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Abstract

Various methods to detect differential item functioning (DIF) in item response models
are available. However, most of these methods assume that the responses are binary,
and so for ordered response categories available methods are scarce. In the present
article, DIF in the widely used partial credit model is investigated. An item-focused
tree is proposed that allows the detection of DIF items, which might affect the perfor-
mance of the partial credit model. The method uses tree methodology, yielding a tree
for each item that is detected as DIF item. The visualization as trees makes the results
easily accessible, as the obtained trees show which variables induce DIF and in which
way. In the present paper, the new method is compared with alternative approaches
and simulations demonstrate the performance of the method.
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Introduction

In psychometric tests, it is generally assumed that measurement properties are stable

across individuals, a property that is known as measurement invariance (Millsap,

2012). However, it might occur that different groups of people react differently to
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the same test, which threatens the validity of the measurements. Also, test fairness is

violated if tests lead to different conclusions for distinct groups of people. Differential

item functioning (DIF) means that measurement invariance is violated on the item

level. More precisely, DIF is present if one or more items are significantly more diffi-

cult for one group than for the other after controlling for the underlying ability or trait.

One can distinguish between uniform and nonuniform DIF. Uniform DIF means that

the difference between the groups is constant across levels of the latent continuum of

the individual. If it is dependent on the ability or trait of the person non-uniform DIF

is present. DIF detection procedures can also be classified into item response theory

(IRT) methods and non-IRT methods. The IRT methods, also called parametric meth-

ods, are those in which an IRT model is used for the detection of DIF. For an over-

view of IRT methods and non-IRT methods, see Holland and Wainer (1993), Magis,

Bèland, Tuerlinckx, and De Boeck (2010) and Penfield and Camilli (2006).

The basic idea of traditional DIF detection procedures in both dichotomous and

polytomous IRT models is to prespecify two groups of persons and then determine

whether item parameter estimates differ between these groups. The first method that

was used for the detection of DIF in IRT models was the likelihood ratio (LR) test

(Andersen, 1973). An alternative approach that can be used for any kind of IRT mod-

els is Lord’s chi square test (Lord, 1980). While this test is restricted to the compari-

son of two groups, its extension by Kim, Cohen, and Park (1995), the generalized

Lord test, can be used for more than one focal group. A third approach is the Raju

method (Raju, 1988), which is based on the idea that the difference between the

shape of item response curves (IRCs) between two groups indicates DIF. Further test

statistics for parameter differences between pre-specified groups were suggested by

Thissen, Steinberg, and Wainer (1993) and Holland and Thayer (1988). These classi-

cal methods have in common that they are limited to few sub-groups that need to be

pre-specified by the user. Moreover, it is hard to consider more than one DIF-indu-

cing covariate at a time.

More recently, two strategies were proposed for the detection of DIF in Rasch

models that is generated by multiple covariates and for which sub-groups do not have

to be pre-specified. The first strategy uses regularization methods to handle the abun-

dance of parameters in the model. Tutz and Schauberger (2015), Magis, Tuerlinckx,

and De Boeck (2015) and Thissen et al. (1993) used penalized likelihood estimation,

whereas Schauberger and Tutz (2016) proposed boosting methods to obtain regular-

ized estimates. The second strategy is to use recursive partitioning techniques, often

called tree methods. One needs to distinguish between two quite different forms of

tree methods in DIF detection. In the method proposed by Strobl, Kopf, and Zeileis

(2015), called RaschTree, the covariate space is recursively partitioned to identify

regions of the covariate space in which item parameters differ. In the investigated

regions, a parametric latent trait model that includes covariates is fitted. Regions are

suspected to be relevant if their parameter estimates differ strongly. A disadvantage

of the method is that it detects regions of the covariate space that are linked to DIF,

but does not automatically detect the responsible items. The alternative recursive
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partitioning method propagated by Tutz and Berger (2016) focuses on the detection

of the items that are responsible for DIF. Unlike the RaschTree, it uses recursive par-

titioning on the item level, not on the global level. Since the method is able to flag

DIF items it is referred to as item-focused trees.

For polytomous models, in particular the partial credit model, DIF

detection methods are less common than for dichotomous models. Some methods

are proposed in Penfield and Camilli (2006). For further concepts, see also

Penfield and Algina (2003), Penfield (2007) and Penfield (2008). A method that

competes with the approach considered here is the extension of the RaschTree to

the partial credit model proposed by Komboz, Strobl, and Zeileis (2018). It will be

considered in more detail in the section Comparison of Recursive Partitioning

Methods.

The objective of the present paper is the development of item-focused trees for

the partial credit model. In the next section, the notation and the basic model will be

introduced. In addition, we present an illustrative example. The tree algorithm that is

used is given in detail in the subsequent section. In the penultimate section, we show

results of wider simulation studies. In the final section, we discuss further possible

extensions of our modeling approach.

DIF in Partial Credit Models

In the following, we consider I items with ordered categories and P persons. For sim-

plicity, we assume that the number of categories k is equal across items.

The Partial Credit Model

Let Ypi 2 f0, 1, . . . , kg, p = 1, . . . , P, i = 1, . . . , I , denote the ordinal response of per-

son p on item i. The partial credit model (PCM), which was proposed by Masters

(1982), assumes for the probabilities

P(Ypi = r) =
exp(

Pr
l = 1 up � dil)Pk

s = 0 exp(
Ps

l = 1 up � dil)
, r = 1, . . . , k,

where up is the person parameter and (dil, . . . , dik) are the item parameters of item i.

For notational convenience, the definition of the model uses implicitlyP0
k = 1 up � dik = 0. With this convention, an alternative form of the model is

P(Ypi = r) =
exp(rup �

Pr
k = 1 dik)Pk

s = 0 exp(
Ps

k = 1 up � dik)
:

The link to the binary Rasch model becomes obvious when one considers responses

in adjacent categories. Given response categories r and r � 1, the presentation

Bollmann et al. 783



log
P(Ypi = r)

P(Ypi = r � 1)

� �
= up � dir, r = 1, . . . , k, ð1Þ

shows that the model is locally a binary Rasch model with person parameter up and

item difficulty dir. The properties of the model can be visualized by IRCs that show

the probabilities of a response in category r as a function of the person parameter up.

