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Abstract

In this paper, we aim to solve for unsupervised domain
adaptation of classifiers where we have access to label in-
formation for the source domain while these are not avail-
able for a target domain. While various methods have been
proposed for solving these including adversarial discrimi-
nator based methods, most approaches have focused on the
entire image based domain adaptation. In an image, there
would be regions that can be adapted better, for instance,
the foreground object may be similar in nature. To obtain
such regions, we propose methods that consider the prob-
abilistic certainty estimate of various regions and specify
focus on these during classification for adaptation. We ob-
serve that just by incorporating the probabilistic certainty
of the discriminator while training the classifier, we are able
to obtain state of the art results on various datasets as com-
pared against all the recent methods. We provide a thor-
ough empirical analysis of the method by providing abla-
tion analysis, statistical significance test, and visualization
of the attention maps and t-SNE embeddings. These evalua-
tions convincingly demonstrate the effectiveness of the pro-
posed approach.

1. Introduction
With the advent of deep learning, there has been substan-

tial progress for solving image classification tasks with state
of the art methods obtaining lesser than 3% error (on top five
results) on the imagenet dataset. However, it was observed
that these results do not transfer to other datasets [26] due
to the effect of dataset bias [45]. The classifiers trained on
one dataset (termed source dataset) show a significant drop
in accuracy when tested on another dataset (termed target
dataset). To address this issue, some methods have been
proposed for adapting domains [7, 51]. One of the more
successful approaches towards addressing this domain shift
has been based on the adversarial adaptation of features us-

∗Equal contributions from both authors.
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Figure 1: Visualization of the uncertainty and certainty
maps of the discriminator during the midst of training is
provided for the input image (a). The aleatoric and pre-
dictive uncertain regions of the discriminator are shown in
image (b) and (d). While aleatoric and predictive certain
regions of the discriminator are shown in (c) and (e). From
the figure, it is clear that the certain regions of the discrim-
inator during training mostly corresponds to (f) classifier’s
activation map based on true label at the end of training.

ing an adversarial discriminator [13] that aims to distinguish
between samples drawn from the source and target datasets.
Due to the adversarial training, the feature representations
are brought close such that the discriminator is not able to
distinguish between samples from source and target dataset.
However, all approaches that are based on this idea consider
the whole image as being adapted. This usually is not the
case as there are predominant regions in an image that may
be better adapted and useful for improving classification on
target dataset. We address this issue and propose a simple
approach for solving this problem.

To specify regions that can be adapted we propose the
use of certainty of a probabilistic discriminator. During
training, we identify regions where the discriminator is cer-
tain, i.e., the probabilistic uncertainty for these regions is
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low. These regions can be adapted because there exists a
clear distinction between the source and target regions. Fig-
ure 1 shows that using measures such as data uncertainty
(known as aleatoric uncertainty) [20] and predictive uncer-
tainty [25], we can obtain regions that can be adapted bet-
ter. We also observe from the Figure 1 and 5 that for most
of the duration during training, discriminator is certain on
the foreground regions, as the foreground is hard to adapt.
Hence, when the classifier is trained with the emphasis be-
ing placed on these regions, then we observe that the classi-
fier focuses on these regions during prediction and therefore
generalizes better on target dataset. Quantitatively we ob-
serve results that are up to 7.4% better than the current state
of the art methods on Office-Home dataset [50].

To summarize, through this paper we make the following
contributions:
• We propose a method to identify adaptable regions us-

ing the certainty estimate of the discriminator, and this
is evaluated using various certainty estimates.
• We use these certainty estimate weights for improving

the classifier performance on target dataset by focusing
the training of the classifier on the adaptable regions of
the source dataset.
• We provide a thorough evaluation of the method by

considering detailed comparison on standard bench-
mark datasets against the state of the art methods and
also provide an empirical analysis using statistical sig-
nificance analysis, visualization and ablation analysis
of the proposed method.
• An additional observation is that by using Bayesian

classifiers we also improve the robustness of the classi-
fier in addition to obtaining certainties of classification
accuracy. This aids in better understanding of the pro-
posed method.

