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Abstract 

Cocoa (Theobroma cacao) is an economically important crop grown by approximately six million of 

smallholder farmers throughout the tropics and sub-tropics. However, farm level yields are often very 

low, and sustainable intensification is urgently required. Assessing the impact of on-farm 

interventions of farm productivity and profitability requires an understanding of the contribution of 

inter-annual climate variability to cocoa yields. A Delayed Differential Equation model (DDE) was 

used to simulate the effect of rainfall on cocoa yields. A DDE model is an ordinary differential 

equation model that incorporates time lags, and is therefore able to incorporate the delay in yield 

response to rainfall due interactions with the cocoa flowering and the pod development processes. The 

DDE was constructed and based on regional rainfall and farm-level cocoa yield data from 96 farms 

across the main cocoa growing regions in Ghana. Model outputs indicate that a good likeness of 

seasonality in crop production was achieved. The potential to conduct a detailed parameterisation and 

extend this model to include other parameters such as agrochemical inputs and farm management 
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practices are discussed.  By further developing this model into a useful tool to predict and understand 

variability in cocoa yield, the sustainable intensification of small holder cocoa farming is supported.  

 Keywords: Climate variability, rainfall, crop model, cocoa, sustainable intensification, delayed 

differential equation.  

 

1 Introduction 

Cocoa (Theobroma cacao) is a mainstay cash crop for millions of small holders throughout the tropics 

and sub-tropics (Clay, 2013). Cocoa produced in West Africa accounts for approximately 74% of 

world output, with Côte d’Ivoire and Ghana being the main producing nations in the region (ICCO, 

2017). However, despite its large share of global production, farm level yields in West Africa are 

often unsustainably low. In Ghana the average production is reported as approximately 400 kg/ha, 

which is among the lowest in the world (Aneani and Ofori-Frimpong, 2013). Low yields result in very 

low profitability in the sector and therefore undermines the economic viability of farms and hinders 

the sustainable development of communities (Kongor et al., 2017). To improve yields intensification 

of the production system is required.  

 

When crop yields are low, investment in fertilisers and pesticides represents a large percentage of the 

total farm income and presents an excessively large risk to the financial status of the farm household. 

Additionally, farmers are often unable to access the credit required to purchase inputs such as 

fertiliser and pesticides. A better understanding of the effects that on-farm interventions have on 

cocoa yields would be advantageous and may make investment, by individual farmers or external 

lenders, more attractive. A major challenge in estimating the magnitude of the effect of interventions 

is large inter-annual and inter-farm variability as has been reported for cocoa production in West 

Africa (Daymond et al., 2017). Globally, climate is recognised as a major driver of inter-annual 

variability in crop yields (Ray et al., 2015). Such variability also discourages investment, making it 

more difficult to achieve sustainable intensification in the sector.  
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A modelling approach could be applied to better understand the effects of climate variability on farm-

level cocoa yields, thus enabling a partitioning of climate effects. Whilst research is regularly 

undertaken into national cocoa production (ICCO, 2017), as well as modelling at the plant 

physiological level (Zuidema et al., 2005), we know relatively little about the effect of climate 

variability on cocoa production at the individual farm level. Modelling the potential variation in on-

farm cocoa yields due to inter-annual climate variation could significantly aid sustainable 

development of farming communities. The aim of this study was to construct a mathematical model, 

to represent annual seasonality of cocoa yield in Ghana, and its dependence on rainfall patterns. The 

model construction was informed by actual rainfall and farm-level cocoa yield data from Ghana, and 

parameters were chosen to have values that broadly reflect the biological processes of cocoa 

production, with potential for more rigorous fitting at a later date.  

 

An Ordinary Differential Equation (ODE) is a mathematical description of the relationship between a 

function, and its derivatives – which represent the rate of change of that function. A delayed 

differential equation (DDE) model is a time-delay system, made up of ODEs that incorporate 

additional time lags. This means the rate of change of a function can be related to its value in the past 

or the future, making DDEs a particularly useful tool for modelling systems where there is a delay in 

response, in this case the period of time that cocoa pods are ripening before harvest. 