An example of the IRCs for one item with four categories is displayed in Figure 1.

From the curves, it is immediately seen that for up = dir the probabilities of adjacent

categories are equal, that is, P(Ypi = r) = P(Ypi = r � 1). This means that the IRCs of

adjacent categories intersect at up = dir. Therefore, the parameters dir can be seen as

thresholds between categories r � 1 and r. In Figure 1, the thresholds are marked by

dashed lines at the intersections of the curves. For example, Ypi = 0 means that cate-

gory 0 was chosen and no threshold was exceeded. The score Ypi = 2 implies a

response which exceeds thresholds 1 and 2 but fails threshold 3. For more details

regarding the model see also Masters (1982), Masters and Wright (1984) and Andrich

(1978, 2013, 2015).

Item-Focused Trees for the Partial Credit Model

In model representation (1), the linear predictor for person p and the r-th threshold of

item i is given by

hpir = up � dir:

In item-focused trees, the predictor is successively modified by allowing different

predictors in different regions of the covariate space. In the simple case of a continu-

ous variable x, one allows a split into the regions fx � cg and fx . cg at split-point

c. A tree is grown by successive splitting of one of the available variables at one of

the corresponding split-points. The root is the top node without splitting and the ter-

minal nodes represent the identified partitioning of the covariate space.

For a more concise description, let xT
p = (xp1, . . . , xpV ) denote a vector of measure-

ments on person p. Starting from the root, the predictor that is fitted for one item i

and all persons has the form

hpir = up � gir(1)I(xpv � c(i)
v ) + gir(2)I(xpv . c(i)

v )
� �

, r = 1, . . . , k, ð2Þ

where I( � ) denotes the indicator function with I(a) = 1 if a is true and I(a) = 0

otherwise. This means that item i shows DIF generated by the vth variable. The item

has parameters gi1(1), . . . , gik(1) in the left node I(xpv � c(i)
v ) and parameters

gi1(2), . . . , gik(2) in the right node I(xpv . c(i)
v ). The split-point c(i)

v defines the regions

that are used for item i and has to be chosen in an appropriate way. Since an own tree

is built for each item, the split-points typically vary over items.

Further splitting means that one of the nodes, for example the left node I(xpv � c(i)
v ),

is additionally split in variable s, yielding the partition into left and right node
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I(xpv � c(i)
v )I(xps � c(i)

s ) and I(xpv � c(i)
v )I(xps . c(i)

s ),

where c(i)
s is a new split-point for variable xps and item i. For each region, one again

obtains new parameters for the item. Naturally, only items should be split that carry

DIF and the variables and their split-points have to be selected carefully.

In the following, the model abbreviation PCM-IFT will be used for item-focused

trees based on the PCM.

An Illustrative Example

Before presenting the fitting procedure of the proposed model in detail (see the next

section), we give an illustrative example. The example is used to demonstrate how a

tree that is obtained by PCM-IFT looks like and how it can be interpreted. The data

considered here are the responses of 1000 subjects on the 8 items of the subfacet

Fantasy of the factor Openness to experience of the German version of the NEO per-

sonality inventory revised (NEO-PI-R; Ostendorf and Angleitner, 2004). The 1000

subjects were randomly drawn out of the 11,724 cases of the norm data set. The sam-

ple was taken to obtain standard values for the test manual. Each of the items has

five categories (from strongly disagree to strongly agree). Additionally, the data set

comprises the two variables age and gender. There are 382 males and 618 females

between 16 and 81 years of age.

Figure 1. Item response curves (IRCs) for one item with four categories. The item parameters
are marked by dashed lines.
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The major domain Openness to Experience is described in the manual as the active

seeking and appreciation of experiences for their own sake and the subfacet Fantasy

as receptivity to the inner world of imagination (Ostendorf & Angleitner, 2004).

Using PCM-IFT, two of the eight items were selected as DIF items. The two items

with DIF are the following:

Item 3: I have an active and lively fantasy life.

Item 6: When I feel that my thoughts are drifting off into daydreams, I usually

become busy and start to focus on a task or an activity. (R)

The (R) behind item 6 indicates that this item was reverse coded. This means that

strong agreement to this question indicates a low level of fantasy. For simplicity, all

reverse coded items have been recoded before the analysis. Therefore, for all analy-

ses a high value on this item means the person disagreed with it.

Item 3 was only split once in covariate gender. The resulting tree is shown in

Figure 2 (upper panel). At the terminal nodes, the four threshold parameters for the

respective partition are given. It is seen that for both groups, thresholds are not

ordered indicating that a higher latent trait is required for passing the second thresh-

old than for passing the third threshold. This effect is slightly more extreme for

males than for females. Also, for males an even higher latent trait is required to pass

the fourth threshold.

Item 6 was split twice with regard to gender and age. The first split was found for

variable gender and within the sub-group of females it is distinguished between

younger women (age � 40 years) and older women (age . 40 years). The resulting

tree is shown in the lower panel of Figure 2. Similar to Item 3, in none of the termi-

nal nodes the thresholds are ordered. The main difference between the three groups

is the variation of the threshold parameter d61, which is highest for females with age

� 40 years and lowest for females with age . 40 years. For the latter, this threshold

parameter was even below 24 and is therefore not visible in the figure that is trun-

cated at 24. Since the item is reverse coded, this means that for older females, the

probability was particularly low to pass the last threshold from agree to strongly

agree for this question. Looking at the answers, we see that in this group (terminal

node 3) only 2 persons out of 133 had chosen the last category.

The illustration shows that items with DIF can simply be identified by using the

proposed PCM-IFT. The resulting trees are easily interpretable and show which vari-

ables and split-points determine DIF.