2. Literature Survey
Some studies have examined different adaptation meth-

ods. One study by [48] examined domain adaptation by
minimizing the maximum mean discrepancy distance. The
maximum mean discrepancy based approaches were fur-
ther extended to multi-kernel MMD in [26]. In adversar-
ial learning framework [13] has proposed a method to min-
imize the source target discrepancy using a gradient re-
versal layer at discriminator. Recently many adversarial
methods have been applied in the domain adaptation task
to bring the source and target distribution closer. Adver-
sarial discriminative domain adaptation [47] considers an
inverted label GAN loss. Wasserstein distance based dis-
criminator was used in [40] to bring the two distributions
closer. Domain confusion network [46] was also used to
solve the adaptation problem in two domains by minimiz-
ing the discriminate distance between two domains. The
discriminative feedback of the discriminator also applied

in the paraphrase generation problem [34]. Another ad-
versarial discriminator based model is [35], where multiple
discriminators (MADA) have been used to solve the mode
collapse problem in the domain adaptation. Some works
closely related to MADA have been proposed in [4, 3].
The labeled discriminator [24] used to tackle the mode col-
lapse problem in domain adaptation. The adversarial do-
main adaptation also explored in scene graph [23]. Other
source and target discrepancy minimization based methods
such as [38, 55] also address the domain adaptation prob-
lem. [33, 32] have proposed an exemplar based discrepancy
minimization method. Recently [2, 5] have applied gen-
erative adversarial network [15] for the domain adaptation
problems. Image generation methods are used to adapt the
source and target domain [14, 39, 31]. Other work in[17]
and [43] have used Cycle consistency [56] loss and deep
coral loss [42, 41] for ensuring the closeness of source and
target domain respectively. Deep Bayesian models have
been used to play an important role in the estimation of the
deep model uncertainty. The Bayesian formulation in do-
main adaptation natural language processing has been pro-
posed in [10]. In [12], it has been justified that dropout
can also work as an approximation of the deep Bayesian
network. Works on the uncertainty estimation have been re-
ported in [11, 20]. In [30] predictive uncertainty has been
calculated over the prior networks. Uncertainty in the en-
semble model along with adversarial training has been dis-
cussed in [25]. Another work on the Bayesian uncertainty
estimation has been reported in the [44].

Attention-based networks have been widely applied in
many computer vision applications such as image caption-
ing [52, 54], visual question answer [53, 32, 19] and speech
recognition [6]. The advantage of the attention model is that
it helps to learn some set of weights over a set of represen-
tation input which has relatively more importance than oth-
ers. Recently [49] showed that the attention mechanism can
also be achieved by dispensing with recurrence and convo-
lutions. A recent work [18] addresses the domain adaptation
problem by obtaining the synthetic source and target images
from CycleGAN [56], and then aligned the attention map of
all the pairs.

3. Methodology

In the unsupervised domain adaptation problem, the
source dataset Ds = (xsi , y

s
i ) consists of data sample (xsi )

with corresponding label (ysi ) where Ds ∈ Ps and the tar-
get dataset Dt(xti) consists of unlabeled data samples (xti)
where Dt v Pt. Ps and Pt are the source and target dis-
tributions. We further assume that both the domains are
complex and unknown. For solving this task, we are follow-
ing the adversarial domain adaptation framework, where a
discriminator is trained to learn domain invariant features
domain invariant while a classifier is trained to learn class



discriminative features. In this paper, we are proposing a
discriminator certainty based domain adaption model repre-
sented in the Figure 2, which consists of three major mod-
ules: Feature extractor, Bayesian Classifier, and Bayesian
Discriminator. The feature extractor is pretrained on the
Imagenet dataset, while both the classifier and discrimina-
tor are Bayesian neural networks (BNN). We have followed
the approach defined in [12, 20, 21] for transforming deep
neural networks into BNNs.

