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ABSTRACT: Assessing the safety of new chemicals, without introducing the need for animal testing, is
a task of great importance. The Ames test, a widely used bioassay to assess mutagenicity, can be an
expensive, wasteful process with animal-derived reagents. Existing in silico methods for the prediction of
Ames test results are traditionally based on chemical category formation and can lead to false positive
predictions. Category formation also neglects the intrinsic chemistry associated with DNA reactivity.
Activation energies and HOMO/LUMO energies for thirty 1,4 Michael acceptors were calculated using
a model nucleobase and were further used to predict the Ames test result of these compounds. The
proposed model builds upon existing work and examines the fundamental toxicant−target interactions
using density functional theory transition-state modeling. The results show that Michael acceptors with
activation energies <20.7 kcal/mol and LUMO energies < −1.85 eV are likely to act as direct mutagens
upon exposure to DNA.

■ INTRODUCTION

Global frameworks such as green chemistry should sit at the
forefront of chemical research in the modern era. To help
achieve this ideology, Anastas and Warner proposed twelve
principles of green chemistry that acts as fundamental guidelines
for the development of greener chemical processes and
products.1 The field of computational toxicology is concerned
with using qualitative and quantitative data to develop models
that improve our understanding about the toxicological risk of
chemicals.2,3 This directly aligns with the fourth principle of
green chemistry; to design safer chemicals and reduce toxicity
wherever possible. Furthermore, computational toxicology plays
a pivotal role in attempting to reduce the widespread use of
animal testingan ethical issue of great concern to many people
around the world.4 Despite continuous improvements in the
treatment of cancer, carcinogenicity continues to be a
toxicological endpoint of great concern when developing new
chemicals. Mutagenesis, the process by which genetic mutations
are created, is the underlying process in the development of
many cancers. Understanding the chemical mechanism of
mutagenic activity is therefore vital to producing less toxic
chemicals.5 Themost widely used bioassay for testing mutagenic
activity is the Ames test. This test uses Salmonella typhimurium
bacteria with pre-existing mutations that prevent the synthesis of
histidine. Without histidine, the bacteria cannot grow. When a
chemical shows mutagenic activity, DNA reactivity is apparent
and this can cause a mutation that allows the bacteria to revert to
a state where it can produce histidine and therefore start to
grow.6 The extent of bacterial growth therefore gives
quantitative and qualitative indication to the mutagenic
potential of a test chemical. The prediction of Ames test results
using computational toxicology is possible, however, many
currently used methods often rely on expert knowledge of

chemical systems.7 These in silico prediction systems, such as
Derek Nexus, group chemicals into categories (e.g., DNA
reactive, see Figure 1) based around so-called “structural
alerts”.8,9

Examples of structural alerts within the category of DNA
reactivity are α,β-unsaturated carbonyls, acyl halides, and
isocyanates to name but a few. However, category formation
based upon the presence of a functional group (or “structural
alert”) does not provide an adequate explanation of the
fundamental chemistry associated with mutagenicity. The initial
reaction between an exogenous chemical and DNA can be
described as a “molecular initiating event”.10 This reaction can
trigger the “Adverse Outcome Pathway”, which is defined as a
series of events between initial exposure and the adverse
outcome, for example, cancer, respiratory failure, and so forth.9

Acquiring a thorough understanding of the fundamental
chemistry behind the molecular-initiating event would allow
us to better predict the outcome of experimental methods in
toxicology such as the Ames test. This could then lead to a high
throughput in silico screening process for drug candidates,
making predictions both faster and cheaper. Quantum chemistry
provides the necessary toolset to probe the molecular-initiating
event. In particular, density functional theory (DFT) transition-
state modeling has previously been shown to allow a thorough
assessment of the steric and energetic details of chemical
reaction mechanisms.11 This is typically achieved through
calculating activation energies to assess which reaction pathway
is likely to proceed. Goodman et al. have previously shown that
DFT-derived activation barriers can be used to predict Ames test
results for a variety of Michael acceptors which form covalent
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bonds with DNA.12 This work improves upon the published
model by Goodman et al. and demonstrates that the energy of
the lowest unoccupied molecular orbital (LUMO) shows
significant predictivity for the assessment of mutagenic potential
in Michael acceptor-type compounds.

■ MATERIALS AND METHODS
Ames test results for 30 archetypical α,β-unsaturated carbonyl
compounds were obtained from two resources: the OECD
QSAR Toolbox and a dataset published by Peŕez-Garrido and
co-workers.13,14 19 of these compounds were obtained from the
study by Goodman and co-workers.12 At the time of this study,
16 of the total compounds were experimentally classified as
Ames negative whilst 14 of the compounds were classified as
Ames positive. All experimental Ames test data were acquired
without the use of an S9 enzyme activation system. DFT was
used to study the reaction between the Michael acceptor dataset
and a model nucleophile (see Figure 2).

