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USING COMPUTER VISION AND DEEP LEARNING METHODS TO CAPTURE 
SKELETON PUSH START PERFORMANCE CHARACTERISTICS 

Laurie Needham1, Murray Evans1, Darren P. Cosker1 & Steffi L. Colyer1 

Centre for the Analysis of Motion, Entertainment Research and 
Applications, University of Bath, Bath, UK1 

 
This study aimed to employ computer vision and deep learning methods in order to capture 
skeleton push start kinematics. Push start data were captured concurrently by a marker-
based motion capture system and a custom markerless system. Very good levels of 
agreement were found between systems, particularly for spatial based variables (step 
length error 0.001 ± 0.012 m) while errors for temporal variables (ground contact time and 
flight time) were within 1.5 frames of the criterion measures. The computer vision based 
methods tested in this research provide a viable alternative to marker-based motion 
capture systems. Furthermore they can be deployed into challenging, real world 
environments to non-invasively capture data where traditional approaches would fail.  

KEYWORDS:  Winter sports, computer vision, deep learning, pose estimation. 

INTRODUCTION: Successful skeleton push start performance has been characterised by the 
interaction between attaining a high pre-load velocity and executing an effective loading phase 
(Colyer et al., 2018), where the athlete transitions from pushing the sled to driving the sled in 
a prone position. Push performance is considered important for overall success in skeleton 
(Zanoletti et al 2006). Physical abilities (such as lower limb power and sprinting ability) explain 
a large portion of the variance in the sled velocity attained (Colyer et al., 2018) but factors 
related to technique are suggested to potentially account for further variation in performance. 
In order to further understand and enhance push start performance, capturing the underlying 
kinematics of both the athlete and sled during pushing is likely beneficial.  
To date, limited push start kinematic information is available, perhaps due in part to the 
limitations associated with current motion capture technology and the challenging environment 
that skeleton takes place in. Advances in computer vision and deep learning are providing 
viable alternatives to the traditional marker-based motion capture systems that are considered 
the gold standard for many biomechanical research applications. Evans et al., (2018) 
presented a computer vision based multi-camera system capable of non-invasively capturing 
accurate step characteristic data during running. Deep learning based pose estimation aims 
to identify body landmarks from regular image data and may provide a robust and non-invasive 
alternative to marker-based motion capture systems to capture additional information such as 
centre of mass position and velocity. The aim of this study was to compare the performance 
of a fully-automated computer vision and deep learning based methodology to that of a 
traditional marker-based motion capture system in challenging real-world environment 
(skeleton push-track).  
 
