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KRYLOV METHODS FOR LOW-RANK REGULARIZATION ˚1

SILVIA GAZZOLA: , CHANG MENG; , AND JAMES G. NAGY;2

Abstract. This paper introduces new solvers for the computation of low-rank approximate solutions to large-3
scale linear problems, with a particular focus on the regularization of linear inverse problems. Although Krylov4
methods incorporating explicit projections onto low-rank subspaces are already used for well-posed systems that arise5
from discretizing stochastic or time-dependent PDEs, we are mainly concerned with algorithms that solve the so-called6
nuclear norm regularized problem, where a suitable nuclear norm penalization on the solution is imposed alongside a7
fit-to-data term expressed in the 2-norm: this has the effect of implicitly enforcing low-rank solutions. By adopting8
an iteratively reweighted norm approach, the nuclear norm regularized problem is reformulated as a sequence of9
quadratic problems, which can then be efficiently solved using Krylov methods, giving rise to an inner-outer iteration10
scheme. Our approach differs from the other solvers available in the literature in that: (a) Kronecker product11
properties are exploited to define the reweighted 2-norm penalization terms; (b) efficient preconditioned Krylov12
methods replace gradient (projection) methods; (c) the regularization parameter can be efficiently and adaptively13
set along the iterations. Furthermore, we reformulate within the framework of flexible Krylov methods both the14
new inner-outer methods for nuclear norm regularization and some of the existing Krylov methods incorporating15
low-rank projections. This results in an even more computationally efficient (but heuristic) strategy, that does not16
rely on an inner-outer iteration scheme. Numerical experiments including image deblurring, computed tomography17
and inpainting show that our new solvers are competitive with other state-of-the-art solvers for low-rank problems,18
and deliver reconstructions of increased quality with respect to other classical Krylov methods.19

Key words. low-rank solver, nuclear norm regularization, Krylov methods, flexible Krylov methods, Kronecker20
product, imaging problems21

AMS subject classifications. 65F20, 65F3022

1. Introduction. Consider the following linear system23

(1.1) Ax “ b, where A P RMˆN , x P RN , b “ bex ` η P RM .24

We are mainly interested in large-scale linear systems (1.1) arising from inverse problems, where A25

is a discretization of the linear forward operator, x is a quantity of interest, and b is the observed26

perturbed data (bex “ Axex being the ideally exact data, and η being unknown Gaussian white27

noise). Our focus is on two-dimensional imaging problems, where the unknown vector x P RN is28

obtained by stacking the columns of an unknown true image X of size n ˆ n, with n “
?
N (this29

operation and its inverse are denoted by x “ vecpXq and X “ vec´1pxq, respectively).30

Discrete inverse problems are ill-posed in nature [13] and, because of the presence of noise in31

(1.1), regularization needs to be applied so that the solution of (1.1) is a meaningful approxima-32

tion to xex. One typically achieves regularization by replacing the original problem (1.1) with a33

closely related one that is less sensitive to perturbations: effective regularization methods do so by34

incorporating known or desired properties of x into the solution process. In imaging applications,35

Tikhonov (`2) regularization, `1 regularization and total variation are typical techniques to be ex-36

ploited, see, for example, [4, 7, 8, 9, 17]. In the field of geophysics, `0 regularization (also called37

compact regularization) is sometimes considered (e.g., [21, 34]).38
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2 S. GAZZOLA, C. MENG AND J. NAGY

In this paper we consider regularization methods that compute a low-rank approximate solution39

X “ vec´1pxq of (1.1): this is generally meaningful when the unknown x encodes a high-dimensional40

quantity and, in particular, in the case of a two-dimensional image. Indeed, two-dimensional images41

are often assumed to have low-rank or to be well-approximated by low-rank two-dimensional arrays42

(see [27] and the references therein).43

Numerical linear algebra solvers for the estimation of low-rank solutions to linear systems44

have been developed in the literature, mainly targeting well-posed linear discrete problems, such as45

those arising when considering the numerical solution of stochastic PDEs (see [22] and the references46

therein). In particular, the authors of [22] devise a restarted GMRES-like method (RS-LR-GMRES)47

that involves low-rank projections of the basis vectors of the solution subspace, as well as a low-rank48

projection of the current solution at the end of each cycle. Since, in general, the basic operations49

involved in standard GMRES (such as matrix-vector products and vector sums) increase the ranks50

of the computed quantities, low-rank projections are needed to assure that the computed solution51

is low-rank. In the framework of compressive sensing, the authors of [2] consider a modified version52

of the conjugate gradient method that incorporates appropriate rank-truncation operations. All53

the methods mentioned so far employ, often in a heuristic way, Krylov subspace methods together54

with rank-reduction operations (e.g., projections onto a chosen set of low-rank matrices). Since55

many Krylov subspace methods are iterative regularization methods for (1.1), this brings us to the56

question of how incorporating rank-reduction operations would affect the solution of the discrete57

inverse problem (1.1), with a particular focus on imaging applications.58

Low-rank matrix estimation can be naturally formulated as a nonconvex optimization problem59

having either: (i) a least-squares data fitting term as objective function and a rank constraint; (ii)60

the rank of X “ vec´1pxq as objective function and a constraint on the least-squares data fitting61

term. The last instance is commonly referred to as affine rank minimization problem, and both62

formulations are in general NP-hard [27]. In this paper we consider the unconstrained and convex63

optimization problem64

(1.2) min
x
}Ax´ b}22 ` λ}vec´1pxq}˚ ,65

where λ ą 0 is a regularization parameter and } ¨ }˚ denotes the nuclear norm of vec´1pxq “ X,66

defined as the sum of the singular values of X. Indeed, if the singular value decomposition (SVD)67

of X is given by X “ UXΣXV
T
X , where UX ,VX P Rnˆn are orthogonal matrices, and ΣX P Rnˆn68

is the diagonal matrix whose diagonal entries are σ1pXq ě ¨ ¨ ¨ ě σnpXq ě 0, then69

}X}˚ “
n
ÿ

i“1

σipXq .70

Problem (1.2) is refered to as a nuclear norm regularized (NNR) problem. In particular, the nuclear71

norm is a convex function that has been proven to be the best convex lower approximation of the72

rank function over the set of matrices X such that }X}2 ď 1 (see [27] and the references therein).73

The nuclear norm has been used in many applications, such as low-rank matrix completion and74

compressed sensing; see, e.g., [3, 10, 16, 24, 27], where the constrained formulation of problem (1.2)75

has also been considered (note that, for a proper choice of λ ą 0, constrained and unconstrained76

formulations are equivalent; see, e.g., [29]). In the framework of compressive sensing, under the77

assumption that the matrix A satisfies a certain null-space property, recovery guarantees for the78
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LOW-RANK KRYLOV METHODS 3

affine rank minimization problem are proven in [5, 25]. We also consider the following formulation79

(1.3) min
x
}Ax´ b}22 ` λ}vec´1pxq}˚,p , where }X}˚,p “

n
ÿ

i“1

pσipXqq
p, 0 ă p ď 1 .80

Problem (1.3) is refereed to as NNRp problem, and it generalizes problem (1.2) (which is obtained81

taking p “ 1 in (1.3)). The constrained version of (1.3) is already considered in [25], where82

the authors empirically show an improved recovery performance of the constrained formulation83

of problem (1.3) with p ă 1 with respect to p “ 1. Note, however, that the choice p ă 1 in (1.3)84

results in a nonconvex minimization problem.85

Many different optimization methods, such as singular value thresholding (i.e., projected gradi-86

ent descent) and continuation methods [10], have been proposed for the solution of problem (1.2) or87

its constrained counterpart. In particular, the so-called IRLS(-p) (i.e., iteratively reweighted least88

squares) family of methods has recently attracted a lot of attention [5, 25, 27]. IRLS(-p) solves89

the affine rank minimization problem by solving a sequence of problems whose objective function90

only involves an iteratively updated weighted 2-norm term. The authors of [23] apply the IRLS(-p)91

framework to the unconstrained problem (1.3), requiring the solution of a sequence of sub-problems92

(1.4) min
x
}Ax´ b}22 ` λ}Wkvec´1pxq}2F ,93

where Wk is an appropriate weight matrix to be employed to solve the kth sub-problem, and } ¨ }F94

denotes the Frobenius norm of a matrix. A gradient (projection) algorithm is typically used to95

solve each sub-problem (1.4). Since an IRLS(-p) approach is also commonly applied to objective96

functions involving a quadratic fit-to-data term and a general p-norm penalization on x, and since97

efficient strategies based on Krylov methods have been devised to solve each quadratic sub-problem98

in the IRLS(-p) sequence [28, 30], this brings us to the question of how Krylov methods can be best99

employed to solve each problem (1.4) (recall that }vec´1pxq}˚,p can be regarded as a p-norm of the100

vector whose entries are the singular values of X “ vec´1pxq).101

The goal of this paper is to propose new efficient Krylov methods for the estimation of low-rank102

solutions to (1.1). We will mainly consider an IRLS(-p) approach to problem (1.3) (rather than103

incorporating low-rank projections into a linear solver for (1.1)), the upside being that low-rank is104

implicitly enforced into the solution by penalizing the p-norm of the singular values for a suitable105

choice of λ. Our main contributions are the new IRN-GMRES-NNRp and IRN-LSQR-NNRp meth-106

ods for (1.3), where automatic strategies for choosing a suitable λ are naturally incorporated. Here107

and in the following, the IRN acronym indicates an iteratively reweighted norm (rather than an108

iteratively reweighted least squares problem, [30]). One of the key points in deriving the new meth-109

ods is expressing in matrix form the invertible linear operator mapping x to the reweighted 2-norm110

of the singular values of X “ vec´1pxq: this can be achieved in a computationally affordable way by111

exploiting Kronecker product properties. Each iteratively reweighted quadratic sub-problem of the112

form (1.4) can then be expressed as a Tikhonov regularization problem in general form, which can113

be straightforwardly transformed into standard form. In this way, the inverse of the linear operator114

mapping x into the reweighted 2-norm of the singular values of X “ vec´1pxq formally acts as a115

preconditioner for A, and the so-called hybrid methods [26] based on the preconditioned Arnoldi (if116

