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Abstract

We present a model that can automatically learn
alignments between high-dimensional data in an
unsupervised manner. Our proposed method casts
alignment learning in a framework where both
alignment and data are modelled simultaneously.
Further, we automatically infer groupings of
different types of sequences within the same
dataset. We derive a probabilistic model built
on non-parametric priors that allows for flexible
warps while at the same time providing means to
specify interpretable constraints. We demonstrate
the efficacy of our approach with superior
quantitative performance to the state-of-the-art
approaches and provide examples to illustrate the
versatility of our model in automatic inference
of sequence groupings, absent from previous
approaches, as well as easy specification of high
level priors for different modalities of data.

1 Introduction

Learning from sequential data is challenging as data might
be sampled at different and uneven rates, sequences might be
collected out of phase, etc. Consider the following scenarios:
humans performing a task may take more or less time to
complete parts of it, climate patterns are often cyclic though
particular events take place at slightly different times in
the year, the mental ability of children varies depending
on their age, neuronal spike waveforms contain temporal
jitter, replicated scientific experiments often vary in timing.
However, most sample statistics, e.g. mean and variance,
are designed to capture variation in amplitude rather than
phase/timing. This leads to increased sample variance,
blurred fundamental data structures and an inflated number
of principal components needed to describe the data. There-
fore, the data needs to be aligned in order for dependencies
such as these to be recovered. This is a non-trivial task that
is often performed as a pre-processing stage to modelling.

Traditionally, the notion of sequence similarity comes

from a measure of pairwise similarity integrated across
the sequences. This local measure often leads to highly
non-convex optimisations problems making alignments
challenging to learn. In this paper we take a different
approach where we encapsulate alignment and modelling
within a single framework. By simultaneously modelling the
sequences and the alignment we can capture global structure
thereby circumventing the difficulties associated with an
objective function based on pairwise similarity.

Further difficulties arise when the the dataset contains
observations from several distinct functions. Consider, for
example, a set of motion capture experiments that include
tasks such as running, jumping and sitting down. Data for
each of these three types of sequences can be aligned to
themselves but a global alignment between them may not
exist. In traditional approaches, the observed data must be
grouped into the distinct sequence types before alignment. To
overcome this limitation, our approach also produces a gen-
erative model over the sequences themselves. This means we
can simultaneously infer both alignments and their grouping.

Methods for learning alignments can broadly be classified
into two categories. The first learns a function to warp
the input dimension while the second directly learns the
transformed sequences. There are several benefits to learning
a warping function as it allows us to resample the data and, by
constraining the class of functions, we can also incorporate
global constraints on the alignment. However, specifying
a parametric function is challenging and often results in
difficult optimisation tasks. Directly learning transformed
sequences avoids having to specify a parametrisation.
However, this comes at the cost of removing all but the
most rudimentary global constraints on the warping function
since the optimal alignment is completely specified by the
pairwise similarity. In contrast, we propose a novel approach
that learns the warping function using a probabilistic model.
Underpinning our methodology is the use of Gaussian
process priors that allows us to approach this learning in
a Bayesian framework achieving principled regularisation
without reducing the solution space.

Our proposed model overcomes a number of problems with
the existing literature and confers three main contributions:



Gaussian Process Latent Variable Alignment Learning

1. We model the observed data directly with a generative
process, rather than interpolating between observations,
that allows us to reject noise in a principled manner.

2. The generative model of the aligned data allows a fully
unsupervised approach that performs simultaneous
clustering and alignment.

3. We use continuous, non-parametric processes to model
explicitly the warping functions throughout; this
allows the specification of sensible priors rather than
unintuitive or heuristic choices of parametrisations.

2 Background

Pairwise similarity There has been a significant amount
of work in learning alignments from data. Most approaches
are based on the assumption of the existence of a pairwise
similarity measure between the instances of each sequence.
The classical approach to minimise the distance between
two sequences is called Dynamic Time Warping (DTW),
and is based on a computing an affinity matrix of the two
sequences to be aligned [5]. The solution corresponds
to the path through this matrix that leads to the minimal
combined pairwise cost. The optimal solution is found
by backtracking through the affinity matrix and can be
estimated using Dynamic Programming [29]. DTW finds
the optimal alignment based on a pairwise distance between
each element in two sequences. Such formulation imposes
a number of limitations. DTW returns an alignment but
not a parametrised warping, and it is not trivial to encode a
preference towards different warps as this would be a global
characteristic while DTW is a local algorithm.