3.1. Bayesian Classifier

Bayesian framework is one of the efficient ways to pre-
dict uncertainty. Gal et.al [11] has shown that by apply-
ing dropout after every fully connected (fc) layer, we can
perform probabilistic inference for deep neural networks.
Hence we have followed a similar approach for defining the
classifier. For estimating uncertainty, similar to [20, 9], we
trained the classifier to output class probabilities along with
aleatoric uncertainty (data uncertainty). The predictive un-
certainty includes both model uncertainty and data uncer-
tainty, where model uncertainty results from uncertainty in
model parameters. Estimation of aleatoric uncertainty for
the classifier makes the features more robust for prediction,
and estimation of predictive uncertainty provides a tool for
visualizing model’s predictions.

For the input sample xi, the feature extractor Gf outputs
features fi, represented by fi = Gf (xi). The predicted class
logits yci and aleatoric uncertainty vci are obtained as:

yci = Gcy(Gc(fi)), vci = Gcv(Gc(fi)) (1)

where Gcy and Gcv are the logits and aleatoric uncer-
tainty prediction modules of the classifier Gc respectively.
The classification loss for predicted logits is defined as:

Lcy =
1

ns

∑
xi∈Ds

L(yci , yi) (2)

where L is the cross entropy loss function and yi is the true
class label for the input xi. The total number of data sam-
ples in the source domain is denoted as ns. The classifier
aleatoric loss Lcv for predicted uncertainty vci is defined as:

ŷci,t = yci + σci ∗ εt, εt ∼ N (0, I)

Lcv = −
1

ns

∑
xi∈Ds

log
1

T

∑
t

L(ŷci,t, yi)
(3)

where σci is the standard deviation, vci = (σci )
2. The classi-

fier is trained by jointly minimizing both the classification
loss Lcy and aleatoric loss Lcv .

3.2. Bayesian Discriminator

In the proposed method, the discriminator is also mod-
eled in the Bayesian framework similar to the Bayesian

classifier. The uncertainty in the discriminator network im-
plies the region where it is uncertain about its prediction
about the domain. The uncertainty estimation of the dis-
criminator can guide the feature extractor more efficiently
for domain adaptation. All real-world images contain some
type of aleatoric uncertainty or noise. These regions which
contain aleatoric uncertainty, are not adaptable. By aligning
these uncertain regions, we are corrupting the feature rep-
resentation, thus confusing the classifier during predictions
for the target domain. So, by estimating aleatoric uncer-
tainty, the discriminator is avoiding the learning of feature
representations for these regions, which also reduces neg-
ative transfer [35]. The negative transfer introduces false
alignment of the mode of two distributions across domains,
which needs to be prevented during adaptation. Similarly,
the predictive uncertainty tells us about the model’s inca-
pability to classify the domains, as the discriminator is not
sure about the domain. Predictive uncertainty occurs in the
region where either it is already adapted, or there is noise
which corresponds to aleatoric uncertainty. We obtain the
discriminator predicated logits and variance using the fol-
lowing equations

ydi = Gdy(Gd(fi)), vdi = Gdv(Gd(fi)) (4)

where Gdy and Gdv predict domain class logits ydi and do-
main aleatoric uncertainty vdi respectively using features
from Gd. The domain classification loss Ldy is defined as:

Ldy =
1

ns + nt

∑
xi∈Ds∪Dt

L(ydi , di) (5)

where L is the cross entropy loss function, di is the true
domain of the image, and ns and nt are the number of
source and target samples. The domain label di is defined
to be 0 if xi ∈ Ds and 1 if xi ∈ Dt. The discriminator
aleatoric loss Ldv is defined as:

ŷdi,t = ydi + σdi ∗ εt, εt ∼ N (0, I)

Ldv = −
1

ns + nt

∑
xi∈Ds∪Dt

log
1

T

∑
t

L(ŷdi,t, di)
(6)

where vdi = (σdi )
2. Discriminator is trained by jointly mini-

mizing both the domain classification loss Ldy and discrim-
inator aleatoric loss Ldv .

3.3. Certainty Based Attention

Uncertainty estimation of the discriminator can help in
identifying those regions which can be adapted, cannot be
adapted, or already adapted. The regions which are already
aligned will confuse the discriminator for predicting the do-
main. Hence discriminator will be highly uncertain on these
regions. The discriminator will also be highly uncertain on



Figure 2: The architecture of Certainty based Attention for Domain Adaptation (CADA), consists of a shared feature ex-
tractor, Bayesian classifier and Bayesian discriminator where both the classifier and discriminator predict the variance value
along with the prediction score. Discriminator’s predictive or aleatoric uncertainty is used to highlight the regions where the
discriminator is certain about its predictions.

the regions containing aleatoric uncertainty, and these re-
gions can’t be adapted. Uncertainty estimation can also help
to identify regions where discriminator is certain or the re-
gions which can be further aligned.