A is square) or Golub-Kahan bidiagonalization algorithms can be used to efficiently approximate117

the solution of each problem of the form (1.4). Once a hybrid method is adopted, many automatic,118

adaptive, and efficient parameter choice strategies can be employed to choose a suitable λ; see [18]119

for an overview. Therefore, contrarily to many existing methods for (1.3), IRN-GMRES-NNRp and120
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4 S. GAZZOLA, C. MENG AND J. NAGY

IRN-LSQR-NNRp have the advantage of not requiring a regularization parameter (either λ or the121

desired rank of the solution) to be available in advance of the iterations, nor the repeated solution122

of (1.3) for different regularization parameters.123

Although inherently efficient, both the IRN-GMRES-NNRp and IRN-LSQR-NNRp methods124

are inner-outer iteration schemes, where each outer iteration requires running a “preconditioned”125

Krylov subspace method until convergence (inner iteration) before updating the weights (and there-126

fore the “preconditioner”) in the next outer iteration. In order to avoid inner-outer iterations and127

with the aim of generating only one approximation subspace for the solution of (1.3), where a new128

“preconditioner” is incorporated as soon as a new approximate solution becomes available (i.e., at129

each iteration), we propose to solve (1.3) using flexible Krylov subspace methods, such as those based130

on the flexible Arnoldi [31] and Golub-Kahan [4] algorithms. The use of flexible Krylov methods for131

p-norm regularization of inverse problems was already proposed in [4, 7]; however, differently from132

the available solvers, our new approach involves iteratively defining both weights and transform133

matrices (i.e., the linear operator mapping vec´1pxq into its singular values). Switching from IRN-134

GMRES-NNRp and IRN-LSQR-NNRp to their flexible counterparts (dubbed FGMRES-NNRp and135

FLSQR-NNRp, respectively) allows for savings in computations and, although FGMRES-NNRp136

and FLSQR-NNRp are purely heuristic, it leads to approximate solutions whose accuracy on many137

test problems is comparable to the ones of other well established solvers for (1.2). Motivated by138

the same idea of avoiding inner-outer iteration cycles while adaptively incorporating (low-rank)139

information into the approximation subspace for the solution, we also propose a flexible version140

of the projected and restarted Krylov subspace methods (such as RS-LR-GMRES, [22]) that were141

originally devised for square matrices, considering also extensions to rectangular matrices A.142

This paper is organized as follows. In Section 2 we review the available low-rank Krylov methods143

for square linear systems and, after surveying the available flexible Krylov solvers, we formulate144

new low-rank flexible Krylov solvers for both square and rectangular problems, where the basis145

vectors for the approximation subspace are truncated to low-rank. In Section 3 we derive the new146

iteratively reweighted methods for (1.3) as fixed-point methods, and we describe how to efficiently147

solve each reweighted problem of the form (1.4) using preconditioned Krylov methods: this leads148

to the IRN-GMRES-NNRp and IRN-LSQR-NNRp methods; their flexible counterparts (FGMRES-149

NNRp and FLSQR-NNRp, respectively) are also derived. Some implementation details, such as150

stopping criteria and regularization parameter choice strategies for the new methods, are unfolded151

in Section 4. Numerical results on image deblurring, computed tomography and inpainting are152

presented in Section 5, including comparisons between the proposed methods, low-rank projection153

methods, projected gradient methods, and standard Krylov subspace methods. Conclusions are154

drawn in Section 6.155

Definitions and notations. Matching lower and upper case letters are used to denote the156

“vectorized” and “matricized” versions of a given quantity, respectively; e.g., c “ vecpCq and157

C “ vec´1pcq. We denote the ith entry of a vector c by rcsi, and the pi, jqth entry of a matrix C158

by rCsij or, using MATLAB-like notations, rcsi “ cpiq, rCsij “ Cpi, jq. Using again MATLAB-like159

notations, d “ diagpCq defines a vector d whose entries are the diagonal elements of a matrix160

C. TrpCq denotes the trace of a matrix C. RpCq denotes the range (or column space) of a161

matrix C, and KmpA, bq denotes the m-dimensional Krylov subspace defined by A and b, i.e.,162

KmpA, bq “ span
 

b, Ab, A2b, . . . , Am´1b
(

. We denote by I P Rdˆd the identity matrix of order163

d, and by ei the ith canonical basis vector of Rd, where d should be clear from the context. Note164

that, in the following, we will quite often interchange x and X and, with a slight abuse of notations,165

we will denote the action of a linear operator on x or X by ApXq “ AX “ Ax, and the action of166
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LOW-RANK KRYLOV METHODS 5

the adjoint operator by A˚pY q “ A˚Y “ ATvecpY q.167

2. Low-rank projection methods: classical and new approaches. As recalled in Section168

1, when solving square well-posed linear systems coming from the discretization of some instances169

of stochastic or time-dependent PDEs, a suitable rearrangement of the solution is expected to be170

low-rank: for this reason, schemes that incorporate low-rank projections within the basis vectors171

and the approximate solution obtained by a Krylov method have been proposed in the literature. In172

the following we summarize the working ideas underlying the so-called restarted low-rank-projected173

GMRES (RS-LR-GMRES) method proposed in [22].174

The starting points for the derivation of RS-LR-GMRES are the basic properties and rela-175

tions underlying GMRES. Indeed, one can define GMRES for the solution of (1.1) with a square176

A P RNˆN and initial guess x0 “ 0 by generating a matrix Vm “ rv1, . . . ,vms P RNˆm with or-177

thonormal columns, such that RpVmq “ KmpA, bq, and imposing that the residual rm “ b´Axm178

is orthogonal to Um “ AVm. In practice, at the kth iteration of GMRES, one computes179

(2.1) uk “ Avk´1 and }vk}2vk “ pI ´ Vk´1pV
T
k´1Vk´1

loooomoooon

“I

q´1V T
k´1quk ,180

and the approximate solution is computed as181

(2.2) xk “ Vkyk , where pUT
k AVkqyk “ U

T
k b .182

This procedure is mathematically equivalent to the somewhat more standard procedure that, at the183

kth iteration of GMRES, updates the partial Arnoldi factorization and computes the approximate184

solution as follows:185

(2.3) AVk “ Vk`1Hk , xk “ Vkyk , where yk “ arg min
yPRk

}Hky ´ }b}2e1}2 .186

Note that, in particular, the matrix Vk appearing in (2.2) coincides with the matrix Vk appearing187

in (2.3). However, since matrix-vector products and vector sums of low-rank vectorized matrices188

increase the rank of the latter, relations (2.1) and (2.2) obviously do not guarantee that the new189

basis vectors vk for the solution nor the new solution xk are low-rank. To force the basis vector190

for the solution and the approximate solution to be low-rank, a truncation operator should be191

incorporated into the GMRES algorithm. Given a vectorized matrix c “ vecpCq, and given a192

desired low-rank κ for C, one can define a truncation operator τκpcq by the following standard193

operations:194

(2.4)

»

—

—

–

1. Take C “ vec´1pcq;
2. Compute the SVD of C, C “ UCΣCV

T
C ;

3. Compute Cκ “ UCp:, 1 : κqΣCp1 : κ, 1 : κqVCp:, 1 : κqT ;
4. Take τκpcq “ vecpCκq.

195

RS-LR-GMRES is a restarted version of the standard GMRES method where the basis vectors196

for the solution are truncated at each inner iteration, and the solution itself is truncated at the197

beginning of each outer iteration. Note that truncating the basis vectors does not guarantee that198

the solution has low rank (which is the reason we still need to truncate the approximate solution).199

The reason for truncating the basis vectors is to keep the original solution rank from increasing200

drastically, since it is computed as a linear combination of basis vectors. More precisely, at the `th201
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6 S. GAZZOLA, C. MENG AND J. NAGY

outer iteration of RS-LR-GMRES, one takes v1 “ r`´1{}r`´1}2, where r`´1 “ b´Ax`´1, and, at202

the kth inner iteration, one computes203

(2.5) uk “ Avk´1 and }vk}2vk “ τκ
`

pI ´ Vk´1pV
T
k´1Vk´1q

´1V T
k´1quk

˘

.204

Once m inner iterations are performed, the approximate solution at the `th outer iteration is205

computed as206

(2.6) x` “ τκ px`´1 ` Vmymq , where pUT
mAVmqym “ U

T
mr`´1 .207

The operations in (2.5) and (2.6) heavily depend on the value κ of the truncated rank, which208

eventually coincides with the rank of the approximate solution. In the framework of stochastic209

PDEs, a suitable estimate for κ can be obtained by first performing coarse-grid computations (see210

[22] for details, and [19, 33] for similar approaches). Comparing (2.5) and (2.1) one can see that,211

as in standard GMRES, RS-LR-GMRES computes a new basis vector for the solution by applying212

the linear operator A to the previous basis vector vk´1 and orthogonalizing it against the previous213

basis vectors vi, i “ 1, . . . , k ´ 1. However, since the basis vectors are truncated to low rank,214

the matrix Vk does not have orthonormal columns anymore, and RpVmq is not a Krylov subspace215

anymore. This remark leads us to the derivation of alternative low-rank projection solvers, which216

can be (re)casted into the framework of flexible Krylov methods and can work with both square217

and rectangular systems (1.1).218

Low-rank flexible GMRES (LR-FGMRES) and low-rank flexible LSQR (LR-FLSQR). Flexible219

