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ABSTRACT

Current literature data is scarce and somehow contradictory in respect to the suitability of 

‘non-stick’ fluoropolymer surfaces for immobilisation of biomolecules. We have previously 

shown empirically that transparent FEP Teflon offers rapid and sensitive optical biosensing 

of clinically relevant biomarkers. This study shows for the first time a comprehensive 

experimental analysis of passive adsorption of diagnostics IgG antibodies on actual FEP 

Teflon microfluidic strips. Full equilibrium isotherms and kinetics for passive adsorption 

were studied and modelled using protein titration method using hundreds of multi-bore 

microfluidic strips for a range of temperatures, pH, ionic strengths and inner diameters, using 

both polyclonal and monoclonal antibody systems. Results were benchmarked against other 

plastic hydrophobic and glass hydrophilic surfaces. For the first time, it was shown 

quantitatively that the hydrophobicity of fluoropolymer surfaces encourages the passive 

adsorption of diagnostics antibodies for biosensing, being insensitive the temperature of 

incubation and ionic buffer strength. The mass of captured antigen increased with increasing 

antibody surface coverage up to 400 ng/cm2, with an optimal adsorbed antibody activity for 

45-69% of full monolayer coverage, matching results for other biosensing surfaces. The 

equilibrium was reached fast, within 5-10 min and surprisingly both the kinetics and 

equilibrium of antibody adsorption were dependent of the inner diameter of microcapillaries. 

This is a novel and relevant result that will generally impact on the design of miniaturised 

microfluidic biosensing devices. The antibody surface densities obtained with hydrophobic 

plastic surfaces were 2 to 4-fold lower than for a hydrophilic (glass) surface, however the 

former presented a multi-layered adsorption with a higher level of irreversibility as shown by 

the adsorption and desorption rates around one order of magnitude smaller than for glass, 

which is highly desirable for biosensing with surface-coated biomolecules.

Keywords: antibody adsorption, Teflon® FEP, adsorption kinetics, microcapillary film, 

biosensing, microfluidics
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1. INTRODUCTION

Immobilisation of proteins by passive adsorption certainly remains the simplest and most 

scalable method for manufacturing plastic immunosensing surfaces, however several 

limitations of this protein immobilisation technique have been identified in literature, such as 

specificity to surface chemistry, limited surface area available for binding, surface geometry, 

pH, temperature and buffer ionic strength.1 Consequently, manufacturing of diagnostic tests 

tends to avoid adsorption as immobilisation strategy, preferring complex methods that imply 

surface modification, covalent binding and affinity binding techniques.2–6 However, for 

successful commercialization, antibodies need to be immobilised in bulk quantities, which 

needs to be achieved through a simple, reproducible and cost-effective method.2 

Independently of which immobilisation technique used  diagnostics performance needs an 

antibody monolayer with controlled density, uniformity, stability and orientation for the 

development of sensitive and robust immunoassays.7,8 

Hydrophobic substrates, such as plastics and PDMS (polydimethylsiloxane, with contact 

angle with water 115º)2,9,10 are usually chosen for antibody adsorption, since hydrophobic 

interactions are strong enough to effectively bind an antibody to a surface.1,2,11 PDMS device 

fabrication is, however, mainly performed by photolithography and other prototyping 

methods, which are difficult to upscale, since these manufacture methods do not allow mass 

production. Nevertheless, thermoplastic resins devices are easily mass produced by melt-

extrusion or inject molding.2,8 Fluoropolymers such as FEP Teflon ® present excellent 

optical transparency that would make this substrate ideal for optical immunoassays, in 

addition to excellent chemical and thermal resistance, with non-reactive surfaces for a variety 

of chemicals and solvents. However previous adsorption studies on fluoropolymer surfaces 

including Teflon®12 showed low levels of binding compared to e.g. gold and glass surfaces,13 

consistent with the ‘non sticky’ commercial status of fluoropolymer surfaces. 

Nevertheless, our research group has recently reported unmatched levels of detection of 

clinically relevant biomarkers in a novel mass-manufactured fluoropolymer microfluidic 

material.14–17 The  microcapillary film (MCF) is a long ribbon made of Teflon® FEP with 

variable number and diameter of embedded capillaries, with contact angle with water of 

123º.18 Our previous empirical assay development studies suggested antibody adsorption into 

FEP Teflon® is stable, reliable, rapid and cost-effective.19–21 And, although several methods 

for antibody covalent immobilization  onto Teflon® FEP MCF have been reported, passive 

adsorption remains the optimal method for sensitive assays in this microfluidic platform. 
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which implies that antibody adsorption onto Teflon® FEP provides an uniform, strongly 

bound antibody monolayer with active antibodies, oriented for antigen binding.20 

Consequently there is a need to fully understand and characterise passive adsorption of 

diagnostics antibodies into FEP Teflon® microfluidic devices, something not reported to 

date. 

This study shows for the first time a detailed, systematic experimental study of adsorption 

equilibrium and kinetics of passive antibody adsorption in actual FEP microfluidic surfaces, 

and the impact of FEP adsorbed antibodies on optical, enzymatic immunoassays. We 

explored the effect of pH, temperature and buffer concentration on antibody adsorption, also 

established quantitatively the effect of inner diameter of microcapillary and the link between 

antibody adsorption and antigen binding when the coated biosensing surface is used for 

heterogeneous immunoassay. Results were benchmarked against a MCF manufactured from 

hydrophobic LLDPE (linear low-density polyethylene) and individual glass capillaries. The 

low cost of MCF material means adsorption and immunoassay studies could be carried out in 

this study using hundreds of actual FEP microfluidic devices instead of reusing or coating a 

surface with a fluoropolymer layer.