In most of the datasets, the discriminator can easily dis-
criminate between the source and target images by only at-
tending on the background during the initial phase of the
training. Hence, the discriminator will be more certain in
these regions, which results in easier adaptation of back-
ground regions after some adversarial training. But the fore-
ground regions are difficult to adapt, as foreground varies a
lot across all the classes and images. Therefore for most of
the span during training, the discriminator will be certain on
the transferable regions of the foreground. Thus, if the clas-
sifier attends to certain regions of the discriminator, it will
focus more on the transferable regions of the foreground
during training.

The Certainty Attention based Domain Adaption
(CADA) model is shown in Figure 2. In the proposed work,
we propose the two variants of CADA: aleatoric certainty
based attention (CADA-A) and predictive certainty based
attention (CADA-P).

3.3.1 Aleatoric Certainty based Attention

The aleatoric uncertainty (vdi ) of the domain discriminator
occurs due to corruption or noise in the regions. These re-
gions are not suited for the adaptation as well as for object
classification and should be less focused as compared to the
certain regions for the classification task. For identifying
the aleatoric uncertain regions, we compute the gradient of
aleatoric uncertainty with respect to the features fi. These
gradients (∂v

d
i

∂fi
) will flow back through the gradient rever-

sal layer, and will correspond to the gradients of aleatoric
certainty, i.e., −∂v

d
i

∂fi
.

pi = fi ∗ −
∂vdi
∂fi

(7)

Therefore the positive sign of the product of features and
gradients of the aleatoric certainty denotes the positive in-
fluence of aleatoric certainty on these features. i.e. the dis-
criminator is certain on these regions.

ai = ReLU(pi) + c ∗ ReLU(−pi) (8)

For obtaining the regions where the discriminator is cer-
tain, the product pi is passed through a ReLU function. But
for ignoring the negative values that correspond to uncer-
tain regions, −pi is again passed through a ReLU function.
This is then multiplied with a large number c, such that after
applying softmax over ai all negative values of pi become
zero and all the positive values are normalized.

wi = (1− vdi ) ∗ Softmax(ai) (9)
To focus on more attentive (certain) regions, we follow

the residual setting [28] for obtaining the effective weighted
features hi. Images with high aleatoric uncertainty (lower
certainty) should be less attentive, and it is obtained by mul-
tiplying the normalized softmax attention value to its cer-
tainty value (1− vdi ) using the Eq. 9. The weighted feature
hi is generated as follows:

hi = fi ∗ (1 + wi) (10)

3.3.2 Predictive Certainty based Attention

The predictive uncertainty measures the model’s capabil-
ity for prediction. It occurs in the regions which are either



already domain invariant or which contain noise. The re-
gions corresponding to discriminator’s predictive certainty
are domain transferable regions and should be attended dur-
ing classification. We follow the approach proposed in [20]
for computing the predictive uncertainty of discriminator.
It is obtained by the entropy of the average class probabili-
ties of the Monte Carlo (MC) samples. We sample weights
from Gd, and perform MC simulations over domain prob-
abilities p(ydi,t) and aleatoric uncertainty vdi,t for estimating
predictive uncertainty Var d(fi).

gi,t = Gtd(fi), Gtd ∼ Gd (11)

Using the sampled model, we calculate domain probabili-
ties and aleatoric uncertainty.

p(ydi,t) = Softmax(Gdy(gi,t)), vdi,t = Gdv(gi,t) (12)

H(ydi,t) = −
2∑
c=1

p(ydi,t = c) ∗ log(p(ydi,t = c)) (13)

Var d(fi) ≈
1

T

T∑
t=1

(
vdi,t +H(ydi,t)