Krylov methods are a class of linear solvers that can handle iteration-dependent preconditioners:220

they were originally introduced in [31] for FGMRES, where a preconditioner for GMRES was al-221

lowed to change from one iteration to the next (either because at each iteration the preconditioner222

is implicitly defined by applying an iterative linear solver, or because the preconditioner can be223

updated with newly-computed information; see [32] for an overview). In the framework of regular-224

izing linear solvers, flexible Krylov methods were proposed in [4, 7, 9], where the iteration-dependent225

“preconditioner” was associated to an iteratively reweighted norm approach to Tikhonov-like reg-226

ularized problems involving penalization terms expressed in some p-norm, 0 ă p ď 1 (and, indeed,227

these “preconditioners” have the effect of enforcing specific regularity into the approximation sub-228

space for the solution, rather than accelerating the convergence of the iterative solvers). Leveraging229

flexible Krylov subspaces in this setting comes with the upside of avoiding restarts of the itera-230

tive solver, which is the approach commonly used when adopting an iteratively reweighted norm231

method. When considering low-rank projections of the basis vectors within RS-LR-GMRES, we232

enforce the basis vectors to have low-rank, so to better reproduce available information about the233

solution of (1.1) (i.e., the solution should be low-rank). It is therefore natural to consider flexible234

Krylov methods that involve truncation of the basis vectors at each iteration, as a computationally235

cheaper alternative to RS-LR-GMRES that does not involve restarts.236

Considering first the case of a square A P RNˆN , we can use the flexible Arnoldi algorithm237

[31] to naturally incorporate low-rank basis vectors for the solution of (1.1). In general, starting238

with x0 “ 0, at the kth iteration, FGMRES updates a partial flexible Arnoldi factorization and239

computes the kth approximate solution as follows:240

(2.7) AZk “ Vk`1Hk , xk “ Zkyk , where yk “ arg min
yPRk

}Hky ´ }b}2e1}2 ,241

where Vk`1 “ rv1, . . . ,vk`1s P RNˆpk`1q has orthonormal columns, Hk P Rpk`1qˆk is upper242

Hessenberg, and Zk “ rP1v1, . . . ,Pkvks P RNˆk has columns that span the approximation subspace243
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LOW-RANK KRYLOV METHODS 7

for the solution (Pi is an iteration-dependent preconditioner that is applied to vi and, in the244

particular case of low-rank truncation, Pivi “ τκB pviq, is the truncation operator defined in (2.4),245

so that rankpvec´1pZkeiqq “ κB , i “ 1, . . . , k). The subscript B for the truncation rank κB246

suggests that the truncation is done on the original basis vectors vi’s. The resulting algorithm247

is dubbed “LR-FGMRES”, and it is summarized in Algorithm 2.1. Note that the approximate248

solution computed as in (2.7) is also truncated to guarantee rank κ (in general, we assume κB ‰ κ).249

Also LR-FGMRES is started with x0 “ 0, to guarantee that the basis vectors for the solution250

(rather than a correction thereof) are low-rank.251

Algorithm 2.1 LR-FGMRES

1: Inputs: A, b, τκB , τκ
2: Take v1 “ b{}b}2
3: for i “ 1, 2, . . . until a stopping criterion is satisfied do
4: Compute zi “ τκB pviq and w “ Azi
5: Compute hji “ w

Tvj for j “ 1, . . . , i and set w “ w ´
ři
j“1 hjivj

6: Compute hi`1,i “ }w}2, and if hj`1,j ‰ 0, take vi`1 “ w{hi`1,i

7: end for
8: Compute yk “ arg miny }Hky ´ }b}2e1}

2
2 and take xk “ τκpZkykq

A few remarks are in order. Differently from the kth iteration in the inner cycle of the RS-252

LR-GMRES method (2.5), the kth iteration of LR-FGMRES expands the approximation subspace253

by modifying (i.e., truncating) the previous orthonormal basis vector for the space Rprb,AZksq.254

Analogously to RS-LR-GMRES, the basis vectors for the approximate LR-FGMRES solution are255

all of rank κB , are not orthogonal, and do not span a Krylov subspace. Differently from RS-LR-256

GMRES, the basis vector for the space Rprb,AZksq are orthogonal. Also, the kth LR-FGMRES257

approximate solution is obtained by solving an order-k projected least squares problem that is258

formally analogous to the GMRES one (see (2.3) and (2.7)).259

With LR-FGMRES in place, the extension to more general matrices A P RMˆN , with M260

not necessarily equal to N , can be naturally devised considering the flexible Golub-Kahan (FGK)261

process [4]. Taking x0 “ 0 as initial guess, the kth FGK iteration updates partial factorizations262

of the form263

(2.8) AZk “ Uk`1Mk and ATUk`1 “ Vk`1Tk`1,264

where the columns of Uk`1 P RMˆpk`1q, Vk`1 P RNˆpk`1q are orthonormal, Mk P Rpk`1qˆk is265

upper Hessenberg, Tk`1 P Rpk`1qˆpk`1q is upper triangular, and Zk “ rP1v1, . . . ,Pkvks P RNˆk266

has columns that span the approximation subspace for the solution (Pi is an iteration-dependent267

preconditioner that is applied to vi and, in the particular case of low-rank truncation, Pivi “268

τκB pviq, as defined in (2.4), so that rankpvec´1pZkeiqq “ κB , i “ 1, . . . , k). The flexible LSQR269

method (FLSQR) uses the FGK process (2.8) to generate iterates of the form xk “ Zkyk, where270

the vector yk is computed as yk “ arg miny

›

›

›
Mky ´ }b}2e1

›

›

›

2

2
. When rank-truncation of the basis271

vectors takes place at each iteration, and the final approximate solution is rank-truncated as well,272

the resulting algorithm is dubbed “LR-FLSQR”, and it is summarized in Algorithm 2.2. Note that,273

similarly to RS-LR-GMRES, both LR-FGMRES and LR-FLSQR are quite heuristic. Although the274

low-rank projection idea can be formulated in the flexible framework, we lack a formal formulation of275
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8 S. GAZZOLA, C. MENG AND J. NAGY

Algorithm 2.2 LR-FLSQR

1: Inputs: A, b, τκB , τκ
2: Take u1 “ b{}b}2
3: for i “ 1, 2, . . . , until a stopping criterion is satisfied do
4: Compute w “ ATui, tji “ w

Tvj for j “ 1, . . . , i´ 1

5: Set w “ w ´
ři´1
j“1 tjivj , compute tii “ }w} and take vi “ w{tii

6: Compute zi “ τκB pviq and w “ Azi
7: Compute mji “ w

Tuj for j “ 1, . . . , i and set w “ w ´
ři
j“1 mjiuj

8: Compute mi`1,i “ }w} and take ui`1 “ w{mi`1,i

9: end for
10: Compute yk “ arg miny }Mky ´ }b}2e1}

2
2 and take xk “ τκpZkykq

the problem that is being solved, and also a justification of why they work. Strategies for selecting276

κB and κ are not so clear either. To stabilize the behavior of LR-FGMRES as the iterations277

proceed, one may consider imposing additional Tikhonov regularization on the projected least-278

squares problem in (2.7), in a hybrid fashion; the same holds for LR-FLSQR (see Sections 3.3 and279

5 for more details).280

3. Proposed Method. In this section, we first derive the IRN method for the solution of the281

NNRp problem (1.3). The starting point for our derivations is the approximation of the nondifferen-282

tiable nuclear norm regularizer by a smooth Schatten function (similarly to what is proposed in [25]283

for the affine rank minimization problem). The optimality conditions associated to the smoothed284

problem give rise to a nonlinear system of equations in X, which is handled by a fixed-point it-285

eration scheme. We show that each iteration amounts to the solution of a Tikhonov-regularized286

problem involving an iteratively reweighted 2-norm regularization term, which can be efficiently287

solved employing “preconditioned” Krylov methods. Flexible Krylov methods are introduced to288

approximate the solution of the IRN problem within only one adaptively defined approximation289

subspace for the solution, bypassing the inner-outer iteration scheme required by standard Krylov290

methods.291

3.1. Derivation. Define the smooth Schatten-p function as292

Sγp pXq “ TrppXTX ` γIqp{2q , with γ ą 0 .293

Note that Sγp pXq is differentiable for p ą 0 and convex for p ě 1. In particular, for p “ 1 and γ “ 0294

(i.e., no smoothing),295

S0
1 pXq “ TrppXTXq1{2q “ }X}˚ .296

We start by considering the following smooth approximation to (1.3):297

(3.1) min
XPRnˆn

}ApXq ´B}2F ` λSγp pXq .298

The following derivations are valid for p ą 0 (and we keep them generic, being aware that p “ 1299

approximates (1.2)). The optimality conditions associated to (3.1) read300

0 “ ∇X

`

}ApXq ´B}2F ` λSγp pXq
˘

301

“ 2A˚pApXq ´Bq ` λ ppXXT ` γIqp{2´1X ,(3.2)302
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where we have used that303

∇X TrppXTX ` γIqp{2q “ pXpXTX ` γIqp{2´1 “ ppXXT ` γIqp{2´1X .304

Equivalently, the nonlinear system of equations (3.2) with respect to X can be expressed as305