Multiple sequences In its original form DTW aligns two
sequences only but several extensions allow it to process
multiple sequences at once, most notably Procrustes dynamic
time warping (PDTW), Procrustes derivative dynamic
time warping (PDDTW), and Iterative Motion Warping
(IMW) [16, 10, 14]. All of these methods are applied directly
in the observation space which is a limitation when the data
contains a significant amount of noise. The main algorithms
that address this limitation are Canonical Time Warping
(CTW) and Generalized Time Warping (GTW) [44, 42].
Both of these approaches perform feature extraction and
find a subspace that maximises the linear correlation of data
samples. Similarly to our approach, GTW is parametrised
using monotonic warping functions. However, in all
these methods the spatial alignment and time warping are
coupled. Another extension, called Generalized Canonical
Time Warping (GCTW) combines CCA with DTW to
simultaneously align multiple sequences of multi-modal
data [43]. GCTW relies on additional heuristic energy terms
and on coarse-to-fine optimisation to get the energy method
to converge to a good local minimum.

Feature extraction More recently, deep neural networks
were employed to perform temporal alignments [36], [37].

The proposed method, called Deep Canonical Time Warp-
ing (DCTW), performs non-linear feature extraction and it
performs competitively on larger audio-visual datasets. A
different method proposed by [25] uses continuous hidden
Markov models, where the latent trace is an underlying repre-
sentation of the set of observable sequences. [15] introduced
hyperalignment that finds isometric transformations of tra-
jectories in voxel space that result in an accurate match of the
time-series data. An extension to this model was proposed
by [26] who address the issues of scalability and feature exten-
sion through the use of the kernel trick. The authors note that
classification accuracy relies on intelligent feature selection.

Manifold alignment Similar to our approach, [7] propose
an unsupervised manifold alignment method. It is based on
finding alignment by enforcing several constraints such as
geometry structure and feature matching, geometry preserva-
tion and integer constraints. The approach shows promising
results but is very computationally expensive. Another
non-linear feature extraction method [40] named Manifold
Time Warping relies on constructing a k-nearest neighbour
graph and then performing DTW to align a pair of sequences.

Implicit transformation Another approach to alignment
is to use an implicit transformation of the sequences. In
[9, 8] the authors propose a kernel function that is capable of
mapping sequences of different length to an implicit feature
space. Another similar approach is [3] which describes
a range of different kernels on sequences, this method
is flexible and allows for learning implicit feature space
mappings for sequences of not only different lengths but
also different dimensionality. These methods work well
experimentally but as the alignment is implicit we cannot
re-align sequences or construct novel ones.

Shape analysis A different line of work, often referred to
as elastic registration or shape analysis is considered in the
functional data analysis literature. In [12] the authors propose
an extension to DTW by replacing the Euclidean distance
with a Mahalanobis distance. By having a parametrisable
distance function the authors are able to learn the metric
function from a set of paired observations. [19] study the
group-theoretic approach to warps by using the group of
warping functions to describe the equivalence relation
between signals. In particular, the authors use the Fisher-Rao
Riemannian metric and the resulting geodesic distance to
align signals with random warps, scalings and translations.
Square root velocity function (SRVF) facilitates the use of
Fisher-Rao distance between functions by estimating the
L2 norm between their SRVFs [33, 18]. [38] proposed a
generative model that combines elastic shape analysis of
curves and functional principal component analysis (fPCA).
Another recent extension called Elastic functional coding
relies on trajectory embeddings on Riemannian manifolds
and results in manifold functional variant of PCA [2].
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Gaussian processes Our model makes use of Gaussian
processes as priors over warpings, sequences and their
groupings. A Gaussian process (GP) [30] is a random
process specified by a meanm(x) and a covariance function
kθ(x, x′). The covariance function is parametrised by a set
of hyper-parameters θ while the mean is often considered as
constant zero. The index set of the two functions is infinite
which allows GPs to be interpreted as non-parametric priors
over the space of functions. Even though the process is
infinite, an instantiation of the process is finite and reduces
to a Gaussian distribution. In a regression setting we observe
a set of noisy samplesD = {xn, yn}Nn=1 of a latent function
f(·) such that yn = f(xn) + εn. By placing a GP prior over
the latent function f ∼ GP(m(x), k(x, x′)) the instantia-
tions of the function at the training data {fn = f(xn)}Nn=1
are Gaussian as F ∼ N (m(X), k(X,X)) where F and
X are concatenations of the function instantiations and
the observed input locations respectively. By choosing a
Gaussian noise model the functions can be marginalised
out in closed form due to the self-conjugate property of the
Gaussian distribution. The Gaussian process latent variable
model (GP-LVM) [22] is a model that uses GP priors to learn
latent variables. The model assumes that each dimension
of the observed data Y have been generated from a latent
variableX through some latent function f . By placing a GP
prior over f and marginalising out this mapping, the latent
representation of the data can be recovered. The model is
very flexible and has been implemented across a wide range
of different applications, for example [6, 13, 39].

