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PARP10 is an intracellular mono-ADP ribosyltransferase and recent reports suggest that it 

regulates proliferation of some cell types. However, its effect on the proliferation of colorectal 

carcinoma cells has not yet been systematically reported. We explored the influence of PARP10 

on the proliferation of several colorectal carcinoma cell types and carried out initial studies on 

the underlying mechanisms. Inhibition of the enzymatic activity of PARP10 led to significantly 

decreases in proliferative ability in LoVo cells and CT26 cells in vitro and suppressed growth of 

CT26 tumours in the subaxilliary region in Balb/c mice in vivo. Cell-cycle arrest accompanied 

these observations. Expression of the nuclear transfer factor -catenin and it translocation to the 

nucleus were also affected and the expression of its associated signal proteins Axin2 and c-Myb 

were increased and decreased, respectively. We demonstrate that PARP10 promotes proliferation 

of those colorectal carcinoma cells which express significant levels of PARP10. This promotion 

is suppressed when the enzymatic activity is inhibited. -Catenin is likely to be the mediator of 

the antiproliferative effect.  
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INTRODUCTION 

Poly(ADP-ribose) polymerase-10 (PARP10 / ARTD10) is a member of PARP family which 

performs mono-ADP-ribosyl (MAR) transferase activity. It was originally identified as a 
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MYC-interacting protein and can mono(ADP-ribosyl)ate itself and core histones [1]. It has 

subsequently been reported to act on various cellular processes [2], including controlling cell 

apoptosis [3], neoplastic proliferation [4], tumor metastasis [5], and modulation of mitochondrial 

function [6]. PARP10 is present both in the nucleolus and the cytoplasm [7]. The nucleolar 

PARP10 has been reported to promote the proliferation of tumor cells [4] through involvement in 

the repair of DNA damage [8] and alteration of the cell cycle [9]. On the other hand, PARP10 

could mono(ADP-ribosyl)ate a signaling protein that functionally adjusts proliferation by 

regulating the nuclear translocation protein -catenin [10, 11]. 

Accumulating evidence draws our attention as to whether PARP10 has a regulatory role on 

proliferation of colorectal carcinoma. In the present study, we selected CRC cell lines with 

significantly positive PARP10 expression and applied a PARP10-selective inhibitor to investigate 

the influence of PARP10 on the proliferation of these CRC cells in vitro and in vivo. We have 

also explored, in part, the relevant signaling pathways involved. 

EXPERIMENTAL 

CRC cell lines and the PARP10-selective inhibitor. LoVo cells and SW480 cells were 

kindly provided by Professor WeiXue Tang of Chongqing Medical University. CT26 cells were 

generous provided by Professor YuQuan Wei of Sichuan University. LoVo cells were cultured in 

DMEM (Hyclone) supplemented with 10% FBS (Hyclone) and 1% penicillin/streptomycin 

(Byotime, Shanghai, China). CT26 cells and SW480 cells were cultured in RPMI-1640 (Hyclone) 

containing 10% fetal bovine serum and 1% penicillin/streptomycin and incubated under 5% CO2 

at 37C. The PARP10-selective inhibitor 3-(Z-4-methylaminomethoxy-4-oxobutenoylamino)-

benzamide was generously provided by Professor Mikael 

Elofsson (Umeå University). This inhibitor was identified 

from a series of twenty-six analogs designed as inhibitors of 

PARP10, ARTD8 and ARTD7 (Figure 1) [12]. The inhibitor 

was dissolved with DMSO (Sigma, USA) and prepared in 

RPMI-1640 medium at final concentrations of 0.5 M to 4 

M and stored at 4C in the dark.  