X “

´

A˚A` pλpXXT ` γIqp{2´1
¯´1

A˚B306

“

´

A˚A` pλppXXT ` γIqp{4´1{2qT pXXT ` γIqp{4´1{2
¯´1

A˚B , with pλ “ λ p{2 ,307

which is naturally associated to the following fixed-point iteration scheme308

(3.3) Xk`1 “

´

A˚A` pλppXkX
T
k ` γIq

p{4´1{2qT pXkX
T
k ` γIq

p{4´1{2
¯´1

A˚B ,309

which leads to the solution of (3.1). Equivalently,310

Xk`1 “ arg min
X

›

›

›

›

›

«

A
a

pλpXkX
T
k ` γIq

p{4´1{2

ff

X ´

„

B
0



›

›

›

›

›

2

F

,311

i.e., (3.3) are the normal equations associated to the penalized least squares problem written above312

or, equivalently,313

(3.4) Xk`1 “ arg min
X
}AX ´B}

2
F `

pλ
›

›

›
pXkX

T
k ` γIq

p{4´1{2X
›

›

›

2

F
.314

We now reformulate problem (3.4) in vectorial form.315

Let UXk
ΣXk

V T
Xk

“ Xk be the SVD of Xk; thanks to the invariance of the Frobenius norm316

under orthogonal transformations, the regularization term in the above problem can be rewritten317

as318

›

›

›
pXkX

T
k ` γIq

p{4´1{2X
›

›

›

2

F
“

›

›

›
UXk

pΣ2
Xk
` γIqp{4´1{2UT

Xk
X
›

›

›

2

F
“

›

›

›
pΣ2

Xk
` γIqp{4´1{2UT

Xk
XVXk

›

›

›

2

F
.319

Using well-known Kronecker product properties320

›

›

›
pΣ2

Xk
` γIqp{4´1{2UT

Xk
XVXk

›

›

›

2

F
“

›

›

›
vec

´

pΣ2
Xk
` γIqp{4´1{2UT

Xk
XVXk

¯
›

›

›

2

2
321

“

›

›

›

´

V T
Xk
b

´

pΣ2
Xk
` γIqp{4´1{2UT

Xk

¯¯

x
›

›

›

2

2
“

›

›

›

´

I b pΣ2
Xk
` γIqp{4´1{2

¯

`

V T
Xk
bUT

Xk

˘

x
›

›

›

2

2
.322

Problem (3.4) is therefore equivalent to323

(3.5) xk`1 “ arg min
x
}Ax´ b}

2
2 `

pλ}
´

I b pΣ2
Xk
` γIqp{4´1{2

¯

loooooooooooooooomoooooooooooooooon

“:pW γ
p qk

“:Sk
hkkkkkkkikkkkkkkj

`

V T
Xk
bUT

Xk

˘

x}22 .324

In the above formulation, pW γ
p qk is a diagonal weighting matrix and Sk is an orthogonal matrix;325

both pW γ
p qk and Sk depend on the current approximation xk of the solution x. Intuitively, the326
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10 S. GAZZOLA, C. MENG AND J. NAGY

matrix Sk maps x into the “singular value domain” of Xk (and acts as an iteration-dependent327

sparsity transform), and the matrix pW γ
p qk assigns suitable weights that allow to approximate a328

p-norm of the singular values. Therefore, the penalization term in (3.5) can be interpreted as a329

reweighted vectorial 2-norm, with respect to a transformation of the solution x. For this reason,330

the proposed approach is dubbed “IRN-NNRp” and is summarized in Algorithm 3.1.331

Algorithm 3.1 IRN-NNRp

1: Inputs: A, b, pW γ
p q0 “ I, S0 “ I

2: for k “ 0, 1, . . . until a stopping criterion is satisfied do
3: Solve problem (3.5)
4: “Decrease” γ
5: Update pW γ

p qk`1 and Sk`1

6: end for

The next subsection derives new strategies for the efficient solution of the sequence of sub-332

problems (3.5) appearing in Algorithm 3.1.333

3.2. Solution of problem (3.5) via Krylov methods. First rewrite problem (3.5) using334

an appropriate change of variable as335

(3.6) pxk`1 “ arg min
px
}ASTk pW

γ
p q
´1
k px´ b}22 `

pλ}px}22, with px “ pW γ
p qkSkx .336

Note that337

(3.7) STk “ S
´1
k “ VXk

bUXk
and pW γ

p q
´1
k “ I b pΣ2

Xk
` γIq1{2´p{4 ,338

so that the above transformations (inversion of an orthogonal and a diagonal matrix) are numeri-339

cally affordable by exploiting properties of Kronecker products. The Tikhonov-regularized problem340

(3.6) in standard form is equivalent to the Tikhonov-regularized problem (3.5) in general form.341

Many Krylov subspace methods based on the Golub-Kahan Bidiagonalization (GKB) or Arnoldi342

algorithms can be employed to approximate the solution of (3.6). Moreover, if the regularization343

parameter pλ is not known a priori, many efficient strategies to set its value adaptively within the344

sequence of projected problems can be used (i.e., in the framework of hybrid methods; see [18, 8]).345

The matrices Sk and pW γ
p q
´1
k can be formally thought of as preconditioners for the original problem346

(1.1), whose purpose is to enforce additional regularization into the solution subspace, rather than347

speeding-up the convergence of linear solvers applied to (1.1).348

Methods based on the GKB algorithm. The mth step of the GKB algorithm applied to the349

matrix ASTk pW
γ
p q
´1
k with starting vector b (i.e., taking x0 “ 0) can be expressed by the following350

partial matrix factorizations351

(3.8) pASTk pW
γ
p q
´1
k qVm “ Um`1

sBm and ppW γ
p q
´1
k SkA

T qUm`1 “ Vm`1B
T
m`1,352

where Uj P RMˆj and Vj P RNˆj (with j “ m,m ` 1 and Uje1 “ b{}b}2) have orthonormal353

columns, and Bm`1 P Rpm`1qˆpm`1q is lower bidiagonal (with sBm obtained by removing the last354

column of Bm`1). The orthonormal columns of Vm are such that355

RpVmq “ Km
`

ppW γ
p q
´1
k SkA

T qpASTk pW
γ
p q
´1
k q, ppW

γ
p q
´1
k SkA

T qb
˘

.356
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We find an approximate solution of (3.6) by imposing px P RpVmq, i.e., pxm “ Vmym, where, by357

exploiting the first decomposition in (3.8) and the properties of the matrices appearing therein,358

ym P Rm is such that359

(3.9) ym “ arg min
yPRm

} sBmy ´ }b}2e1}
2
2 `

pλm}y}
2
2 .360

We used the notation pλm for the regularization parameter to highlight that its value can be adap-361

tively set within the iterations. The approximate solution to problem (3.5) is such that362

(3.10) x “ STk pW
γ
p q
´1
k px P Km

`

pSTk pW
γ
p q
´2
k SkqA

TA, pSTk pW
γ
p q
´2
k SkqA

T b
˘

.363

Looking at the above approximation subspace for the solution x, it is evident that the “precondi-364

tioner” acts by first mapping into the “singular value domain” (by applying Sk), enforcing sparsity365

in the singular values (by reweighting with pW γ
p q
´2
k ), and eventually transforming back into the366

“solution domain” (by applying STk ).367

Methods based on the Arnoldi algorithm. If A is square, the mth step of the Arnoldi algorithm368

applied to the matrix ASTk pW
γ
p q
´1
k with starting vector b (i.e., taking x0 “ 0) can be expressed369

by the following partial matrix factorization370

(3.11) pASTk pW
γ
p q
´1
k qVm “ Vm`1Hm ,371

where Vj P RNˆj (with j “ m,m` 1 and Vje1 “ b{}b}2) have orthonormal columns such that372

RpVmq “ Km
`

ASTk pW
γ
p q
´1
k , b

˘

,373

and Hm P Rpm`1qˆm is upper Hessenberg. Similarly to the GKB case, we find an approximate
solution of (3.6) by imposing px P RpVmq and by solving a projected Tikhonov problem of order m.
The approximate solution to problem (3.5) is such that

x “ STk pW
γ
p q
´1
k px P STk pW

γ
p q
´1
k Km

`

ASTk pW
γ
p q
´1
k , b

˘

,

where374

STk pW
γ
p q
´1
k Km

`

ASTk pW
γ
p q
´1
k , b

˘

“ spantSTk pW
γ
p q
´1
k b, . . . ,

`

STk pW
γ
p q
´1
k A

˘m´1
STk pW

γ
p q
´1
k bu375

“ Km
`

STk pW
γ
p q
´1
k A,S

T
k pW

γ
p q
´1
k b

˘

.376

Contrarily to the GKB case, we immediately notice that, in this context, x does not belong to a377

meaningful approximation subspace. Indeed, just by looking at the first vector: b is in the image378

space and pW γ
p q
´1
k is supposed to act on the singular value space of Xk, so pW γ

p q
´1
k b is hard to379

interpret; furthermore, STk is supposed to link the singular value space of Xk to the image space,380

so STk pW
γ
p q
´1
k b is also hard for us to interpret. Although the generated solution subspace is not381

meaningful for our applications, it may still have the potential to be a good subspace in other382

contexts. Similarly to what is proposed in [1, 4], where the Arnoldi algorithm is applied to a383

regularized problem that enforces sparsity in the wavelet domain, we propose to fix this issue by384

incorporating Sk also as an orthogonal left “preconditioner” for the original system (1.1) so that, by385

exploiting the invariance of the vectorial 2-norm under orthogonal transformations, problem (3.6)386

can be equivalently reformulated as387

(3.12) pxk`1 “ arg min
px
}SkpAS

T
k pW

γ
p q
´1
k px´ bq}22 `

pλ}px}22, with px “ pW γ
p qkSkx .388

This manuscript is for review purposes only.