)
(14)

where H(ydi,t) is the Entropy of the p(ydi,t). For identify-
ing the predictive uncertain regions, we compute gradients
of the predictive uncertainty Var d(fi) of the discriminator

with respect to the features fi i.e. ∂Var d
(fi)

∂fi
, and negative

of these gradients which returns through the gradient rever-
sal layer will correspond to the gradients of the predictive

certainty, i.e., −∂Var d
(fi)

∂fi
.

pi = fi ∗ −
∂Var d(fi)

∂fi
(15)

ai = ReLU(pi) + c ∗ ReLU(−pi) (16)

wi = (1− Var di (fi)) ∗ Softmax(ai) (17)

Similar to aleatoric certainty based attention, for obtaining
the predictive certain regions we apply ReLU function to
pi and ignoring its negative values (corresponds to uncer-
tain regions), a ReLU function is applied to negative of pi,
and multiply it with a large number c using Eq. 16. After
applying the Softmax, the features that are activated by the
predictive uncertainty will have zero weight and for features
that are highly activated by the predictive certainty will get
more weight. The residual weighted features are obtained
by following equations

hi = fi ∗ (1 + wi) (18)

Therefore the images with high predictive uncertainty have
a lower value of wi, have less attention, while images have
high predictive certainty have a high value of wi, pro-
duce high attentive features. This will ensure that already
adapted regions or non- adaptive region (both cases have
high uncertainty) have a lower attention value.

3.4. Training Algorithm

We employ Certainty Attention based Domain Adaption
(CADA) models for solving the task of unsupervised do-
main adaptation. Both the CADA-P and CADA-A mod-
els jointly learn domain invariant and class invariant fea-
tures, by focusing the classifier’s attention on the discrim-
inator’s certain regions. So, the class probabilities yci and
aleatoric uncertainty vci for the classifier will be estimated
using weighted feature hi.

yci = Gcy(Gc(hi)), vci = Gcv(Gc(hi)) (19)

The final objective function J for optimizing both the mod-
els is defined as:

J = Lcy + Lcv − λ ∗ (Ldy + Ldv) (20)

where λ is a trade-off parameter between classifier and dis-
criminator. The optimization problem is to find the param-
eters θ̂f , θ̂c, θ̂cy, θ̂cv, θ̂d, θ̂dy, θ̂dv that jointly satisfy:

(θ̂f , θ̂c, θ̂cy, θ̂cv) = arg min
θf ,θc,
θcy,θcv

J(θf , θc, θcy, θcv, θd, θdy, θdv)

(θ̂d, θ̂dy, θ̂dv) = arg max
θd,θdy,θdv

J(θf , θc, θcy, θcv, θd, θdy, θdv)

The implementation details are provided in supplementary
material, and other details are provided in the project page 1

4. Experiments and Results
4.1. Datasets

Office-31 Dataset The Office-31 [37] consists of three
domains: Amazon, Webcam and DSLR with 31 classes in
each domain. There are 2817 images in Amazon (A) do-
main, 795 images in Webcam (W) and 498 images are in
DSLR (D) domain makes total 4,110 images. To enable
unbiased evaluation, we evaluate all methods on 6 transfer
tasks A→W, D→A, W→A, A→D, D→W and W→ D.

Office-Home Dataset We also evaluated our model
on the Office-Home dataset [50] for unsupervised domain
adaptation. This dataset consists of four domains: Art (Ar),
Clip-art (Cl), Product (Pr) and Real-World (Rw). Each do-
main has common 65 categories and total 15,500 images.
We evaluated our model by considering all the 12 adapta-
tion tasks. The performance is reported in the Table 3.

ImageCLEF Dataset ImageCLEF-2014 dataset con-
sists of three datasets: Caltech-256 (C), ILSVRC 2012 (I),
and Pascal VOC 2012 (P). There are 12 common classes and
total 600 images in each domain. We evaluate our model on
all the 6 transfer tasks and results are reported in Table 4.