Fitting Item-Focused Trees

In this section, a detailed description of the fitting procedure for the proposed PCM-

IFT is given.
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The Partial Credit Model as a Generalized Linear Model

Under usual assumptions, the partial credit model can be embedded into the frame-

work of multivariate generalized linear models (GLMs). Let the data be given by

(Ypi, xp), p = 1, . . . , P, i = 1, . . . , I . For the item responses, one assumes a multinomial

distribution Ypijxp;M(1, ppi), where pT
pi = (ppi1, . . . , ppik) with components

ppir = P(Ypi = rjxp). The link function of the GLM can be derived from model equa-

tion (1) and has the form

Figure 2. Trees for Item 3 and Item 6 of the subfacet Fantasy (NEO-PI-R).
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g(ppir) = hpir = log
P(Ypi = r)

P(Ypi = r � 1)

� �
= (1(P)

p )Tu� (1(k)
r )Tdi, ð3Þ

where uT = (u1, . . . , uP), dT
i = (di1, , dik) and 1(k)

r denotes the unit vector of length k

with a 1 in component r. To ensure the identifiability of model (3) one parameter has

to be fixed. In the following we set uP = 0. By defining the whole parameter vector

bT = (uT, dT
1 , . . . , dT

I ), the PCM can be written in the closed form

hpir = zpirb,

where zpir is the design vector for person p, item i and threshold r that has to be spec-

ified accordingly.

Computation of Estimates

Estimates for Model (3) can be obtained by using the flexible R-package VGAM
(Yee, 2010, 2014). Function vglm() allows the estimation of so-called vector

GLMs (Yee and Wild, 1996). One simply needs to specify the design matrix as

described above and estimation can easily be obtained. In addition, one can make

use of the argument parallel() to specify category-specific item parameters. In

the following algorithm, which yields the PCM-IFT, this estimation procedure serves

as a building block in each iteration.

Fitting of Trees

When growing trees, two decisions have to be made in each step. One has to deter-

mine the best split due to an optimality criterion and has to decide if the split is rele-

vant or not. In contrast to alternative approaches, the trees are not pruned to an

adequate size after building an oversized tree. By early stopping, the size of the trees

is controlled directly.

To determine the first split, one examines for all the items, all the variables and

possible split-points the PCM with predictors

hpir = up � ½gir(1)I(xpv � c(i)
v ) + gir(2)I(xpv . c(i)

v )�, r = 1, . . . , k:

DIF occurs, if gi(1) 6¼ gi(2), where gT
i(‘) = (gi1(‘), . . . , gik(‘)), ‘ 2 f1, 2g. The corre-

sponding hypothesis H0 : gi(1) � gi(2) = 0 can be tested by a LR test. One simply

selects the combination of item, variable and split-point that yields the smallest p

value, which is equivalent to selecting the model with minimal deviance. In later

steps, the basic procedure is the same. One performs LR tests for the two parameter

sets that are involved in the splitting and selects the combination that yields the smal-

lest p value as the optimal one.

In order to determine the optimal size of the trees one has to decide in each step if

the split should be performed or not. To obtain a decision, one investigates the depen-

dence of the response and the selected variable. For fixed item i and variable v, let the
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maximal value statistic Tv = maxcv
Tvcv

be defined as the maximum of all the LR test

statistics Tvcv
, where cv is from the set of possible split-points for item i. Typically,

the test statistics Tvcv
are strongly correlated. The relevance of variable v is judged by

the p value of the distribution of Tv, which is not influenced by the number of split-

points, since it is already taken into account, see Hothorn and Lausen (2003), Shih

(2004), Shih and Tsai (2004), and Strobl, Boulesteix, and Augustin (2007). A permu-

tation test is used for the decision on the null hypothesis controlling for a given signif-

icance level a and thus distributional assumption are not necessary. The test statistic

Tv is computed based on a data matrix in which variable v is randomly permuted. The

maximal value statistic for a large number of permutations provides a distribution of

Tv, under the assumption of the null hypothesis that variable v has no effect on item i.

The derived p-value is used to make the splitting decision.

Finally, one has to address the problem of multiple testing. In DIF detection, one

typically controls for the type I error, that is the item-wise significance level. A

Bonferroni adjustment is applied, in order to ensure that the proposed procedure also

controls this level. The local significance level for one permutation test is set to a=V

for fixed item and variable, where V is the number of variables. Using this adaption,

the probability of a false DIF result or the probability of falsely identifying at least

one variable as responsible for DIF is controlled by a. Of course, the adjustment is

only applied when several variables are available. If in later steps a variable is no

longer available because all possible splits were already performed, the adaption is

changed to V � 1 in all further nodes. All the results presented in this article are

based on significance level a = :05 and 1,000 permutations. This ensures that the p

values can be determined with sufficient accuracy.

A second criterion that is used to define the size of the trees is the minimal sample

size in each node. In order to provide a sufficient basis for parameter estimation in

each node, splitting is stopped in a node if the number of observations in one of the

children nodes falls below a predefined threshold. Komboz et al. (2016) suggested a

minimal node size of 10 times the number of thresholds per item. In the present

simulations and applications, the corresponding node size is 20 for the cases in which

k = 2 and 40 for k = 4. Based on this rule, 30 observations were chosen as the minimal

node size for the illustration in sections An Illustrative Example and Comparisons of

Recursive Partitioning Methods and the simulations in the Simulation Studies section.

If no further significant effect is found or splitting is stopped due to minimal node

sizes constraint, the algorithm stops. After several splits, each node can be repre-

sented by a product of B indicator functions, namely

node(i)(xp) =
YB

b = 1

I(xpjb . c
(i)
jb

)ab I(xpjb � c
(i)
jb

)1�ab , ð4Þ

where B is the total number of indicator functions or branches, c
(i)
jb

is the selected

split-point in variable jb for item i and ab 2 f0, 1g indicates which of the indicator

functions, below or above the threshold, is involved. Since the trees and thus all the
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nodes are item specific, the node is labeled by superscript (i) for the item. Using this

definition, the final model of an item i that has been split can be represented by

hpir = up � tr(i)
r (xp) = up �

XLi

‘= 1

gir(‘) node
(i)
‘ (xp), r = 1, . . . , k,

where tr(i)
r (xp) is the tree component for item i containing subgroup-specific thresh-

old parameters gir and ‘= 1, , Li denote the terminal nodes of the tree. Please note

that the number of terminal nodes depends on the item. If an item is never chosen for

splitting, it is assumed to be free of DIF and thus Li = 1 and the constant tr(i)
r (xp) = dir

(corresponding to the threshold of the simple PCM) is fitted.

A concise description of the basic algorithm is given in the following.