12 S. GAZZOLA, C. MENG AND J. NAGY

The (right and left) preconditioned Arnoldi algorithm applied to problem (3.12) can now be ex-389

pressed by the following partial matrix factorization390

(3.13) pSkAS
T
k pW

γ
p q
´1
k qVm “ Vm`1Hm .391

We find an approximate solution of (3.12) by imposing px P RpVmq “ KmpSkASTkW´1,Skbq, i.e.,392

pxm “ Vmym, where, by exploiting (3.13) and the properties of the matrices appearing therein,393

ym P Rm is such that394

(3.14) ym “ arg min
yPRm

}Hmy ´ }b}2e1}
2
2 `

pλm}y}
2
2 .395

Hence396

(3.15) x P STk pW
γ
p q
´1
k KmpSkASTk pW γ

p q
´1
k ,Skbq “ KmpSTk pW γ

p q
´1
k SkA,S

T
k pW

γ
p q
´1
k Skbq ,397

which is suitable for approximating the solution. The new methods based on the GKB algorithm398

(for generic matrices) and Arnoldi algorithm (only if A P RNˆN ) are dubbed “IRN-LSQR-NNRp”399

and “IRN-GMRES-NNRp”, respectively, and are summarized in Algorithm 3.2.400

Algorithm 3.2 IRN-LSQR-NNRp and IRN-GMRES-NNRp

1: Inputs: A, b, pW γ
p q0 “ I, S0 “ I

2: for k “ 0, 1, . . . until a stopping criterion is satisfied do
3: for m “ 1, 2, . . . until a stopping criterion is satisfied do
4: Update the factorizations (3.8) and (3.13), respectively

5: Solve the projected problem (3.9) and (3.14), respectively, tuning pλm if necessary
6: end for
7: “Decrease” γ
8: Update the new pW γ

p qk`1 and Sk`1

9: end for

3.3. Solution through flexible Krylov subspaces. Problem (1.3) reformulated as (3.6)401

allows us to naturally apply the flexible Golub-Kahan (FGK) and flexible Arnoldi algorithms.402

Indeed, instead of updating the “preconditioners” Sk and pW γ
p qk at the kth outer iteration of the403

nested iteration schemes of Algorithm 3.2, we propose to consider new “preconditioners” as soon as404

a new approximation of the solution is available, i.e., at each iteration of a Krylov subspace solver.405

Therefore, at the pi ` 1qth iteration of the new solvers, the “preconditioners” pW γ
p qi and Si are406

computed as in (3.7), but using the SVD of the ith approximate solution407

Xi “ vec´1pxiq “ UXiΣXiV
T
Xi
, for i “ 1, . . . , k ´ 1 ,408

with pW γ
p q0 “ I and S0 “ I. In order to incorporate iteration-dependent preconditioning, the409

flexible versions of the Golub-Kahan and Arnoldi factorizations have to be used.410

Namely, at the ith iteration, the new instance of the FGK algorithm updates partial factoriza-411

tions of the form (2.8), i.e., AZi “ Ui`1Mi and ATUi`1 “ Vi`1Ti`1, where412

Zi “ rS
T
0 pW

γ
p q
´2
0 S0v1, . . . ,S

T
i´1pW

γ
p q
´2
i´1Si´1vis , v1 “ A

T b{}AT b}2 .413
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Taking x0 “ 0, the ith approximate solution is such that xi “ Ziyi, where414

(3.16) yi “ arg min
yPRi

}Miy ´ }b}2e1}
2
2 `

pλi}y}
2
2 .415

Note that the subspace for the solution RpZiq can be regarded as a generalization of the subspace416

(3.10) computed when considering preconditioned GKB within the IRN-LSQR-NNRp method. The417

new method is dubbed “FLSQR-NNRp”, and is summarized in Algorithm 3.3.418

For A P RNˆN and x0 “ 0, at the ith iteration, the new instance of the flexible Arnoldi419

algorithm updates a partial factorization of the form (2.7), with k “ i, and generates420

Zi “ rS
T
0 pW

γ
p q
´1
0 S0v1, . . . ,S

T
i´1pW

γ
p q
´1
i´1Si´1vis , v1 “ b{}b}2 ,421

where both right and left preconditioners are used analogously to IRN-GMRES-NNRp. The ith422

approximate solution is such that xi “ Ziyi, where423

(3.17) yi “ arg min
yPRi

}Hiy ´ }b}2e1}
2
2 `

pλi}y}
2
2 .424

Note that the subspace for the solution RpZiq can be regarded as a generalization of the subspace425

(3.15) computed when considering the preconditioned Arnoldi algorithm within the IRN-GMRES-426

NNRp method. The new method is dubbed “FGMRES-NNRp”, and is summarized in Algorithm427

3.3.428

Algorithm 3.3 FLSQR-NNRp and FGMRES-NNRp

1: Inputs: A, b, pW γ
p q0 “ I, S0 “ I

2: for i “ 1, 2, . . . until a stopping criterion is satisfied do
3: Update a factorization of the form (2.8) and (2.7), respectively, to expand the space RpZiq
4: Solve the projected problem (3.16) and (3.17), respectively, tuning pλi if necessary
5: “Decrease” γ
6: Update the new pW γ

p qi and Si, using the SVD Xi “ vec´1pxiq “ UXi
ΣXi

V T
Xi

.
7: end for

Note that, although the approach of Algorithm 3.3 is quite heuristic, it avoids nested iteration429

cycles and computes only one approximation subspace for the solution of (1.3), where low-rank430

penalization is adaptively incorporated. Because of this, in many situations, Algorithm 3.3 com-431

putes solutions of quality comparable to the ones computed by Algorithm 3.2, with a significant432

reduction in the number of iterations. We should also mention that, in the framework of affine rank433

minimization problems, [25] outlines an algorithm that avoids inner projected gradient iterations434

for the solution of each quadratic subproblem in the sequence generated within the IRN strategy.435

Finally, we underline that, within the framework of flexible Krylov subspaces, the approximation436

subspaces RpZiq for the ith approximate solution can be further modified, with some insight into437

the desired properties of the solution. Indeed, since the ith basis vector for the solution is of the form438

zi “ S
T
i´1pW

γ
p q
´2
i´1Si´1vi for FLSQR-NNRp, and zi “ S

T
i´1pW

γ
p q
´1
i´1Si´1vi for FGMRES-NNRp,439

one can consider alternative “preconditioners” Si´1 and pW γ
p qi´1 that are still effective in delivering440

low-rank solutions. For instance, focusing on FGMRES, and given vi “ Viei, where Vi is the matrix441

appearing on the right-hand side of the factorization (2.8), and given the SVD of vec´1pviq “442

UViΣViV
T
Vi

, one can take443

(3.18) Si´1 “ V
T
Vi bU

T
Vi and pW γ

p q
´1
i´1 “ I b pΣViq

1´p{2 ,444
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and as a result,445

Si´1vi “ vecpUT
Vivec´1pviqVViq “ vecpΣViq,446

pW γ
p q
´1
i´1Si´1vi “ vecppΣViq

1´p{2ΣViq “ vecppΣViq
2´p{2q,447

STi´1pW
γ
p q
´1
i´1Si´1vi “ vecpUVippΣViq

2´p{2qV T
Viq “ zi,448

so that the singular values of vec´1pviq are rescaled: taking 0 ă p ď 1, the power of ΣVi , 2´ p{2,449

is always larger than 1, which means that large singular values get magnified and small singular450

values become even smaller. In this way, the gaps between singular values are emphasized and to451

some extent contribute to the low rank properties of the basis vectors. Similar derivations hold for452

FLSQR. Hence, methods analogous to LR-FLSQR and LR-FGMRES are obtained, and are dubbed453

FGMRES-NNRp(v) and FLSQR-NNRp(v), respectively.454

4. Implementation details. All the methods considered in this paper are iterative, and455

therefore at least one suitable stopping criterion should be set for the iterations. When considering456

hybrid formulations (like the ones in Algorithms 3.2 and 3.3), one could simultaneously set a good457

value for the regularization parameter pλj at the jth iteration, as well as properly stop the iterations.458

Strategies for achieving this are already available in the literature (see [6, 8]).459

Assuming that a good estimate for the norm of the noise η affecting the right-hand-side of (1.1)460

is available, i.e., ε » }η}2, one can consider the discrepancy principle and stop the iterative scheme461

at the first iteration j such that462

(4.1) }b´Axj}2 ď θε , where θ ą 1, θ » 1 is a safety threshold.463

Applying the discrepancy principle to LR-FGMRES (Algorithm 2.1) and LR-FLSQR (Algorithm464

2.2) is particularly convenient, as the norm of the residual on the left-hand side of (4.1) can be465

monitored using projected quantities, i.e.,466

}}b}2e1 ´Hjyj}2 for LR-FGMRES and }}b}2e1 ´Mjyj}2 for LR-FLSQR,467

where decompositions (2.7) and (2.8), respectively, and the properties of the matrices appearing468

therein, have been exploited. When running hybrid methods (see Algorithms 3.2 and 3.3), we469

employ the so-called “secant method”, which updates the regularization parameter for the projected470

problem in such a way that stopping by the discrepancy principle is ensured. We highlight again471

that the quantities needed to implement the “secant method” (namely, the norm of the residual and472

the discrepancy associated to (3.6) at each iteration) can be conveniently monitored using projected473

quantities: this is obvious for IRN-LSQR-NNRp and FLSQR-NNRp, as only right-“preconditioning”474

is employed; it is less obvious for IRN-GMRES-NNRp and FGMRES-NNRp, but since the left-475

“preconditioner” is orthogonal, one can still write476

}b´Axj}2 “ }Skb´ SkAS
T
k pW

γ
p q
´1
k pxj}2 “ }}b}2e1 ´Hjyj}2 .477

Note that all the methods in Algorithm 3.2 and 3.3 can also run with pλ “ 0, and still achieve478

low-rank approximate solutions: this is because the approximation subspace for the solution in-479

corporates regularizing “preconditioning” (see [12, 14] for details on this approach in the case of480

smoothing “preconditioning” with finite-difference approximations of derivatives operators). Fi-481

nally, when dealing with the inner-outer iteration scheme of Algorithm 3.2, in addition to a pa-482

rameter choice strategy and stopping criterion for the hybrid projected problems (3.9) and (3.14),483

This manuscript is for review purposes only.