1https://delta-lab-iitk.github.io/CADA/



Table 1: Classification accuracy (%) on Office-31 dataset for unsupervised domain adaptation (AlexNet[22])

Method A→W D→W W→ D A→ D D→ A W→ A Average

Alexnet[22] 60.6 ± 0.4 95.0± 0.2 99.5± 0.1 64.2 ± 0.3 45.5± 0.5 48.3± 0.5 68.8
MMD[48] 61.0 ± 0.5 95.0± 0.3 98.5± 0.3 64.9 ± 0.4 47.2± 0.5 49.4± 0.4 69.3
RTN[28] 73.3 ± 0.3 96.8 ± 0.2 99.6 ± 0.1 71.0± 0.2 50.5± 0.3 51.0± 0.1 74.1
DAN[26] 68.5 ± 0.4 96.0 ± 0.3 99.0 ± 0.2 66.8± 0.2 50.0± 0.4 49.8± 0.3 71.7
GRL [13] 73.0 ± 0.5 96.4 ± 0.3 99.2 ± 0.3 72.3 ± 0.3 52.4± 0.4 50.4± 0.5 74.1
JAN [29] 75.2 ± 0.4 96.6 ± 0.2 99.6 ± 0.1 72.8 ± 0.3 57.5± 0.2 56.3± 0.2 76.3

CDAN[27] 77.9 ± 0.3 96.9 ± 0.2 100.0 ± 0 74.6 ± 0.2 55.1± 0.3 57.5± 0.4 77.0
MADA[35] 78.5 ± 0.2 99.8 ± 0.1 100.0 ± 0 74.1 ± 0.1 56.0± 0.2 54.5± 0.3 77.1

CADA-W 82.3± 0.3 99.2± 0.1 99.6 ± 0.1 75.9± 0.2 57.7± 0.1 53.3± 0.2 78.0
CADA-A 84.1 ± 0.2 99.2 ± 0.2 99.8± 0.2 77.3 ± 0.1 61.3± 0.2 54.1± 0.3 79.3
CADA-P 83.4 ± 0.2 99.8 ± 0.1 100.0 ± 0 80.1 ± 0.1 59.8± 0.2 59.5± 0.3 80.4

Table 2: Classification accuracy (%) on Office-31 dataset for unsupervised domain adaptation (ResNet-50 [16])

Method A→W D→W W→ D A→ D D→ A W→ A Average

ResNet-50[16] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7± 0.3 76.1
DAN[26] 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
RTN[28] 84.5±0.2 96.8±0.1 99.4±0.1 77.5±0.3 66.2±0.2 64.8±0.3 81.6

DANN[13] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA [47] 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9

JAN[29] 85.4±0.3 97.4± 0.2 99.8±0.2 84.7± 0.3 68.6±0.3 70.0±0.4 84.3
MADA[35] 90.0± 0.1 97.4 ±0.1 99.6± 0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2
SimNet[36] 88.6 ±0.5 98.2±0.2 99.7±0.2 85.2±0.3 73.4±0.8 71.6±0.6 86.2

GTA[39] 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
DAAA [18] 86.8±0.2 99.3±0.1 100.0±0.0 88.8±0.4 74.3±0.2 73.9 ±0.2 87.2
CDAN[27] 93.1±0.1 98.6±0.1 100.0±0.0 93.4±0.2 71.0±0.3 70.3 ±0.3 87.7

CADA-W 93.9± 0.1 99.1 ± 0.2 99.6± 0.2 93.2± 0.3 68.9± 0.1 68.3± 0.2 87.2
CADA-A 96.8 ± 0.2 99.0±0.1 99.8 ±0.1 93.4±0.1 71.7±0.2 70.5±0.3 88.5
CADA-P 97.0 ± 0.2 99.3 ±0.1 100.0±0 95.6±0.1 71.5±0.2 73.1±0.3 89.5

Table 3: Classification accuracy (%) on Office-Home dataset for unsupervised domain adaptation (ResNet-50 [16])

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50[16] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN[26] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3

DANN[13] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN[29] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3

CDAN[27] 50.6 65.9 73.4 55.7 62.7 64.2 51.8 49.1 74.5 68.2 56.9 80.7 62.8

CADA-A 56.9 75.4 80.2 61.7 74.6 74.9 62.9 54.4 80.9 74.3 61.1 84.4 70.1
CADA-P 56.9 76.4 80.7 61.3 75.2 75.2 63.2 54.5 80.7 73.9 61.5 84.1 70.2