2 Materials and Methods 

2.1 Cocoa yield and rainfall data 

Farm-level cocoa yield data was collected as part of the 'Mapping Cocoa Productivity' project which 

ran in Ghana from 2012 – 2016 (Daymond et al., 2017). In this project 96 farms were monitored 

across four regions, in which cocoa farming is predominant: Ashanti, Brong-Ahafo, Eastern and 

Western (Figure 1). The farms were also characterised through the collection of detailed baseline data 

on cocoa planting material, agricultural practices and soil properties. However, in this modelling 

study we focus only on the yield results but acknowledge the importance the many other agronomic 

factors have on yield (see Wood and Lass, 1986). To monitor seasonality in cocoa yields, pod counts 
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were conducted on (the same) 16 trees per farm every 6 weeks. This resulted in a data set of 17 time 

points over a two-year period (2012 – 2014). The number of cocoa pods harvested between each data 

collection point were calculated based on pod count data (See Appendix A 1.1 for further 

information). In this study we refer to the number of pods harvested per tree as yield. Rainfall data for 

the period 2012 - 2014 was obtained from the Ghanaian Meteorological Office from 18 stations across 

the four study regions (Figure 1 and see Appendix A 1.2 for further information). For the purposes of 

this study rainfall data was aggregated at a regional level, apart from the Western region which was 

sub-divided into north and south due to strong differences in climate within that region.  

 

 

Figure 1. Map shows the locations of 96 cocoa farms from the Mapping Cocoa Productivity project, 

across the four main cocoa growing regions in Ghana (Ashanti, Brong-Ahafo, Eastern and Western 

Regions) and the locations of 13 meteorological stations. See Table A.1. for an analysis of mean farm 

to station distances. Note: data from a further 5 meteorological stations were included in modelling 

analysis, but coordinates for these stations were not available. 
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2.2 DDE model 

Cocoa pod ripening (and hence, harvest) typically occurs 5 to 6 months after flowering (Wood and 

Lass, 1986; Daymond and Hadley, 2008), this time lag is incorporated into the model by using DDEs. 

A DDE model for the number of flowers 𝐹(𝑡) and pods 𝑃(𝑡) on a tree as well as the total number of 

harvested pods 𝐻(𝑡). The flowering process is given by: 

 

𝑑𝐹

𝑑𝑡
= 𝛼(𝑡)(1 − 𝐹(𝑡))𝐹(𝑡) − (𝛽(𝑡) + 𝛾(𝑡)) 𝐹(𝑡) Eq. 1 

 

In Eq. 1, the first term represents the logistic development of cocoa flowers, whereby the growth rate 

starts off exponential, and gets smaller as population size approaches a theoretical maximum (France 

and Thornley, 1984). This growth is mitigated by the growth factor, 𝛼(𝑡), which is a function 

representing rainfall; in this preliminary study other climatic variables, such as temperature, solar 

radiation, humidity and wind speed are excluded. Flower death occurs at rate𝛽(𝑡)𝐹(𝑡), and 

conversion to pods occurs at rate 𝛾(𝑡)𝐹(𝑡). 

 

𝑑𝑃

𝑑𝑡
= 𝛾(𝑡)𝐹(𝑡) −  𝜆(𝑡) 𝛾(𝑡 − 𝜏)𝐹(𝑡 − 𝜏) Eq. 2 

  

𝑑𝐻

𝑑𝑡
=  𝜆(𝑡) 𝛾(𝑡 − 𝜏)𝐹(𝑡 − 𝜏) Eq. 3 

 

Hence, in Eq. 2, cocoa pods are formed at rate 𝛾(𝑡)𝐹(𝑡). Pods are harvested at rate 𝜆(𝑡)𝛾(𝑡 −

𝜏)𝐹(𝑡 − 𝜏) where the lag 𝜏 represents the time taken for pods to ripen, from initial flowering. This 

harvest rate is given explicitly in Eq. 3. 