2. EXPERIMENTAL SECTION

2.1. Materials and Reagents. Mouse-IgG (whole antibody) was purchased from Life 

Technologies (Paisley, UK), rabbit anti-mouse IgG (whole molecule) conjugated with 

peroxidase and SIGMAFASTTM OPD (o-Phenylenediamine dihydrochloride) tablets were 

supplied by Sigma-Aldrich (Dorset, UK). The BCA Protein Assay Reagent (bicinchoninic 

acid) was sourced from Thermo Scientific (Lutterworth, UK). The IL-1β recombinant 

protein, Anti-Human IL-1β biotin and Anti-Human IL-1β purified were supplied from 

eBiosciences (Hatfield, UK). High sensitivity streptavidin-HRP was supplied by Thermo 

Scientific (Lutterworth, UK). The Anti-troponin IgG, clone MF4 was purchased from Hytest 

(Turku, Finland) and the Fab specific IgG conjugated with FITC was supplied by Sigma-

Aldrich (Dorset, UK).

Phosphate buffered solution (PBS) and Bovine Serum Albumin (BSA) were sourced from 

Sigma Aldrich, Dorset, UK. PBS pH 7.4, 10mM was used as the main experimental buffer. 

Anhydrous Sodium Carbonate was supplied from Fisher Scientific and HEPES from Sigma-

Aldrich (Dorset, UK). The blocking solution consisted of 3% w/v protease-free BSA diluted 
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in PBS buffer, except for IL-1β assays, which used a superblocking solution supplied by 

ThermoScientific (Lutterworth, UK). For washings, PBS with 0.05% v/v of Tween-20 

(Sigma-Aldrich, Dorset, UK) was used. 

The 10-bore MCF material was fabricated from Teflon® FEP using a melt-extrusion process 

by Lamina Dielectrics Ltd. (Billinghurst, West Sussex, UK). The MCF used for most 

experiments showed a mean hydraulic diameter, dh of 21216.3 µm, however we also tested 

MCFs having mean dh of 10912.2 µm and 37528.6 µm. A 19-bore MCF materials was 

fabricated at Cambridge University18 from LLDPE and showed a mean dh 200 µm. Singe-

bore glass capillaries, 152 mm in length and internal diameter of 0.58 mm were sourced from 

World Precision Instruments, Inc. (Hitchin, Hertfordshire, UK). 

2.2. Quantitation of antibody mass adsorbed. The antibody mass adsorbed was quantified 

based on mass balance between an initial antibody solution, in a concentration range 0, 6.25, 

12.5, 25, 50, 100, 200 and 400 µg/ml, and a final antibody solution obtained after 2 hour 

incubation in the capillaries. BCA protein assay was used for quantifying the antibody 

concentration in the aliquots based on solution depletion technique. Further details are 

provided in the supplementary information (SI) file.

In order to understand the effect of temperature on antibody adsorption, the temperature was 

kept constant during IgG adsorption incubations at either 4º, 20º or 37 ºC. For studying the 

pH effect on IgG adsorption, we prepared a IgG serial dilution in sodium carbonate buffer 10 

mM at pH 10.7, in Phosphate buffer (PBS) 10 mM at pH 7.4 and HEPES 10 mM at pH 4.8. 

The IgG solutions were incubated inside the Teflon® FEP capillaries for 2 hours at room 

temperature. The effect of surface chemistry on IgG adsorption was studied by comparing 

antibody adsorption in Teflon® FEP (Fluorinated ethylene propylene, contact angle 1231.6º 

with water)22 with LLDPE (CH3 plastic polymer, contact angle with water 120º)23 and glass 

capillaries (borosilicate glass, with contact angle with water 25º)24 at pH 7.4, for 2 hours at 

room temperature. 

A 200 µg/ml IgG solution dissolved in 10 mM PBS buffer pH 7.4, was incubated for 2h, at 

20ºC in three FEP MCF with three different inner diameters: 109, 212 and 375 µm. Protein 

content of the initial and final solutions was quantified by BCA method and a IgG mass 

adsorbed given by the protein mass balance. 

The adsorbed concentration, obtained from the protein mass balance before and after 

incubation in the capillaries, was converted to adsorbed surface density (ng/cm2) by diving it 
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by the surface area to volume ratio (SAV, cm-1), which for a circular capillary is linked to the 

mean dh, (cm) of the capillary:

(1)𝑆𝐴𝑉 =
4
𝑑ℎ

Antibody adsorption on Teflon® FEP was modelled as a Langmuir isotherm based on 

equation (2), best-fitted to experimental data using the minimum squares difference in Excel’ 

solver:

𝜏 =  𝜏𝑚𝑎𝑥
𝐾 ∙ [IgG]

1 + 𝐾 ∙ [IgG]
(2)

where  is the surface coverage in equilibrium (ng/cm2), max is the number of adsorption sites 𝜏

available given by a maximum adsorbed concentration (ng/cm2),  is the adsorption constant 𝐾

(ml/µg) and [  is the antibody concentration in solution (µg/ml). IgG]

2.3. Kinetics of antibody adsorption onto different microcapillary surfaces. Kinetic 

studies were also performed using the solution depletion technique and calculating the mass 

balance between initial antibody concentration and after variable incubation times in the 

capillaries; for details are provided in SI file.

The kinetics of antibody adsorption kinetics were assumed to follow equation 3, fitted to 

experimental data based on minimum squares difference. This equation is the algebraic 

solution of a differential equation given by the difference between the adsorption and 

desorption processes of the reactant to free binding sites: 

𝜏(𝑡) =  
𝐾𝑜𝑛 [𝐼𝑔𝐺]

𝑘𝑜𝑛 [𝐼𝑔𝐺] + 𝐾𝑜𝑓𝑓
[1 ― exp [ ― (𝐾𝑜𝑛[𝐼𝑔𝐺] + 𝐾𝑜𝑓𝑓) ∙ 𝑡]] (3)

 

where (t) is the surface coverage (ng/cm2) at a given experimental time, t (min),  is the 𝜏 [𝐼𝑔𝐺]

antibody bulk concentration (M), Kon is the adsorption rate (M-1 min-1) and Koff is the 

desorption rate (min-1). 
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For simplicity, kinetic adsorption data has been presented as percentage surface coverage,  

computed by normalising  with the theoretical antibody monolayer assuming vertical 

antibody orientation based on a reference dimensions for an antibody molecule 

(14.2nm×8.5nm×3.8nm)25. In order to account for different sizes of microcapillaries and 

enable direct comparison of different capillary systems, the percentage  was further 

normalised by SAV described in equation 1.