 

Fig. 1. Structure of the PARP10- 

selective inhibitor 3-(Z-4-methyl-

aminomethoxy-4- oxobutenoyl-

amino)benzamide.  
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 Detection of expression of PARP10 in CRC cell lines by immunofluorescence. The 

expressions of PARP10 in CT26 cells, LoVo cells and SW480 cells were detected with an 

immunofluorescence assay. Cells were seeded onto slides in 24-well plates, incubated overnight 

at 37C, fixed for 15 min with 4% paraformaldehyde, permeated for 20 min with 0.5% Triton 

and blocked for 30 min with goat serum at room temperature. PARP10 antibody (Santa Cruz, 

1:20) was added to each well and cultured at 4C overnight in the dark. After incubation with 

rabbit anti-goat IgG FITC (ZSGB-Bio) for 1.0 h at 37C and DAPI for 5 min to stain the nuclei, 

the expression level and distribution of PARP10 were observed under a laser scanning confocal 

microscope (Leica TCS SP2, Leica Microsystems GmbH, Germany). The “laser power” and 

“PMT” were ensured to be consistent during detection of each cell lines and the fluorescence 

intensity of ten cells in each cell line were read. The mean was the average fluorescence intensity 

for each cell line. The experiments were performed in triplicate. 

Detection of proliferation of CT26 cells, LoVo cells and SW480 cells in vitro using the 

CCK-8 assay. Cell proliferation was detected with CCK-8 kit (Byotime). CT26 cells (5  103), 

LoVo cells (5  103) and SW480 cells (5  103) in logarithmic phase were seeded into 96-well 

plates and incubated at 37C under 5% CO2 for 24 h. To the wells was added the PARP10 

inhibitor at concentrations of 0.1 M, 0.2 M, 0.5 M, 2.0 M and 4.0 M. Cells without 

PARP10 inhibitor were set as a control group and culture medium was used as the blank control. 

To determine the time-course of inhibition proliferation, CT26 cells and LoVo cells were treated 

with PARP10 inhibitor (0.5 M) for 24 h, 48 h, 72 h, 96 h and 120 h. CCK-8 reagent (10 L) 

was added to each well and incubated at 37C for 1 h. Cell viability was measured at 450 nm 

using a microplate reader (Bio-Tek, Hercules, CA, USA) and represented by the optical density 

(OD). Five duplicate wells were set in each test and tests were repeated thrice.  

Detection by flow cytometry of the influence of PARP10 on the cell cycle of CT26 cells. 

CT26 cells (1×104) of each group were collected, washed twice with PBS, suspended in the 

culture medium and centrifuged at 1000 rpm for 5 min. The cells were then washed with 70% 

ethanol, centrifuged at 1000 rpm for 5 min and subjected to flow cytometry (FACS Vantage SE, 

Becton Dickinson and Company, Franklin Lakes, NJ, USA). The proliferation index (PI) was 

measured according to: PI = (G2+S)/(G1+ G2+S). Tests were repeated thrice. 

Animal studies：detection of the growth in CT26 cell tumors transplanted into Balb/c 

mice. All murine studies complied with the requirements of the Ethics Committee of Chongqing 
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Medical University and all necessary licenses were in place. Eight Balb/c male mice (Chongqing 

Medical University Laboratory Animal Center, Chongqing, China, 6-8 weeks old, 22-25 g, 

standard diet and water ad libitum) were randomly divided into a PARP10-inhibitor group and a 

control group. CT26 cells (2×106) were inoculated into their right armpits. From the eighth day 

after inoculation, the experimental group were injected intraperitoneally with the 

PARP10-selective inhibitor (2.0 mg Kg-1 dissolved in 200 L normal saline) once a day and the 

control group were injected with normal saline (200 L). The mice were sacrificed on the 

fourteenth day and the neoplasms were harvested. The weights and volumes of the transplanted 

tumors were measured. The volumes were calculated after the formula V = ab2/2 (a, the longest 

diameter; b, the shortest diameter).  