4.2. Results
Following the common setting in unsupervised domain

adaption, we used the pre-trained Alexnet [22] and pre-
trained ResNet [16] architecture as our base model. For
Office-31 dataset, results are reported in the Table 1 and

Table 2. From the table, it is clear that the proposed
CADA outperforms the other methods on most transfer
tasks, where CADA-P is the top-performing variant for both
Alexnet and Resnet model. On average, we obtain improve-
ments of 3.3% and 1.8% over the state of the art methods
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Figure 3: The t-SNE visualization of representations learned by (a) ResNet, (b) DANN, (c) CADA-A, and (d) CADA-P (blue:
A; red: W), (e) shows ProxyA-distance for A→W task for method Reset [16], GRL [13] and the proposed model CADA-P

Table 4: Classification accuracy (%) on ImageCLEF dataset
for unsupervised domain adaptation (ResNet-50 [16])

Method I→ P P→ I I→ C C→ I C→ P P→ C Avg

ResNet [16] 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DAN[26] 75.0 86.2 93.3 84.1 69.8 91.3 83.3
RTN[28] 75.6 86.8 95.3 86.9 72.7 92.2 84.9
GRL [13] 75.0 86.0 96.2 87.0 74.3 91.5 85.0
JAN[29] 76.8 88.0 94.7 89.5 74.2 91.7 85.8

MADA [35] 75.0 87.9 96.0 88.8 75.2 92.2 85.8
CDAN[27] 77.2 88.3 98.3 90.7 76.7 94.0 87.5

CADA-A 78.0 91.5 96.3 91.0 77.1 95.3 88.2
CADA-P 78.0 90.5 96.7 92.0 77.2 95.5 88.3

(a) A → W (b) A → D

Figure 4: Analysis of statistically significant difference for
A→W and A→D in ResNet [16], GRL [13], CADA-A, and
CADA-P methods, with a significance level of 0.05.

as it can be seen that the difference between other meth-
ods are usually less than 1% and therefore this amount of
improvement is fairly significant. In some cases such as,
in Amazon-Webcam (A-W) we obtain almost 4% improve-
ment over the state of the art method. Note that for DSLR-
Amazon (D-A) and Webcam-Amazon (W-A), we do not ob-
tain state of the art. A very recent work [18] obtain state of
the art results for these two cases. The difference between
the domains is significant in these cases, and our method
was not trained to optimally for these cases. The proposed
method has obtained better results in all other cases, and
even in these two cases, our results are competitive.

For the Office-Home dataset, the results are reported
in Table 3. For this more challenging dataset, we have
achieved state-of-art performance. It is noteworthy that the
proposed model provides the classification accuracy that is
substantially better on this Office-Home dataset which is

harder dataset for domain adaptation problem obtaining on
average an improvement of 7.4% and 7.3% over the state of
the art methods using CADA-P and CADA-A respectively.

The results on the ImageCLEF are reported in Table 4.
Both CADA-P and CADA-A outperform the other state of
the art models for all the transfer tasks except I→C, with
0.8% and 0.7% improvement on average over the state of
the art methods respectively. The room for improvement is
smaller than the Office-Home Dataset, as ImageCLEF only
have 12 classes and datasets in each domain, and the class
category is equal, making it much easier for domain adap-
tation.

5. Ablation Study
We investigate the Bayesian model with and without at-

tention for both Alexnet and ResNet model on the office-31
dataset. From Table 1 and 2, it is clear that the Bayesian
model without attention (CADA-W) performs significantly
better than the most of the other previous models, as predict-
ing uncertainty for discriminator reduces negative transfer,
by neglecting the regions which contain data uncertainty.
Table 1 and 2 demonstrates that CADA-P (predictive cer-
tainty) performs better than CADA-A (aleatoric certainty),
as predictive uncertainty includes both model and aleatoric
uncertainty, providing a better estimate of certain regions
for the discriminator.

6. Empirical Analysis
We further provide empirical analysis in terms of quali-

tative analysis of attention maps, feature visualization, dis-
crepancy distance and statistical significance for additional
insights about the performance of our method.