2.4. Effect of buffer ionic strength in antibody adsorption onto Teflon® FEP by confocal 

microscopy. In this study 25 and 50 µg/ml solutions of anti-TnI were prepared in different 

concentrations of PBS buffer at pH 7.4: 0.625, 1.25, 2.5, 5 and 10 mM. The 10 solutions were 

aspirated into 8 MCF strips, each 8 cm in length, and incubated for 2 hours. After a blocking 

step, Fab specific IgG conjugated with FITC was incubated, followed by a final washing. The 

strips were inserted into a MCF holder17 and imaged with a confocal microscope (LSCM, 

Nikon inverted Microscope ECLIPSE TE300 with Bio-Rad RAD200, scan head 60X-1.20NA 

objective lenses, excitation peak wavelength of 488 nm and emission peak wavelength of 

530 nm, operating Laser Sharp 2000 software). Fluorescence images were then analysed with 

ImageJ software (NIH, USA), splitting the RGB image, and using the green channel to 

produce a greyscale plot, where the height of fluorescent peak was considered the fluorescent 

intensity.

2.5. Quantitation of antibody adsorbed onto Teflon® FEP using polyclonal mouse-

IgG/anti-mouse IgG ELISA. To study the effect of immobilised antibody density in 

antibody binding in an assay (i.e. capacity of a coated solid phase to specifically capture 

molecules), a total of 8 Teflon® FEP MCF strips were incubated for 2 hours at room 

temperature with 0, 6.25, 12.5, 25, 50, 100, 200 and 400 µg/ml of mouse IgG in PBS 10 mM, 

pH 7.4. The strips were then washed and non-specific surface sites blocked. Three different 

concentrations of anti-IgG polyclonal conjugated to peroxidase (60, 600, 6000 µg/ml) were 

added and incubated for 10 minutes. After a washing step the OPD enzymatic substrate was 

added and images were taken with a flatbed scanner. More details are provided in SI file.

In order to understand the effect of surface area available, this experiment was repeated using 

600 ng/ml of anti-IgG conjugated with peroxidase in different bore MCFs of 109 µm and 375 

µm. Note that in this method of quantitation the ELISA returned an optical signal that cannot 

be converted to surface coverage, therefore the relative antibody adsorption was modelled 
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based on absorbance values and a modified Langmuir isotherm detailed in supporting 

material.

The effect of immobilised IgG incubation time in antibody binding was studied by incubating 

40 µg/ml of IgG in PBS in Teflon® FEP MCF strips from 0 to 120 minutes, before washing 

the strips with 1 ml PBS-Tween. A solution of 600 ng/ml of anti-IgG, peroxidase conjugated 

was then added and incubated for 10 minutes. After another washing step, OPD enzymatic 

substrate was added at the concentration of 1 mg/ml. The MCF strips were then imaged after 

5 minutes incubation of OPD in transmittance mode. 

2.6. IL-1β sandwich ELISA using monoclonal antibodies. In order to determine the 

optimum antibody surface coverage for a monoclonal antibody system, 6 cm long Teflon® 

FEP MCF strips were filled with IL-1β monoclonal antibody solutions of 20, 40, 100 and 140 

µg/ml and incubated for 2 hours. Further steps involving surface blocking, washing, 

incubation of 0.5 ng/ml of recombinant IL-1β, addition of IL-1β biotinylated antibody and 

High Sensitivity Streptavidin-HRP with OPD enzymatic substrate were followed with final 

MCF strips images taken with a Flatbed Scanner at 2400 dpi. Further details are provided in 

SI.

For the IL-1β response curves, three 30 cm long Teflon® FEP MCF strips were filled with 40 

µg/ml of IL-1β capture antibody (capAb). One of the strips was incubated for 30 minutes and 

the other two for 2 hours. The strips underwent blocking, washing, incubation of eight 

solutions of IL-1β from 0 to 1 ng/ml, addition of IL-1β biotinylated antibody followed by a 

wash step and high sensitivity streptavidin-HRP and OPD enzymatic substrate incubation. 

The MCF strips were imaged by a Flatbed Scanner. 

2.7. Image Analysis of MCF ELISA strips. RGB digital images were split into 3 separated 

channels in Image J (NIH, USA). The blue channel images were used to calculate absorbance 

values, based on the grey scale peak height of each individual capillary of Teflon® FEP MCF 

as described elsewhere.16,21 Further details about image analysis procedure are provided in SI.  

2.3. Kinetics of antibody adsorption onto different microcapillary surfaces.

3. RESULTS AND DISCUSSION
3.1. Effect of temperature, pH and buffer ionic strength on adsorption equilibrium. 

Conventionally, the driving force for protein adsorption is regarded as an entropy gain arising 

from the release of surface adsorbed water molecules and salt ions and from structural 

rearrangements inside the protein,26 therefore the first set of experiments aimed at exploring 
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the effect of temperature, pH and buffer ionic strength on antibody adsorption equilibrium for 

the 10-bore, Teflon® FEP MCF strips containing microcapillaries with mean dh of 212 µm, 

using mouse IgG as a model. 