  Detection of potential associated cell signal proteins in CT26 cells in vitro and in vivo 

with Western blot analysis. CT26 cells were cultured with or without PARP10-selective 

inhibitor (0.5 M) for 72 h. They were then washed twice with ice-cold PBS and collected. The 

total cell proteins and nuclear proteins were extracted with nuclear and cytoplasm extraction 

reagents (Pierce). The concentrations of protein were evaluated with BCA protein assay kit 

(Byotime). Proteins (20 g) were loaded on 8% polyacrylamide gels, separated by electro-

phoresis and transferred to polyvinylidene fluoride membrane (AmershamTM HybondTM, GE 

Healthcare Life Science). The membranes were then blocked with 5% non-fat milk for 2 h at 

room temperature and incubated with -catenin (Cell Signaling, 1:1,000), Axin2 (Proteintech, 

1:200), c-Myb (Proteintech, 1:500), Lamin B1 (Proteintech, 1:1,000) and β-Actin (Ding Guo, 

1:1,000) overnight at 4C. Then the membranes were washed twice with TBST and incubated 

with appropriate secondary antibodies (peroxidase-conjugated anti-rabbit, 1:1,000 or mouse 

immunoglobulin G, 1:1,000) for 2 h at room temperature. After being washed thrice with TBST, 

the membranes were visualized with BeyoECL Plus (Beyotime) and exposed to the gel formatter 

(Bio-Rad, CA, USA). The blots were analyzed with Quantity One Software (Bio-Rad). All 

experiments were performed in triplicate. 

Statistical analysis. All quantitative data are reported as mean ± standard deviation (SD). 

Statistical analysis was performed by one-way ANOVA test or a student’s t-test with the SPSS 

19.0 statistical software. P-value <0.05 indicates a statistically significant difference. 
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RESULTS 

PARP10 positively expresses in two CRC cell lines 

The expression of PARP10 differed in the three cells lines. The expression of PARP10 in 

SW480 was very weak, almost non-existent. However, it was expressed strongly in CT26 cells 

and LoVo cells, with statistically significant differences in the fluorescence mean intensity 

(P<0.001). Most of the positive-staining signal was located in cytoplasm but a few nuclei were 

also positively stained (Figure 2).  

Inhibition of PARP10 enzymatic activity suppresses the proliferation of CT26 cells and LoVo 

cells in vitro 

A clear inhibitory effect on proliferation was observed when CT26 cells were cultured with 

different concentrations of PARP10 inhibitor for 72 h. There statistically differences between 

PARP10-inhibitor group and control group (P<0.05), except at 0.1 μM concentration of inhibitor 

(P>0.05). The intensity of the inhibition of proliferation become more apparent with increasing 

Fig. 2. Expression of PARP10 in different CRC cell lines. B, PARP10 expression in SW480 cells is faint to 

almost negative but is significantly positive in CT26 cells and LoVo cells. The positive staining was mainly 

located in the cytoplasm in both CT26 cells and LoVo cells. Meanwhile, some nuclei stained positively. B, The 

same “laser power” and “PMT” were set for the three cell lines. The fluorescence mean intensity of CT26 cells 

and Lovo cells significantly exceeded that of SW480 cells. (*P<0.001). 
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concentrations of inhibitor, showing a significant dose-dependent relationship (P<0.05) (Figure 

Fig. 3. Influence of PARP10 on the proliferation of CT26 cells; the cell viability was detected with the CCK-8 

assay. A, CT26 cells were incubated with the PARP10-selective inhibitor (0.1 M, 0.2 M, 0.5 M, 2.0 M,d 4.0 