Warped GPs In [32] and [24] the authors construct a GP
with a warped input space to account for differences in obser-
vations (e.g. inputs may vary over many orders of magnitude),
and show that a warped GP finds the standard preprocessing
transforms, such as the logarithm, automatically. In
comparison, our approach leads to a warped output space of
the GP-LVM, and uses the additional knowledge of possible
misalignments in the high-dimensional space to regularise
the problem of building a low-dimensional latent space. Con-
current with our work, [11] use GPs for modelling sequences
of neural population spike-trains and the corresponding
temporal warps. The proposed approach is an extension
to GP factor analysis [41] and uses a linear combination of
shared and private latent processes to encourage alignment
of sequences for different trails. Unlike our work, [11] do
not recover a clustering of the sequences and thus require
the groups of sequences for alignment to be known a-priori.

3 Methodology

Alignment learning is the task of recovering a set of
monotonic warping functions that have been used to create
samples of a latent sequence. Fig. 1 provides an overview of
our approach. We are provided with a number of noisy time
warped observations of a set of unobserved latent sequences
and our task is to infer both this set of sequences and the time

warps that give rise to the observations.

Let us assume that we have J noisy sequence observations
{Yj} (Fig. 1a) where each observed sequence comprisesN
time samples, Y = (y(j,n)) ∈ RJ×N . We consider each
sequence to be generated as a sample from a latent function
fj(x) (Fig. 1b) under a monotonic warping gj(x) as y(j,n) =
fj( gj(xn)) + εjn where the samples have been corrupted by
additive Gaussian noise εjn ∼ N (0, β−1

j ). Due to the close
association of sequences and temporal data, we use the word
time to refer to the input domain of the sequence, however
our method is general and applicable to any ordered index set.

The aligned sequences, which are unobserved, are given
by the corresponding functions without the time warp
s(j,n) = fj(xn)+εjn, S = (s(j,n)) ∈ RJ×N (as illustrated
in Fig. 1d and Fig. 1c). This means that we can encode our
warping function as the transformation from a known sam-
pling of an unknown aligned sequence to the unknown sam-
pling of the known observations for each sequence. However,
as described in the introduction and illustrated in Fig. 1d, we
wish to design a model that is not restricted to the case where
all the observations arise from a single latent function (for
example, in Fig. 1d there are two unknown true sequences).

To account for the possible existence of multiple latent func-
tions, we consider a generative model for the aligned se-
quences themselves. By specifying that the generative pro-
cess be as simple as possible, we encourage the clustering of
these sequences, which allows to automatically find the small-
est number of latent functions explaining the data. We encode
this as the aligned sequences being generated via a smooth
mapping h(·) from a low dimensional spaceZ ∈ RQ as

Sj = h(Zj) + ε̂ s.t. Sj = fj(x) + εj ∀ j (1)

where ε̂ ∼ N
(
0, γ−1I

)
and εj ∼ N

(
0, β−1

j I
)
. This low

dimensional manifold is visualised, for our toy example, in
Fig. 1f whereZ is a 2D space and the locations of the aligned
sequences Sj are shown as coloured points matching the cor-
responding aligned sequences in Fig. 1e. We see that the two
different sequences are clustered appropriately by their loca-
tion in the manifold and the sequences are correctly aligned.
We use a probabilistic model of the aligned sequences, which
allows us to quantify uncertainty of the low-dimensional
manifold representations (the heatmap in Fig. 1f).

3.1 Probabilistic Model

In this section we specify the two components of our model
that correspond to the constraint introduced in Eq. (1).

The first part corresponds to fitting the data that explains
the observed sequences and specifies the latent functions,
while the second part enforces a simple, low-dimensional
structure of the aligned sequences. Given noisy observed
data, we do not impose this constraint exactly, but rather
define both model components as probabilistic models and
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(a) The observed data Yj , j = 1 . . . 5, are noisy and time warped versions of the unknown true sequences.

(b) Continuous functions are fit (with uncertainty) to the noisy, time warped observations (these are fj

(
gj(x)

)
).

(c) These are decomposed into the aligned sequences fj(x) (top row) and the inferred continuous warp gj(x) (bottom row).

(d) The set of two true unobserved sequences
for the warped observations.

(e) The inferred aligned results (shown offset
in the y-axis).

(f) The inferred generative manifold clusters
the two sequence types.

Figure 1: Overview of our model on a toy example. We are presented with a set noisy observations (a) that we assume to be time warped
versions from a set of true sequences (d). We fit continuous functions (b) to the observations and then decompose and cluster them into
aligned versions with continuous time warps (c). This results in a generative model where the aligned sequences (e) are produced from
a manifold (f) that reveals the clustering of the observations into the two fundamental sequences of (d).

interpret this constraint as one of the aligned sequences
having high likelihood under both model components
simultaneously. If the aligned sequences S were known, this
interpretation would correspond exactly to fitting a model to
the observed data by maximising the data likelihood. Since
S are unobserved, we refer to them as pseudo-observations;
similarly to [35], we augment the probability space with a
set of pseudo-observations which are constrained by the two
components of our model. We then fit the model by max-
imising the joint marginal likelihood of observations Y and
pseudo-observations S, while optimising not only w.r.t. the
model parameters, but also w.r.t. the pseudo-observations S.