Basic Algorithm - PCM-IFT
Step 1 (Initialization)

Set counter m = 1
(a) Estimation

For all items i = 1, . . . , I, fit all the candidate PCMs, that fulfill the minmial node size
constraint, with predictors

hpir = up � ½gir(1)I(xpv � c(i)
vj ) + gir(2)I(xpv . c(i)

vj )�,
v = 1, . . . , V, j = 1, . . . , Jv

(b) Selection

Select the model that has the best fit. Let c(i1)
v1 , j1

denote the best split, which is

found for item i1 and variable xv1
.

(c) Splitting decision
Select the item and variable with the largest value of Tv . Carry out a permutation
test for this combination with significance level a=V. If significant, fit the selected

model yielding estimates ûp, ĝi1 , 1, ĝi1, 2 and nodes node(i1)
1 , node(i1)

2 , set m = 2. If not,
stop, no DIF detected.

Step 2 (Iteration)
(a) Estimation:

For all items i = 1, . . . , I and already built nodes ‘= 1, . . . , Lim, fit all the candidate
PCMs, that fulfill the minmial node size constraint, with new intercepts

gi, Lim + 1node(i)
‘ I(xpv � cvj) + gi, Lim + 2node(i)

‘ I(xpv . cvj)

for all v and remaining, possible split-points c(i)
vj .

(b) Selection

Select the model that has the best fit yielding the split-point c(im)
vm , jm

, which is found

for item im in node node(im)
‘m

and variable xvm
.

(c) Splitting decision
Select the node and variable with the largest value of Tv . Carry out a permutation test
for this combination with significance level a=V. If significant, fit the selected model
yielding the additional estimates ĝim , Lim , m + 1, ĝim , Lim , m + 2, set m = m + 1. If not, stop.
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Comparison of Recursive Partitioning Methods

Recently, Komboz et al. (2016) proposed an extension of the RaschTree, a competing

recursive partitioning method for the detection of DIF in polytomous items. It will be

abbreviated by TREE-PCM. Even though both techniques use tree methods for iden-

tifying splits in the predictor space, the approaches are quite different. These differ-

ences are outlined in the following.

In item-focused trees (PCM-IFT), one tries to identify variables that generate splits

in specific items. Thus, recursive partitioning methods are used on the item level to

find those items that suffer from DIF. TREE-PCM, however, follows a quite different

strategy. Splits are global, if a specific split is considered, the partial credit model is

fitted in each region separately.

More concrete, in PCM-IFT the generation of a split uses the form (as already

given in Equation 2)

hpir = up � ½gir(1)I(xpv � c(i)
v ) + gir(2)I(xpv . c(i)

v )�, r = 1, . . . , k,

where c(i)
v is the split-point in variable v for item i. Thus, a PCM is fitted with a split

in item i, variable v at split-point c(i)
v . PCM-IFT examines the corresponding models

for all items i = 1, . . . , I , all variables v = 1, . . . , V , and possible splits j = 1, . . . , Jv.

TREE-PCM uses the form

hpir = up � ½gir(1)I(xpv � cv) + gir(2)I(xpv . cv)�, r = 1, . . . , k,

to generate splits. In contrast to PCM-IFT, the split-point cv in variable v is the same

for all items. Fitting of a PCM given a global split at cv is equivalent to fitting two

PCMs, one for the data, for which xpv � cv and one for the data for which xpv . cv

holds. One obtains different item parameter estimates in the two regions fxpv � cvg
and fxpv . cvg for all items.

Since the approaches use quite different predictors also fitting methods and out-

comes differ. Main differences are the following:

� When deciding if a variable is involved in DIF, TREE-PCM uses a structural

change test from econometrics that is based on score contributions (for more

details, see Komboz et al., 2016). PCM-IFT uses a permutation test with the

maximal value statistic Tv = maxcv
Tvcv

, which is defined as the maximum of

LR test statistics. In contrast to the structural change test, which selects vari-

ables, the maximal value statistic selects variables and items.
� For the estimation of model parameters, TREE-PCM uses a conditional maxi-

mum likelihood approach, which is possible since two separate models are

fitted to different samples obtained by the split. In contrast PCM-IFT is based

on joint maximum likelihood estimation.
� TREE-PCM yields one tree, for which each node of the fitted tree can be rep-

resented by a product of B indicator functions
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node(xp) =
YB

b = 1

I(xpjb . cjb )ab I(xpjb � cjb )1�ab :

The nodes are the same for each item. Typically, all the estimates of item parameters

differ for different nodes, which makes it hard to identify which item is carrying DIF.

In contrast, PCM-IFT yields several trees, one for each item that is identified as DIF

item. The nodes for item i have the form (4) with item-specific split-points. The sin-

gle trees show which variables induce DIF for the corresponding item. The size of the

trees varies across items.

For the use in practice, important differences are the following:

� PCM-IFT is able to detect single items that show DIF while the other items

are still compatible with the PCM. This enables users to reword or remove

crucial items in order to construct a DIF-free questionnaire. If TREE-PCM

performs a split, all the estimated item parameters differ.
� TREE-PCM potentially is a useful tool if one wants to investigate if DIF is

generally present in a test. However, it is hard to see which items are respon-

sible. If one wants to know which items are DIF items, PCM-IFT is more

appropriate.
� The item-focused tree approach provides an item-specific interpretation of

DIF.
� The TREE-PCM approach is based on the conditional likelihood instead of

the joint likelihood, which reduces computational costs.

The described differences are now illustrated by applying the TREE-PCM

approach to the same data set that was used in the section An Illustrative Example.

The resulting models for the sub-facet Fantasy when using TREE-PCM (significance

level a = :05) are presented in Figure 3. Only one split is performed for the variable

age at 43 years of age. Unlike PCM-IFT, TREE-PCM yields ordered thresholds for

items 3 and 6. Nevertheless, these two items do reveal strong differences in the effect

plots between the two groups. However, from this plot it is not easy to identify the

items that are responsible for DIF in this subfacet because almost all items show light

to strong differences in the plots between the two groups.

The two methods agree on age being a DIF-inducing covariate for this facet.

