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Abstract 

Can an idea be beautiful? Mathematicians often describe arguments as “beautiful” or “dull,” and 

famous scientists have claimed that mathematical beauty is a guide toward the truth. Do laypeople, 

like mathematicians and scientists, experience mathematics aesthetically? Three studies suggest that 

they do. When people rated the similarity of simple mathematical arguments to landscape paintings 

(Study 1) or pieces of classical piano music (Study 2), their similarity rankings were internally consistent 

across participants. Moreover, when participants rated beauty and various other potentially aesthetic 

dimensions for artworks and mathematical arguments, they relied mainly on the same three 

dimensions for judging beauty—elegance, profundity, and clarity (Study 3). These aesthetic judgments, 

made separately for artworks and arguments, could be used to predict similarity judgments out-of-

sample. These studies also suggest a role for expertise in sharpening aesthetic intuitions about 

mathematics. We argue that these results shed light on broader issues in how and why humans have 

aesthetic experiences of abstract ideas. 

 

Keywords: Psychology of mathematics, Explanation, Aesthetics, Reasoning, STEM education  
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Introduction 

“Beauty is the first test. There is no 
permanent place in the world for ugly 
mathematics.” 

–G. H. Hardy 
 

“Mathematics is the music of reason.” 
–James Joseph Sylvester 

 
 

 

Can an idea be beautiful? Scientists and mathematicians seem to think so—they often imbue 

explanations with aesthetic qualities. Proofs can be “elegant” or “beautiful”; they can be “dull” or 

“trivial.” Albert Einstein “was quite convinced that beauty was a guiding principle in the search for 

important results in theoretical physics” (Zee, 1999), while physicist Paul Dirac (1963) even claimed 

that “it is more important to have beauty in one’s equations than to have them fit experiment.” 

In this paper, we explore the aesthetics of ideas by testing laypeople’s aesthetic experiences of 

mathematical arguments. In particular, we test whether laypeople have nonrandom degrees of 

consensus in their judgments of aesthetic similarity between mathematical proofs and art objects such 

as paintings and music (Studies 1 and 2), whether there is consensus about which proofs are most 

beautiful (Study 3), and what properties contribute to these judgments of aesthetic similarity and 

pleasure (Study 3). Overall, these findings reveal a degree of consensus about the aesthetics of even 

the most abstract kind of ideas. We argue that these findings contribute to our understanding of how 

and why ideas can evoke aesthetic experiences. 

 

Aesthetics: The True, the Adaptive, and the Ugly  

To judge by the practitioners quoted above, aesthetic experiences not only imbue their 

interactions with scientific and mathematical ideas, but guide them toward the truth. On the face of 
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it, this is quite a strange (if not ugly) idea. When we seek knowledge, we strive to employ tools, such 

as deductive logic and the scientific method, that reliably lead to justified true beliefs. Aesthetic 

experiences, such as beauty, could hardly be more different. Indeed, beauty is commonly said to be in 

the eye of the beholder. David Hume (1985/1757) put this point (how else but) elegantly: 

Beauty is no quality in things themselves: It exists merely in the mind which contemplates 
them; and each mind perceives a different beauty. One person may even perceive deformity, 
where another is sensible of beauty; and every individual ought to acquiesce in his own 
sentiment, without pretending to regulate those of others. 

 
Some philosophers, while agreeing that beauty is subjective, have also claimed that people treat them 

as universally true (e.g., Kant, 2002/1790). But recent experimental work casts doubt on this claim, 

suggesting that not only are aesthetic judgments subjective by nature, but also viewed as subjective by 

most laypeople (Cova, Garcia, & Liao, 2015; Cova & Pain, 2012). 

This is a paradox. On the one hand, scientists and mathematicians experience ideas as beautiful 

or ugly and seem to use these experiences to guide them toward objective truth. On the other hand, 

aesthetic judgments seem to be inherently subjective, and most laypeople seem to believe that aesthetic 

judgments cannot be true or false. 