LOW-RANK KRYLOV METHODS 15

one should also consider a stopping criterion for the outer iterations. We propose to do this by484

monitoring the norm of the difference of the singular values (normalized by the largest singular485

value so that σ1pΣXk`1
q “ σ1pΣXk

q “ 1) of two approximations of the solution of (1.3) obtained486

at two consecutive outer iterations of Algorithm 3.2, i.e., we stop as soon as487

(4.2) }diagpΣXk`1
q ´ diagpΣXk

q}2 ă τσ, k “ 1, 2, . . . ,488

where vec´1pxiq “ Xi “ UXiΣXiV
T
Xi

(i “ k, k ` 1), and τσ ą 0 is a user-specified threshold. If489

no significant changes happen in the rank and singular values of two consecutive approximations of490

the solution, then (4.2) is satisfied.491

We conclude this section with a few remarks about the computational cost of the proposed492

methods. Note that, if A P RNˆN , IRN-GMRES-NNRp is intrinsically cheaper than IRN-LSQR-493

NNRp (since, at each iteration, the former requires only one matrix-vector product with A, while494

the latter requires one matrix-vector product with A and one with AT ). However, methods based495

on the Arnoldi algorithm are typically less successful than methods based on the GKB algorithm496

for regularization; see [15]. Other key operations for implementing our proposed methods are the497

computation of the SVDs of relevant quantities, and/or the application of the “preconditioners” in498

(3.18). Namely, each iteration of LR-FGMRES, LR-FLSQR, FLSQR-NNRp, and FGMRES-NNRp499

requires the computation of the SVD of an n ˆ n matrix, which amounts to Opn3q “ OpN3{2q500

floating point operations. When considering IRN-LSQR-NNRp and IRN-GMRES-NNRp, only the501

SVD of the approximate solution should be computed once at each outer iteration. However,502

each inner iteration of IRN-LSQR-NNRp and IRN-GMRES-NNRp, as well as each iteration of503

FLSQR-NNRp and FGMRES-NNRp, requires the computation of matrix-vector products of the504

form STk pW
γ
p q
´1
k vi: this can be achieved within a two-step process, where first the rescaling rvi “505

pW γ
p q
´1
k vi is applied with OpNq “ Opn2q floating-point operations, and then STk rvi “ pVXk

b506

UXk
qrvi is computed. While a straightforward implementation of the latter would require OpN2q “507

Opn4q floating-point operations, exploiting Kronecker product properties can bring down the cost of508

this operation to Opn3q “ OpN3{2q, by computing STk rvi “ vecpUT
Xk

vec´1pviqVXk
q. We emphasize509

that the incorporation of the flexible “preconditioners” does not increase the order of computational510

complexity and is very practical, since operations are done on matrices of size n ˆ n (n is the511

dimension of the image). In particular, the full SVD’s of n ˆ n matrices can be computed easily512

with MATLAB’s built-in svd function (this is what we used in our numerical experiments); one513

can also use Lanczos bidiagonalization [20] or randomized SVD [11] to compute the approximate514

leading singular values and vectors.515

5. Experimental Results. In this section, we present results of numerical experiments on516

several image processing problems to demonstrate the performance of the new IRN-GMRES-NNRp,517

IRN-LSQR-NNRp, FGMRES-NNRp, and FLSQR-NNRp methods. Variants of FGMRES-NNRp518

and FLSQR-NNRp (marked with “(v)”) are also tested. To shorten the acronyms, we omit p when519

p “ 1, which means IRN-GMRES-NNR denotes IRN-GMRES-NNRp when p “ 1, etc. Examples520

are generated using IR Tools [6].521

In general, we compare the performances of the proposed methods to standard Krylov subspace522

methods GMRES and LSQR, also used in a hybrid fashion. We also test against the low-rank523

projection methods described in Section 2 and the singular value thresholding (SVT) algorithm [3],524

which was originally proposed for low-rank matrix completion problems, and can be extended to525

problems with linear constraints of the form526

(5.1) min
x
τ}vec´1pxq}˚ `

1

2
}vec´1pxq}2F subject to Ax “ b, where vec´1pxq “X.527
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The kth iteration of the SVT algorithm for (5.1) reads528

(5.2)

#

Xk “ Dτ pATyk´1q

yk “ yk´1 ` δkpb´Axkq
,529

where δk is a step size and Dτ is the singular value shrinkage operator, defined as530

Dτ pXq “ UXDτ pΣXqV
T
X , Dτ pΣXq “ maxtΣX ´ τI,0u,531

where X “ UXΣXV
T
X is the SVD of X, 0 is a matrix of zeros, and the maximum is taken532

component-wise. Although (5.1) is not the same problem as (1.2), they are similar in that both533

penalize the nuclear norm of vec´1pxq and they respect the constraint Ax “ b.534

The Schatten-p function is introduced in Section 3.1 as a smooth approximation for }¨}˚,p. The535

smooth approximation allows for further derivations including computation of optimality conditions,536

where the “smoothing coefficient” γ is crucial. However, γ is not so crucial numerically, and we537

can set it to 0 without affecting the results (compared to using a very small γ). Howevrer, to be538

consistent with Algorithms 3.2 and 3.3, in our experiments, we have set the initial value of γ to539

10´10, and every time we need to decrease γ, we divide the current γ value by 2.540

Regarding the comparisons with the low-rank projection methods presented in Section 2, there541

are no universal and theoretically informed ways of choosing the truncation ranks for the solutions542

and for the basis vectors of the solution subspace. Hence, for all test problems, we experiment543

on a reasonable number of trials, each with different truncation rank choices, and select the best544

performing rank out of all ranks tested. For simplicity, we consider the same truncation rank for545

basis vectors and solutions (τκB “ τκ). We follow the same process to choose the number of restarts546

and the number of iterations for each restart for RS-LR-GMRES, as well as the shrinkage threshold547

τ in SVT; strategies to select the step size for SVT are described in [3].548

Example 1: Binary Star. We consider an image deblurring problem involving a binary star test549

image of size 256 ˆ 256: this test image has rank 2. The true image is displayed in the leftmost550

frame of Figure 2. A standard Gaussian blur is applied to the test image, and Gaussian white551

noise of level }η}2{}b
ex}2 “ 10´3 is added. The blurred and noisy image is shown in Figure 2,552

second frame from the left. Due to the presence of noise, the blurred image has full rank. For this553

example, the blurring operator A is square of size 65536ˆ 65536, hence GMRES-related methods554

are used for comparison, namely: GMRES, IRN-GMRES-NNR, FGMRES-NNR, LR-FGMRES and555

RS-LR-GMRES (i.e., we only consider the case p “ 1 here). SVT is also taken into consideration.556

The truncation rank for LR-FGMRES and RS-LR-GMRES is set to 30 for both basis vectors and557

approximate solutions (i.e., τκB “ τκ “ 30). RS-LR-GMRES is restarted every 40 iterations. The558

step size for SVT is set to be δk “ δ “ 2 and the singular value shrinkage threshold τ is 1. Note559

that, although the true solution has only rank 2, setting truncation rank to 2 for low rank methods560

produces solutions of worse quality (compared to setting the rank to 30). This might be because561

of the inherent ill-posedness of the problem, which makes it harder to obtain solutions with desired562

properties (e.g., with rank 2): indeed, if we do truncate to rank 2, a lot of information about the563

solution might be lost.564

Figure 1 displays the histories of relative errors }xex ´ xm}2{}x
ex}2 for the first 200 iterations565

(i.e., m “ 1, . . . , 200) of these methods. For IRN-GMRES-NNR, 4 outer cycles were run, each with566

a maximum of 50 iterations: a new outer cycle is initiated as soon as the discrepancy principle is567

satisfied in the inner cycle. No additional regularization is used (i.e., pλ “ 0 for all methods).568
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Fig. 1: Example 1. Relative errors vs. number of iterations for GMRES-based methods and SVT.

We can observe from Figure 1 that when the truncation ranks are chosen reasonably, LR-569

FGMRES and RS-LR-GMRES both produce a less pronounced semi-convergence behavior than570

GMRES, with LR-FGMRES attaining a smaller relative error than RS-LR-GMRES. FGMRES-571

NNR, on the other hand, shows slower semi-convergence than GMRES, but it also converges to572

a slightly better relative error. IRN-GMRES-NNR behaves especially well in this case, with sig-573

nificantly reduced relative errors even at the end of the second outer cycle. The “jumps” at the574

beginning of each outer IRN-GMRES-NNR iteration are due to the strategy used for restarts (the575

older basis vectors are cleared at each restart).576

Figure 2 displays the exact and the corrupted images, as well as the best reconstructions577

computed by LR-FGMRES and IRN-GMRES-NNR: these are obtained at the 47th and the 189th578

(total) iteration of LR-FGMRES and IRN-GMRES-NNR, respectively. By looking at relative errors579

in Figure 1, we see that LR-FGMRES is the second best out of all methods, and yet the quality of580

the solution is inferior compared to IRN-GMRES-NNR. Compared to the LR-FGMRES solution,581

the IRN-GMRES-NNR one is a more truthful reconstruction of the exact image: it not only has582

less artifacts immediately around the stars, but also has less background noise, in the sense that583

the pixel intensities in the background are closer to the true ones (as it can be seen by looking584

at the background color). More details can be spotted if we zoom into the central part (51 ˆ 51

exact blurred & noise LR-FGMRES IRN-GMRES-NNR

Fig. 2: Example 1. Exact and corrupted test images, together with the best reconstructions obtained
by the LR-FGMRES and the IRN-GMRES-NNR methods.