However, only PCM-IFT also identifies gender as DIF-inducing variable. After a

split into age groups, the overall differences of further splits are not strong enough

for TREE-PCM to warrant further splits. In contrast, for the two items, identified

by PCM-IFT, the differences were strong enough concerning gender groups. By

construction, PCM-IFT is more sensitive to DIF in only a few items while TREE-

PCM is more sensitive to DIF in multiple items. Therefore, it seems sensible that

TREE-PCM is prone to find more splits than PCM-IFT when small parameter
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differences are present in many of the items while PCM-IFT performs more splits

than TREE-PCM when only one or two items have DIF but none of the others.

Simulation Studies

In this section, we examine the performance of the new PCM-IFT approach that was

introduced in the previous sections. More precisely, we evaluate the procedure’s abil-

ity to detect items that show DIF and to estimate the item difficulty parameters in

each node in three simulation studies. In addition, the performance is compared with

TREE-PCM proposed by Komboz et al. (2016).

In Simulation I (One Binary Covariate), a simple model with only one binary cov-

ariate will be considered. In Simulation II (Three Different Covariates), a more com-

plex model with three different covariates (binary, ordinal and numeric) will be the

data generating model. Finally, in Simulation III nonhomogeneous DIF will be con-

sidered in a simulation with one binary covariate.

Evaluation Criteria and Experimental Design

For the evaluation of simulation results, true positive rates (TPRs) and false positive

rates (FPRs) are reported in each simulation scenario.

Let each item be characterized by a vector eT
i = (ei1, . . . , eiV ) with eiv = 1 if item i

has DIF in variable v and eiv = 0 otherwise. An item is a non DIF item if

eT
i = (0, . . . , 0). As soon as one of the components is 1, it is a DIF item. In addition,

each variable can be characterized by a vector eT
v = (ev1, . . . , evI ), where evi = 1 if

variable v induces DIF in item i and evi = 0 otherwise. With êT
i = (êi1, . . . , êiV )

Figure 3. Estimated tree for TREE-PCM of the subfacet Fantasy (NEO-PI-R).
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denoting the corresponding estimated indicator vector, the indicator function I( � )
and the zero vector 0, the following criteria are used:

1. TPR and FPR on the item level (items correctly identified as DIF items and

non-DIF items incorrectly identified as DIF items):

TPRI =
1

#fi : ei 6¼ 0g
X
i:ei 6¼0

I(êi 6¼ 0)

FPRI =
1

#fi : ei = 0g
X

i:ei = 0

I(êi 6¼ 0)

2. TPR and FPR for the combination of item and variable:

TPRIV =
1

#fi, v : eiv 6¼ 0g
X

i, v:ei, v 6¼0

I(êiv 6¼ 0)

FPRIV =
1

#fi, v : eiv = 0g
X

i, v:eiv = 0

I(êiv 6¼ 0)

3. TPR and FPR on the variable level (variables correctly identified as DIF

inducing variables and variables incorrectly identified as DIF inducing

variables):

TPRV =
1

#fv : ev 6¼ 0g
X

v:ev 6¼0

I(êv 6¼ 0)

FPRV =
1

#fv : ev = 0g
X

v:ev = 0

I(êv 6¼ 0)

Each rate is reported as the average over all repetitions. All simulation scenarios were

replicated 100 times.

Person Parameters. The number of persons in all simulations is 500. However, all

persons are excluded from the analyses, who have answers in only one category. As

a result, the actual number of persons P in most of the scenarios is slightly less than

500. The person parameters are simulated from a standard normal distribution,

up;N (0, 1).
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Number of Items. In most scenarios, the number of items is I = 8, and one of these

items is simulated to have DIF. This makes our simulations comparable to the illus-

tration in the section An Illustrative Example, where each unidimensional subfacet

consists of eight items. Also, Komboz et al. (2016) used eight items in their simula-

tion studies. In order to examine how the performance of our method changes with

increasing number of items, we conduct one scenario with I = 20 and three DIF items

in Simulation I.

Item Parameters. In most scenarios, we simulate data with three response categories

(k = 2). In addition, in Simulation I, one scenario is included with five response cate-

gories (k = 4). In a first step, the threshold parameters for item i are drawn from the

following normal distribution:

k = 2 : di;N3(m3, S3 = I3), m3 = (� 0:50, 0:50)T

k = 4 : di;N5(m5, S5 = I5), m5 = (� 1:50, � 0:50, 0:50, 1:50)T

If item i is simulated to have DIF, the corresponding item parameters are subse-

quently transformed by step functions.

Structure of DIF. To simulate DIF in item i, the item parameters are shifted for one

sub-group (the focal group) corresponding to a prespecified split-point cvj in covari-

ate xv. There is always one split in each DIF item.

For each scenario, three different strengths of DIF are defined: weak, medium,

and strong. The strength is determined by an additional parameter l. In the weak

condition, the mean vector of the focal group is shifted by l = 0:25, in the medium

condition by l = 0:5 and in the strong condition by l = 1 in relation to the values in

the reference group. Additionally, we add one condition in which no DIF is present

(the item parameters for both groups are drawn from the same distribution). Further

details are given in the respective sections.

The methods considered in the simulations are

� The proposed item-focused tree approach (PCM-IFT).
� The partial credit tree approach (TREE-PCM) proposed by Komboz et al.

(2016).

During estimation, each permutation test is based on 1000 permutations and the glo-

bal significance level a = :05.

A reviewer suggested to also compare the methods to more conventional testing

approaches. Therefore, we additionally consider the performance of an itemwise LR

test in simulations in which it can be applied. This self-implemented test is in accor-

dance with Lord’s chi-square test or Wald test as described in Magis et al. (2010) for

dichotomous items. When testing the difference between two groups in the PCM, all

the threshold parameters dir, r = 1, , k, are tested simultaneously. This approach is
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designed for the comparison of two or several groups, only. Hence, it is only applied

in Simulation I.

Simulation I: One Binary Covariate

In the first simulation study, the data set contains only one binary covariate

x 2 f0, 1g. Therefore, the simple LR test can also be used for DIF detection.

Covariate x induces DIF in one or three items. The item parameters for the two

groups defined by x are

gir(2) = gir(1) + l � I(xp = 1), r = 1, . . . , k:

All thresholds of the DIF items are shifted in the same direction by the same value l

depending on the strength of DIF. For the settings with no DIF l is set to 0.