Model over time We have Yj ∈ RN as the observed
sequences, and let X ∈ RN denote an observed uniform
sampling of time. We introduce a random variableGj ∈ RN
to encode the time warp function sampled at X such that
Gj ∼ gj(X). The random variables for the functions
fj(·) are more involved since the functions are evaluated
at different locations. Let FG

j ∼ fj(Gj) denote the output
of the function sampled at the time warped locations Gj
and let FX

j ∼ fj(X) denote the function evaluated at the
uniform sample locations X . The observations Yj are the

noise-corrupted versions of FG, and similarly, we call the
noise-corrupted version of FX pseudo-observations, since
they are not observed and should be inferred.

We now define the priors over the generating and warping
functions fj(·) and gj(·). Specifying a parametric mapping
is challenging and it severely limits the possible functions
we can recover. In this paper, we make use of flexible non-
parametric Gaussian Process (GP) priors which allows us to
provide significant structure to the learning problem without
reducing the possible solution space. The two random
variables connected with fj(·) may then be jointly specified
under a GP prior where the covariance, with hyperparameters
θ, is evaluated atGj andX for FG

j and FX
j respectively as

p

([
FX
j

FG
j

]∣∣∣∣Gj , Xj , θj

)
∼ N

(
0,
[
kθj

(X,X) kθj
(X,Gj)

kθj (Gj , X) kθj (Gj , Gj)

])
.

(2)

Warping functions We encode our preference for smooth
warping functions gj(·) by making p(Gj | X) a GP prior
with a smooth kernel function. We can ensure monotonicity
by an appropriate parametrisation of the Gj using an
auxiliary input. Without loss of generality, these are
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constrained to be monotonic in the range [−1, 1] using a set
of auxiliary variablesUj ∈ RN such that

[Gj ]n := 2
n∑
k=1

[ softmax(Uj)]k − 1 . (3)

Importantly, all warping functions are continuous and genera-
tive which means we are able to resample the data. Therefore,
we write that p(Gj | X,ω) ∼ N (0, kωj

(X,X)) with hyper-
parameters ωj . An alternative to our parameterisation is GPs
with monotonicity information [31], however, this approach
does not guarantee that the posterior predictive is monotonic.

Model over sequences We would like a constraint that
aligns similar sequences to each other while keeping dissim-
ilar sequences apart without us specifying which sequences
belong together. We consider using dimensionality reduc-
tion as a means of preserving similarities in the prediction
space as well as imposing the preference for dissimilar data
points to be placed far apart in the latent space. In particular,
we propose to use a GP-LVM that places independent GPs
over the data features and optimises the locations of the low-
dimensional latent points that correspond to each sequence.

To this end, we let the random variable Zj ∈ RQ be the
embedded manifold location of the sequence. The random
variableHj denotes the output of the mapping function eval-
uated atZj such thatHj ∼ h(Zj). To ease notation, we use
bold symbols to denote the concatenation across J such that,
for example, Z = [Z1, . . . , ZJ ]. We encode the preference
for a smooth mapping by placing a GP prior over the mapping
h(·) so that we have p(H | Z, ψ) ∼ N (0, kψ(Z,Z)) where
ψ are the hyperparameters of the covariance kernel. The
pseudo-observations are modelled by the GPLVM by adding
independent Gaussian noise to H. Next we consider the
joint distribution of the model to derive an objective which
simultaneously ensures that (i) the observed data Y is fitted
well by the corresponding GPs f at the warped locations, (ii)
the pseudo observations are fitted well by the corresponding
GPs f at the fixed sampling locations, (iii) the pseudo
observations are such that they exhibit a simple structure that
is captured by the latent variable model.

Joint distribution The joint distribution (ignoring the
hyperparameters and noise terms for clarity) decomposes as

p(S,Y,FX,FG,G,H,Z|X) = p(Y|FG) p(S|H,FX)
p(H|Z) p(FX,FG|G,X) p(G|X) p(Z) . (4)

The terms p(H|Z), p(FX,FG|G,X) and p(G|X) are the
GP priors defined previously and p(Z) ∼ N (0, I) is the
latent prior . We note that p(FX,FG|G, X) and p(G|X)
factorise fully over J .

