �j])
)

, where I(t ∈ (a, b]) is the indicator function for

t (taking value 1, if its argument is true, and 0 otherwise). Here, ˇ0 represents the
log baseline hazard in interval j = 1 and ˇ0j the log-hazard deviation in interval j
compared to interval j = 1. When the partition of the follow-up period uses all event
and censoring times as interval cut-points (and no ties are present), the regression
effects of the Cox model and the PEM are equivalent (see also Section 2.1).

Alternatively, the baseline hazard can be modelled as a regression spline using
‘discretized time’ tj as the covariate. A comparison of the different cumulative baseline
hazard functions is presented in Figure 2. While the cumulative hazards of the Cox
PH model and the PEM are equivalent (at the interval end-points), the cumulative
hazard obtained by fitting a PAMM is, not surprisingly, slightly different. Here,
as in the following, the point-wise confidence intervals always refer to the PAMM
estimates.
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Figure 2 Comparison of the cumulative hazard estimates obtained by a Cox PH model (Nelson–Aalen), a
PEM and a PAMM

3.2 Models including covariates

In this section, we incorporate conventional covariate effects into the models. We
restrict ourselves to the case of time-constant covariates in this section, while
the usage of TDCs is described in Section 3.4. We begin by fitting a classical
Cox PH model to the original data from Table 4 using the coxph function,
with a linear time-constant effect for the treatment variable (trt) and a nonlinear
time-constant effect for karno. The corresponding hazard is then specified by �(t|x) =
�0(t) exp

(
ˇ1I(trt = 1) + f (karno)

)
, where the age effect is estimated using P-splines

(Eilers and Marx, 1996) and the ‘optimal’ degrees of freedom have been determined
by Akaike’s Information Criterion (AIC) (Hurvich et al., 1998), which can be done
by setting the df argument of the coxph function equal to zero.

Similarly, based on data in PED format (cf. Table 5), we can fit the corresponding
PAMM, simply by including a nonlinear effect f (karno) into the linear predictor:
�(t|x) = exp(�0(tj) + ˇ1I(trt = 1) + f (karno)). Actual estimation can be done by, for
example, using the gam function from mgcv. By default, thin plate regression splines
are used for such effects in mgcv, but here we use P-splines for direct comparison
with the Cox routine. The ‘optimal’ effective degrees of freedom (edf ) can be chosen
by maximizing a generalized cross validation, REML or ML criterion (Wood, 2011,
2017).

Figure 3 displays the comparison of the smooth effect estimates obtained by the
two approaches. Both effects exhibit a decreasing effect with increasing Karnofsky
score (KS; edf : 4.03 for Cox; 4.02 for PAMM) and have very similar shapes. The effect
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Figure 3 Comparison of nonlinear Cox PH model and PAMM estimates

of treatment is not significantly different from zero for both approaches (p-values of
corresponding t-tests: 0.11 for Cox; 0.16 for PAMM).

3.3 Time-varying effects

In the following sections, we focus on time-varying effects, that is, effects of the form
f (x, t) for varying degrees of complexity as summarized in Table 3, and illustrate the
specification of these different effect types as well as their estimation with PAMMs.

3.3.1 Stratified baseline
In many cases, it is unreasonable to assume that the baseline hazard is the same
for subjects on different levels of a categorical variable. In that case, the PH
assumption is violated. To avoid this issue, the so-called stratified PH models (Klein
and Moeschberger, 1997, Ch. 9.3; also stratified Cox model in the context of Cox
models) have been proposed, where a separate baseline is estimated for each sub
group, while the effects of other covariates are identical for all subjects. Let z be a
categorical variable with categories k = 1, . . . , K. A PH model stratified with respect
to z is then defined by

�(t|z, x) = �0k(t) exp(x′ˇ) , (3.1)

where �0k(t) are the group-specific baseline hazards. In the Cox framework, ˇ is
estimated through the partial likelihood approach as usual and the baseline �0k(t) is
estimated non-parametrically for each group k.
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Figure 4 Cumulative hazard estimates using a stratified Cox compared to a stratified PAMM approach

In the context of PAMMs, the group-specific baseline hazards can be regarded as
an interaction of the form f (tj) · z between a (nonlinear) function of (discretized) time
and a categorical variable, as defined in Equation (3.2):

�(t|z, x) = exp
(
f0k(tj)I(z = k) + x′ˇ

)
. (3.2)

Here, the individual baseline hazards are again represented via linear combinations
of known basis functions B(·) and estimated basis coefficients �, such that f0k(tj)
= ∑M

m=1 �0kmBm(tj). In the aforementioned notation, we absorbed group-specific
intercepts ˇ0k (i.e., main effects of z) into the baseline terms f0k for brevity. When
specifying the model in R, however, the group variable z must usually be included as
a separate effect as well (cf. the strata vignette in Table 7).