METHODS: 12 international skeleton athletes (7 males [1.81 ± 0.05 m, 83.37 ± 2.73 kg], 5 
females [1.71 ± 0.03 m, 70.04 ± 1.44 kg]) provided written informed consent. Each athlete 
performed three maximal effort dry-land push starts at the University of Bath’s outdoor push 
track. Motion data were captured concurrently using two motion capture systems. Criterion 
data were captured using a 15 camera marker-based motion capture system (Oqus, Qualysis 
AB, Gothenburg, Sweden) while additional data were captured using a custom 9 camera 
computer vision system (JAI sp5000c, JAI ltd, Denmark). Motion capture systems were time-
synchronised by means of a periodic TTL-pulse generated by the custom system’s master 
frame grabber to achieve a sampling frequency of 200 Hz in both systems. This ensured that 
frames were captured by all cameras in unison without drift. Both camera systems were 
positioned around the push track in order to capture the pushing action between 5 m and 15 
m from the starting block where there was a constant gradient of ~2%. The Qualysis system 
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was calibrated as per the manufacture’s specifications. The custom camera system used a 
binary dot matrix to determine each camera’s intrinsics and extrinsics. A right-handed 
coordinate system was defined for both systems by placing a Qualysis L-Frame in the centre 
of the push track, 10 m from the start block. In order to refine the alignment of each system’s 
Euclidean space, a single marker was moved randomly through the capture volume and 
tracked by both systems. This marker data provided points with which the spatial alignment 
could be optimised in a least-squares sense. To assess the reconstruction accuracy of both 
systems a wand was moved through the capture volume and tracked by both systems before 
the mean (± SD) resultant vector magnitude was computed and compared to a known value.  
To capture criterion data a full body marker set comprising of 44 individual markers and four 
clusters were attached to each participant to create a full body six degrees of freedom (6DoF) 
model (bilateral feet, shanks and thighs, pelvis and thorax, upper and lower arms, and hands). 
Four additional markers were placed on the sled to track position and orientation. Following 
labelling and gap filling of trajectories (Qualysis Track Manager v2019.3, Qualysis, 
Gothenburg, Sweden) data were exported to Visual 3D (v6, C-Motion Inc, Germantown, USA) 
where raw trajectories were low-pass filtered (Butterworth 4th order, cut-off 12 Hz) and a 6DoF 
inverse kinematics (IK) constrained model was computed. Athlete mass centres were 
computed using the model described by de Leva (1996). Additionally, the sled was modelled 
as a rigid object with uniformly distributed mass. Filtered marker data and mass centre 
locations were exported to a custom Python script (v3.7, Python Software Foundation, USA) 
where mass centre derivatives were computed using a finite central differences method and 
touch-down (TD) and toe-off (TO) events were computed according to the method described 
by Handsaker et al. (2016). Computing TD and TO events permitted the calculation of step 
characteristics including step length (SL), step frequency (SF), step time (ST), ground contact 
time (GCT) and flight time (FT). 
This research utilised a modified version of the computer vision based foot contact detection 
algorithm presented by Evans et al., (2018). Challenging lighting conditions caused severe 
problems for typical background subtraction methods, preventing robust segmentations of the 
athlete. As such, background subtraction was replaced with CDCL-human-part-segmentation 
(Lin et al., 2019) which implements a convolutional neural network (CNN) to detect and 
segment body parts from the background. This approach proved robust to challenging lighting 
conditions and had the added advantage of not segmenting the sled as foreground. To detect 
approximate foot contact locations and timings, foreground segmentations were fused and 
occupancy maps of the ground plane were computed. The resulting occupancy maps 
represent the additive projection of each camera’s foreground mask to the ground plane, which 
in this case was set at 0.025 m above the ground to avoid partial occlusions created by the 
sled. 
Foot position was further refined by initialising an approximately foot-sized 3D bounding box 
along the axis representing the direction of travel. The position of the bounding box was 
initialised using foot contact information from the ground plane occupancy maps before the 
position was optimised to fit the foot. Further refinement of TD and TO event timings was 
achieved by tracking the foot in individual camera views. The foot-sized bounding box was 
projected into each camera view and each 2D image was split into vertical slices. Colour and 
gradient based image features were computed for each slice permitting the tracking of vertical 
displacement. Tracking begins at the frame where the contact has the largest area in the 
ground plane occupancy map. A forwards and backwards pass detects the last frame where 
the foot is in contact with the ground and the first frame where the foot is in the air thus providing 
TD and TO event timings. Again, ascertaining TD and TO locations and timings permitted the 
computation of step characteristics (SL, SF, GCT, ST and FT). 
Sled motion was tracked using an occupancy map at the level of the hand which was holding 
the sled handle and the centroid of this binary topological structure was computed to provide 
sled displacement. To acquire the location of the athlete’s mass centre without markers, an 
open-source deep learning based pose estimation algorithm (OpenPose, Cao et al., 2017) was 
implemented. OpenPose utilises a multi-stage CNN for fast multi-person key point detection 
and was applied to all 2D camera views. 3D reconstruction and tracking of joint centres was 
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achieved by back-projecting the key points on the image plane into the 3D space and finding 
the intersect of these vectors. Joint centre data were then parsed to compute the athlete’s 
mass centre location using de Leva’s model (1996).  
Sled displacement coordinates and joint centre coordinates were low-pass filtered (Butterworth 
4th order, cut-off 12 Hz) and centre of mass velocities were computed using a finite central 
differences method before being averaged across each step. In order to evaluate system 
performance, results were compared using linear regression and Bland-Altman analysis.  
 
