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Abstract —HTS wire cost is a critical factor for successful com-

mercialization of HTS traction transformer technology. Wire cost 

might be minimized without significantly increasing AC loss by in-
troducing a hybrid winding structure: the end-part of the windings 
is wound with high-cost high-Ic wires; the central-part of the wind-

ings is wound with low-cost low-Ic wires. We report AC loss simula-
tion results on HTS windings with both HV and LV windings wound 
with REBCO wires. The 2D axisymmetric FEM simulation was car-

ried out using H-formulation. The HV windings are wound with 4 
mm-wide wires and LV windings are wound with 8/5 (eight 5 mm – 
wide strands) Roebel cables. Both HV and LV windings have a hy-

brid structure in order to reduce the wire cost. Flux diverters are 
placed at the end of the windings to reduce AC loss. Significant HTS 
wire cost reduction could be achieved without compromising AC 

loss by using hybrid windings. This may help commercialize HTS 
traction transformer technology. 
  

Index Terms—AC loss, traction transformer, hybrid winding 
structure, wire cost. 

I.   INTRODUCTION 

RACTION transformers are key components for the Chinese 

high speed train system [1] - [4]. Since 2018 Beijing Jiaotong 

University has been leading a six-party project to develop a sin-

gle-phase 6.5 MVA HTS traction transformer [5] - [7]. The ulti-

mate goal of the project is to replace the conventional traction 

transformers, which are heavy, have low efficiency, and are oil-

cooled - a significant fire risk. The HTS transformer is expected 

to demonstrate superior performance over conventional trans-

formers with oil-immersed copper-windings, achieving 99% ef-

ficiency and 3 tonne total system weight compared to 95% effi-

ciency and approximately 6 tonne weight for conventional trans-

formers. Minimization of AC loss in the HTS windings is critical 

to achieve both these efficiency and system weight targets [6], 

demanding high Ic HTS wire. On the other hand, wire cost is one 

of the major obstacles preventing commercialization of HTS 

power equipment. It is therefore a huge challenge to realize a 

high-performance, economic transformer, reducing wire cost 

whilst keeping the AC loss low. 
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TABLE I 
SPECIFICATIONS OF WINDING DESIGN  

Parameter Value 

Winding length L (m) 1 
Number of turns in each HV winding disc 14 
Number of discs stacked to make the HV 

winding per unit  
116 

Number of layers of 8-strand Roebel cable in LV winding 3 
Number of turns in one layer in LV winding 40 

Number of total turns per unit in HV winding 1624 
Number of total turns per unit in LV winding 120 

Inner diameter of HV winding (mm)  437 
Inner diameter of LV winding (mm) 285 

Axial gap between the two units on each leg of the core (mm) 20 
Short-circuit impedance (%) 43 

 
Fig. 1. Schematic of 6.5 MVA traction transformer. The transformer has four 
units and each consists of HV and LV windings. 

 

The transformer consists of four single-phase 25 kV/1.9 kV 

HTS windings, operating at 65 K and 50 Hz, each of which drive 

a motor. A base layout was designed where the transformer has 

four winding units and each leg of the core has two winding 

units around it as depicted in Fig. 1 [6]. Each unit comprises 

one HV winding and one LV winding, respectively. The rated 

currents for each of the HV and LV windings are 64.25 A and 

846 A, respectively. All the winding assemblies will be housed 

in two individual vacuum-insulated horizontal cryostats and 

will be cooled by sub-cooled liquid nitrogen in an open-loop 

cryo-cooling system [6], [8]. Table I lists the specifications of 

the HV and LV windings. 
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In order to deal with high current and minimize AC loss in 

the LV windings, we use 8/5 Roebel cable (eight 5-mm-wide 

strands) [9] - [12]. The HV input current to the transformer is 

257 Arms, with the windings for each unit, symmetrically con-

nected in parallel, carrying only 64.25 Arms. Therefore, a single 

4 mm-wide REBCO superconductor wire can handle the HV 

current. As in previous transformer AC loss modelling [12, 13], 

we do not consider the iron core in the simulation. 