For illustration consider patients with different cell types in the Veteran’s data.
Figure 4 shows the cumulative baseline hazard estimates for the different cell types
using stratified Cox and stratified PAMM procedures, indicating that the two models
are in good agreement. One difference between the two models, as fitted in the
example, is the choice of cut-points. For the stratified Cox model, cut-points occur at
respective event times in the different groups, while in the stratified PAMM model,
identical cut-points are used to estimate the baseline hazards in all groups.

3.3.2 Linear, nonlinearly time-varying effects
Next, we showcase effects of the form f (t) · x, where x is continuous. In the
GAMM literature, these models are known as varying coefficient models (Hastie
and Tibshirani, 1993); here the effect of x varies over time and thus constitutes a
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Figure 5 Comparison of estimates for the nonlinearly time-varying effect of the Karnofsky score

classical use case of time-varying effects. Note that the inclusion of time-varying
effects invalidates the PH assumption, thus this additional flexibility can complicate
interpretation. For illustration, we fit a time-varying effect of the KS (xkarno). For this
association, a specific logarithmic functional form of the time variation f (xkarno, t) =
f (t) · xkarno = (

ˇkarno + ˇkarno,t log(t + 20)
) · xkarno is frequently assumed. (Compare

discussion in the timedep vignette of the survival package.)
In the PAMM context, such effects can be specified by a linear interaction between

xkarno and a log(tj + 20) transformation of (discretized) time. However, usually we do
not know the precise functional form of f (tj) in advance and want to estimate it from
the data, such that �(t|x) = exp(f0(tj) + f (tj) · xkarno). This can be done, for example,
by representing f (tj) · xkarno = ∑M

m=1

(
�mBm(tj)

) · xkarno in a basis function expansion
as described in Section 2.3. Figure 5 shows that, in this case, the differences between
the estimates using a pre-specified transformation of time and estimates of f (tj) using
semiparametric regression are negligible, although the semiparametric estimate seems
to ‘level off’ after t = 150.

3.3.3 Nonlinear, nonlinearly time-varying effects
In this section, we consider effects of the form f (x, t), where we assume that x
potentially has a nonlinear effect that also varies over time nonlinearly, estimated
by penalized splines. We continue the example from Section 3.3.2, except that now
f (xkarno, tj) will be modelled as a two-dimensional smooth function using a tensor
product representation, such that f (xkarno, tj) = ∑M

m=1

∑L
�=1 �m�Bm(xkarno)B�(tj).
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Figure 6 A heat map visualization of the nonlinear, nonlinearly time-varying effect of the KS variable on
the log-hazard scale (left panel). The middle and right panel of the figure depict slices through the left
panel, fixing either specific values of the KS (mid panel) or specific values of time (right panel). Grey
regions in the left panel reflect combinations of xkarno and t where no data was observed. Intervals are
point-wise ±2 standard deviations. Note that the heat map represents a step function over time; we show a
smooth surface instead for better presentation

The resulting estimate is depicted in Figure 6. Focusing on vertical ‘slices’ through
the heat map on the left, we can see the effect of the KS at different times. For example,
at the beginning of the follow-up (t = 1), low KS values are associated with higher
hazards, while high KS values are associated with lower hazards, that is, very similar
to the smooth, time-constant effect in Figure 5. For later time points (e.g., t = 200),
the effect of KS is more homogeneous and generally closer to zero, even for extreme
values of KS. Focusing on horizontal ‘slices’ through the heat map on the left, on the
other hand, we can see how the hazard associated with different KSs changes over
time. A KS of 40, for example, is associated with a much higher hazard (and, hence,
decreased survival probability) at the beginning, decreases after some time and then
increases again slightly, while patients with a KS close to 100 seem to have a lower
hazard at the beginning, which increases towards the end of the follow-up.