Likelihood terms The likelihood of the observa-
tions under i.i.d. Gaussian noise with precision βj is
p(Y|FG) =

∏
j p(Yj |FG

j ) =
∏
j N (Yj |FG

j , β
−1
j I). The

likelihood of the pseudo-observations is more involved
since it encodes the relationship of Eq. (1). We define the
likelihood p(S | H,FX) as an equal mixture:

p(S | H,FX) = 1
2

∏
n

N (Sn|Hn, γ
−1IJ) +

∏
j

N (Sj |FXj , β−1
j IN )


(5)

where Sj refers to the rows and Sn refers to the columns of S.

This explicitly encourages the two components (the
one over h and the one over f ) to coincide so that the
pseudo-observations are explained by both components of
the model simultaneously. In order to find the maximum
likelihood solution, we use the fact that log(1/2 a+ 1/2 b) ≥
1/2 log(a) + 1/2 log(b), and we maximise the lower bound
on the log-likelihood to find the parameters of the two
models, the latent variables, and the pseudo-observations.

Approximations The integrals over H and FX are regular
GP marginalisations, which can be computed in closed-form.
The integral corresponding to FG includes a composition
of GPs, (f ◦ g), which does not have a closed-form solution.
Following [23], we approximate this integral using a point
estimate, and since G is directly optimised, it allows us to
use the monotonic parametrisation of Eq. (3) without the
need to integrate over the corresponding parameters.

Learning We place priors over the hyperparameters
{γ, ψ, θj , βj} as log-Normal distributions with zero mean
and unit variance. We also place an additional prior on
the raw sample points Uj to encourage smooth warps, and
improve training as,

log p({Uj}) =
J∑
j=1

log N (Uj | 0, IN ) . (6)

We optimise the following marginal log-likelihood (ex-
cluding the terms corresponding to the priors on the
hyperparameters): log p(S,Y,Z | X) = log p(S,Y |
X) + log p(S | Z) + log p(Z) w.r.t. the pseudo observations
S, the latent variables Z and the hyperparameters of the
model to obtain the MAP estimates.

Implementation We implement our model using the Ten-
sorFlow [1] framework and minimise the negative marginal
log-likelihood objective using the Adam optimizer [17]. By
default, we used standard squared exponential covariance
functions for all the Gaussian process priors. In some of the
experiments, different covariance functions were used when
the data or warping functions were less smooth (e.g. the
Matérn covariance). The complexity of our method is limited
by the inversion of the covariance matrices and therefore
scales with O(JN3 + J3). However, there are standard
sparse approaches available to scale to longer sequences.
We also implemented the sparse variational method of Tit-
sias [35] which reduces the complexity toO

(
J NM2 + J3),
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where M is a specified number of inducing points for the
sparse approximation. This method performed well forM
an order of magnitude smaller than the full N . We note
that the use of a sparse approximation fits naturally with
the rest of our model as it increases the smoothness of the
observations, which may simplify the alignment task.

3.2 Comparison of Variants of our Model

Our proposed model is fully non-parametric and models both
the warping and the generating functions at the same time.
Methods that rely on the standardL2 metric in the input space
are ill-posed and thus require a regularisation term. This
leads to an optimisation problem that suffers from poor local
minima and relies on the use of a coarse-to-fine approach.
In order to highlight the limitations of using the standard L2

metric in the input space, we describe a model that performs
a parametric re-sampling of the data which corresponds to
removing our model of the warpings but retaining a model of
the data. In effect we take a traditional pairwise minimisation
approach but include a probabilistic model of the data which
has the effect of regularising the optimisation problem.

Parametric warps We use a parametric re-sampling func-
tion g̃(j)(·) similar to [43] consisting of K monotonically
increasing basis functions. For each input sequence Yj , we
learn a set of weights w(j) ∈ PK . By enforcing that the
weights lie on the surface of the kth order probability simplex
P the resulting function is guaranteed to be monotonic. The
task is now to find the set of weights {wj

k}Kk=1 such that re-
sampling the data according to the warping functions results
in the aligned sequences. As we do not have access to S, we
use the same latent variable model as previously and refer to
this model as GP-LVM+basis. The model can be learned us-
ing gradient descent. The parametric model described above,
as well as some previous approaches, rely on hand-picked
basis functions to define the warps. This results in poor ac-
curacy when the set of basis functions is small and in high
computational complexity when the set is large.

Energy alignment We demonstrate the efficacy of using
the alignment GP-LVM to perform simultaneous clustering
and alignment by replacing it with an energy minimisation
objective that is similar to the previous literature, e.g. [19].
The latent variable model part of the objective is replaced
with an energy minimisation term between each of the Sj
and the mean of all the sequences {Sj}Jj=1. In § 4 we show
the results of this method with the GP warping functions
(energy+GP) and with the basis function warpings as
described above (energy+basis).

4 Experiments

We now discuss the experimental evaluation of our proposed
model. We use standard squared exponential covariance
functions for all the GP priors, unless stated otherwise. We

Figure 2: Comparison to state-of-the-art: average error on 25
datasets proposed by Zhou et al. [42].