585
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pixels) of the computed images, as shown in Figure 3: here the best LR-FGMRES reconstruction,586

as well as the IRN-GMRES-NNR reconstructions at the end of the 2nd, 3rd and 4th inner cycles587

are displayed. It is clear that the IRN reconstructions are improving over each outer cycle, and588

that even the solution at the end of the 2nd cycle is significantly better than the LR-FGMRES589

solution, which means that not all four outer iterations need to be run to achieve solutions of590

superior qualities (even if more outer iterations allow further improvement in the solution). Figure

LR-FGMRES 2nd IRN cycle 3rd IRN cycle 4th IRN cycle

Fig. 3: Example 1. Zoom-ins of the LR-FGMRES best solution, and the IRN-GMRES-NNR solu-
tions at the end of each inner cycle.

591
4 displays surfaces plots of the central part (51ˆ 51 pixels) of the test problem data, as well as the592

best reconstructed images (for RS-LR-GMRES and FGMRES-NNR these are obtained at the 165th593

and the 63th (total) iterations, respectively). It can be seen that for all the solutions shown here, the594

reconstructed central two stars approximately have the same intensity, although they are somewhat595

less intense than in the exact image. These surface plots also confirm our earlier observation that596

IRN-GMRES-NNR does an exceptional job removing background noise. In addition, FGMRES-597

NNR also gives a good background reconstruction. Finally, Figure 5 displays the singular values598

of the best solutions obtained adopting different GMRES-based solvers, as well as the evolution of599

the singular values of the solution at the end of each inner IRN-GMRES-NNR cycle (matching the600

reconstructions displayed in Figure 3). The singular values are “normalized” (i.e., divided by the601

largest one), and the graphs are cropped to focus on the relevant values. Looking at the displayed602

values, we can conclude that the solutions computed by all the low-rank solvers have indeed some603

low-rank properties, with very quickly-decaying large singular values followed by slowly-decaying604

smaller singular values. Compared to GMRES, the new FGMRES-NNR and IRN-GMRES-NNR605

methods give solutions that have a more pronounced low rank, as shown by the large gaps between606

the smaller singular values of the solutions computed by these methods. Regarding IRN-GMRES-607

NNR, the evolution of the singular values stabilizes as we move toward later outer iterations, which608

validates the stopping criterion proposed in Section 4.609

Example 2: Limited angle parallel-ray tomography. We consider a computed tomography (CT)610

test problem, modeling an undersampled X-ray scan with parallel beam geometry. This is a so611

called “limited angle” CT reconstruction problem, where the viewing angles for the object span612

less than 180 degrees. A smooth and rank-4 phantom is considered, as shown in the leftmost frame613

of Figure 7 (note that the yellow straight lines in the northwestern corner do not belong to the614

phantom; they are shown for later purposes). Gaussian white noise of level 10´2 is added to the615

data. The coefficient matrix A has size 32942 ˆ 65536. Because of this, among the new solvers,616

only LR-FLSQR, FLSQR-NNRp, FLSQR-NNRp(v), and IRN-LSQR-NNRp will be tested, against617
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Fig. 4: Example 1. Zoomed-in surfaces of the exact solution and the available data, as well as the
best reconstructions obtained by the new GMRES-based methods.
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Fig. 5: Example 1. Left frame: normalized singular values of the best solutions computed by each
GMRES-based method. Right frame: evolution of the singular values of the solutions computed by
IRN-GMRES-NNR at each outer iteration. Singular values less than 10´3 are omitted.

their standard counterpart LSQR. Recall that FLSQR-NNRp(v) is the FLSQR-NNRp variant that618

defines the preconditioners using the basis vectors of the solution subspace. The hybrid strategy619

is not used here, meaning that we set pλ “ 0 for all methods. For this test problem, we consider620

both the values p “ 1 and p “ 0.75 (recall that, when p “ 1, we omit p from the notation). The621

results obtained running the available low-rank solvers SVT and RS-LR-GMRES are shown, too.622

Note that RS-LR-GMRES only works for square matrices A, hence this solver is tested on the623

normal equations ATAx “ AT b, which is not the problem solved by the other methods (therefore624
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this comparison may not be completely fair). Parameters for SVT are chosen to be: step size625

δk “ δ “ 8 ˆ 10´5 and threshold τ “ 100. RS-LR-GMRES is set to restart every 20 iterations.626

The truncation rank is 10 for both basis vectors and solutions, and for both the LR-FLSQR and627

the RS-LR-GMRES methods. The maximum number of iterations is 100 for all methods.628

Figure 6 displays the history of the relative errors for LSQR, LR-LSQR, FLSQR-NNRp,629

FLSQR-NNRp(v), and IRN-LSQR-NNRp, for p “ 1 and p “ 0.75. Figure 7 displays the ex-630

act phantom together with the best reconstructions obtained by LSQR, FLSQR-NNRp(v), and631

IRN-LSQR-NNR. Figure 8 displays surface plots of the northwestern corner of the exact and re-632

constructed phantoms (64ˆ 64 pixels, as highlighted in the leftmost frame of Figure 7).633

Looking at relative errors in Figure 6, it is obvious that the winners are the FLSQR-NNRp(v)634

methods, with both p “ 1 and p “ 0.75: they give the lowest relative errors, and the fastest semi-635

convergences. For this test problem, using a value of p ă 1 lowers the relative error of FLSQR-636

NNRp(v); however, the same does not hold for IRN-LSQR-NNRp. Therefore we can conclude that637

the the choice of p is problem and solver dependent, and using p ă 1 does not necessarily improve638

the quality of the solution. We regard p “ 1 as a safe choice for this parameter. Although both639

the FLSQR-NNRp(v) methods with p “ 1 and p “ 0.75 perform well, the latter is able to further640

reduce the noise in the reconstructed solution, especially on the boundary.641
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SVT
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FLSQR-NNRp(v)

IRN-LSQR-NNR

IRN-LSQR-NNRp

Fig. 6: Example 2. Relative errors vs. number of iterations for different solvers. Upper frame:
some of the new solvers are compared to the already available solvers. Lower frame: comparisons
of different instances of the new solvers (here p “ 0.75).
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Fig. 7: Example 2. Exact phantom and best reconstructions obtained by different solvers.
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Fig. 8: Example 2. Surface plots of the northwestern corner of the exact phantom (highlighted in
Figure 7) and the best reconstructed phantoms computed by different solvers.

Looking at all the displayed results, the advantages of our new FLSQR-NNRp(v) and IRN-642

LSQR-NNR methods are evident. Namely, they produce smooth solutions that preserve the original643

concave shape of the exact phantom, and they retain similar intensities of pixels at the same loca-644

tions of the exact phantom (although the LR-FLSQR solution is smooth within the boundary, it fails645

to reconstruct intensity at the high point). Differences between FLSQR-NNRp(v) and IRN-LSQR-646

NNR reconstructions are clear, too: while both are smooth, the IRN-LSQR-NNR reconstruction647

has a less concave shape compared to that of FLSQR-NNRp(v), but a smoother boundary.648

Example 3: Inpainting. We consider two different inpainting test problems. Inpainting is the649

process of restoring images that have missing or deteriorated parts. These images are likely to650

This manuscript is for review purposes only.



22 S. GAZZOLA, C. MENG AND J. NAGY

have quite a few lost pixels, either in the form of salt and pepper noise, or missing patches with651

regular or irregular shapes. The two examples considered here are of different nature: the first one652

has less structured and more randomly distributed missing patches, while the second one has more653

structured and regularly shaped missing parts. The corrupted images (shown in top-middle frames654

of Figures 11 and 13) are constructed by first applying a blur operator, and then superimposing655

the undersampling pattern to the ideally exact images (shown in the top-left frames of Figures 11656

and 13). We follow this particular order of first blurring and then taking out pixels to simulate the657

real process of photo-taking. For both these test problems, white noise of level 10´2 is added to658

the data, and we consider purely iterative methods (i.e., pλ “ 0). We always take p “ 1, and we run659

100 iterations of all the methods.660

Firstly, we consider a test problem where 58.2% of the pixels are missing (following some661

random and not very regular patterns). The exact image is commonly known as the house test662

image, whose rank is 243 and has a total number of 65536 (256ˆ 256) pixels; the corrupted image663

has the same size and number of pixels, but out of which only 27395 are non-zero. The singular664

values of the exact image is shown in Figure 9(a). Correspondingly, the forward operator A is of665

size 27395ˆ 65536, so we have an underdetermined linear system: A is obtained by first applying666

a shaking blur, and by then undersampling the blurred image. This can be easily coded within the667

IR Tools framework.668

Figure 10 displays the history of the relative errors for LSQR, LR-FLSQR (with truncation of669

the basis vectors for the solution, as well as the solution, to rank 20), FLSQR-NNR, FLSQR-NNR(v)670

and IRN-LSQR-NNR. Figure 11 displays the exact and corrupted images, together with the best671

reconstructions obtained by the methods listed above: these correspond to the 16th, 32nd, 67th,672

30th and 62nd iterations of LSQR, LR-FLSQR, FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-673

NNR, respectively (i.e., these are the iterations where the minimum relative error is attained over674

the total 100 iterations).675
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Fig. 9: Example 3. Singular values of exact test images house and peppers scaled by the largest
singular values respectively.
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Fig. 10: Example 3 (house). Relative errors vs. number of iterations for different solvers.

exact corrupted LSQR

LR-FLSQR FLSQR-NNR(v) FLSQR-NNR IRN-LSQR-NNR

Fig. 11: Example 3 (house). Exact and corrupted images; best reconstructions obtained by standard
and new solvers.