Thus, the activation energies were derived for the molecular
initiating events. To ensure a reasonable calculation time,
methylamine was chosen as the nucleophile to model a
nitrogenous DNA nucleobase (see Figure 3). Compounds 16

and 23 were truncated from citral and pulegone, respectively.15

Where conformational flexibility was evident, conformational
searches were performed using Schrödinger’s Macromodel (ver.
11.3) with the MMFF force field.16−18 A low-mode sampling
approach was used for both individual Michael acceptors and
transition states.19 Reactant and transition-state conformations
obtained from Macromodel were optimized using DFT
calculations within Gaussian 16 (Revision A.03).20 Optimiza-
tions were performed using Grimme’s D3 dispersion-corrected
B3LYP functional with Becke−Johnson damping and the
polarized triple-zeta valence (def2-tzvpp) basis set to minimize
basis set superposition errors.21,22 Throughout this work, water
was used as a solvent. The implicit integral equation formalism−
polarizable continuum model was used, which previously, has
been extensively utilized for modeling organic chemical
reactions.23,24 Temperature and concentration-corrected quasi-
harmonic free energies (under the Grimme approximation25)

were obtained using GoodVibes.26 This included a vibrational
scaling factor of 1, a temperature of 310.15 K, and a
concentration of 1 mol dm−3.26 Electronic Supporting
Information was generated for the lowest energy ground and
transition state conformer for each compound using ESIGen.27

■ RESULTS AND DISCUSSION
Activation Energies. In total, the activation energies for 30

compounds were obtained (see Table 1). The results showed a
wide range of activation energies, ranging from 11.4 to 33.5 kcal/
mol (see Figure 4). Ames positive compounds ranged between
11.4 and 20.7 kcal/mol. The Ames negative compounds ranged
between 22.0 and 33.5 kcal/mol with two outliers at 13.7 and
22.8 kcal/mol (see discussion below). The average free energy
of activation for Ames positive compounds was 16.8 kcal/mol,
whilst the average for Ames negative compounds was 24.9 kcal/
mol. This leads to a significant energy gap of 8.1 kcal/mol
between the average Ames positive and Ames negative
compounds.
For the 19 compounds published in the dataset by Goodman

et al., the energy gap separating the highest Ames positive
compound and the lowest Ames negative compound was
improved from 2.2 to 2.9 kcal/mol for these 19 compounds.
This was achieved by using a dispersion-corrected B3LYP
functional and a larger basis set.12,28 Upon extension of the
model, the Ames positive compound with the highest activation
energy of 22.8 kcal/mol was compound 9, and an energy barrier
of this magnitude sits within the expected region for Ames
negative compounds. However, Haddon et al. previously
showed evidence that compound 9 is indeed Ames positive
with the TA100 strain of S. typhimurium. Despite this
classification, compound 9 was shown to exhibit an extremely
low molar mutagenicity of 0.24 rev/nmol, explaining why its
activation energy sits within the negative region. Further to this,
in the same study, an Ames negative, nonmutagenic compound
was quoted to have a similar molar mutagenicity of <0.3 rev/
nmol. Therefore, compound 9 was removed from the model,
and the authors recommend complete re-evaluation of Ames
test activity for compound 9. A further outlier was compound 1,
initially an Ames negative compound obtained from the OECD
QSAR toolbox with an activation energy of 13.7 kcal/mol. Upon
inspection of the compound activation energy and LUMO
energy, it became evident that compound 1 shows prototypical
values expected from an Ames positive compound. To explore
this result, the existing literature for compound 1 was examined.
A study was found that shows positive activity in the Ames test,
thereby validating the prediction of our model.29 The Ames test
result for this compound was changed accordingly.
The chosen compounds in this study included a carboxylic

acid, compound 30. The standard acidic strength of carboxylic
acids sits between 2 and 5 pKa, and at physiological pH, the
predominant form of compound 30 would therefore be the
ionized carboxylic acid species.30 For this reason, calculations
were performed on the conjugate base of compound 30. The
experimental Ames test result for this compound was negative,

Figure 1. Reaction of a 1,4 Michael acceptor with DNA nucleobase guanine. The red box indicates the molecular-initiating eventthe first step in a
series of reactions that lead to an adverse toxicological response. In this case, the adverse outcome is carcinogenesis.

Figure 2. Generalised reaction scheme of 1,4 Michael addition with a
methylamine nucleophile.

Figure 3. Reaction of 2-hydroxy-3-methylcyclopent-2-enone with
methylamine, demonstrating the prototypical reaction type in this
study.
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Table 1. Summary of the Data Acquired in This Studya

aAmes test result, reaction barrier (kcal/mol), HOMO (eV) and LUMO (eV) were the chemical descriptors calculated. Compounds are arranged
from the lowest lying LUMO to the highest lying LUMO.