M) for 72 h, showing significant dosage-dependent correlation. Satisfactory effects were seen at 0.5 M and 

higher concentrations. Values are expressed as mean ± SD (*P<0.05). B, CT26 cells were treated with PARP10 

inhibitor for 24 h, 48 h, 72 h, 96 h and 120 h. The inhibitory effect showed significant time-dependence. Data are 

expressed as the mean ± SD (*P<0.05,**P <0.01). C, LoVo cells were incubated with the PARP10-selective 

inhibitor (0.1 M, 0.2 M, 0.5 M, 2.0 M, 4.0 M) for 72 h, leading to significant dose-dependence. Satisfactory 

effects were seen at 0.5 M and higher concentrations. Values are expressed as mean ± SD (*P<0.05). D, LoVo 

cells were treated with the PARP10-selective inhibitor for 24 h, 48 h, 72 h, 96 h and 120 h. The inhibitory effect 

showed significant time-dependence. Data are expressed as the mean ± SD (*P<0.05, **P<0.01). E, SW480 cells 

were incubated with the PARP10-selective inhibitor (0.1 M, 0.2 M, 0.5 M, 2.0 M, 4.0 M) for 72 h; no 

statistically significant inhibitory effect was observed at all treatment concentrations (P>0.05). 

C
T2

6
 c

el
l v

ia
b

ili
ty

 (
O

D
45

0)

PARP10 inhibitor concentration (M)
0 1 2 3 4

*

*

* *

0.0

0.5

1.0

1.5A

Lo
V

o
ce

ll 
vi

ab
ili

ty
 (

O
D

45
0)

PARP10 inhibitor concentration (M)
0 1 2 3 4

*
*

* *

0.0

0.5

1.0

1.5C

SW
4

8
0

 c
el

l v
ia

b
ili

ty
 (

O
D

45
0
)

PARP10 inhibitor concentration (M)
0 1 2 3 4

0.0

0.5

1.0

1.5

E 2.0

C
T2

6
 c

el
l O

D
 v

al
u

e

Time (h)
24 48 72 96 120

*

0.0

1.0

3.0

4.0B

2.0



*

*


*

*


**






PARP10-inhibitor 
group

Control group

Lo
V

o
ce

ll 
O

D
 v

al
u

e

Time (h)
24 48 72 96 120

0.0

1.0

3.0

4.0D

2.0

*


*

*


*

*
*







PARP10-inhibitor 
group

Control group



7 
 

3A). A significant time-effect was also observed when CT26 cells were cultured with 0.5 μM 

PARP10-selective inhibitor for different incubation times (P<0.05) (Figure 3B). The results in 

LoVo cells were consistent with those in CT26 cells (P<0.05) (Figure 3C,D). On the contrary, 

different concentrations of PARP10-selective inhibitor failed to inhibit proliferation of SW480 

cells significantly; this cell line has intrinsically low levels of PARP10. This supports the 

selectivity of the PARP10-selective inhibitor (P>0.05) (Figure 3E).  In the light of these data, a 

treatment concentration of 0.5 M and a treatment time of 72 h were selected for subsequent 

experiments. 

Inhibition of PARP10 enzymatic activity blocks cell cycle of CT26 cells and LoVo cells by 

increasing the G1 phase ratio 

The percentage of CT26 cells in G1 phase rose from 58.1 ± 1.1% to 67.4 ± 0.2% when 

PARP10 was inhibited (P<0.001). By contrast, PI decreased significantly in the 

PARP10-inhibitor group compared with the control group (P<0.001), corresponding to a 

decrease in proliferation rate of CT26 cells upon inhibition of PARP10 (Figure 4).  

Figure 4: The G1 phase percentage in CT26 cells is significantly upgraded in the PARP10-inhibited group 

compared with the control group (*P<0.001). PI ratio in the PARP10-inhibited group decreased significantly 

compared with the control group (*P<0.001). 
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Inhibition of PARP10 enzymatic activity suppresses growth of CT26 subcutaneous tumors in 

Balb/c mice 

The volume and weight 

of CT26 cell tumors subcut-

aneously transplanted in 

Balb/c mice significantly 

decreased in the PARP10- 

inhibitor group, compared 

to the control group 

(P<0.001) (Figure 5 and 

Table 1), indicating that the 

effect of inhibition of PARP10 on 

proliferation of CT26 cells is consistent in 

vitro and in vivo. 