Surprisingly, the effect of temperature was found negligible in respect to the mass of IgG 

adsorbed as shown by the Langmuir isotherms shown in Figure 1A and best-fitted Langmuir 

model parameters summarised in Table 1. Values of max and K (equation (2), for 10mM PBS 

and pH 7.4) varied less than 2% and 7%, respectively, for the range of temperatures tested (4, 

20 and 37 oC), with an average value of max =476 ng/cm2, which contradicts the temperature 

enhancement of protein adsorption reported in literature for other biosensing surfaces,1,11,27 

however in alignment with protein adsorption studies on hydrophobic surfaces. As FEP is 

substantially hydrophobic28 (i.e. water repellent) our results suggest passive adsorption of 

IgG molecules to FEP is connected to the rate of release of water molecules which remained 

constant for the range of temperatures tested. Chen et al.29  showed the number of water 

molecules released from the protein-adsorbent binding process remains approximately 

constant for temperatures below 40 oC. Also, the same study showed the binding affinity of 

protein adsorption to hydrophobic surfaces remained almost unchanged at temperatures 

below 40 oC due to proteins maintaining the original protein conformation at such 

temperatures. Although extensive literature has identified enthalpy and entropy effects in 

hydrophobic interaction systems, it appears protein adsorption to FEP at these temperatures 

follows a simple monolayer adsorption behaviour. This represents an advantage in respect to 

manufacturing of FEP microfluidic biosensing devices, as it removes the need of precise 

temperature control, lowering the cost of manufacturing and enabling a higher degree of 

freedom to operators.

Reduction in pH below the isoelectric point (typically 6.3-8.9 for IgG30) resulted on an 

increase to the amount of IgG adsorbed onto Teflon® FEP microcapillaries (Figure 1B), with 

max  increasing by 76%, from 484 to 853 ng/cm2 (Table 1) whereas an increase in pH to 10.7 

resulted on a 58% decrease to max down to 200 ng/cm2. Conventionally, adsorption rates are 

higher when protein and substrate bear opposite charges, since electrostatic attractions 

accelerate the migration towards the surface1,31, consequently the Langmuir isotherm plots in 

Figure 1B suggested at first sight that FEP is negatively charged (which is the case for some 

FEP resins available in the market), however the rate of adsorption equilibrium constant, K, 

in FEP microcapillaries was smaller at lower pH, meaning no charge difference between the 

surface and the IgG molecules. This increase in mass of antibody adsorbed at lower pH 
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10

(Table 1) can instead be explained by protein denaturation, which promotes unfolding and 

aggregation of antibody molecules, in line with the works of e.g. Wright and co-authors32 

reported about 50% of the antibody denatured in solution at pH 4.95.

Figure 1. Effect of temperature, pH and buffer concentration on adsorption of mouse IgG on 

10-bore, Teflon® FEP MCF strips having mean dh of 212 µm. A Adsorption isotherms at 4, 

20 and 37 °C (constant pH 7.4). B Antibody adsorption isotherms at pH 4.8, 7.4 and 10.7 

(constant temperature 20 ºC). C Effect of buffer dilution on antibody adsorption, as recorded 

with fluorescence confocal microscopy. Note that initial PBS solution contains 10 mM 

phosphate buffer, 2.7 mM potassium chloride and 137 mM sodium chloride. The continuous 

lines in A and B represent the best-fitted Langmuir isotherms with parameters summarised in 

Table 1. 

The Langmuir plots shown in Figure 1B suggested adsorption of IgG in FEP microcapillaries 

was most effective at a pH closest to the isoelectric point of IgG, where electrostatic protein–
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protein repulsions are minimized and higher packing densities possible on the FEP surface. 

This agrees with our vast experience in immunoassays development in the FEP 

microcapillaries, with ideal pH for immunoassays always around the isoelectric point, see for 

example Barbosa et al.14,16 and Castanheira et al.15

We also noticed the concentration of dissolved ions (also known as ionic strength) in the bulk 

antibody solution had negligible effect on the amount of immobilized antibody (Figure 1C). 

There was no significant change in the fluorescent signal used to identify immobilised antibody 

layers dissolved PBS buffer at different dilution ratios, yielding a range of 0.6-10mM for 

phosphate, 0.3-2.7 mM potassium chloride and 17.1-137 mM sodium chloride (Figure 1C). It 

has been reported previously that increased salt concentrations reduce electrostatic repulsion 

between like-charged material, favouring IgG adsorption, and decreases electrostatic attraction 

between oppositely charged material, impeding adsorption.33 Consequently, these new results 

suggest antibody adsorption onto Teflon® FEP is driven by hydrophobicity not by electrostatic 

interactions. A previous study of protein adsorption on silicon surfaces by Zhao et al.34 reported 

a reduction on antibody adsorption only for very high salt concentrations of 150 mM and above, 

at lower salt concentration antibody adsorption remained very consistent. Our data shows no 

difference in antibody adsorption to FEP microcapillaries up to 137 mM of sodium chloride, 

2.7 of potassium chloride and 10 mM of phosphate buffer, which suggests antibody adsorption 

to Teflon® FEP is stable even for high salt concentrations (Figure 1C). 

Table 1. Best-fitted parameters for Langmuir isotherms (based on equation 2 and plotted in 

Figure 2) describing antibody adsorption in Teflon® FEP microcapillaries at varying pH and 

temperatures. 

Temperature pH
4°C 20°C 37 °C 4.8 7.4 10.7

K (ml/µg) 0.015 0.014 0.016 0.007 0.014 0.061
max (ng/cm2) 472 484 472 853 484 200
R2 0.9856 0.9963 0.9891 0.9801 0.9963 0.9413

On the overall, the optimal adsorption conditions shown in Figure 1 revealed a surface 

density of antibody onto Teflon® FEP microcapillaries of 400 ng/cm2 when coated with 400 