 

The rate of flowering is taken to depend only on rainfall. To represent the general trend in rainfall, 

with two peaks over the year, Gaussian functions were used. These have the advantageous property of 
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describing the height, centre, and spread of a symmetric peak. To capture two peaks over a year, the 

following form was chosen: 

𝛼(𝑡) = 𝐶1𝑒
−(

𝑡−𝑚1

√2𝜎1
)

2

+ 𝐶2𝑒
−(

𝑡−𝑚2

√2𝜎2
)

2

. 
Eq. 4 

The parameters 𝐶𝑖 (height), 𝑚𝑖 (centre), and 𝜎𝑖 (spread) are determined by a least-squares fit to the 

rainfall data.  For this preliminary analysis the lag 𝜏 from flowering to harvest is taken to be half a 

year (183 days). The rate functions; 𝛽(𝑡), 𝛾(𝑡), and 𝜆(𝑡) are all taken to be time-independent 

constants, these values are assigned (see Table B.1), and the full model is solved numerically.  

 

3 Results 

3.1 Cocoa yield and rainfall results  

Rainfall in Ghana is of a bi-modal nature, with two distinct peaks observed in every year. Over the 

full study period the highest accumulated rainfall recorded was in the Western-South region (2012: 

1610mm, 2013: 1400mm, 2014: 2160mm), while the lowest was in the Eastern region (2012: 

1310mm, 2013: 936mm, 2014: 1720mm),  (Figure 2). The highest cumulative cocoa yields were 

recorded in the Western-South region of 541 harvested pods tree-1 (± 144 SD), while the lowest cocoa 

yields were for the Ashanti region at an average of 430 harvested pods tree-1 (± 153 SD; Figure 2). We 

acknowledge that the spread of the 18 meteorological weather stations between regions was not even, 

the highest number being for Eastern region and the lowest for Brong-Ahafo (Table A.1), and the 

exact coordinates of 5 stations unavailable. Furthermore, the rainfall records for some stations, and for 

the entire region of Ashanti, were incomplete. The results of this paper use the aggregated rainfall 

data for the whole country, shown in Figure 2. Future work would require rainfall data at more 

detailed locations, for example from satellite recordings. 
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Figure 2. Average cocoa yield (harvested pods per tree) per tree (a) and regional rainfall patterns (b). 

See Appendix A for more information on calculation of yield and rainfall data. 

 

3.2 Model parameterisation 

The least squares fit (Eq. 4) to rainfall data from 2012, 2013, and 2014 is shown in Figure 3 along 

with and the corresponding model (Eq. 1)-(Eq. 3) output. The function and parameter values are 

shown in Table B.1. The output is scaled by setting the theoretical maximum number of flowers on 

the tree to 1, and the parameters and histories (which must be provided to enable numerical solution 

of the DDE, given it depends on past values) chosen so that the number of pods tends to fluctuate 

around 0-0.1, i.e. 10% of the maximum possible flowers. In reality the number of pods is an even 

smaller proportion of the flowers, and the parameters of the model could be adjusted to reflect this 

when realistic values are known. The lag 𝜏 from flowering to harvest is set at 183 days.  
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Figure 3. The least squares fit of Eq. 4 (solid line) to average daily rainfall data across all 18 weather 

stations (dots) is plotted for 2012, 2013, and 2014 in panels (A), (C), and (E), respectively. The 

corresponding model output taken from inputting the rainfall fit for 2012, 2013, and 2014 is plotted in 

panels (B), (D), and (F), this is the number of Flowers and Pods on a tree at any given point in time, 

and the cumulative Yield. The parameters are given in Table B.1. 

 

3.3 Results of the DDE model 

The model output in Figure 3 shows greatest yield resulting from 2014 rainfall patterns which were 

significantly higher than in previous years. The yield is greater for 2013 than 2012 suggesting 

prolonged lower rain levels result in more pod growth than shorter, more intense bursts of rain. The 

cumulative yield from the model for August 2012 to August 2014, with data input for rainfall fits 
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from 2012-2013, is shown in Figure 4, alongside the actual cumulative yield data for this period. The 

first half of the cumulative yield data is driven by the 2012 rainfall where narrower peaks were 

observed (see Figure 3) the second half of the cumulative yield data is driven by the 2013 rainfall 

where much broader peaks were observed. The first half of the cumulative yield data has a more 

pronounced `step', where the harvest rate slows, this is also more pronounced in the first half of the 

model output. This suggests that the effect of flatter peaks in rainfall is to spread the harvest more 

evenly over the year, and that the DDEs are successfully able to propagate this effect through the 

model.