Cognitive science provides one possible resolution to this paradox: An evolutionary account 

of aesthetics (e.g., Dutton, 2009; Hekkert, 2014; Pinker, 1997). On this view, aesthetic preferences 

(e.g., about art) are by-products of adaptations that serve survival and reproductive fitness. In some 

cases, these adaptations are directly linked to biological goals: Humans prefer symmetric over 

asymmetric faces, as the former tend to signal health (Rhodes et al., 1998; Thornhill & Gangestad, 

1993; cf. Reber, Schwarz, & Winkielman, 2004), and prefer savannah-like landscapes, as they tend to 

boast water and shelter (Dutton, 2009; Orians & Heerwagen, 1992). In other cases, aesthetic 

preferences appear to be linked to more abstract stimulus processing goals, such as imposing order 

on visual stimuli as well as seeking an optimal degree of novelty (Berlyne, 1960; Boselie & 

Leeuwenberg, 1985; Hekkert, 2014). Approaching objects with these stimulus properties is adaptive 
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for the same reason that vision is adaptive: Such approach patterns help the organism to make sense 

of and explore its environment. Aesthetic judgments are right or wrong, at most, in the same way that 

it is right or wrong to prefer ice cream over vegetables: We may be built to appreciate a fine gelato, 

but it is far from obvious that it is “wrong” to prefer broccoli, given the wild differences between our 

evolutionary and modern environments. 

Thus, according to the evolutionary account, we tend to seek pleasure from (i.e., find beauty 

in) and therefore to approach objects in our environment that have a variety of adaptively desirable 

properties. Even though our aesthetic preferences evolved in response to natural objects such as faces 

and savannahs, they have been generalized to artifacts, such as paintings and designed gadgets, through 

cultural evolution acting on the raw psychological materials provided by biological evolution (Boyd & 

Richerson, 1985; Hekkert, 2014). Although this view is couched mainly in terms of visual aesthetics, 

similar mechanisms may well account for aesthetic preferences in other sensory modalities, such as 

music: Even non-human primates share some of the same musical preferences as infants and adults 

(Hauser & McDermott, 2003). 

The discussion around the evolution of aesthetics has revolved almost exclusively around 

aesthetic perception. But what about the aesthetics of ideas? An emerging understanding of the cognitive 

science of explanation is consistent with the notion that our preferences for different explanations 

guide us toward explanations that are true (high in likelihood) and useful (high in their ability to guide 

understanding) (e.g., Douven & Schupbach, 2015; Johnson, 2017; Lipton, 2004; Lombrozo, 2016). 

For example, people often favor simple explanations over more complex ones, following Occam’s 

razor. But in fact, this turns out to be one among several heuristic factors guiding people’s explanatory 

preferences. People use simplicity as a proxy for an explanation’s prior probability—for how likely it 

is to be true in the absence of data pointing either way (Lombrozo, 2007). But explanations that are 

too simple are often unable to account for all the data—think of the “hedgehog” political pundit who 
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explains all geopolitical events in terms of her pet theory (“it’s all about oil prices!”) (Tetlock, 2005). 

Instead, people recognize that complex explanations have the virtue of more degrees of freedom for 

explaining complex data and therefore favor options with a moderate degree of complexity (Johnson, 

Valenti, & Keil, 2017). Comparable analyses have been given for a variety of “explanatory virtues,” 

such as explanatory scope (i.e., the number of observations an explanations accounts for; Johnson, 

Johnston, Toig, & Keil, 2014; Johnson, Rajeev-Kumar, & Keil, 2016) and generality (i.e., level of 

abstraction; Johnston, Sheskin, Johnson, & Keil, 2018). 

People prefer explanations that guide them toward truth and understanding, but it is less clear 

whether such preferences are experienced aesthetically. The poet John Keats claimed that “beauty is 

truth, truth beauty,” but among philosophers there is disagreement. Some maintain that what makes 

something a good explanation is nothing more than its Bayesian probability, viewing explanatory 

reasoning as “inference to the likeliest explanation” (e.g., Van Fraassen, 1989). Others view broader 

considerations of explanatory “satisfyingness” as critical to an explanation’s quality, viewing 

explanatory reasoning as “inference to the loveliest explanation” (e.g., Douven & Schupbach, 2015; 

Lipton, 2004), with the proviso that what humans find lovely often is likely. That sounds suspiciously 

similar to the account that evolutionary aesthetics gives for our approach to beautiful (adaptively 

beneficial) objects: The search for the loveliest explanation is a search, unconsciously, for explanations 

that lead to truth and understanding. Most directly of all, Gopnik (1998) has even likened the 

phenomenology of explanation to orgasm, arguing that the sense of satisfaction we feel when we 

perceive an explanation as correct motivates us to acquire novel information, just as natural selection 

has endowed organisms with pleasure accompanying sexual orgasms to motivate reproduction. 