Secondly, we consider a test problem similar to the previous one, i.e., we take an exact image676

commonly known as the peppers test image, which has full rank (its singular values are shown677

in Figure 9(b)), and we obtain the forward operator A by first applying a shaking blur, and678

by then undersampling the blurred image. Here the exact image has a total number of 65536679

(256ˆ 256) pixels, and only around 1.3% of pixels are missing and should be inpainted: differently680

from the previous problem, the missing pixels follow particular patterns (e.g., circles, squares, and681

rectangles), and this makes the inpainting task somewhat more challenging. Figure 12 displays the682

history of the relative errors for LSQR, LR-FLSQR (with truncation of the basis vectors for the683
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solution, as well as the solution, to rank 50), FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-NNR.684

Figure 13 displays the exact and corrupted images, together with the best reconstructions obtained685

by the methods listed above: these correspond to the 11th, 18th, 60th, 33rd and 34th iterations of686

LSQR, LR-FLSQR, FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-NNR, respectively (i.e., these687

are the iterations where the minimum relative error is attained over the total 100 iterations).688
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Fig. 12: Example 3 (peppers). Relative errors vs. number of iterations for different solvers.

exact corrupted LSQR

LR-FLSQR FLSQR-NNR(v) FLSQR-NNR IRN-LSQR-NNR

Fig. 13: Example 3 (peppers). Exact and corrupted images; best reconstructions obtained by
standard and new solvers.

It is evident that FLSQR-NNR(v) achieves reconstructions of superior quality, including clarity,689

brightness, and smoothness. Its ability to fill-in missing spots with pixels that are of similar intensity690
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to their surroundings is the best among all methods. The best reconstructions are computed by IRN-691

LSQR-NNR for the house test image, and by FLSQR-NNR for the pepper test image: in both cases,692

these methods are also good at removing noise and restoring missing pixels. However, for both test693

images, the reconstructions obtained by IRN-LSQR-NNR lack clarity compared to ones obtained694

by both FLSQR-NNR and FLSQR-NNR(v) methods; compared to the reconstructions obtained by695

LSQR and LR-FLSQR, they are anyway more desirable in terms of recovered brightness and fill-in of696

the missing pixels. Moreover, we have seen in these two examples that our newly proposed methods697

perform very well not only for low rank, but also for full or nearly full rank image reconstruction,698

thanks to the regularizing properties of our newly derived “preconditioners” pW γ
p qk and Sk. Our699

methods can also be extensively tested for higher noise levels (for example, 10´1) and yield similar700

results. However, for space considerations we are not able to show all of them here.701

A study of regularization parameters. In the previous examples we have seen that the IRN-NNR702

methods and the flexible Krylov NNR methods perform exceptionally well on image deblurring,703

tomography, and inpainting problems, producing superior reconstructions compared to existing704

methods including SVT, RS-LR-GMRES and the low-rank flexible Krylov methods inspired by705

RS-LR-GMRES, even without the use of additional regularization. In this section, we explore706

the effect of additional regularization (i.e., we set pλ ‰ 0) on the reconstructed images and the707

corresponding relative errors. In particular, additional regularization allows the new methods to be708

used in a hybrid fashion. We are going to observe that there is only little to negligible room for the709

methods to improve when they are used in a hybrid fashion (as their performance is already very710

good with pλ “ 0).711

We consider three different ways of choosing the regularization parameter pλ. (i) We take712

the “secant method” mentioned in Section 4, which updates the regularization parameter at each713

iteration using the discrepancy. (ii) We select the optimal regularization parameter which minimizes714

the 2-norm of the difference between the exact solution and the regularized solution at each iteration.715

Namely, when using standard GMRES and LSQR, at the mth iteration we seek to minimize with716

respect to pλ717

}xex ´ xm,pλ} “ }V
T
mx

ex ´ V T
mxm,pλ} “ }V

T
mx

ex ´ ym,pλ} ;718

when using the IRN methods we should incorporate the appropriate preconditioners pW γ
p qk and719

Sk and, for all the iterations in the inner iteration cycle corresponding to the kth outer iteration,720

we seek to minimize with respect to pλ721

}pxex ´ Vmym,pλ} “ }V
T
m pxex ´ V T

mVmym,pλ} “ }V
T
m pxex ´ ym,pλ}, where pxex “ pW γ

p qkSkx
ex.722

It is intrinsically difficult to implement this strategy for flexible Krylov subspace methods, because of723

the complexity of changing preconditioners at each iteration. (iii) We perform a manual exhaustive724

search. Namely, we first run the solvers multiple times using various regularization parameters pλ,725

starting with a larger range and narrowing down to a smaller range containing the best parameter;726

we then record the minimum relative errors among all iterations for all values of pλ, and select the727

corresponding pλ. This approach is the most expensive one, and differs from the previous one in that728

the (optimal) regularization parameter pλ is fixed for all iterations. Of course, both the second and729

third approaches require the knowledge of the exact solution and we test them only to investigate730

the best possible performance of the hybrid approach.731

Table 1 compares the performances (in terms of minimum relative error achieved by each732

method) of standard Krylov methods (GMRES and LSQR) and their IRN-NNR and flexible NNR733
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(F-NNR) counterparts, with and without using a hybrid approach. In this way we can under-734

stand how the use of additional regularization affects each solver differently. The three parameter735

choice methods described above are dubbed “Secant (i)”, “Optimal (ii)” and “Fixed (iii)”, respec-736

tively. All the previous examples are considered here. GMRES and its counterparts IRN-GMRES-737

NNR, FGMRES-NNR are used for Example 1, while LSQR and its counterparts IRN-LSQR-NNR,738

FLSQR-NNR(v) are used for Examples 2 and 3.739

pλ “ 0 pλ ‰ 0 pλ “ 0 pλ ‰ 0 pλ “ 0 pλ ‰ 0 pλ “ 0 pλ ‰ 0
Example 1 Example 2 Example 3 (house) Example 3 (peppers)

Standard
Secant (i) 0.2995 0.2528 0.1201 0.1389 0.2712 0.2715 0.1141 0.1138
Optimal (ii) 0.2995 0.2268 0.1201 0.1201 0.2712 0.2710 0.1141 0.1138
Fixed (iii) 0.2995 0.2268 0.1201 0.1183 0.2712 0.2710 0.1141 0.1138

IRN-NNR
Secant (i) 0.2081 0.2096 0.0685 0.0696 0.1249 0.1250 0.0964 0.0967
Optimal (ii) 0.2081 0.2292 0.0685 0.0685 0.1249 0.1249 0.0964 0.0964
Fixed (iii) 0.2081 X 0.0685 0.0660 0.1249 X 0.0964 0.0960

F-NNR
Secant (i) 0.2829 0.2658 0.0577 0.0684 0.1035 0.1046 0.0625 0.0618
Fixed (iii) 0.2829 0.2640 0.0577 0.0568 0.1035 X 0.0625 0.0618

Table 1: Minimum relative errors without (pλ “ 0) and with (pλ ‰ 0) a hybrid approach. The mark
“X” means that the optimal regularization parameter found by the “Fixed (iii)” method is 10´16,
hence there is no need for additional regularization.

-0.1

1

-0.1

1

hybrid GMRES IRN-GMRES-NNR hybrid LSQR FLSQR-NNR(v)

Fig. 14: Reconstructions obtained by standard hybrid Krylov methods and by the new methods
without using additional regularization. Left side: zoomed in surface plots of the reconstructions
of Example 1 ; right side: reconstructions of Example 3 (peppers).

It is easy to observe that the use of additional regularization is most effective for the standard740

GMRES solver, where the minimum relative error is reduced significantly. However, for the other741

solvers, the hybrid approach does not have a notable advantage over not using regularization. At742

times the “Fixed (iii)” parameter choice strategy delivers a regularization parameter of the order743

of 10´16, which is numerically equivalent to not having regularization. This indicates that our744

new IRN-NNR and F-NNR methods are successful in computing good reconstructions and, even745

without additional regularization, they perform much better than standard Krylov methods used746

in a hybrid fashion (comparing IRN-GMRES-NNR to GMRES in Example 1, and FLSQR-NNR(v)747

to LSQR in the other examples). Figure 14 shows a couple of such comparisons.748

6. Conclusions. This paper introduced new solvers, based on Krylov subspace methods, for749

the computation of approximate low-rank solutions to large-scale linear systems of equations. Our750
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main goal was to apply the new methods to regularize inverse problems arising in imaging applica-751

tions. The starting point of our derivations was an IRN approach to the NNRp problem (1.3). In752

this way, the original problem (1.3) is reduced to the solution of a sequence of quadratic problems,753

where an appropriate smoothed linear transformation is introduced to approximate the nondif-754

ferentiable nuclear norm regularization term. Our new methods make smart use of Kronecker755

product properties to reformulate each quadratic problem in the IRN sequence as a Tikhonov-756

regularized problem in standard form. We use both Krylov methods with fixed “preconditioners”757

within an inner-outer iteration scheme (namely, IRN-LSQR-NNRp and IRN-GMRES-NNRp), and758

Krylov methods with flexible iteration-dependent “preconditioners” within a single iteration scheme759

(namely, FLSQR-NNRp, FGMRES-NNRp, LR-FGMRES, and LR-FLSQR). Some of these meth-760

ods (namely, IRN-LSQR-NNRp, IRN-GMRES-NNRp, FLSQR-NNRp, and FGMRES-NNRp) can761

be used in a hybrid framework, so that the Tikhonov regularization parameter can be efficiently,762

effectively, and adaptively chosen. These new solvers are shown to perform exceptionally well on763

the test problems described in Section 5, and they give reconstructions of significantly improved764

quality over existing methods.765

Future work includes the extension of the present methods to handle cases where the solution766

of (1.1) is low-rank but rectangular, i.e., vec´1pxq “ X P Rmˆn with m ‰ n. Also, while a767

solid theoretical justification is provided for IRN-LSQR-NNRp and IRN-GMRES-NNRp, the same768

is not true for FGMRES-NNRp and FLSQR-NNRp: further analysis will be needed to deeply769

understand the regularization properties of these flexible solvers. Finally, the new IRN-LSQR-770

NNRp and IRN-GMRES-NNRp methods can be reformulated to work with well-posed problems771

and in the framework of matrix equations, possibly providing a valid and principled alternative to772

the current popular methods based on low-rank-projected and restarted Krylov solvers.773
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