Three scenarios are considered that differ with regard to the number of items (I)

the number of response categories (k) and the number of DIF items (IDIF). A detailed

overview is given in Table 1.

Results. The evaluated criteria of the first simulation are shown in Tables 2 and 3.

When no DIF is present, only FPRs are available. In both tables, results are first

shown for eight items with three categories, second for 20 items with three categories,

and third for eight items with five categories. In the case of one single covariate the

covariate vector ei only has one element, so TPRs and FPRs for the combination of

item and variable for PCM-IFT and LR test correspond to those on the item level (see

Table 2). TREE-PCM does not test single items for DIF and therefore we only obtain

detection rates on the variable level. In the no DIF scenario we get a FPRV and in all

other scenarios a TPRV . They are reported for both methods in Table 3.

It can be seen from Table 2 that the proposed PCM-IFT approximately keeps the

given significance level. In contrast, the LR test shows strongly inflated Type I error

rates, in particular for strong DIF. In this simple case, the difference between PCM-

IFT and LR test is the testing procedure. The LR test approach tests each item sepa-

rately given all other items are free of DIF. The PCM-IFT pursues a sequential strat-

egy that accounts for DIF found in previous steps. As was to be expected, TPRs on

Table 1. Number of Items (I ), Number of Response Categories (k), and Number of DIF
Items (IDIF) for the Three Scenarios of Simulation I.

Simulation I I k IDIF

Scenario 1 8 3 1
Scenario 2 20 3 3
Scenario 3 8 5 1

796 Educational and Psychological Measurement 78(5)



the item level increase with increasing strength of DIF for both methods. They are

also slightly higher for the third scenario with five categories.

It should be noted that inflated type I error rates on the item level are also

observed, when using the itemwise Wald test implemented in the function

Waldtest() of the R package eRm (Mair and Hatzinger, 2007). We prefer to

report the results of the self-implemented LR-test, because the function Waldtest()

uses separate tests for each threshold.

The FPRs on the variable level for PCM-IFT (Table 3) seem surprisingly high.

However, bearing in mind that FPRs were controlled on the item and not on the vari-

able level, the results make sense. If the probability of one item to be falsely classi-

fied as DIF item is 0.05, then the probability that one or more out of 8 items are

falsely classified as DIF item is: 1� (0:958) = 1� 0:663 = 0:337. For 20 items:

1� (0:9520) = 1� 0:358 = 0:642. Of course, this only holds for simulation I in which

there is only one covariate and each split is automatically made for this covariate.

Consequently, FPRs on the variable level are much higher compared with the TREE-

PCM procedure, in which they are controlled on the variable level, and therefore the

significance level is mostly respected. It can further be seen, that also TPRs are much

higher for PCM-IFT than for TREE-PCM. A TPR of 100 in Scenario 3 with weak

DIF means that only in 10 % of the cases the present DIF is found. The reason might

be that the ratio of DIF items to non-DIF items is very small in Scenarios 1 and 3.

Therefore, for the detection of single items the power is much higher. Accordingly,

in Scenario 2, where the ratio of DIF items to non-DIF items is higher) TREE-PCM

performs better.

Table 2. Average True Positive and False Positive Rates for PCM-IFT and the LR Test Based
on 100 Replications (Simulation I).

DIF strength

PCM-IFT LR test

TPRI FPRI TPRI FPRI

Scenario 1 No DIF — 0.068 — 0.090
Weak 0.270 0.057 0.340 0.093
Medium 0.820 0.061 0.890 0.110
Strong 1.000 0.058 1.000 0.163

Scenario 2 No DIF — 0.053 — 0.057
Weak 0.290 0.053 0.280 0.093
Medium 0.836 0.048 0.800 0.171
Strong 0.996 0.051 1.000 0.250

Scenario 3 No DIF — 0.055 — 0.081
Weak 0.350 0.055 0.430 0.081
Medium 0.940 0.056 0.970 0.098
Strong 0.980 0.057 1.000 0.177

Note. DIF = differential item functioning; TPR = true positive rate; FPR = false positive rate; PCM-IFT =

item-focused trees based on the partial credit model; LR = likelihood ratio.
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Simulation II: Three Different Covariates

In the second simulation study, we investigate how well the proposed method is able

to detect the right DIF inducing covariate out of multiple present covariates. We con-

sider scenarios with I = 8, k = 3 and IDIF = 1. Now, there are three different covariates

that possibly induce DIF—one binary variable x1 2 f0, 1g, one ordered factor

x2 2 f1, 2, 3, 4g, and one numeric covariate x3 2 f20, . . . , 50g. Variable x3 could, for

example, represent the variable age. In each of the following scenarios, exactly one

of these covariates induces DIF in one item. Again, all thresholds of one item are

shifted in the same direction. There is one split-point cvj per item at cvj = xvmed
. The

threshold parameters of the two subgroups are given by

gir(2) = gir(1) + l � I(xpv . xvmed
), r = 1, 2:

To obtain weak, medium, and strong DIF, parameters l are chosen in the same way

as in the previous simulation.

Results. Figure 4 shows one estimated tree for Item 5 (the item with DIF), for the

three different scenarios of Simulation II with strong DIF, respectively. In the chosen

examples, the true underlying DIF structure was detected. In Scenario 1, DIF is

induced by x1, in Scenario 2 by x2, and in Scenario 3 by x3. In these examples also,

the true simulated split-points (2, 2 and 34), are correctly identified. In each scenario,

the true item parameters are g5(1) = (� 0:5, 0:5)T in the left node and

g5(2) = (0:5, 1:5)T in the right node. It can be seen from the graphical representations

Table 3. Average TPRV and FPRV for TREE-PCM and PCM-IFT Based on 100 Replications
(Simulation I).

DIF strength

TREE-PCM PCM-IFT

TPRV FPRV TPRV FPRV

Scenario 1 No DIF — 0.080 — 0.410
Weak 0.100 — 0.490 —
Medium 0.280 — 0.880 —
Strong 0.930 — 1.000 —

Scenario 2 No DIF — 0.050 — 0.680
Weak 0.140 — 0.850 —
Medium 0.610 — 1.000 —
Strong 1.000 — 1.000 —

Scenario 3 No DIF — 0.040 — 0.390
Weak 0.100 — 0.590 —
Medium 0.460 — 0.950 —
Strong 1.000 — 0.980 —

Note. DIF = differential item functioning; TPR = true positive rate; FPR = false positive rate; PCM-IFT =

item-focused trees based on the partial credit model; TREE-PCM = RaschTree partial credit model.
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of the parameters in the leaves of the trees that the estimated parameters are quite

close to the true ones.