Figure 4. Michael acceptors ordered according to their activation energies with methylamine. Red compounds on the right-hand side are Ames
positive, whilst the green compounds on the left are Ames negative. An energy difference of 1.4 kcal/mol is apparent between the highest Ames positive
compound and the lowest Ames negative compound. Molecules in blue were truncated from pulegone (27.3 kcal/mol) and citral (22.9 kcal/mol). 2-
Bromoacrylic acid (33.5 kcal/mol) wasmodeling as the conjugate base. In the corner, correlation between LUMOenergies and reaction barriers can be
seen in a regression plot.
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with the activation energy showing good agreement at a value of
33.5 kcal/mol.
HOMO/LUMO Energies. The highest unoccupied molec-

ular orbital (HOMO)/LUMO energies for 30 compounds were
calculated. Despite previous successful attempts in literature, the
energy of the HOMO showed no predictive potential for
mutagenicity as a toxicological descriptor (see Table 1).31,32

However, the LUMO energy of Michael acceptors proves to be
an extremely promising descriptor. The LUMO energies ranged
from−3.65 eV (for the lowest lying LUMO) to−0.81 eV for the
highest calculated LUMO energy (see Table 1). The LUMO
energies for Ames positive compounds ranged from −3.65 to
−1.85 eV, with an average Ames positive LUMO energy of
−2.57 eV. The Ames negative compounds ranged from−1.83 to
−0.81 eV, with an average Ames negative LUMOof−1.50 eV. It
is evident that Ames positive compounds have lower LUMO
energies when compared to Ames negative compounds. Our
results show that as a toxicological descriptor, LUMO energy
shows great promise for accurately predicting Ames test results
in Michael acceptors. Further to this, LUMO energies are easily
and routinely obtained from quantum chemical calculations.33

Furthermore, the LUMO energies showed statistically signifi-
cant correlation with the activation energies being calculated
(see Electronic Supporting Information). Regression analysis
was performed resulting in an r2 = 0.75, suggesting good
correlation between activation energy and LUMO energy. Also,
the coefficient of correlation “r” was equal to 0.89, suggesting
that as the reaction barrier increases, there is a simultaneous
increase in LUMO energy.
Comparison to the Existing Model. In order to assess the

performance of our model, a pre-existing (Q)SAR software was
used to predict the in vitro Ames test result for the compound
dataset. The “Toxicity Estimation Software Tool” (TEST) was
used to predict Ames test results through a “nearest neighbor”
approach.34 In this approach, the mutagenicity is predicted by
comparing the test chemical to the three most similar
compounds in the QSAR training set. TEST correctly predicted
9 of the 14 Ames positive compounds and 11 of the 15 Ames
negative compounds. Despite TEST showing relatively good
performance, the model, we present, predicts Ames test results
with greater consistency. It also provides a deeper insight into
the fundamental chemistry associated with toxicant−target
interactions. Overall, both LUMO energies and activation
energies show great promise for use as primary (Q)SAR
descriptors and readily meet guidelines within toxicological
policy. For example, the International Council for Harmo-
nisation declares that two complimentary in silico methods
should be used for the assessment of the mutagenicity of
impurities in pharmaceutical products.35

■ CONCLUSIONS
Activation free energies and HOMO/LUMO energies were
calculated for 30 Michael acceptors. For Ames positive
compounds, the activation energies ranged from 11.4 to 20.7
kcal/mol, whilst the Ames negative compounds ranged from
22.0 to 33.5 kcal/mol. LUMO energies ranged from −3.65 to
−1.85 eV for Ames positive compounds and from −1.83 to
−0.81 eV for Ames negative compounds. Compound 1 was
originally classified as Ames negative; however, it was corrected
to Ames positive upon application of our model and assessment
of the literature. We can predict with confidence that Michael
acceptors with a LUMO energy < −1.85 eV and an activation
energy <20.7 kcal/mol will be Ames positive, whilst those with

activation energies >22.0 kcal/mol and LUMOenergies >−1.83
eV will be Ames negative. These results have shown that DFT
transition state modeling shows great potential for under-
standing the molecular initiating event and therefore the
intrinsic chemical origin of mutagenicity. When activation
energy and LUMO energy are combined as descriptors, they
show excellent predictive potential for Ames test classification in
Michael acceptor-type compounds. By considering the
information presented above, the authors recommend that the
activation energy and LUMO energy are thoroughly and
simultaneously investigated when probing the mutagenic
potential of pre-existing and newly synthesized 1,4 Michael
acceptors. In future, this framework can be applied to different
groups of compounds that are known to react with DNA, for
example, Schiff base formers.36 However, the range of activation
barriers and LUMO energies is likely to differ between separate
groups of compounds. Therefore, DFT transition-state model-
ing should be applied independently to each category. In
conclusion, we have developed a fast, low-cost framework, with
advantages over current methods (e.g. TEST) for assessing the
mutagenic risk of pharmaceutically interesting Michael accept-
ors. Activation energy and LUMO energy show significant
predictivity for mutagenic risk in Michael acceptors, and these
descriptors should be incorporated into both pre-existing and
future QSAR models in predictive toxicology.
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