MSE (SD) SRVF GP-LVM+BASIS OURS

ALIGNMENT 6.4 (±1.7) 8.4 (±2.7) 5.9 (±1.1)
WARPING 30.0 (±10.4) 9.7 (±4.9) 9.7 (±5.7)

Table 1: Quantitative comparison of alignments and warps for the
best competing method on dataset with multiple true sequences
(alignment and grouping task).

show comparisons to current state-of-the-art approaches
from data mining and functional data analysis communities
using publicly available reference implementations1. The
accuracy is primarily measured in terms of the warping
error, i.e. the mean squared error (MSE) between the known
true warps and the estimated warps. The alignment error,
the MSE between the pairs of aligned sequences, is easily
misinterpreted since it is a local measurement. In particular,
it does not capture the degenerate cases where the local
maxima and minima in the input sequences are shifted
to non-corresponding extrema; this is particularly true in
datasets with periodic components. Other examples of
degenerate behaviour are multiple dimensions collapsing to
a single point and warps that rely on translating and rescaling
every input in each dimension that leads to over-fitting (an
example of this is IMW alignment [42]). All of these result
in high alignment accuracy but produce poor quality results.

Datasets with quantifiable comparisons For this ex-
periment, we use the dataset proposed by Zhou and De la
Torre [42]. It consists of sequences that are generated by tem-
porally transforming latent 2D shapes under known warping
transformations that allow quantitative evaluation of the es-
timated warps. To better assess the quality of the alignments,
we run 25 tests with randomly selected size of the dataset,
dimensionality and temporal transformations. Our approach
outperforms other methods on these datasets, see Fig. 2 and
the supplementary material, and produces accurate align-
ments irrespective of the size of the dataset, dimensionality
and structure of the sequences. The variant of our method
that uses parametric warps (gplvm+basis) performs com-
petitively on these datasets, motivating the use of a Gaussian

1See [45] for the implementation of DTW, DDTW, IMW, CTW,
GTW, and [34] for the implementation of SRVF.
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process objective for alignment. Furthermore, we see that
our non-parametric approach to modelling the time warps
improves the flexibility of the model; out of the two models
that rely on energy minimisation as the alignment objective,
energy+basis and energy+gplvm, the latter one demonstrates
lower warping error and significantly lower standard devia-
tion on this dataset. This result supports the premise that even
though the non-parametric representation allows for any
smooth monotonic warp, the probabilistic framework places
sufficient structure to make the problem well posed and
avoid over-fitting. An example of warps and alignments for
this experiment are available in the supplementary material.

Dataset for clustering In our second experiment, we con-
sider a dataset that contains multiple clusters of sequences.
This task requires the sequences to be aligned within each
cluster. None of PDTW, PCTW, GTW nor the energy
minimisation methods are able to perform this task as they
have no knowledge of the underlying structure of the dataset.
The SRVF algorithm performs clustering by first aligning
the data in terms of amplitude and phase, then performing
fPCA based on the estimated summary statistics, and finally
modelling the original data using joint Gaussian or non-
parametric models on the fPCA representations. We compare
the performance of the SRVF algorithm with our approach as
well as the variant of our approach with fixed basis functions.

We consider a dataset that contains three distinct groups of
functions that were generated by temporally transforming
three random 2D curves as described previously. All
three approaches rely on the structure of the data alone to
recognise the existence of the clusters and Fig. 3 shows that
all three methods are able to align the data within clusters.
The performance of the methods is contrasted by calculating
the MSE among all pairs of sequences within each group
(alignment error) and the MSE between the true warping
functions and the warping functions calculated using each
of the methods (warping error). For this comparison we
repeat the test 25 times with randomly selected initial curves,
number of dimensions and number of sequences per group.
The quantitative comparison in Table 1 shows that our
method consistently achieves the lowest alignment errors (i.e.
with lowest standard deviation (SD) on the set of datasets).

Our method, as well as the parametric variant of it, also
achieves low warping errors in comparison to SRVF which
implies that they are able to reconstruct the original temporal
transformations more accurately than SRVF. This behaviour
is apparent in Fig. 3 where the warping functions produced
by our method, and the parametric version of it, resemble
the true warps while SRVF estimates noticeably different
warping functions; this results in unpredictable distortions
in the aligned dataset. These results reflects the differences
between the SRVF method and our approach; while SRVF is
cast as an optimisation problem over a constrained domain,
the domain of our probabilistic formulation is much larger
but, importantly, structured from the assumptions encoded

Figure 3: Alignment of 15 sequences that belong to 3 different
clusters (top 4 graphs) and the corresponding warping functions.

in the prior. This provides a better regularisation ultimately
leading to the improvement in the recovered warpings.