RESULTS: Motion capture system mean reconstruction accuracy was 0.91 ± 0.76 mm for the 
criterion system and 0.74 ± 0.68 mm for the computer vision system. Overall for step 
characteristic timings, agreement between the proposed computer vision system and the 
criterion system (Table 1) was within 1.5 frames. The best agreement was observed for SL 
with mean differences of 0.001 ± 0.012 m.  
 

Table 1: Comparison of computed step characteristics 

Variable Mean Difference (Bias) ± SD Bias ± 1.96 SD R2 

GCT (s)  0.008 0.015 0.037 0.10 
FT (s) -0.008 0.016 0.023 0.28 
ST (s)  0.001 0.017 0.033 0.20 
SL (m)  0.001 0.012 0.021 0.99 
SF (m) -0.022 0.148 0.278 0.20 

Athlete CoM Velocity (m.s-1) -0.015 0.020 0.331 0.81 
Sled Velocity (m.s-1)  0.029 0.161 0.296 0.77 

 
Mean differences between the criterion and computer vision based sled velocities were -0.015 
± 0.02 m.s-1, while OpenPose derived athlete mass centre velocities were -0.029 ± 0.161 m.s-

1 (Figure 1).   

Figure 1. Bland-Altman and linear regression plots comparing step averaged athlete CoM 
velocity between systems. Confidence intervals are given around the mean difference and 95% 
limits of agreement. 

 
DISCUSSION: This study aimed to compare the performance of a computer vision and deep 
learning based motion capture methodology to that of a traditional marker-based motion 
capture system in a challenging real-world environment (skeleton push-track). Both systems 
presented excellent spatial accuracy with reconstruction errors of less than 1 mm. Spatial 
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accuracy was further demonstrated by the low mean differences for SL (0.001 ± 0.012 mm, 
Table 1) with excellent agreement between systems.  
Temporal variables such as GCT and FT presented higher differences (Table 1) but these 
were still within approximately 1.5 frames of the criterion system. Due to sled motion, the 
ground plane with which footfall events were detected was raised by 0.025 m which caused a 
systematic overestimation of GCT, underestimation of FT and thus, reduced R2 values (Table 
1). However, mean differences were similar to those reported for the widely used OptoJumpTM 
system (Microgate, Bolzano, Italy) (0.005 ± 0.004 s, Healey et al., 2015). Furthermore, ST 
(GCT + FT) differences were low (0.001 ± 0.017 s) as the errors from overestimated GCT and 
underestimated FT effectively cancel each other out, further indicating that errors in temporal 
variables were likely due to the raised ground plane.  
Sled velocities (Table 1) and athlete mass centre velocities derived from OpenPose key points 
(Figure 1) performed surprisingly well. The deep learning based approach does appear to be 
susceptible to some larger outliers, likely due to errors in joint centre locations. However, the 
OpenPose derived method showed comparable performance to other field based methods for 
measuring athlete running velocities such as laser distance measurement which exhibits mean 
errors of up to 0.41 ± 0.18 m.s-1 (Bezodis et al., 2012). Within the skeleton push start 
application it appears that deep learning based pose estimation provides an alternative, non-
invasive way to capture important technique related information (mass centre velocities) where 
more conventional systems would not be viable. More work is required to reduce measurement 
errors before deep learning based pose estimation methods are comparable to marker-based 
motion capture. However, this field of research is advancing quickly and such improvements 
are likely to emerge in the near future. It is also important to note that the ability of deep learning 
based pose estimation algorithms such as OpenPose to accurately and reliably locate joint 
centres has yet to be established in a biomechanics context. 
 
CONCLUSION: A computer vision and deep learning based approach to non-invasively collect 
kinematic data was validated for skeleton push start performance. The novel method was 
applied in a challenging real world environment and application (skeleton push starts) and was 
able to capture representative kinematic data including step characteristics and mass centre 
velocities of the athlete and sled. Such an approach could be employed by coaches and 
practitioners to monitor technique where traditional motion capture techniques may not. 
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