Inhibition of PARP10 enzymatic activity 

downregulates expression and nuclear 

transposition of -catenin 

     

Firstly, we detected the expression of -catenin in CT26 cells. The Western blot showed that, 

when PARP10 was inhibited, the expression of -catenin significantly decreased, compared with 

the control group both in whole cells and in cell nuclei (P<0.05) (Figure 6). This reveals that 

inhibition of PARP10 reduces both the total intracellular β-catenin and the entry of β-catenin into 

the nucleus. To translate this effect into the role of PARP10 in vivo, we assessed the expression 

of -catenin in CT26 tumors subcutaneous transplanted in Balb/c mice. The results are consistent 

with those of in vitro experiments; when PARP10 activity was suppressed, the expression of 

-catenin was significantly down-regulated compared with the control group, both in whole 

tumor cells and in tumor cell nuclei (P<0.05) (Figure 7).   

PARP10-inhibited group

Control group

Figure 5: Effect of PARP10 on the growth of CT26 cell subcutaneous tumors 

in the armpit of Balb/c mice. The volumes of the tumors in the treated group 

are clearly smaller than those of the control group.  

Table 1. The volume and weight of CT26 

tumours transplanted into Balb/c mice are 

significantly decreased in the group treated 

with the PARP10-selective inhibitor, 

compared to the control group. 

 Volume (mL) Weight (g) 

Treated 3.33 ± 1.13 1.94 ± 0.53 

Control 4.93 ± 1.03  2.16 ± 0.67 

P <0.001** <0.001** 

** One-way ANOVA 
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Inhibition of PARP10 enzymatic activity changes the protein expression of Axin2 and c-Myb 

Axin2 and c-Myb are both cell signaling proteins, which are closely functionally related to 

β-catenin and have a close connection with cell proliferation. As the results shows, when 

PARP10 is inhibited, expression of Axin2 was significantly increased, while that of nuclear 

c-Myb decreased markedly (P<0.05) (Figure 8). 

 

 

Figure 7: Expression of -catenin in CT26 tumors in vivo. After injecting Balb/c mice with the PARP10-selective 

inhibitor (2.0 mg Kg-1) or 0.9% normal saline intraperitoneally for 1 week, expression of -catenin protein in the 

CT26 transplanted tumor was analyzed by Western blot. -Actin and LaminB1 were used as controls of total protein 

and nuclear protein, respectively. A and B: Inhibition of PARP10 down-regulated the total amount of -catenin 

protein; data are expressed as the mean ± SD (*P< 0.05). C and D: Inhibition of PARP10 down-regulated the 

amount of -catenin protein in the nucleus; data are expressed as the mean ± SD (*p< 0.01).  
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protein and nuclear protein, respectively. A and B: Inhibition of PARP10 down-regulated the total amount of 

-catenin protein in CT26 cells; data are expressed as the mean ± SD (*P< 0.05). C and D: Inhibition of PARP10 

down-regulated the amount of nuclear -catenin protein; data are expressed as the mean ± SD (*P< 0.05). 
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DISCUSSION 

Several biological functions of the recently discovered mono-(ADP-ribosyl)transferase, 

PARP10, have been uncovered; these include influencing virus replication [13,14], and 

regulation of proliferation, apoptosis, metastasis and cycling in eukaryotic cells [2]. It is reported 

that knockdown of PARP10 in HeLa cells results in inhibition of growth and reduced 

tumorigenesis. Its overexpression in non-transformed RPE-1 cells alleviates their sensitivity to 

replication stress, fosters the restart of stalled replication forks and results in formation of tumors 

in a mouse xenograft model [4]. Silencing PARP10 decreases the proliferation rate in MCF7 

cells, while increasing the expression of PARP10 can promote proliferation [6]. However, the 

effect of PARP10 on the proliferation of different types of colorectal carcinoma (CRC) cells is 

not clear. 