Motion capture data We evaluate the performance of
our model on a set of motion capture data from the CMU
database [20], where each input sequence corresponds to a
short clip of motion and the data is represented as quaternion
locations of the joints of the subject performing the motion.
We use the motion of subject no 64 from the CMU dataset that
correspond to golf related motions such as a swing, a putt, and
placing and picking up of a ball. We consider five instances
of three different motions that need to be temporally aligned
within the three groups. Fig. 4 illustrates how our model
favours the simplified, i.e. aligned, inputs. The corresponding
manifolds produced using a traditional GP-LVM (i.e. without
alignment) and a manifold produced using our approach are
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Figure 4: GP-LVM alignment demonstrates the preference for a simplified explanation when the model is given the ability to align the data.

(a) Without alignment. (b) With alignment.

Figure 5: 2D manifolds produced without and with alignment in the GP-LVM. Using the alignments emphasizes the existence of multiple
clusters of data and aligns data points within each cluster.

(a) The clustering of the unaligned observed sequences
does not reveal the two types of heartbeats.

(b) Accounting for the alignment of sequences allows us to discover automatically
the two different types of heartbeats.

Figure 6: Alignment of heartbeats data [4].

shown in Fig. 5. Our model produces a fine alignment of the
input sequences within each of the groups, and consequently
the resulting two-dimensional manifold offers a good separa-
tion of the three groups. We note that the manifold produced
using GP-LVM without alignment contains more isolated
areas, which means the model is less capable of generalising
between the warps. Therefore, our implicitly aligned model
is able to generate smoother transitions in the manifold, pro-
ducing high quality predicted outputs of novel alignments.

Heartbeats data This dataset contains heartbeat sounds,
and it is known that a normal heart sound has a clear "lub
dub, lub dub” pattern which varies temporally depending
on the age, health, and state of the subject [4]. Our approach
automatically aligns and clusters the heart sounds recorded
by a digital stethoscope. Instead of using a pre-processing
step with a low-pass filter to account for the noise in the high
frequencies, we use a Matérn 3/2 kernel that takes into count
the rapid variations in the recordings while also limiting
the effect of the uninformative high frequency noise. Fig. 6
illustrates how simultaneous fitting and alignment allows us
to correctly discover and cluster the two types of heartbeats.

5 Conclusion and Future Work

We have presented a probabilistic model that is able to
implicitly align inputs that contain temporal variations. Our
approach models the observed data directly producing a
generative model of the functions rather than interpolating
between observations. In addition, using a GP-LVM for
alignment builds an unsupervised generative model that
has the benefit of simultaneous clustering and aligning the
input sequences. Furthermore, we proposed a continuous,
non-parametric explicit model of the time warping functions
that removes issues such as quantisation artefacts and the
need for ad-hoc pre-processing. We demonstrated that the
proposed approaches perform competitively on alignment
tasks, and outperform the existing methods on the task of
simultaneous alignment and clustering. In the future we will
consider the use of Bayesian GP-LVM for automatic model
selection and will test the framework on additional datasets,
including multi-modal data.
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Supplementary material

Motion capture dataset

In this experiment we use the full set of joint motions to align
a set of sports actions (see §4 for further information on the
motion capture dataset). In Fig. 7 we provide an illustration
of the power of using a generative model for alignment. New
locations in the manifold encode novel motion sequences that
are supported by the data. By allowing the model to align the
data, it greatly improves the generative power as the model
is capable of producing a wider range of plausible motions.

Figure 7: An advantage of our approach is that it not only aligns
the data but is also a generative probabilistic model. Here we
show novel sequences generated at new locations in the manifold.
The black dots indicate the embedded locations of the training
sequences. We note that, while we have only shown still images,
each manifold location describes an entire time series. A video
showing this is included with the supplementary material.

Fig. 8 and Fig. 9 give an example of the alignments and the
warps produced by our method on the quantifiable dataset,
see §4 in the paper. The detailed results of our experiments
on this dataset are provided in Table 2.

iPhone motion data

This dataset contains aerobic actions recorded using the
Inertial Measurement Unit (IMU) on a smartphone [28],

which contain high frequency variations. Unlike previous
methods [38], which require the data to be smoothed first,
our framework allows us to take into account the prior belief
about the dataset in a principled way. By replacing the
smooth RBF kernels for modeling the data with a Matérn
1/2 kernel and taking into account the periodic nature of the
actions by also including an additive periodic kernel, we are
able to model the data without the need for preprocessing.
Furthermore, by removing the smoothing prior from the
warping functions, we allow the warps to be more flexible
improving the alignment accuracy.