The notion that people experience ideas aesthetically is thus consistent with anecdote, with 

phenomenology, and with evolutionary thought. But there is very thin empirical evidence for this 

proposition. The most direct evidence, to our knowledge, comes from studies of explanatory 
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reasoning, where people seem to answer questions such as “how satisfying is this explanation?” and 

“how likely is this explanation to be true?” in similar ways, with the same factors influencing both 

judgments (e.g., Khemlani, Sussman, & Oppenheimer, 2011; Lombrozo, 2007). But this hardly makes 

an airtight case. We have suggested that people are heuristically substituting (Kahneman & Frederick, 

2002) the difficult question of “how likely” with the subjectively easier question of “how lovely.” But 

the logic works just as well the other way around. If people found the idea of explanatory loveliness 

bizarre, they could substitute the intelligible “how likely” question, producing the same pattern of 

results. To make a tighter case, other sources of evidence are required. Moreover, we need to study 

cases where all explanations are true to avoid the concern about reverse-directionality in heuristic 

substitution. A different approach is needed. 

 

Intuitions about Mathematical Proof 

For these reasons, we ask: Do laypeople have intuitions about the aesthetics of mathematical 

proofs? This operationalization solves the above problems—if we use indirect methods, we can avoid 

relying solely on direct questions, as well as avoiding the reverse-directionality problem by studying 

logically correct proofs (which are “true” by definition). Moreover, this question is of independent 

interest to multiple constituencies. Most directly, it is of interest to mathematicians (as evidenced by 

articles in general-interest outlets for mathematicians; e.g., Krull, 1987; Wells, 1990). But it is also of 

interest to researchers in the psychology of mathematics and in math education by informing our 

understanding of how mathematical arguments are processed. Moreover, by comparing experts to 

laypeople, as we begin to do here, our work speaks to questions in the psychology of expertise, 

particularly the relationship between expertise and aesthetic judgment (e.g., Leder, Gerger, Dressler, 

& Shabmann, 2012; Margulies, 1971). 
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Is there a deep psychological reality underlying the perception that certain mathematical 

arguments are beautiful? Several previous studies, testing the judgments of professional 

mathematicians, suggest that there may be. For example, professional mathematicians seem to have a 

reasonable level of agreement about which theorems are most beautiful (Wells, 1990), though there is 

substantial disagreement about at least some proofs (Inglis & Aberdein, 2016). One detailed study 

asked mathematicians to think of a recent proof they had read, rating it on a set of 80 dimensions, and 

factor-analyzed these judgments (Inglis & Aberdein, 2015). Mathematicians’ judgments were captured 

by four components, including an aesthetic component (e.g., “beautiful,” “sublime,” “profound”) as 

well as components reflecting intricacy (“dense”, “difficult”), utility (“practical,” “efficient”), and 

precision (“careful,” “rigorous”). Thus, there is direct evidence that mathematicians’ proof appraisals 

partly reflect aesthetic considerations. Even more directly, mathematicians’ brains were scanned while 

contemplating either “beautiful” or “ugly” mathematical equations (Zeki, Romaya, Benincasa, & 

Atiyah, 2014). Judgments of mathematical beauty were correlated with activity in the same region of 

the medial orbito-frontal cortex that is known to track aesthetic judgments in other domains such as 

visual art and music (Ishizu & Zeki, 2011). Thus, the underlying experience of mathematical beauty, 

at least for mathematicians, seems to have a kinship with other forms of aesthetic experience. 

However, it is not at all clear that these aesthetic experiences would extend to laypeople. 

Indeed, in Zeki et al.’s (2014) study, the effort to scan layperson participants’ brains was abandoned 

after the researchers failed to find any equations that participants found beautiful. Perhaps, then, 

aesthetic experiences in mathematics are merely a by-product, not of human evolution, but of the 

social practices of mathematicians. At least, these data seemingly suggest, the aesthetics of 

mathematical arguments may require a great deal of training to appreciate. 
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Despite the discouraging direct evidence to date, might it nonetheless be possible that 

mathematical novices share the aesthetic perception of career mathematicians? Several lines of indirect 

evidence are suggestive. 