Both the entire HV and LV windings can be wound with high 

Ic, high quality Fujikura wires, with critical current of 1140 

A/cm at 65 K. However, a hybrid coil winding structure can be 

introduced in the traction transformer to reduce HTS wire cost, 

i.e. use high Ic, higher cost wires in the end part of the HV and 

LV windings, and low Ic, lower cost wires in the majority of the 

rest of the coil windings. The concept of hybrid winding struc-

ture is based on the fact that HTS conductors in different part 

of a winding experience different magnetic fields: conductors 

in the end part of the winding are exposed to large radial mag-

netic field; conductors in the central part of the winding are 

mainly exposed to parallel magnetic field [14, 15]. As a result, 

AC loss in the end part of the winding dominates the AC loss 

of the whole winding, and AC loss in the central part of the 

winding is negligible [12, 13]. 

In this paper, we considered hybrid winding structures for 

HTS traction transformers where the end part of the winding is 

wound with Fujikura wires with a self-field Ic of 1140 A/cm at 

65 K and the central part of the winding is wound with Shanghai 

Superconductor (SHS)  wires with a self-field Ic of 1067 A/cm 

at 65 K. We designed five configurations for transformer wind-

ings including three hybrid windings. The schematics of the 

windings are shown in Fig. 2. In Conf. #1, HV and LV windings 

are wound with Fujikura wire only. In Conf. #2, HV and LV 

windings are wound with SHS wire only. In Confs. #3, #4, and 

#5, two, four, and six discs of the end parts of both the HV and 

LV windings are wound with Fujikura wire while the rest of the 

windings are wound with SHS wire. It is worth noting that the 

“disc” in the LV winding is Roebel cable. Conf. #6 is the same 

as Conf. #3 except for the flux diverters arranged near the end 

of the windings. AC loss in the transformer windings were cal-

culated and compared with each other.   

 

Fig. 2. Schematics of hybrid transformer windings (a) Conf. #1 (b) Conf. #2 (c) 

Conf. #3 (d) Conf. #4 (e) Conf. #5 and (6) Conf. #6 

II. NUMERICAL CALCULATION 

Calculations have been carried out in a 2D axisymmetric 

modelling using H formulation [13], [16]- [19]. Considering the 

symmetry of the transformer structure, only one unit of trans-

former windings was simulated [5, 6]. Fig. 3 shows the sche-

matic of a quarter 2D axisymmetric model for the 6.5 MVA 

transformer windings. 

 
Fig. 3. Schematic of a 2D axisymmetric model for 6.5 MVA transformer (only 

a quarter model was simulated) 

 

The variables in the model were defined as H = [Hr, Hz]T, 

where  Hr is the radial magnetic field  and Hz is the axial mag-

netic field. We assume that the current only flows in 𝜑 direc-

tion. The function between local electric field 𝐸𝜑 and local cur-

rent density 𝐽𝜑 is expressed by Ohm’s law, 

 𝐸𝜑 = 𝜌𝐽𝜑                                             (1) 

where ρ is the resistivity of the material. In air region, 𝜌air =
1 Ωm was used in the modelling, and in superconducting region, 

𝜌HTS is derived from E-J power law as shown as (2) to indicate 

the resistivity for superconducting tape. 

𝜌𝐻𝑇𝑆 =
𝐸𝑐
𝐽𝑐(𝐵)

(
𝐽𝜑

𝐽𝑐(𝐵)
)

(𝑛−1)

                            (2) 

Here, power index n = 25, Ec = 10-4 V/m was used in the work. 

Jc(B) is the critical current density dependence on external mag-

netic field and it normally can be obtained from the measured 

Ic(B) data divided by the cross-section area of the superconduc-

tor, S. A modified Kim model [20] for the Jc(B) performance 

was implemented in the modelling, as shown in equation (3), 

𝐽c(𝐵) =
𝐼c0
𝑆
(1 +

𝑘2𝐵para
2 + 𝐵perp

2

𝐵0
2 )

−𝛼

          (3) 

where Ic0 is the self-field critical current at a certain tempera-

ture; B0, k and α were the fitting parameters obtained by com-

paring the fitted Ic(B) curves and measured ones under different 

applied magnetic fields. In this work, 𝐵perp is the radial mag-

netic field Br, and 𝐵para  is the axial magnetic field Bz. 