We explored the influence of PARP10 activity on the proliferation of three CRC cell lines, 

LoVo, CT26 and SW480. PARP10 is expressed in both nucleoli and cytoplasm in LoVo cells and 

in CT26 cells but is barely expressed at all in SW480 cells. The pattern of expression is 

consistent with previous reports [7]. The inhibition of PARP10 enzymatic activity resulted in a 

statistically significant decrease of proliferation rate in both LoVo and CT26 cells and this 

decrease is related to both concentration and time. This makes it reasonable to suggest that CRC 

cells which are positive in expression of PARP10 may be sensitive to inhibition of the enzymatic 

Figure 8: Expression of Axin2 and c-Myb. After treatment with 0.5 M PARP10 inhibitor for 72 h, the level of 

Axin2 protein in CT26 cells and c-Myb protein in CT26 cell nucleus were measured by Western blot analysis. 

-Actin and LaminB1 were used as controls for total cellular protein and nuclear protein, respectively. A and B: 

Inhibition of PARP10 up-regulated the expression of Axin2 protein; data are expressed as the mean ± SD (**p< 

0.01). C and D: Inhibition of PARP10 down-regulated the expression of c-Myb protein compared with the control 

group; data are expressed as the mean ± SD (**p< 0.01). 
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activity of PARP10. To translate the effect of PARP10 into tumors in vivo, we established a 

model of CT26 tumors transplanted subcutaneously in the axillae of Balb/c mice. The growth of 

these tumors was significantly suppressed in the PARP10 inhibitor group, suggesting that the 

effect of PARP10 in promoting proliferation of CRC cells is repeatable in vivo. Furthermore, 

significantly increased G1 phase ratio and decreased PI have been observed in CT26 cells when 

PARP10 is inhibited, providing a reasonable explanation for the previously observed decreased 

proliferation of CT26 cells when PARP10 enzymatic activity is inhibited. 

-Catenin is a second messenger which acts as a transcription factor to promote proliferation 

[15,16]. It is also a downstream signaling protein of target protein(s) regulated by PARP10 [11]. 

To search for the proliferation-regulating nuclear transcriptional proteins that PARP10 might 

affect, we chose to detect -catenin. When we selectively inhibited PARP10, expression of 

-catenin was significantly downregulated in both CT26 cells and CT26 transplanted tumors in 

Balb/c mice, indicating that total -catenin and nuclear -catenin in CT26 cells both decreased, 

in vitro and in vivo, strongly suggesting a role of PARP10 in the regulation of -catenin.  

GSK3 is upstream signaling protein of -catenin in Wnt pathway, participating in 

formation of the -catenin degradation complex and degradation of -catenin through 

phosphorylation. When there is no Wnt signal, -catenin combines with GSK3, Axin, APC and 

Fzd to form a complex and are phosphorylated by GSK3 or hydrolyzed by autophagy or the 

ubiquitin-proteasome system (UPS) [11]. When the Wnt pathway is activated, the 

GSK3/Axin/APC complex disintegrates and -catenin cannot not be degraded. In a recent 

report, GSK3 was identified as a substrate for PARP10-catalyzed mono(ADP-ribosyl)ation in a 

protein microarray screen in vitro; its kinase activity is inhibited when it is mono(ADP-

ribosyl)ated by PARP10 [7, 17]. Thus we speculate that PARP10 may inhibit the degradation of 

-catenin by abolishing the kinase activity of GSK3 by mono(ADP-ribosyl)ing the latter. When 

PARP10 is inhibited, the kinase activity of GSK3 recovers and -catenin can be degraded and 

its abundance in cells decreases. How this regulation of -catenin by PARP10 through GSK3 

also applies in PARP10-positive CRC cells needs to be further verified. 