Humans have a finely-tuned sense for numbers, which develops in infancy (Carey, 2009; 

Dehaene, 1996). Infants can distinguish among sets containing small numbers of objects with differing 

cardinality (Starkey & Cooper, 1980), can perform rudimentary addition and subtraction for such small 

sets (Wynn, 1992), and use an approximate number system (ANS) to discriminate among large arrays 

of objects (Xu & Spelke, 2000). Facility with numbers as measured in ANS tasks appears to undergird 

later mathematical ability, as this ability is associated with school math achievement (Halberda, 

Mazzocco, & Feigenson, 2008) and its impairment is associated with mathematical learning disabilities 

(Mazzocco, Feigenson, & Halberda, 2011). Just as people have a rudimentary ability to understand 

and use numbers, perhaps they possess deeper capacities for understanding more complex 

mathematical arguments. If so, perhaps this capacity might support later advanced mathematical 

abilities, such as those developed by professional mathematicians and taught in university courses in 

higher mathematics. 

This may appear unlikely, given the famous disdain and hatred shown by high school students 

for geometry—most students’ first introduction to rigorous mathematical proof (e.g., Senk, 1985). 

However, students’ difficulties with mathematical proofs appear to be driven mainly by unfamiliarity 

with concepts and definitions, difficulty with mathematical notation, and uncertainty about how to 

start (Moore, 1994). That is, basic deductive logic is not necessarily unintuitive. This point is 

underscored by humans’ basic capacity to perform simple forms of deductive reasoning, such as modus 

ponens (Johnson-Laird, 1999; Rips, 1994). This leaves open the possibility that people could appreciate 

the content of mathematical proofs even if they cannot generate them, so long as familiar concepts are 

used and mathematical notation is minimized.  
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Indeed, there is evidence that people automatically deploy deductive reasoning when 

contemplating very simple mathematical arguments. People have strong intuitions about the 

acceptability of simple mathematical explanations (Johnson, Johnston, Koven, & Keil, 2017) and such 

intuitions broadly track principles derived from philosophy of mathematics (e.g., Bolzano, 1817; 

Kitcher, 1975). For example, people evaluate “4–2=2 because 2+2=4” as more acceptable than 

“2+2=4 because 4–2=2,” since the former explanation grounds a derivative operation (subtraction) 

in a more basic operation (addition), whereas the latter explanation does the converse (Johnson et al., 

2017). This is reminiscent of many mathematicians’ preference to ground proofs of conceptually 

derivative domains in more conceptually primitive domains, such as geometry in analysis (Bolzano, 

1817) or arithmetic in set theory (Frege, 1974/1884). Further, people appear to use chains of reasoning 

to evaluate more far-flung explanations such as “32=9 because 3+3+3=9,” since the acceptability of 

these explanations tracks the number of logical steps required to complete the derivation. The 

superiority of shorter proofs has been proclaimed by many, going back to Descartes (1954/1684) and 

Hume (1978/1738), on the basis that they are less likely to contain mistakes and more likely to confer 

understanding by holding the steps in mind simultaneously. Although such studies of simple 

arithmetic operations are a far cry from the sophisticated reasoning of professional mathematicians, 

they show that mathematical proof is not intrinsically unintuitive but in fact can be grasped 

automatically and intuitively, when complex concepts and notation are avoided. 

 

The Current Studies 

Our studies test whether laypeople do indeed have intuitions about the aesthetics of 

mathematical arguments. Unlike Johnson et al. (2017), we use sophisticated mathematical arguments 

familiar to practicing mathematicians; unlike Zeki et al. (2014), we avoid unfamiliar concepts and 
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complex notation. These studies used two different approaches as converging evidence for aesthetic 

experiences in apprehending mathematical proofs.  

First, Studies 1 and 2 tested aesthetic categorizations, examining whether people can 

systematically match artworks with mathematical arguments. These studies ask participants to read a 

series of mathematical arguments, and to rate their similarity to a set of landscape paintings (Study 1) 

or classical music performances (Study 2). Similar approaches have been used in empirical aesthetics 

and vision science to test related questions about aesthetic experiences and cross-modal associations. 