Figs. 4(a) and 4(b) show the measured and fitted critical cur-

rent of both Fujikura and SHS wires under perpendicular mag-

netic field and parallel magnetic fields using (3). The fitted Ic(B) 

curves show good agreement with the measured ones. Fig. 4(a) 

shows that the self-field Ic of the Fujikura wire is slightly bigger 

than that of the SHS wire, and Ic of the SHS wire under perpen-

dicular magnetic field degrades slightly faster than that of the 

Fujikura wire towards high magnetic field. In Fig. 4(b), Ic of 
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SHS wire and Fujikura wire in parallel magnetic field is similar, 

even though the SHS wire has a slightly better Ic performance. 

Together with (1) and (2), the governing equations are de-

rived from Faraday’s law (4), Ampere’s law (5), and the consti-

tutive law (6), where 𝜇0 is vacuum permeability and 𝜇𝑟e is the 

relative permeability. 

∇ × 𝑬 = −𝜕𝑩 𝜕𝑡⁄                                 (4) 

∇ × 𝑯 = 𝑱                                          (5) 

𝑩 = 𝜇0𝜇𝑟𝑒𝑯                                             (6) 

The governing equation (7), written in the form of a partial 

differential equation (PDE), is computed by COMSOL to solve 

the magnetic field and current density distributions. 

𝜕(𝜇0𝜇𝑟𝑒𝑯 ) 𝜕𝑡 + ∇ × 𝜌(∇ × 𝑯) = 0               ⁄  (7) 

Adding the magnetic field components 𝐻𝑟  and 𝐻𝑧 into equa-

tion (7), we get another type of governing equation to be solved 

by the COMSOL software, as shown in (8), 

{
  
 

  
 

𝜇0𝜇𝑟𝑒
𝜕𝐻𝑟
𝜕𝑡

−
1

𝑟

𝜕 (𝑟𝜌 (
𝜕𝐻𝑟
𝜕𝑧

−
𝜕𝐻𝑧
𝜕𝑟

))

𝜕𝑧
= 0

𝜇0𝜇𝑟𝑒
𝜕𝐻𝑧
𝜕𝑡

+
1

𝑟

𝜕 (𝑟𝜌 (
𝜕𝐻𝑟
𝜕𝑧

−
𝜕𝐻𝑧
𝜕𝑟

))

𝜕𝑟
= 0

           (8) 

 
Fig. 4. Ic (B) dependence of both Fujikura and SHS wires exposed to external 

magnetic fields (a) Perpendicular magnetic field (b) Parallel magnetic field. 

III. AC LOSS AND DISCUSSION 

Fig. 5 shows the calculated AC loss result in Conf. #1 wound 

using Fujikura wire only plotted as a function of It, peak which is 

the transport current in the LV windings. AC loss values in-

crease approximately with the 3rd power of It, peak. At It, peak = 

Irated = 1234 A, AC loss in the whole transformer winding 

reaches 3.787 kW. 

 
Fig. 5. AC loss results in Conf. #1 

 
Fig. 6 AC loss comparison in transformer windings, HV winding and LV wind-

ing in Confs. #1 through to #5 simulated at the rated current (a) transformer 
windings, (b) HV winding, and (c) LV winding 

 

In Figs. 6(a), 6(b) and 6(c), the AC loss values in the whole 

transformer windings, and in HV and LV windings for confs. 

#1 to #5 at the rated current are compared. Table II also lists the 

detailed AC loss data shown in Fig. 6. As shown in Fig. 6(a), 

AC loss in the whole transformer for Conf. #1 is the lowest, 

peaks for Conf. #2, and drops sharply for hybrid configurations 

Confs. #3, #4, and #5, with the values decreasing slowly with 

increasing usage of the Fujikura wire in the end part of the 

windings. The same tendency holds true for the AC loss in the 

HV and LV windings as shown in Figs. 6(b) and 6(c). The dif-

ference in AC loss values between Conf. #1, which uses all Fu-

jikura wire and Conf. #2 which uses all SHS wire is 7.03% due 

to the difference in Ic(B) performances in the Fujikura and SHS 

wires. However, the difference in AC loss values between Conf. 