µg/ml of IgG in bulk solution. This yields a “loading density” of 2,000 ng/cm2, calculated 

by dividing the loaded antibody concentration by the SAV (Equation 1). This 5-fold excess 
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of antibody required to fully coat the plastic surface is evidence of low affinity for adsorption 

of IgG to the Teflon® FEP surface, which is also confirmed by the reduced adsorption 

constant of 0.014 ml/µg (Table 1). This suggests at first sight that antibody immobilisation 

onto FEP and other fluoropolymer surfaces is very inefficient, nevertheless the mass 

adsorbed onto FEP microcapillaries was found very similar to values reported to other 

hydrophobic and fluorinated surfaces at similar physical conditions. For example, a IgG 

adsorption study on gold electrodes coated with Teflon AF (amorphous fluoropolymers) 

based on optical waveguide light mode spectroscopy35 reported a surface density of 

approximately 200 ng/cm2, similar to the 220 ng/cm2 obtained in our Teflon® FEP 

microcapillaries, both using 40 µg/ml of IgG in bulk solution. Another study by Wiseman and 

Frank36 based on quartz crystal microbalance with dissipation in a CH3-terminated surface (1-

dodecanethiol self-assembled monolayer on gold) reported a maximum coverage of 468 

ng/cm2 with 100 µg/ml IgG in solution. This value was 40% larger than the surface 

coverage obtained with our 10-bore, 212 µm Teflon® FEP MCF (275 ng/cm2) using the same 

IgG concentration. This difference might be due either to the differences in geometry and/or 

surface chemistry. In spite of a lower ‘affinity’ to antibody adsorption, Teflon® FEP is not 

less effective than other surfaces for immobilising proteins and in particular IgG antibody 

molecules. 

3.2. Impact of capillary diameter and surface coverage on antibody-antigen 

equilibrium. A key parameter able to dictate the fate of an heterogeneous immunoassay, 

perhaps even more relevant than the total mass of antibody adsorbed, is the amount of 

antibody than is readily available to bind the antigen or secondary reagents. Consequently we 

characterised the impact of antibody adsorption and surface coverage on immune-binding of 

a targeted protein using a labelled secondary antibody.13 This is an essential feature for 

successful use of FEP microfluidic surfaces in actual immunoassays, such as colourimetric or 

fluorescent ELISA. Whenever performing this methodology it is paramount to understand the 

effect of labelled antibody bulk concentration (that acts as an antigen) in the equilibrium as 

illustrated in Figure 2A.

As expected, an increase in surface density of adsorbed mouse IgG (computed from the 

coating antibody concentration and adsorption plots shown in Figure 1) led to an increase on 

optical signal, meaning a higher extent of binding of adsorbed antibody with the labelled anti-

mouse IgG (acting as Ag). We tested 212 µm i.d. Teflon® FEP microcapillaries with 

concentrations of Ag covering three orders of magnitude, being 60, 600 and 6,000 ng/ml of 
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Figure 2. Effect of antibody surface coverage in antibody-antigen binding on Teflon® FEP 

MCF using a polyclonal, mouse IgG/anti-mouse IgG system. A Schematic diagram of direct 

ELISA with anti-mouse IgG conjugated to peroxidase (“antigen”) binding to immobilised 

mouse-IgG antibody. B Microphotograph of 10-bore Teflon® FEP MCFs having different 

bore sizes: 10912.2 µm, 21216.3 µm and 37528.6 µm. C Effect of antibody surface 

coverage on optical immunoassay signal in the 212 µm mean dh FEP MCF with different 

concentrations of anti-mouse IgG. D Effect of internal diameter of FEP microcapillary and 

antibody surface coverage on optical immunoassay signal for a fixed concentration of anti-

mouse IgG. The continuous lines in C and D show the best-fitted Langmuir isotherms with 

parameters summarised in Tables S1 and S2. E Antibody mass adsorbed on FEP 
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microcapillaries with 109, 212 and 375 µm inner bore diameter. F Schematic diagram 

explaining the relation between microcapillary bore diameter and antibody adsorption.

anti-mouse IgG. At the highest concentration of anti-mouse IgG, a small density of IgG 

adsorbed of 20-40 ng/cm2 revealed sufficient to saturate the optical signal (Figure 2C). At 

lower concentrations there was a clear correlation between the surface density of adsorbed 

IgG and the optical signal (Figure 2C), and followed a typical Langmuir isotherm has shown 

in Table S1 (see SI file). Note these experiments cannot provide information about antibody 

orientation as the selected labelled non-specific anti-mouse IgG is able to bind any part of the 

immobilized IgG antibody, however these provide essential evidence regarding the 

importance of the labelled antibody (anti-IgG) concentration and immobilized antibody 

surface coverage in the binding equilibrium.

Additionally, we explored the effect of inner capillary diameter by testing MCF strips with 

three different inner diameters (Figure 2B) and noticed optical immunoassay signal increased 

with increasing inner diameters of the FEP microcapillaries. This is also shown by the 

increasing Absmax values in Table S2 (see SI file). This results from the fact larger capillaries 

present a larger surface area for adsorbing the capAb, therefore yielding higher antibody 

surface coverage (Figures 2D-F) which favours antigen binding in an actual immunoassay. 

The optical signal obtained with 600 ng/ml anti-IgG was >60% larger in the 375 µm i.d. 

microcapillary compared to the 212 µm i.d. microcapillary, suggesting antibody adsorption is 

also very dependent on the geometry of the biosensing surface in addition to the surface 

chemistry (this is further described later in this manuscript). Higher antibody surface 

coverage for larger inner diameter capillaries was also determined through the IgG mass 

balance (Figure 2E) confirming the dependency of adsorbed antibody density and inner 

diameter of FEP microcapillaries. This is to our knowledge the first time this diameter effect 

has been reported in literature and it might be due to a fact unique to cylindrical 

microcapillaries, enabling to coat the whole cross section with the antibody/protein, in 

contrast to conventional microchannel-based devices.