For example, one study examined correspondences between classical music and colors, asking 

participants to match which colors were most and least consistent with each piece of music (Palmer, 

Schloss, Xu, & Prado-León, 2013). There was a high degree of consensus in these cross-modal 

correspondences, both within and across cultures, which were mediated by emotional associations. 

Likewise, people make consistent cross-modal correspondences between pitch and color (Hubbard, 

1996), pitch and size (Evans & Treisman, 2010), loudness and brightness (Marks, 1987), timbre and 

color saturation (Caivano, 1994), taste and shape (Velasco, Woods, Deroy, & Spence, 2015), color and 

odor (Levitan et al., 2014), and even taste and typeface (Velasco, Woods, Hyndman, & Spence, 2015; 

see Spence, 2011 for a review). If we could likewise discover consistent correspondences between 

mathematical arguments and artworks, this would provide prima facie evidence that people have 

intersubjectively consistent aesthetic experiences of mathematical arguments.  

Second, Study 3 asks how people are able to produce such consistent pairings between artworks 

and arguments. What dimensions do people use to evaluate the aesthetics of mathematical arguments 

and of artworks? Are these the same dimensions? Similarity judgments have been analyzed by many 

cognitive scientists (Gärdenfors, 2000; Goodman, 1972; Tversky, 1977), and a particularly difficult 

problem is the question of what dimensions people use for computing similarity (e.g., Medin, 

Goldstone, & Gentner, 1993). Study 3 begins to address this problem for perceptions of similarity 
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between mathematics and art by measuring judgments of aesthetic pleasure (i.e., beauty) and several 

other potentially aesthetic qualities that could be shared across these domains (e.g., simplicity, 

profundity, intricacy). We then use these judgments to examine how people assess beauty across 

domains and to model the similarity judgments from Study 1. Although these two lines of inquiry are 

individually susceptible to critique, they provide a converging case when taken together. 

Throughout these studies, we also test the possible role of expertise in sharpening these 

aesthetic intuitions. Expertise shapes categorization schemes and perceptions of similarity. For 

example, physics experts use deeper physical principles to sort physics problems, whereas laypeople 

sort problems based on superficial features (Chi, Feltovich, & Glaser, 1981). Even among experts, 

categorization schemes can differ based on the nature of their expertise: Landscape workers sort trees 

based on goal-derived categories, whereas taxonomists place a greater weight on morphological 

features (Medin, Lynch, & Coley, 1997). Moreover, aesthetic expertise is known to shape aesthetic 

experiences (Leder et al., 2012). For example, art experts tend to have more nuanced aesthetic 

experiences (Fayn, Silvia, Erbas, Tiliopoulos, & Kuppens, 2018), dampened affective reactions to 

negative or unpleasant artworks (Leder, Gerger, Brieber, & Schwarz, 2014), and a tendency to 

experience interest rather than confusion in response to artworks (Silvia, 2013). Based on these lines 

of research, math experts may rely on different dimensions for assessing similarity and beauty; for 

example, professional mathematicians may place greater weight on “deeper” features of arguments. 

We begin to examine these issues by recruiting an additional, albeit small, sample of professional 

mathematicians in Study 1 and a larger sample of undergraduate math students in Study 2, as well as 

testing for differences in expertise in our larger layperson sample. We argue, overall, that even 

laypeople people share an intuitive sense of mathematical aesthetics, but that this sense sharpens with 

mathematics training. 
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Study 1 

Our first two studies operationalized aesthetic experience in terms of aesthetic categorization, 

as measured through similarity judgments (e.g., Palmer et al., 2013). Specifically, we asked participants 

to rate the similarity of various pieces of art to a set of classic mathematical arguments. To the extent 

that people consistently categorize arguments with artworks, this suggests common aesthetic intuitions 

underlying participants’ experiences of mathematics. Study 1 focused on comparisons of mathematical 

arguments to visual art—specifically, landscape paintings. We chose landscape paintings as an aesthetic 

domain that is easy to process quickly, yet relatively devoid of objects (e.g., people) which people 

might associate with the surface details of mathematical arguments. Moreover, evolutionary accounts 

of human aesthetics have proposed that human aesthetics evolved in part from an intuitive capacity 

to detect and approach resource-rich environments, such as those depicted in appealing landscape 

paintings (Dutton, 2009; Orians & Heerwagen, 1992; Pinker, 1997). As a potentially foundational 

aspect of human aesthetics, landscape depictions make a good test case for aesthetic correspondences 

with other domains. 