-Catenin translocates into the nucleus through nucleoporin 62 (NUP62), replacing the CoR, 

binds to transcription factors such as TCF/LEF, HIF-1 and TBX5, and activates transcription of 

proliferation-related downstream signal proteins including Axin2 and c-Myb [15,16]. To confirm 

whether changes in nuclear translocation levels of -catenin alters the expression of downstream 
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signaling pathway proteins, the expression of a transcriptional protein that is under its regulation, 

c-Myb, was measured. C-Myb has been reported to interact with a large number of potential 

regulators of its activity, including protein kinases, cell cycle regulators and transcription factors, 

It acts as an oncogenic protein, is overexpressed in tumors such as CRC and promotes 

proliferation of tumor cells by activating the genes which responsible for G/S phase and G/M 

phase transition [18-20]. As observed in this study, the amount of c-Myb protein in the nucleus 

declined in CT26 cells where PARP-10 enzymatic activity was inhibited, indicating that the 

expression and functional changes of -catenin bring about downstream effects. It is worth 

noting that, if we infer the influence of changes in the level of c-Myb protein on the cell cycle 

distribution of the PARP10-inhibited CT26 cells, it will be consistent with the G1 phase block 

we have detected. Does the reduced expression of -catenin and its nuclear translocation 

influence proliferation by through c-Myb in PARP10-inhibited CT26 cells? Further verification 

is needed. 

At the same time, abnormally high expression of Axin2 is found in tumors which have 

functional defects in -catenin [21]. It effectively promotes the degradation of -catenin by 

assembling the GSK3/Axin/APC/Fzd multiprotein complex which destroys -catenin [22,23]. 

In the present study, expression of Axin2 is up-regulated in the PARP10-inhibited group in 

comparison to the control group. Thus we infer that, in PARP10-inhibited CT26 cells, decreased 

nuclear translocation levels of b-catenin leads to up-regulated levels of Axin2. Then the elevated 

Axin2 acts as a feedback repressor, contributing to strengthen the effect of decrease of -catenin 

and further promoting the down-regulation of expression and function of -catenin. Currently, 

attempts to increase expression of Axin1/2, thereby down-regulating the constitutive stabilization 

of -catenin, shows therapeutic activity in CRC [24,25]. So -catenin is very likely to regulate 

the expression of Axin-2, and then enhances its down-regulation effect through the Axin-2 

feedback loop in CRC cells with positive expression of PARP10. 

The subcellular locale where PARP10 mono(ADP-ribosyl)ates GSK3 is the cytoplasm. 

PARP10 is shown to be largely present in the cytoplasm in LoVo cells and in CT26 cells in our 

present study. This gives us reason to speculate that the cytoplasm PARP10 regulates the 

proliferation of CRC cells by regulating the expression and function of -catenin [7,10,17].  

The PARP10 subgroup located in the nucleoli has also been reported to play a direct and 

effective working role in cellular proliferation. PARP10 serves as a binding partner for PCNA to 
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protect genomic stability and is required for translation and DNA synthesis [26,27]. 

Down-expression of PARP10 leads to delayed G1 progression and concomitant cell death in 

HeLa cells [9]. We have observed increased G1 phase cells ratio and decreased PI ratio in the 

PARP10-inhibited CRC cells. The trend is consistent with existing reports, strongly supporting 

this mechanism of regulation of proliferation by nucleolar PARP10. We speculate strongly that 

PARP10, possibly recruited by PTEN in the nucleoli of cells, binds with PTEN to the damaged 

sites in DNA, stimulates the replication and repair mechanism, regulates the cell cycle, and then 

affects the proliferation of CRC cells [4,26]. 

It should be mentioned is the effect of PARP10 on the biological behavior of tumor cells is 

never a simple and one-way trend [3,5,8,28]. More detailed studies on the mechanism of 

PARP10’s proliferative regulation in CRC cells may help for explore the roles of PARP10. 

Whether the regulation of PARP10 on the proliferation of CRC cells can be extended to other 

types of tumor cells also has research value. 

 

CONCLUSIONS 

We have observed that PARP10 promotes proliferation of those CRC cells in which 

significant levels of PARP10 are present. Conversely, inhibition of its enzymatic activity nullifies 

this activation. We also demonstrate that nuclear translocation protein -catenin participates in 

this function.  
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