3.3. Effect of antibody surface coverage on antibody activity and orientation. We studied 

the link between adsorbed antibody surface coverage and antibody activity and orientation in 

FEP microcapillaries by performing a sandwich ELISA with adsorbed monoclonal 
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antibodies, capable of uniquely binding to a specific epitope in an antigen molecule (Figure 

3A). 
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Figure 3. Effect of antibody surface coverage in antibody activity/orientation on 212 µm 

Teflon® FEP MCF. A Schematic diagram of sandwich ELISA based on adsorbed 

monoclonal capAb and monoclonal detection antibody directly conjugated to peroxidase. B 

Effect of concentration of capAb coating on optical signal, showing antibody surface 

coverage influences antibody activity/orientation in FEP microcapillaries. C Antibody 

adsorption isotherm at 20ºC, pH 7.4 and 10mM of PBS, with the continuous line representing 

the best-fitted Langmuir model (Equation 2), with best-fitting parameters summarised in 

Table 2, along with schematic representation of hypothesized relation between surface 

coverage and antibody orientation on Teflon@FEP, supported by experimental data and 

literature. D Full response curve for quantitation of IL-1β, showing optical quantitation of 

clinically relevant biomarkers is feasible based on passive antibody adsorption in 

fluoropolymer microfluidic devices.
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Contrary to the polyclonal system, as the binding region needs to be available within an intact 

protein structure, a drop on the optical signal in the sandwich immunoassay (schematically 

summarised in Figure 3A) evidenced denaturation and/or inadequate orientation of capAb 

during adsorption but also steric hindrance caused by neighbour adsorbed antibodies. 

Antibody surface coverage and antibody activity are major aspects in consideration for the 

development of any high-performance immunoassay tests, such as those aimed at 

cardiovascular diseases and cancer diagnosis, and this has not been studied to date for 

fluoropolymer surfaces.

In contrast to the polyclonal system discussed previously, we observed a rapid drop in optical 

signal with the increase in concentration of capAb above the window 40-100 µg/ml (Figure 

3B). Note this data was gathered using 0.5 ng/ml of IL-1β antigen, it is likely the threshold 

will depend on the antibody pair but also on the limit of detection and cut-off aimed for the 

antigen. The antibody densities estimated with Langmuir model were 175 ng/cm2 for 40 

µg/ml of antibody in solution and 277 ng/cm2 with 100 µg/ml corresponding, respectively, to 

45% and 69% of the maximum total mass adsorbed onto Teflon® FEP capillaries, based on a 

theoretical antibody monolayer estimated as 440 ng/cm2, assuming an antibody size of 

14.2nm×8.5nm×3.8nm.25 This suggests the adsorbed antibody achieved the maximum 

capacity to bind the antigen within less than full monolayer, which is commensurate with 

data reported in literature for other immunoassay surfaces.37 

The combined analysis of experimental data gathered with distinct methodologies (i.e. 

protein mass titration summarised in Figure 1, and optical ELISAs using monoclonal and 

polyclonal antibodies summarised in Figures 2 and 3, suggested surface coverage density is 

directly linked to antibody orientation and binding capacity of Teflon® FEP capillaries 

schematically represented in Figure 3C. We hypothesised that lower antibody surface 

densities favour antibodies adsorbed on “flat on” orientation (both Fc and Fab fragments 

adsorbed onto the surface) whereas large antibody densities favour “end on” orientation, with 

Fab region towards the solution (Figure 3C). This hypothesis is supported by current 

literature. Firstly, based on the dimensions of antibody molecules, Buijs and co-authors38 

suggested a relationship between the mass adsorbed and the orientation of the molecule on 

the surface, with 200 ng/cm2 representing a monolayer with antibodies in a “flat-on” 

orientation, 260 ng/cm2 in an “end on” orientation with Fab fragments in line, and 550 

ng/cm2 in an “end-on” orientation with Fab fragments close together and parallel, which 
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explains reduced activity of adsorbed antibody due to the proximity of Fab fragments. This 

suggests antibody adsorption onto Teflon® FEP at the conditions studied happened through a 

monolayer formation with the maximum adsorbed amount of approximately 404 ng/cm2, 

which suggests a packed antibody monolayer with antibodies oriented “end-on” with Fab 

fragments in line with Buijs and co-authors38, based on a theoretical monolayer for 

Teflon@FEP of 440 ng/cm2. Other studies reported antibody denaturation of the Fab region 

with loss of antibody binding capacity to Teflon surfaces,39,40 however those findings are not 

supported by the data presented in this study. The optical sandwich ELISA based on adsorbed 

antibody yielded a good limit of detection (23 pg/ml or 0.74 pM of IL-1β), for antibody 

surface coverage of 175 ng/cm2 (Figure 3D), comparable to gold-standard microtiter plate 

based ELISA. This confirms again that antibodies adsorbed in Teflon@FEP assume an “end-

on” position, available for antigen binding from 45% to 69% of an antibody monolayer, as 

previously discussed for Figure 3B, which approaches the values proposed by Buijs and co-

authors38. Xu and co-authors41 reported a similar relationship with hydrophilic silicon oxide. 

Zhao and co-authors34 reported that the binding capacity of an immobilised antibody is 

greater for surface coverages below 50% of full monolayer, above this threshold the binding 

sites in the antibody molecules can become inaccessible to the antigen. Also, higher antibody 

densities decreases the degree of irreversibility of antibodies bond to the surface, with the 

irreversibly adsorbed amount being a maximum 250 ng/cm2 on a hydrophilic silicon oxide 

surface.41

Further studies support the relationship between surface coverage and antibody 

orientation/binding capacity and the hypothesis for antibody adsorption onto Teflon@FEP. 

The work of Wiseman and co-authors42 based on quartz crystal microbalance with 

dissipation, detected a shift in dissipation value of the crystal almost to zero for a mass of 

antibody adsorbed below 200 ng/cm2, meaning that this initial mass is strongly attached to 

the surface and suggesting “flat-on” orientation of the antibody. Neutron reflexion studies by 

Xu and co-authors41 revealed a 4 nm thick layer, which is close to the short axial length of an 

antibody molecule, for a mass adsorbed of 220 ng/cm2, also suggesting a “flat-on” 

orientation. Above 200 ng/cm2 both Wiseman and co-authors42 and Xu and co-authors41 

showed an increase on dissipation slope, meaning new antibodies are adsorbed onto the 

surface in a less rigid mechanical coupling, suggesting “end-on” orientation of molecules. 