 

Methods 

Participants were recruited from the online crowdsourcing platform Amazon Mechanical Turk 

(N = 300, 46% female) and were from the United States; the median participant had completed a 4-

year college degree. The same sample size was used in subsequent studies to avoid experimenter 

degrees of freedom. The research was deemed exempt from review by the Yale University Human 

Subjects Committee. 

A subset of these participants (N = 99) had taken a university-level math course above the 

level of calculus, while a larger subset had not (N = 201). We refer to the former subsample as 

experienced and the latter as inexperienced. 
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Separately from the Mechanical Turk sample, a sample of professional mathematicians (N = 

8) was recruited from the second author’s professional network. These participants were contacted by 

email and we included all participants who completed the principal measures. 

Participants each read four mathematical arguments (see Appendix A): 

  Geometric  Sum of an infinite geometric series 

  Gauss   Gauss’s summation trick for positive integers 

  Pigeonhole  Pigeonhole principle 

  Faulhaber  Geometric proof of a Faulhaber formula 

For each argument, they were asked to first read and reflect on the argument. Then, on subsequent 

pages, participants rated the similarity of the argument to four different landscape paintings on a scale 

from 0 (“Not at all similar”) to 10 (“Very similar”), with these ratings converted to ranks for some 

analyses. Painting were presented on their own, without title or artist information. The paintings used 

were: 

  Yosemite Looking Down Yosemite Valley, California [by Albert Bierstadt] 

  Rockies A Storm in the Rocky Mountains, Mt. Rosalie [by Albert Bierstadt] 

  Suffolk  The Hay Wain [by John Constable] 

  Andes   The Heart of the Andes [by Frederic Edwin Church] 

The arguments were presented in a random order. Paintings were blocked within each argument, 

presented on separate pages, and in a separate random order for each argument. 

After the main task, a series of memory check questions was included to monitor whether 

participants had achieved basic comprehension of the materials (e.g., identifying that one of the 

arguments concerned the sum of numbers 1 through 100 but that none of the arguments were about 

properties of prime numbers). Participants were excluded from analysis if they incorrectly answered 

one-fourth or more of these questions (N = 67) or did not produce a complete set of ratings (N = 1). 
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The same exclusion criterion was used in all studies, and the inattentive participants in all cases were 

distributed between the experienced and inexperienced groups in rough proportion to their size (for 

Studies 1–3 respectively, 57%, 71%, and 68% of excluded participants were inexperienced). 

 Yosemite Rockies Suffolk Andes 

Raw Means 

Geometric 3.51 2.99 3.30 3.05 

Gauss 2.38 2.23 2.43 1.96 

Pigeonhole 2.42 2.21 2.25 2.49 

Faulhaber 2.97 2.75 3.21 2.44 

Ranks 

Geometric 16 12 15 13 

Gauss 5 3 7 1 

Pigeonhole 6 2 4 9 

Faulhaber 11 10 14 8 

Z-Scored Means 

Geometric 0.45 0.20 0.34 0.20 

Gauss –0.13 –0.26 –0.13 –0.40 

Pigeonhole –0.09 –0.29 –0.26 0.00 

Faulhaber 0.23 0.04 0.29 –0.19 

Frequency Top-Ranked 

Geometric 37% 19% 22% 22% 

Gauss 27% 21% 33% 19% 

Pigeonhole 28% 15% 20% 37% 

Faulhaber 29% 21% 36% 14% 
 
Table 1. Similarity Judgments in Study 1 – Mechanical Turk sample. 

Note. Top panel: Raw mean similarity judgments. Second panel: Ranked similarity of each 
pair out of all 16 pairs (high numbers = more similar). Third panel: Mean similarity 
judgments, z-scored for each participant and then averaged (ignoring 9% of participants 
who entered identical scores for all items). Bottom panel: Proportion of participants 
ranking each artwork highest for a given argument (ignoring ties). 