This is consistent with a frequent observation in medical studies showing that the
association between health scores measured at baseline and hazard rates becomes
weaker or even diminishes completely over the course of the follow-up. Such a
conclusion can be drawn here as well, considering the high uncertainty of the
estimates for later time points. Thus, such bivariate effect functions can provide a
more complete and realistic picture of time variation in the association between the
hazard and the KS at baseline (increasing towards 0 for higher KS values, decreasing
towards 0 for lower KS values), compared to the analyses presented in Sections 3.2
and 3.3.2.
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3.4 Time-dependent covariates

Here, we describe how one can incorporate TDCs in the framework of PAMMs.
Because the Veteran’s data does not contain TDCs, we switch to a different standard
example known from the literature, the well-known recidivism data first presented
in Rossi et al. (1980). The data contains information on 432 convicts released from
prison. The outcome of the study was the number of weeks until the first rearrest.
Maximal follow-up time was 52 weeks. Baseline covariates include financial aid (fin;
yes/no), age at time of release (in years), race (black/other), work experience prior to
incarceration (wexp; yes/no), marital status (mar; married/unmarried), released on
parol (paro; yes/no) and number of prior convictions (prio).

Furthermore, the data set contains a TDC, which indicates the weekly employment
status for each subject until end of follow-up or first rearrest. For comparison, we
largely follow the extensive analysis of the data presented in Fox and Weisberg (2011),
who use extended Cox regression, except that we model the effects of age and prior
convictions using P-splines (Eilers, 1998). In this example, the data transformation
required to fit the Cox model is equivalent to the data transformation needed to
apply PAMMs. More precisely, we create a data set where each subject has one
row for each week of follow-up, as the employment status can potentially change
every week.

A subset of the transformed data is presented in Table 6, exemplary for subjects 1
and 2. Note that the event indicator (arrest) is 0 up to the week of the event. Covariates
other than employment remain constant over time. Note that the employment variable
is ‘lagged’ by one week as it is unknown if unemployment preceded arrest or vice versa
in any given week. Consequently, the data start with the interval (1, 2], as the ‘lagged’
employment status for week 1 (interval (0, 1]) would not be defined. Note that we
can exclude the offset oij for these weekly data, as it is log(1) = 0 for all observations.

Figure 7 displays the comparison of the extended Cox regression and PAMM
applied to the recidivism data. Both the fixed coefficients (left panel) and the smooth
estimates (right panel) are generally in good agreement.

However, the nonlinear estimates of the Cox model are more ‘wiggly’ compared to
the PAMM estimates (using default settings for both algorithms), which reflects the
different approaches for the selection of the optimal smoothness penalty parameters.
Being employed in the previous week is clearly associated with a decreased hazard
of rearrest compared to being unemployed in the previous week. So convicts that
recently had a job seem to be less likely to be arrested. For both the PAMM and
the Cox PH approach the remaining fixed effects are not significant. Finally, it turns
out that for both modelling approaches, increased age is generally associated with
a decreased hazard, whereas convicts with a high number of prior convictions are
more likely be rearrested. However, while for the Cox PH approach both effects are
rather wiggly, the PAMM estimates are almost linear and very smooth and, hence,
somewhat easier to interpret.

Note that we only consider the employment status of the previous week, thus the
marginal hazard increase in week 21 for a subject that was employed for 19 weeks
and is unemployed in week 20 is the same as for a subject that was unemployed from
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Table 6 Exemplary data in counting-process format needed to fit extended Cox regression and PAMMs.
Subject 1 was unemployed throughout the follow-up and rearrested in week 20, subject 2 was unemployed
until week 8, found employment for weeks 9 through 13 and became unemployed again thereafter (data in
the table with lag = 1). In week 17, the subject was rearrested. The other covariates are only measured at
baseline and remain constant

subject start stop arrest employed (lag = 1) fin age · · · mar

1 1 2 0 0 0 27 · · · 0
...

...
...

...
...

...
... · · ·

...
1 19 20 1 0 0 27 · · · 0

2 1 2 0 0 0 18 · · · 0
...

...
...

...
...

...
... · · ·

...
2 8 9 0 0 0 18 · · · 0
2 9 10 0 1 0 18 · · · 0
...

...
...

...
...