To account for the multiple covariates in the model, the significance level at each

node is divided by the number of covariates available at this node: a = 0:05=V .

Tables 4 and Table 5 give an overview of the TPRs and FPRs based on 100 replica-

tions for Simulation II.

In Table 4, it can be seen that FPRs are always close to the given significance

level demonstrating that the alpha level correction works quite well. For the combi-

nation of items and variables they are necessarily smaller. From the first and the third

columns in Table 4, one can conclude that almost in all cases where a split was per-

formed, also the right variable was selected. On variable level (Table 5), FPRs again

are higher than 0.05 but not as high as in simulation I. It is noteworthy that TREE-

PCM is very conservative in this simulation which results in very small true and

FPRs. Similar to simulation I, TPRs of PCM-IFT are much higher than those of

TREE-PCM.

Simulation III: Nonhomogeneous DIF

In the third simulation, nonhomogeneous DIF is simulated in the settings with I = 8,

k = 3, and IDIF = 1 with regard to one binary DIF-inducing covariate. Unlike in the

Figure 4. Estimation results for one example of the three scenarios of Simulation II with
three covariates and strong differential item functioning (DIF). The estimated item
parameters g5r(1) and g5r(2) are visualized in each leaf of the trees.

Bollmann et al. 799



previous simulations, threshold parameters now are not all shifted by an equal amount

from the reference to the focal group, but half of the parameters is shifted to the left

and the other half to the right. More precisely, since only the case of two threshold

parameters per item was considered, the first threshold parameter is shifted to the left

and the second to the right. As a result, the difference between threshold parameters,

Table 5. Average TPRV and FPRV for TREE-PCM and PCM-IFT Based on 100 Replications
(Simulation II).

DIF strength

TREE-PCM PCM-IFT

TPRV FPRV TPRV FPRV

Scenario 1 no DIF — 0.013 — 0.110
weak 0.030 0.025 0.154 0.113
medium 0.160 0.035 0.630 0.097
strong 0.870 0.025 0.988 0.075

Scenario 2 no DIF — 0.013 — 0.093
weak 0.060 0.015 0.153 0.122
medium 0.110 0.015 0.410 0.131
strong 0.700 0.025 0.977 0.102

Scenario 3 no DIF — 0.013 — 0.104
weak 0.040 0.015 0.202 0.090
medium 0.180 0.030 0.619 0.076
strong 0.970 0.025 1.000 0.096

Note. DIF = differential item functioning; TPR = true positive rate; FPR = false positive rate; PCM-IFT =

item-focused trees based on the partial credit model; TREE-PCM = RaschTree partial credit model.

Table 4. Average True Positive and False Positive Rates for PCM-IFT Based on 100
Replications (Simulation II).

DIF strength TPRI FPRI TPRIV FPRIV

Scenario 1 No DIF — 0.041 — 0.014
Weak 0.124 0.039 0.072 0.014
Medium 0.597 0.045 0.576 0.015
Strong 0.988 0.038 0.988 0.012

Scenario 2 No DIF — 0.035 — 0.011
Weak 0.112 0.041 0.071 0.014
Medium 0.368 0.051 0.357 0.016
Strong 0.977 0.044 0.977 0.013

Scenario 3 No DIF — 0.039 — 0.013
Weak 0.096 0.042 0.085 0.013
Medium 0.543 0.042 0.533 0.013
Strong 1.000 0.044 1.000 0.013

Note. DIF = differential item functioning; TPR = true positive rate; FPR = false positive rate; PCM-IFT =

item-focused trees based on the partial credit model.
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i.e. the category width changes from the reference to the focal group. The two thresh-

old parameters are then given through:

gi1(2) = gi1(1) � l � I(xp = 1)

gi2(2) = gi2(1) + l � I(xp = 1):

Results. Table 6 displays true and FPRs on the item level for PCM-IFT. Both, FPRs

and TPRs are satisfactory and very similar to those in Simulation I, Scenario 1 where

the same number of items and categories were used. Figure 5 shows one estimated

tree for Item 5 (the item with DIF) for the setting with strong DIF of Simulation III,

where the true underlying DIF structure was detected. In this scenario, with nonho-

mogeneous DIF, the true item parameters are g5(1) = (� 0:5, 0:5)T in the left node

and g5(2) = (� 1:5, 1:5)T in the right node. From the graphical representations of the

Figure 5. Estimation result for one example of Simulation III with one covariate and
nonhomogeneous differential item functioning (DIF) (strong setting). The estimated item
parameters g5r(1) and g5r(2) are visualized in each leaf of the tree.

Table 6. Average True Positive and False Positive Rates for PCM-IFT Based on 100
Replications (Simulation III).

DIF strength TPRI FPRI

No DIF — 0.057
Weak 0.190 0.058
Medium 0.590 0.057
Strong 0.990 0.056
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parameters in the leaves of the trees, it can be seen that the underlying nonhomoge-

neous DIF structure is detected by the algorithm.

Concluding Remarks

We propose an approach to detect DIF in ordinal item response based on the PCM.

By item-focused recursive partitioning, the proposed method allows for simultaneous

detection of items and variables that are responsible for DIF. The results are small

trees for each item that is not compatible with the PCM. Graphical representations of

the threshold parameters in each terminal node enable an easy interpretation of the

estimated effects and the differences between the detected groups. The simulations

demonstrate that the proposed procedure works well, in particular, in settings where

only few DIF items are present (which is usually the case in applications). The exist-

ing TREE-PCM, however, is more suitable in cases where users assume most of the

items to have DIF or simply want to test for DIF in the questionnaire without flagging

the individual DIF items. Surprisingly, a comparison to the item wise LR-test reveals

that this conventional method does not work well in the simple simulation scenario

since it shows strongly inflated type I error rates. We can therefore conclude that the

proposed PCM-IFT shows advantages over conventional methods (multiple covari-

ates, no prespecification of subgroups) and has the additional benefit that it does not

only tests for DIF but also automatically detects DIF items.