 

Results 
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Data for all studies can be accessed from the Open Science Framework at 

http://bit.ly/2GLwhEZ. The results of Study 1 are given in Table 1, computed for the Mechanical 

Turk sample as a whole. Table 1 presents (a) the average raw similarity scores for each painting–

argument pair; (b) the ranking of these raw scores; (c) the average z-scored similarity score for each 

painting–argument pair, with the z-scores computed among each participant’s 16 judgments to 

account for variability in how the scale is used; and (d) the frequency with which participants ranked 

each painting as the most similar to a given argument. The corresponding tables for professional 

mathematicians and for the Mechanical Turk subgroups with and without higher mathematics training 

are given in Appendix B. 

Participants’ similarity judgments were not random: They reflected some consensus about the 

similarity of mathematical arguments and artworks. The difference in z-scores between the highest 

and lowest ranked pairings was 0.85 standard deviations, which corresponds to a “large” effect using 

the standard criteria (Cohen, 1988). A second way of estimating the effect size is to calculate inter-

rater reliability using Cronbach’s alpha, treating each of the 16 ratings (i.e., 4 arguments x 4 artworks) 

as an observation and each participant as a scale component. These scores indicate a very high degree 

of consistency across participants [a = .93]. However, since these approaches do not allow us to 

calculate inferential statistics, it does not show conclusively that participants’ internal consistency was 

above chance levels. We use three approaches to show that this consistency was nonrandom. 

First, to test whether the distribution of similarity scores was nonrandom, we calculated for 

each participant the correlation between that participant’s 16 ranked similarity judgments and the 

ranked judgments averaging across the other participants (leaving out that participant from the 
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sample).1 These correlations were systematically positive [p1t < .001, Wilcoxon test], reflecting the fact 

that positive correlations [N = 156] were much more common than negative correlations [N = 77], 

although the median correlation was modest in magnitude [rmed = 0.22].2 This approach demonstrates 

that participants agreed with one another about the rankings of the 16 pairs. However, one may be 

concerned that this agreement might have been generated by some arguments appearing more 

“painting-like” than others; for example, the geometric series and Faulhaber arguments both present 

geometric proofs and might be seen as more similar to paintings simply because they are pictorial.    

Second, to test whether the paintings were ranked nonrandomly even within each argument, 

we can look at the top-ranked artwork for each argument (ignoring ties), and test whether these top 

ranks were distributed randomly across artworks (see Table 1). They were not [c2(9) = 35.59, p2t < 

.001, w = 0.24]. Participants reliably believed the Yosemite painting to be most similar to the geometric 

series argument, the Suffolk painting most similar to the Faulhaber and Gauss’s summation trick 

arguments, and the Andes painting most similar to the pigeonhole argument. It is not just that some 

arguments are more painting-like or some paintings are more math-like: People have specific intuitions 

about the match of specific mathematical arguments to specific artworks. 

Third, we compared similarity rankings across participant groups to provide evidence of 

consensus across groups, as well as to check for any role of expertise. The experienced and 

                                                
1 Where possible, we rely on nonparametric statistics to reflect the fact that participants may use the 
similarity scale in nonuniform and nonlinear ways. Therefore, we use Spearman correlations 
(computing the correlations between the ranks of two variables), one-sample Wilcoxon tests 
(comparing the distribution of ranks to chance), and chi-squared tests (comparing the distribution of 
top-ranked artworks to chance). 
 
2 We use one-tailed p-values for tests where consensus is a directional hypothesis, because our 
predictions concern consensus within groups, across groups, and across domains; the alternative to 
this prediction is random ranks, not systematically opposite ranks across individuals. (For example, it 
is implausible that the average person in a sample would produce a pattern of rankings that is opposite 
to the remainder of the sample.) We therefore indicate for each p-value whether it is two-tailed (p2t) or 
one-tailed (p1t), with this decision determined by the criterion above. 
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inexperienced Mechanical Turk samples ranked the similarity of the 16 pairs in a remarkably consistent 

way [rs(14) = .89, p1t < .001], providing even further evidence for the consistency of these judgments 