...
... · · ·

...
2 13 14 0 1 0 18 · · · 0
2 14 15 0 0 0 18 · · · 0
2 15 16 0 0 0 18 · · · 0
2 16 17 1 0 0 18 · · · 0

●●
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Figure 7 Left panel: Coefficient estimates using extended Cox regression and PAMM, respectively. Points
indicate the estimates on the log-hazard scale. Error bars indicate the 95% confidence intervals. Right
panel: Smooth estimates for age (top) and number of prior convictions (bottom)
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Table 7 Overview of vignettes and their content provided in the package pammtools. To access the
vignettes visit https://adibender.github.io/pammtools/articles/

Vignette Description

Data transformation Details (and respective R-code) on transformation of conventional time-to-event data
into PED format (cf. Section 2.2)

Basics Basic modelling and equivalence to Cox PH model
Baseline Baseline estimation and visualization (cf. Section 2.3.1)
Splines Linear, time-constant effects of the form fk (xi,k ) (cf. Section 3.2)
Strata Stratified PH models fk (t )I(z = k ) (cf. Section 3.3.1)
TV effects Details on fitting models with time-varying effects of different complexity, for example,

xi,k · fk (t ) or fk (xi,k , t ) (cf. Section 3.3.2 and 3.3.3)
TD covariates Details on fitting models with time-varying covariates (cf. Section 3.4)
Frailty Example of fitting Gaussian frailty models and comparison to the coxme package.
Convenience Demonstration of convenience functions for pre-/post-processing of PEMs/PAMMs,

visualization and model comparisons

the beginning. A more complex analysis would account for the complete employment
history, that is, use a cumulative effect of employment, for example via the weighted
cumulative exposure (WCE) approach (Sylvestre and Abrahamowicz, 2009), such
that f (x, t) = ∑

u≤t = w(t − u)x(u), where weights w(t − u) can again be estimated
using penalized splines or similar approaches. An implementation of this method
can be found in the corresponding R-package WCE. Bender et al. (2016) describe an
implementation of such effects for PAMMs.

4 Software

While PAMMs are essentially GAMMs, and any statistical software (or
programming language) could be used to fit these models, the technicalities of
data transformation, interpretation and visualization often hinder their application
by practitioners in our experience. Therefore, in addition to this tutorial, we
also provide an R add-on package called pammtools (Bender and Scheipl,
2017); for the most current version of the package visit https://adibender.github.io/
pammtools/ which provides convenience functions that facilitate the application
of PAMMs. Individual sections and concepts described in this article are
accompanied by vignettes on the pammtools homepage that illustrate the
concrete application in the statistical programming language R (R Core Team,
2016). Table 7 gives an overview of all vignettes currently available on
the site. Most conveniently, the vignettes can be accessed directly from the
homepage at https://adibender.github.io/pammtools/articles. Additionally, you can
call ?pammtools to obtain a package overview and links to the individual vignettes.
The package (and its vignettes) thus also serves as the code supplement for this article
(see also Bender et. al 2018).

Although this article is focused on R and on fitting the PEMs/PAMMs with the
mgcv package, any software that can fit GL(M)Ms or GA(M)Ms could be used to fit
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this model class. For example, the standard glm function could be used to fit PEMs,
but does not offer many of the advanced functions from mgcv::gam and offers no
penalized estimation of smooth effects. Additionally, the package pch provides the
function pchreg, that fits a variation of PEMs for right-censored and left-truncated
data using a custom routine, but does not offer penalized estimation or other
convenience functions for pre- and post-processing (Frumento, 2016). If random
effects (or frailty terms, as they are usually referred to in survival analysis) need
to be included, the lme4 library (Bates et al., 2015) offers many options, although
simple random effect structures are also supported by mgcv::gam. Note that Cox PH
models are also supported by mgcv (family="cox.ph"), thus penalized estimation
of smooth, nonlinear effects of time-constant covariates fk(xk) are also directly
available for the Cox model. However, these cannot be used to fit the extended Cox
model with time-varying effects or TDCs. Memory efficient big data estimation with
the function bam is also not available for family="cox.ph".

In addition, regularization techniques such as the LASSO and model-based
boosting, for example, via glmnet (Friedman et al., 2010) or mboost (Hothorn
et al., 2016), respectively, can also be applied to PEMs and PAMMs. Although the
glmnet package has recently implemented Cox models (see Simon et al., 2011), only
rather simple Cox models can be fitted. For example, neither TDCs nor nonlinear
effects are available. If glmnet is used to fit a PEM, however, TDCs can be included.