The proposed model explicitly tests DIF on the item level. That means in each step

the whole parameter vector H0 : gi(1) � gi(2) = 0
� �

is tested and if a split is performed,

all the threshold parameters are estimated in both nodes without any restrictions. An

alternative strategy would be to test for DIF in single thresholds. Then for fixed item

and variable in each step one tests the hypotheses H0 : gir(1) � gir(2) = 0, r = 1, . . . , k,

and selects the threshold that has the best fit. Accordingly, in each step only one

threshold dir changes for one group. In future research, one might also consider a

homogeneous modeling approach, in which again all thresholds are shifted but now

all in the same direction by an item-specific constant gi. Then, for example, after the

first split the item parameters in region fxpv . cvg are defined by di1 + gi, . . . , dik + gi.

Both strategies are certainly worth investigating but the adoption of the existing proce-

dure needs further research.

We restricted consideration to the widely used partial credit model. However, the

basic concept can also be used to model DIF in alternative ordinal item response

models, for example in the rating scale model (Andrich, 1978). In the rating scale

model, the predictor has the form up � (bi + tr), with item location parameter bi and

threshold parameter tr. With item-focused trees, the location parameter bi can be

replaced by gi(1)I(xpv � cv) + gi(2)I(xpv . cv), the threshold parameter tr can be

replaced by ar(1)I(xpv � cv) + ar(2)I(xpv . cv) or both parameters can be modified

simultaneously. Fitting of corresponding models requires the development of tailored

testing strategies and appropriate estimation tools, which is beyond the scope of this

article.
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All the results presented in this article were obtained by means of an R program

(as described in the Computation of Estimates section), which is available from the

authors and will soon be available in an extended version of the R add-on package

DIFtree (Berger, 2016) on CRAN.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship,

and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of

this article.

References

Andersen, E. B. (1973). Conditional inference and models for measuring. Copenhagen,

Denmark: Metalhygiejnish Forlag.

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43,

561-573.

Andrich, D. (2013). An expanded derivation of the threshold structure of the polytomous Rasch

model that dispels any threshold disorder controversy. Educational and Psychological

Measurement, 73, 78-124.

Andrich, D. (2015). The problem with the step metaphor for polytomous models for ordinal

assessments. Educational Measurement: Issues and Practice, 34(2), 8-14.

Berger, M. (2016). DIFtree: Item focused trees for the identification of items in differential

item functioning. R package version 2.1.4.

Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the Mantel-

Haenszel procedure. In H. Wainer & H. I. Brown (Eds.), Test validity (pp. 129-145).

Hillsdale, NJ: Lawrence Erlbaum.

Holland, P. W., & Wainer, H. (1993). Differential item functioning. Hillsdale, NJ: Lawrence

Erlbaum.

Hothorn, T., & Lausen, B. (2003). On the exact distribution of maximally selected rank

statistics. Computational Statistics and Data Analysis, 43, 121-137.

Kim, S.-H., Cohen, A. S., & Park, T.-H. (1995). Detection of differential item functioning in

multiple groups. Journal of Educational Measurement, 32, 261-276.

Komboz, B., Strobl, C., & Zeileis, A. (2018). Tree-based global model tests for polytomous

Rasch models. Educational and Psychological Measurement, 78, 128-166. doi:10.1177/

0013164416664394

Lord, F. M. (1980). Applications of item response theory to practical testing problems. New

York, NY: Routledge.
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Revidierte Fassung. [NEO Personality Inventory based on Costa and McCrae, revised

version (NEO-PI-R)] Göttingen, Germany: Hogrefe.

Penfield, R. D. (2007). Assessing differential step functioning in polytomous items using a

common odds ratio estimator. Journal of Educational Measurement, 44, 187-210.

Penfield, R. D. (2008). An odds ratio approach for assessing differential distractor functioning

effects under the nominal response model. Journal of Educational Measurement, 45,

247-269.

Penfield, R. D., & Algina, J. (2003). Applying the Liu-Agresti estimator of the cumulative

common odds ratio to DIF detection in polytomous items. Journal of Educational

Measurement, 40, 353-370.

Penfield, R. D., & Camilli, G. (2006). Differential item functioning and item bias. In C. Rao

& S. Sinharay (Eds.), Handbook of statistics: Vol. 26. Psychometrics (pp. 125-167).

Amsterdam, Netherlands: Elsevier.

Raju, N. S. (1988). The area between two item characteristic curves. Psychometrika, 53,

495-502.

Schauberger, G., & Tutz, G. (2016). Detection of differential item functioning in Rasch models

by boosting techniques. British Journal of Mathematical and Statistical Psychology, 69,

80-103.

Shih, Y.-S. (2004). A note on split selection bias in classification trees. Computational

Statistics and Data Analysis, 45, 457-466.

Shih, Y.-S., & Tsai, H. (2004). Variable selection bias in regression trees with constant fits.

Computational Statistics and Data Analysis, 45, 595-607.

Strobl, C., Boulesteix, A.-L., & Augustin, T. (2007). Unbiased split selection for classification

trees based on the Gini index. Computational Statistics and Data Analysis, 52, 483-501.

Strobl, C., Kopf, J., & Zeileis, A. (2015). Rasch trees: A new method for detecting differential

item functioning in the Rasch model. Psychometrika, 80, 289-316.

Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item functioning

using the parameters of item response models. In P. W. Holland & H. Wainer (Eds.),

Differential item functioning (pp. 67-113). Hillsdale, NJ: Lawrence Erlbaum.

Tutz, G., & Berger, M. (2016). Item-focussed trees for the identification of items in differential

item functioning. Psychometrika, 81, 727-750.

Tutz, G., & Schauberger, G. (2015). A penalty approach to differential item functioning in

Rasch models. Psychometrika, 80, 21-43.

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical

Software, 32(10), 1-34.

Yee, T. W. (2014). VGAM: Vector generalized linear and additive models. R package version

0.9-4.

Yee, T. W., & Wild, C. J. (1996). Vector generalized additive models. Journal of the Royal

Statistical Society B, 58, 481-493.

804 Educational and Psychological Measurement 78(5)