The alignment results for the iPhone motion data are shown in
Fig. 10. The IMU includes a 3D accelerometer, a gyroscope,
and a magnetometer, and records samples at 60 Hz. As
in [38], for our experiment we take the accelerometer data in
the x-direction for the jumping actions from subject 3, and, in
particular, we look at 5 sequences each of which contains 400
frames. A Matérn 1/2 kernel and a periodic kernel are used
to fit the sequences as they contain high frequency variations,
and we remove the smoothness constraint from the model
of the warping functions to allow them to be more flexible.

Shift task

A common task in functional data alignment is that of esti-
mating uniform translations of the time axis. One particular
problem described by Marron et al. is that of aligning
nuclear magnetic resonance (NMR) spectrum corresponding
to different chemical components (e.g. ethanol) for a set
of wines [27]. It is known that pH differences in wines
induce a shift in values of the components and impedes their
identification [21]. As shown by Marron et al. the alignment
may be achieved using uniform shifts and minimizing the
loss that requires sequences to be proportional to each other.
Such operation is included in our model allowing us to
perform the task of NMR spectrum alignment, and we are
able to demonstrate a separation in the phase between the
red wines and the white and rosé wines, see Fig. 11.
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Figure 8: Original inputs and aligned sequences estimated by DTW,
DDTW, IMW, CTW, GTW, SRVF, our approach and its three variants.

Figure 9: True warps and warps estimated by DTW, DDTW, IMW,
CTW, GTW, SRVF, our approach and its three variants.
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Dataset no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Mean

J 13 10 10 7 13 6 6 12 3 10 13 8 6 10 7 5 5 14 8 3 8 11 7 6 9

T 258 157 107 246 169 131 92 144 138 298 146 240 204 213 157 230 247 196 248 277 141 153 83 285 178

PDTW 9.32 14.38 5.88 12.42 10.57 10.03 2.30 6.60 2.41 16.99 9.84 13.47 4.95 16.72 4.00 6.97 14.03 6.57 15.01 1.98 4.44 5.16 5.05 13.19 10.85 8.93

PDDTW 10.55 14.67 6.80 13.86 12.18 10.30 2.58 7.35 3.95 24.59 10.68 15.45 6.57 18.60 5.54 8.35 14.91 7.70 16.38 5.37 6.11 7.43 5.44 14.02 11.17 10.42

PIMW 26.61 19.27 13.36 24.59 21.16 14.75 6.48 22.14 5.36 38.54 18.06 26.72 16.77 28.39 9.54 22.31 21.23 22.35 27.54 11.13 12.05 18.45 9.06 30.40 16.54 19.31

PCTW 12.12 15.30 9.50 18.89 15.45 11.32 2.77 10.58 2.66 17.26 9.98 24.72 8.04 17.19 6.23 10.21 16.03 10.73 15.17 7.12 5.88 5.59 6.00 16.92 10.98 11.47

GTW 6.52 9.54 6.54 6.96 7.50 3.23 4.27 10.63 0.86 33.31 2.55 21.28 5.35 4.72 3.38 23.28 8.50 10.70 2.83 3.93 2.74 2.56 5.45 15.70 2.63 8.20

SRVF 6.74 3.41 4.73 8.06 6.94 4.14 2.14 3.34 3.10 8.65 5.13 5.33 3.57 7.37 5.78 7.02 4.87 4.71 5.54 5.12 3.82 4.55 2.22 4.53 7.04 5.11

energy+basis 9.91 5.08 4.69 6.12 6.89 3.06 2.10 5.33 0.98 14.45 6.64 6.57 2.10 10.38 2.74 3.83 5.13 7.94 5.67 1.37 4.42 5.79 2.12 5.00 4.88 5.33

gplvm+basis 5.85 3.09 2.98 5.29 3.65 2.24 1.31 3.53 0.87 1.85 3.67 3.68 1.49 5.58 1.58 3.55 3.69 2.13 3.12 1.22 3.20 3.59 1.35 1.72 1.90 2.88

energy+gplvm 6.80 2.45 3.29 6.35 5.31 2.58 1.39 3.23 0.97 4.54 2.97 4.34 2.79 3.37 3.16 3.22 4.12 3.48 2.64 2.07 3.94 2.69 2.20 2.18 2.65 3.31

ours 4.39 4.55 1.79 1.93 2.34 1.91 1.23 4.68 0.84 3.49 2.11 4.94 3.47 3.14 1.40 3.03 2.01 2.57 2.10 1.48 2.20 1.93 1.31 2.87 2.11 2.55

Table 2: Datasets used for our evaluation where J and T refer to the number of sequences and dimensionality. Results are presented as
MSE of warpings. The summary of the results presented in this table is given in Fig. 3 in the paper.
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Figure 10: The top row shows the observed data and the fitted Gaussian Processes. The bottom row shows the corresponding warps (left)
and the aligned functions.

Figure 11: Alignment of NMR spectrum data [27]. The zoom of the warping functions show the separation of the white/rosé wines (shown
in blue) and red wines (shown in red).
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