Within the framework of mboost, the glmboost routine with argument
family = CoxPH() can be used for time-to-event data, if the PH assumption
holds but does not allow for TDCs. With model-based boosting of PAMMs
via mboost’s gamboost() function for fitting GAMs (compare, e.g., Hothorn
and Bühlmann, 2006), the entire flexibility of boosted GAMMs is available for
survival analysis, however. For more general details on boosting methods, compare
also the tutorial on boosting approaches by Mayr and Hofner (2018) in this
special issue.

5 Discussion

The focus of this tutorial article has been on the application of semiparametric
regression in the context of continuous time survival analysis using piece-wise
exponential (additive mixed) models, which we denote by PEMs and PAMMs. We first
introduced the general idea of the classical PEM and then described its semiparametric
extension, the PAMM. We illustrated the use of both approaches, starting with the
required pre-processing and data augmentation steps and simple standard models,
and then turned to successively more advanced applications. In this way, we hope
to provide practitioners with a useful addition to their methodological toolbox for
time-to-event data analysis, which is firmly embedded in the familiar context of
GAMMs, allowing them to exploit the robust, well-documented and highly developed
software implementations available for this model class.

Statistical Modelling 2018; 18(3–4): 299–321



318 Andreas Bender et al.

The results of PEMs and PAMMs are generally in good agreement with
conventional Cox-type modelling for most applications, and the concrete choice of
model type can depend on many factors, including familiarity, availability of software
implementations, data structure and so on. In the following, we summarize some of
the strengths of PAMMs that may guide the decision process:

• Firmly grounded in modern penalization methods, PAMMs are a legitimate
method for the analysis of time-to-event data and not just a ‘hack’ that can be used
in case other options fail. For example, in Section 3, we demonstrated that we can
use PEMs/PAMMs to obtain estimates very similar to the estimates of Cox-type
models. While it is true that for simple use cases where the PH assumption holds
the Cox model has a clear advantage over PAMMs in terms of computational
cost since the data does not have to be expanded, these advantages disappear
whenever time-varying effects or TDCs need to be included (cf. Sections 3.3
and 3.4). In our experience, the differences in computation time for standard
applications are usually negligible anyway.

• While Cox models may have computational advantages in simpler use cases (e.g.,
when the PH assumption holds and the data do not have to be expanded), their
computational advantage diminishes whenever time-varying effects or TDCs
need to be included (cf. Sections 3.3 and 3.4). In fact, PAMMs could be more
efficient in some cases, as the extended Cox model requires splits at each event
time, while split points for PAMMs could be chosen more crudely.

• In the past, methodological and algorithmic advances in semiparametric
regression first became available in the framework of GAMMs. Thus, for
example, the important innovations implemented in the mgcv package, such
as REML-optimal estimation of penalized effects (Wood et al., 2016), reliable
and generally applicable tests for semiparametric terms (Wood, 2012), locally
adaptive spline smooths (Wood, 2011), double-penalty variable selection
strategies that can shrink effect estimates to zero (Marra and Wood, 2011) similar
to the (group) LASSO (Meier et al., 2008), highly memory efficient estimation
on huge data sets (Wood et al., 2016), and many more, are directly available for
the estimation of PAMMs. Similarly, in the past, regularization approaches such
as boosting became available for GAMMs long before being ported to Cox-type
models.

• In Section 3.3.2, it was shown how easily linear but nonlinearly time-varying
effects of the form f (t) · x can be incorporated in the framework of PAMMs,
being directly available within the syntax of gam. In contrast, in conventional
Cox modelling either a particular functional form of the time variation has
to be assumed (as illustrated in Section 3.3.2) or further pre-processing steps
become necessary, such as manual construction of the corresponding spline design
matrices in combination with suitable penalization (see, e.g., the simulation study
in Groll et al., 2017, for an application of this strategy).

• TDCs can be embedded in this framework naturally (cf. Section 3.4), and
even more complicated effects of TDCs, for example, the WCE approach by
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Sylvestre and Abrahamowicz (2009) or the DLNM of Gasparrini et al. (2017),
where cumulative time-varying effects of TDCs are considered, can be directly
incorporated with fairly little additional effort.

With respect to assessment of model quality in the context of PEMs/PAMMs, we
advise not to use conventional measures like, for example, the deviance, but rather use
dedicated measures developed specifically for survival analysis such as the Brier score
or the concordance index (Gerds et al., 2013), which have the secondary advantage of
being directly comparable with evaluation metrics for other model classes for survival
analysis. Finally, note that in this article we did not address any issue regarding
estimation or inference, for which we refer to Wood (2017, 2011).
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