6.1. Qualitative Analysis of Attention Maps
To provide the effectiveness of proposed certainty based

adaptation, we provide the certainty map of the discrimi-
nator at different training stages (chosen randomly) in the
Figure 5. In the figure, we see that at the initial phase
of the training (after 4 epochs), the discriminator discrim-
inates the source and target domains just by some random
location. As the training progress, the discriminator learns



the domain by attending the background of the images (In
A→W, domains are mostly dissimilar in the background).
After some more training, the background is adapted (af-
ter 125 epochs), and now the discriminator attends to fore-
ground part of the image to differentiate the domains (after
535 epochs). However, the foreground varies a lot across
all the images. Hence discriminator is highly certain in
the class object regions. Now with further training of the
model, these class object regions are also adapted (after
1300 epochs). The remaining regions of the image cannot
be further adapted because there is data uncertainty. At the
end of the training, the discriminator will be highly uncer-
tain regarding the domain, and the attention weight on the
regions which are not adaptable will have low weights as
we are using the certainty of the discriminator as the mea-
sure for the weights. Note that at the time of inference, we
do not use the attention weights obtained by certainty for
aiding classifier. These are used only at the time of training.
The results show that these attention weights based training
aids the classifier to better generalize to the target domain.
We have provided more visualization examples in the sup-
plementary material for further justification.

6.2. Feature Visualization
Adaptability of the target to source features can be visu-

alized using the t-SNE embeddings of images feature. We
follow similar setting in [48, 13, 35] and plot t-SNE embed-
dings of the dataset in the Figure 3. We can observe that
the proposed model correctly aligns the source and target
domain images with exactly 31 clusters which are equal to
the number of class labels with clear boundaries.

6.3. Discrepancy Distance
A-distance is a measure of cross domain discrepancy[1],

which, together with the source risk, will bound the target
risk. The proxy A-distance is defined as dA = 2(1 − 2ε),
where ε is the generalization error of a classifier(e.g. kernel
SVM) trained on the binary task of discriminating source
and target. Figure 3 (e) shows dA on tasks A→W with fea-
tures of ResNet[16], GRL[13], and our model. We observe
that dA using our model features is much smaller than dA
using ResNet and GRL features, which suggests that our
features can reduce the cross-domain gap more effectively.

6.4. Statistical Significance Test
We analyzed statistical significance [8] for variants of

proposed method against GRL [13]. The Critical Difference
(CD) for Nemenyi test depends upon the given confidence
level (which is 0.05 in our case) for average ranks and num-
ber of test datasets. If the difference in the rank of the two
methods lies within CD, then they are not significantly dif-
ferent. Figure 4 visualizes the post hoc analysis using the
CD diagram for A→W dataset. From the figures, it is clear
that our models are significantly different from GRL[13].

Figure 5: Attention visualization of the last convolutions
layer of the proposed model CADA-P. The first and the third
row shows the image from source domain (A) whereas the
second and the fourth row shows the image from target do-
main (W). In each row, the leftmost image (a) represents
the original image and the rightmost image (f) represents
the classifier’s activation maps for ground truth class label
at the end of the training. From left to right, the attention
map of discriminator’s predictive certainty is illustrated at
different training stages: (b) 4 epochs, (c) 125 epochs, (d)
535 epochs, and (e) 1300 epochs. We can see as the train-
ing progress, the discriminator’s certainty activation map
changes from the background to the foreground, and then
to the regions which can not be adapted further.

7. Conclusion
In this paper, we propose the use of certainty estimates

of the discriminator to aid the generalization of the classifier
by increasing the attention of the classifier on these regions.
As it can be observed through our results, the attention maps
obtained through certainty agree well with the classifier cer-
tainty for true labels and this aids in the generalization of
the classifier for the target domain as well. The proposed
method is thoroughly evaluated by comparison with state of
the art methods and shows improved performance over all
the other methods. Further, the analysis is provided in terms
of statistical significance tests, discrepancy distance, and vi-
sualizations for better insight about the proposed method.
The proposed method shows a new direction of using prob-
abilistic measures for domain adaptation, and in the future,
we aim to further explore this approach.
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