#1 and Conf. #3 is only 1.78%, even though Conf. #3 uses only 

a small portion of the Fujikura wire in the end of the windings.  
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TABLE II 
AC LOSS IN TRANSFORMERS WITH VARIOUS CONFIGURATIONS 

Configu-
ration 

Loss in transformer 
windings  (kW) 

Loss in HV 
(kW) 

Loss in LV 
(kW) 

#1 3.787 0.700 0.247  
#2 4.063 0.718 0.298  
#3 3.855 0.700 0.264 
#4 3.819 0.697 0.258 

#5 3.806 0.697 0.255 

 

This implies that substantial cost reduction can be achieved 

with a hybrid winding structure if there is a significant price 

premium for high- Ic wire; using low cost, relatively low-Ic wire 

for the majority of the winding while incurring a negligible AC 

loss increase. The cost benefit will become larger for hybrid 

windings if there is larger difference in wire price. There are 

slight differences in AC loss values between the hybrid trans-

former windings, Confs. #3, #4, and #5, e.g. the difference in 

AC loss values between Confs. #3 and #5 is only 1.28%, even 

though Conf. #5 uses twice as much Fujikura wire as Conf. #3. 

Therefore, Conf. #3 is the best choice, balancing both HTS wire 

cost and AC loss.   

 
Fig. 7. J/Jc distributions in Confs. #1, #2, #3. (a) HV winding (b) LV winding 

 

Figs. 7(a) and 7(b) show the J /Jc distribution in the top discs 

of the HV and LV windings of Confs. #1 and #2. In the discs, 

there is shielding current flowing opposite to coil current in or-

der to shield the radial magnetic field component in the end part 

of the windings. The region where |J /Jc| > 1 has full magnetic 

field penetration, and the region where |J /Jc| > 1 is bigger in 

Conf. #2 than that in Conf. #1. This explains why the AC loss 

value in Conf. #2 is larger than that in Conf. #1. 

 
Fig. 8. Schematic of flux diverters at the end part of the HV and LV windings 

AC loss in HTS transformers needs to be restrained within 2 

kW in order to achieve the efficiency and system weight targets 

[6]. None of the Confs. #1 to #5 can meet the AC loss require-

ment, so flux diverters have to be used to shape the magnetic 

field in the end of the windings in order to reduce the AC loss 

in the windings [21, 22]. In this work, AC loss in Conf. #6 (Conf. 

#3 with flux diverters) was calculated.  

Fig. 8 shows the schematic of dimensions for flux diverters 

arranged near the outer ends of the HV and LV windings of 

Conf. #3. Here, the cross-section of flux diverter was chosen as 

square and the permeability of magnetic material in the flux di-

verter has a constant 𝜇𝑟𝑒 of 100. We, g, WFD, HV, and WFD, LV are 

8.0 mm, 0.5 mm, 20.2 mm, and 17.8 mm, respectively.  

 
Fig. 9. Comparison of AC loss results in Conf. #3 and Conf. #6. 

 

Fig. 9 compares the calculated AC loss values in Conf. #3 

and Conf. #6. AC loss was reduced significantly with flux di-

verters in place. At rated current, AC loss in Conf. #6 is 1.859 

kW, which is less than half of the loss in Conf. #3. This AC loss 

value meets the AC loss target. It is worth noting that flux di-

verters have their own eddy current loss and hysteresis loss. 

More work needs to be done to refine the design of practical 

and effective flux diverters. 

IV. CONCLUSION 

In this paper, a hybrid winding structure has been proposed 

for a 6.5 MVA/25 kV traction transformer in order to reduce 

HTS wire cost while achieving acceptably low AC loss.  

We calculated and compared six winding configurations, 

which use different portions of Fujikura wire and SHS wire in 

the HV and LV windings. By replacing two discs at the outer 

ends of HV and LV windings with Fujikura wire, while all other 

central discs are wound using SHS wire, we obtained similar 

AC loss in the configuration (Conf. #3) as in the configuration 

wound entirely with Fujikura wire (Conf. #1) .  

With flux diverters arranged at the outer ends of the windings 

of the hybrid configuration Conf. #3, we can get 1.859 kW loss, 

which is less than our AC loss target for the project. 

Since the cost of HTS wire varies by more than a factor of 

two, depending on manufacturer and wire quality [23], there is 

potential to halve the total wire cost by using high-cost, high-Ic 

wire only in the end turns of the windings where the extra per-

formance is needed to constrain the AC loss. 
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