Surprisingly, Wiseman and co-authors42 reported no decrease in antibody binding capacity 

with surface densities above 50% of the monolayer, suggesting an active antibody monolayer 
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is achieved at 468 ng/cm2. A further increment in bulk IgG concentration resulted in higher 

dissipation values, suggesting a multilayer formation.36

On the overall, the sandwich ELISA with monoclonal antibodies confirmed that antibodies 

adsorb onto FEP just like other surfaces with good stability and activity, in contrast to what 

has been suggested by few previous publications in hydrophobic Teflon® surfaces.39,40 This 

is probably linked to the fact that we used actual, unmodified fluoropolymer surfaces, 

whereas previous studies were based on glass surface coated with Teflon or even on latex 

suspensions as the case of Vermeer and co-authors39,40 (they used Teflon particles with mean 

diameter 215 nm), which clearly was insufficient to mimic the real chemistry of 

fluoropolymer surface.

3.4. Kinetics of adsorption of IgG antibody for FEP. In addition to equilibrium adsorption 

isotherms, we have also studied the kinetics of IgG adsorption onto fluoropolymer 

microcapillary surfaces, this is important to inform the on/off rates of immobilised antibodies 

and the time required to manufacture MCF diagnostic strips, impacting on the throughput and 

consequently the final cost of the tests. Adsorption kinetics can also inform about the strength 

of the bond with the plastic substrate (surface), degree of reversible antibody adsorption or 

antibody denaturation, and modifications in the binding capacity of the adsorbed antibody. 

We noticed adsorption of IgG onto Teflon® FEP was surprisingly fast, with equilibrium 

reached within 5-10 minutes and independent of the concentration of IgG loaded into the 

microcapillaries. This was unequivocally shown in data collected by both the solution 

depletion technical (Figure 4A) and ELISA (Figure 4B), the two data sets are further 

compared in Figure 4C in terms of normalised signal, being 100% the mean value at plateau. 

We estimated Kon in order of 105 M-1min-1 at small bulk concentrations (20 and 40 g/ml) and 

in the order of 106 M-1min-1 for larger antibody bulk concentrations (200 g/ml) as 

summarised in Table 2. The percentage surface coverage  summarised in Figure 4B was 

computed based on a full theoretical monolayer with all antibodies in the “end on” position. 

Two full IL-1β response curves made with 30 minutes and 120 minutes of monoclonal 

antibody adsorption, revealed lower limits of detection of 61 pg/ml (1.97 pM) and 54 pg/ml 

(1.75 pM) respectively (Figure 4D), which shows that between 30 to 120 minutes of 

adsorption onto Teflon@FEP, antibody binding capacity is not significantly affected.

3.5. Effect of surface chemistry in antibody surface coverage and adsorption kinetics. 

Surface chemistry is by far identified in literature as the main factor influencing antibody 
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Figure 4. Kinetics of antibody adsorption in Teflon® FEP microcapillaries having mean dh 

of 212 µm. A Mass of antibody adsorbed expressed in terms of percentage of surface 

coverage,  using increasing times of incubation of mouse IgG concentrations of 20, 40 and 

200 µg/ml (corresponding to 1.3×10-7 M, 2.6×10-7 M and 1.3×10-6 M, respectively), 

determined by solution depletion technique. B Kinetics of generation of optical signal 

measured by ELISA based on 40 µg/ml of mouse-IgG coating at varying times and 600 ng/ml 

of anti-mouse IgG conjugated to peroxidase. C Direct comparison of mouse-IgG antibody 

quantitation by BCA assay shown in A with optical ELISA in mouse-IgG/anti-mouse IgG 

system shown in B signal, showing magnitude of optical ELISA signal is linked to mass of 

antibody adsorbed. D IL-1β full response curves using 40 µg/ml of capAb incubated for 30 

and 120 minutes, confirming antibody adsorption is rapid. The continuous lines in A and B 

represent the kinetic model based on equation 3, with best-fitted parameters summarised in 

Table 2. The continuous line in D represents the values obtained by the four parameter 

logistic (4PL) model, commonly used for full responses in immunoassays. 
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adsorption, therefore we have directly compared antibody adsorption with two other capillary 

surfaces, being a 19-bore MCF melt-extruded from LLDPE and a single-bore glass capillary 

(Figure 5A). As the three capillary systems presented different diameters, all adsorption data 

shown in this section has been normalised in respect to SAV ratio (shown in Equation 1).

A

B C
1 2 3

1. Teflon® FEP MCF
2. LLDPE MCF
3. Glass capillary
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Figure 5. Antibody adsorption onto different capillary surfaces. A Microphotograph of 

capillary systems tested in this study, being: 1 - 10 bore Teflon® FEP MCF, 2 – 19 bore 

LLDPE MCF, 3 – single-bore glass capillary.  B Antibody adsorption isotherms expressed as 

percentage surface coverage,  to SAV ratio (cm-1) of IgG per unit of surface area. C Kinetics 

of antibody adsorption in the different capillary surfaces using 40 µg/ml of mouse IgG in 

solution; to enable direct comparison of capillaries having different inner diameters, surface 

coverage has been normalised with SAV ratio. The continuous lines in the B represent the 

values estimated with Langmuir model (equation 2), with best-fitted parameters summarised 

in Table 3, whereas in C represents the best-fitted kinetic model (equation 3), with best-fitted 

parameters summarised in Table 4.
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Equilibrium adsorption of IgG onto Teflon® FEP and LLDPE was very similar, as seen from 

the almost overlapping Langmuir isotherms in Figure 5B and best-fitted Langmuir 

parameters (Table 3). This is due presumably to similar hydrophobicity of the two polymers, 

showing a contact angle with water of 123º22 and 120º,23 respectively.21 However, it 

contrasted with the Langmuir isotherms obtained for the glass capillaries having a contact 

angle 25º,24 which showed 2 to 4-fold larger mass of antibody adsorbed per surface area 

available based on data shown in both Figure 5B and Figure 5C. Although we have not 

extensively tested other capillary surfaces in this study, these original results suggest 

antibody adsorption is very distinct between hydrophobic and hydrophilic surfaces. Some 

studies reported a higher mass of protein adsorbed onto hydrophilic surfaces, such as bare 

glass, compared to hydrophobic surfaces such as plastic,43,44 this is further supported by our 

data. Note however that the larger surface density obtained with the glass capillaries means 

antibody adsorption on glass surfaces occurs in multilayers, which in undesirable in affinity 

biorecognition and in particular heterogeneous immunoassays. Consequently, covalent 

immobilisation is a preferred strategy for preparation of glass immuno-surfaces.