 

Figure 4. Cumulative cocoa yield from model (A) with 2012-2013 rainfall input (dimensionless), and 

the actual average yield per tree from the Harvest data (B). 

4 Discussion  

Using a DDE model, it was possible to successfully simulate the seasonality of cocoa yield based on 

rainfall pattern and captured the variation in shape of the cumulative yield curve due to different 

rainfall patterns. The DDE model was constructed with parameters chosen to reflect the biological 

processes and informed by actual rainfall and farm-level cocoa yield data from Ghana. There is clear 

potential to build upon this preliminary model through more detailed parametrisation and inclusion of 

other key factors which influence cocoa yield at the farm-level. This would allow estimation of the 

proportion of inter-annual yield variation that is attributable to climate, and therefore a much clearer 

understanding of the contribution of on-farm management. Consequently, this would be a stimulus to 
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investment in small-holder farms which urgently require sustainable intensification to increase 

economic viability. 

 

As has been mentioned, aside from climate, a myriad of other factors influence cocoa yields. It has 

been established elsewhere that the main limiting factors for increased cocoa yields on small holder 

farms are improved farm management practices including; control of pest and disease, the application 

of fertiliser and pruning of orchards (Kongor et al., 2017). While the presented model accounts for the 

effect of rainfall on cocoa yield it would be possible to add modules to the existing equations that 

represent other crop management factors. For example, the effect of applying fertiliser could be added 

to the model by including an additional multiplier in the growth rate, 𝛼(𝑡). Location effects might be 

better represented in the model through more site-specific rainfall data, which would be possible by 

making use of satellite rainfall data as opposed to ground stations. Other climatic data such as solar 

radiation, temperature and relative humidity are known to affect cocoa physiologically, and many of 

these parameters could be added. However, as such parameters would require ground station data, the 

geographical coverage of meteorological stations could again be a constraint to making such 

additions. The availability of soil moisture for uptake by plants is a function of soil characteristics, 

such as texture and organic matter content and rainfall and soil depth. Due to its smoothing effect on 

the rainfall data, the double Gaussian curve used here to describe rainfall, could be considered a crude 

estimate of the soil moisture available to plants. However, given this is one of the main drivers of 

model output, this could be a fruitful area for further investigation. One method by which this could 

be achieved would be to incorporate the rainfall-soil interaction in more detail through the inclusion 

of, for example, soil textural class.  

 

The DDE model can include time-dependent rates of flowers changing to pods, and pods being 

harvested. In the DDE model presented here, the multipliers on these rates were taken to be time-

independent constants (see Table B.1). By restoring time dependence, the model could better reflect 

the plant biology, for example, if it is very dry, fewer flowers are likely to mature to harvestable pods. 

In this way the model could capture pod wilt due to environmental factors. Cherelle wilt due to late 
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acting self-incompatibility is a specific genetically determined interaction which is outside of the 

scope of this modelling approach. Incorporating information from widely accepted physiological 

models for cocoa (Zuidema et al., 2005) could further aid this model refinement. Also worth 

consideration are the inclusion of biological constraints such as the dependence of the rate of 

flowering on the number of pods already on the tree, it is believed that when there are more pods on 

the tree the rate of flowering may be inhibited (Haberman et al., 2016; Andrew Daymond personal 

communication). Furthermore, if data were available the size of individual pods or total pod mass 

could be included as these vary throughout the season and between different cocoa cultivars.   

 

Before any of this future work can be carried out, a range of realistic parameter values should be 

determined for the current model. This will require an estimation of realistic ranges, and then 

simulation of the model to determine the best fit to data for different parameter ensembles. Sensitivity 

analysis will assess how variability in cocoa yield results from altering each of the input parameters in 

this model. To achieve this, detailed data on rainfall and yield will be required to establish a model 

that can be implemented to help farmers and policy makers. In summary, there is huge scope to take 

the DDE model presented here to be developed into a useful tool to predict and understand variability 

in cocoa yield. 
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6 Appendices 

Appendix A. Cocoa Yield and Rainfall Data. 

Appendix B. Model Parameterisation.  
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