Table 2. IgG adsorption kinetic parameters (based on equation 3 and data plotted in Figure 

4A) for Teflon® FEP microcapillaries

IgG bulk (M) Kon (M-1 min-1) Koff (min-1) R2

1.3x10-7 (20 µg/ml) 5.01×105 2.76×10-1 0.9556

2.6x10-7 (40 µg/ml) 2.69×105 1.30×10-1 0.9811

1.3x10-6 (200 µg/ml) 1.1×106 1.78×10-1 0.9345

Table 3. Best-fitted parameters for Langmuir isotherms (based on equation 2 and plotted in 

Figure 5B) describing antibody adsorption in different microcapillary materials. Note in this 

case max in equation 2 was computed as ratio of percentage of surface coverage, Φ to SAV

Teflon® FEP LDPE Glass

K (ml/µg) 0.014 0.016 0.004

max (shown as percentage Φ/SAV, cm) 0.55 0.57 2.15

R2 0.9963 0.9982 0.9939
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The reduced affinity of antibodies for hydrophobic surfaces favours the formation of less 

dense layers that are actually preferred for sensitive ELISA, as surface coverage affects 

antibody activity/orientation and smaller amounts of adsorbed antibody encourages a stronger 

attachment of molecules to the surface.35,45 In contrast, antibody adsorption onto hydrophilic 

surfaces yields higher mass adsorbed with the possible formation of antibody multilayers, due 

to electrostatic interactions between antibodies and hydrophilic surfaces.46 Also, higher  mass 

of adsorbed antibody promotes easy desorption from the glass surfaces as a result of reduced 

conformational changes.39,40 For these reasons hydrophobic surfaces are usually preferred for 

antibody adsorption in diagnostic test surfaces as immobilised antibodies are more resistant to 

surfactants and present lower desorption due to irreversible binding between antibody and 

surface, which is essential for heterogeneous assays.36,41,47 Note we have extensively washed 

the capillaries with 0.05% PBS-Tween in all experimental sets shown herein. The 

irreversibility was related to the conformational changes that part of the antibody undergoes 

when adsorbed to a hydrophobic surface. Multiple experimental replicas confirmed (data not 

shown) showed no detectable loss of antibody with the washings. Our data suggested 

Teflon® FEP microcapillaries present a highly hydrophobic surface, which favours the 

irreversible nature of antibodies on the surface.43,45

In line with previous studies, surface chemistry affected antibody adsorption kinetics, being 

the adsorption equilibrium reached in less than 5 minutes for glass surfaces, within 10 

minutes for Teflon®FEP and take up to 30 minutes for LLDPE (Figure 5C and Table 4). 

Table 4. IgG adsorption kinetic parameters (equation 3 and data plotted in Figure 5B) for 

different capillary surfaces, based on IgG bulk concentration of 40 µg/ml

Kon (M-1 min-1) Koff (min-1) R2

Teflon® FEP 2.69×105 1.30×10-1 0.9761

LDPE 1.14×105 1.00×10-1 0.9610

Glass 2.94×106 1.96 0.9634

Antibody adsorbed faster to glass surfaces with an association constant Kon around one order 

of magnitude larger than for the plastic surfaces studied (Table 4), which can be explained by 

electrostatic interactions between the antibodies and glass surfaces. Note that values for the 

dissociation constant, Koff for antibody adsorption were also one order of magnitude larger in 
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glass capillaries, which agrees with the reversibility of antibodies adsorbed to hydrophilic 

surfaces. This is another reason why glass immuno-surfaces tend to imply surface 

modification strategies and antibody covalent binding for formation of a bio-recognition 

monolayer.

5. CONCLUSIONS
In spite of the uniqueness of FEP Teflon® (excellent optical transparency, electrostatic and 

very high contact angle for water) and its “non-sticky” properties, FEP Teflon® 

microcapillaries revealed to form an optimal bio-recognition monolayer, with antibodies 

biologically active and irreversible bound to the surface, enabling robust and sensitive 

optical, quantitative diagnostic testing to be carried out. Passive adsorption of antibodies into 

FEP microfluidic strips showed insensitive to the temperature of incubation and ionic buffer 

strength, with a neutral pH favouring robustness in performance. In addition, antibody 

kinetics onto FEP microcapillaries revealed fast, taking up to 10 minutes to reach 

equilibrium, with no differences in assays performance. These features are important for the 

lowering the cost of the diagnostic strips manufacturing process, since it removes the need of 

precise temperature control, enables a higher degree of freedom to operators and allows high 

throughput production.  Highly sensitive, optical, sandwich assays are possible in FEP 

Teflon® strips due to the irreversibility of antibodies adsorption to the surface and by the 

modest antibody surface packing densities, observed as between 45 to 69% for optimal 

antibody activity. 
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prostate specific antigen; IL-1β, interleukin-1 beta; ELISA, Enzyme-Linked Immunosorbent 
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hydroxyethyl)-1-piperazineethanesulfonic acid; BCA, bicinchoninic acid assay; HRP, 

horseradish peroxidase; OPD, o-phenylenediamine; Abs, absorbance. 
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