(see Tables B1–2 in Appendix B). However, these judgments did not correlate significantly with the 

experts’ (Table B3) when using Spearman correlations [rs(14) = .32, p1t = .12]. One possibility is that 

the experts’ rankings were somewhat unstable due to the small sample size. This suspicion is supported 

by the significant Pearson correlations between these two groups [r(14) = .51, p1t = .023], which looks 

at the mean judgments rather than ranks. Overall, the comparison to experts suggests some 

consistency between professional mathematicians and laypeople, although it seems likely that 

mathematical experience influences one’s aesthetic judgments given the modest correlations across 

samples. In Study 2, we use a less-expert but more-accessible population of undergraduate math 

students to further test this issue of expertise with improved precision. 

 

Discussion 

These results show that laypeople come to considerable consensus in comparing mathematical 

arguments to artworks. This consensus was not driven merely by some arguments seeming particularly 

painting-like or some paintings seeming particularly mathematical, since different paintings were 

deemed most fitting for different arguments. 

The question naturally arises of how people are making these judgments: What aesthetic 

criteria do they use, and indeed are they aesthetic at all? We turn to this question in Study 3. Before 

doing so, however, we seek to replicate this basic effect within another domain—music. 

 

Study 2 

Commentators have long noted an affinity between mathematics and music (Fauvel, Flood, & 

Wilson, 2006). Music has a mathematical structure, and the Greek mathematician Pythagoras worked 
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out aspects of Western theory that persist to this day. Study 2 tests whether the aesthetics of specific 

mathematical arguments intuitively correspond to different pieces of music, in keeping with this 

historically noted affinity and with the consensus observed for paintings in Study 1. 

 

Methods 

Participants were recruited from Mechanical Turk (N = 299, 51% female). Similar to Study 1, 

a subset of experienced participants (N = 90) had taken a higher mathematics course, while a larger 

subset of inexperienced participants had not (N = 207). Participants were excluded if they failed the 

same check questions used in Study 1 (N = 73). 

Separate from the Mechanical Turk sample, a sample of Yale undergraduates (N = 28) was 

recruited from Mathematics and Applied Mathematics courses, including Calculus, Linear Algebra, 

Abstract Algebra, and Probability Theory. Students were contacted by email and we included all 

participants who completed the principal measures. 

On the same 0–10 scale used in Study 1, participants rated the similarity of each argument to 

four 20-second clips of classical music (aside from sound itself, no information about the music was 

provided): 

  Schubert Moment Musical No. 4, D 780 (Op. 94) [perf. David Fray] 

  Bach  Fugue from Toccata in E Minor (BWV 914) [perf. Glenn Gould] 

  Beethoven Diabelli Variations (Op. 120) [perf. Grigory Sokolov] 

  Shostakovich  Prelude in D-flat major (Op.87 No. 15) [perf. Adrian Brendle] 

The procedure was otherwise identical to Study 1. 

 

Results 
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The similarity ratings were much higher overall in Study 2 [M = 4.66] than in Study 1 [M = 

2.66], consistent with the idea that music is imbued with a more mathematical character. Moreover, 

participants continued to associate different pieces of music with different arguments, albeit less 

robustly than they did with paintings in Study 1.  Table 2 provides the descriptive statistics for Study 

2, including raw means, ranked means, z-scored means, and the distribution of top ranks. Whereas 

Table 2 presents these statistics for the Mechanical Turk sample as a whole, Appendix C presents the 

comparable table for the Mechanical Turk subsamples with and without higher math training and for 

the Yale undergraduates. 

Overall, the degree of consistency was more modest in Study 2, compared to Study 1. Whereas 

the largest difference in z-scores across pairings was 0.85 in Study 1, it was only 0.39 in Study 2, which 

corresponds traditionally to a small- to medium-sized effect (Cohen, 1988). Likewise, the inter-rater 

reliability was reasonably high [a = .72], though less impressive compared to Study 1 [a = .93]. 

 Schubert Bach Beethoven Shostakovich 

Raw Means 

Geometric 4.76 4.39 4.36 4.62 

Gauss 4.61 5.11 4.67 4.31 

Pigeonhole 4.52 4.42 4.89 4.83 

Faulhaber 4.32 4.59 5.04 5.06 

Ranks 

Geometric 11 4 3 9 

Gauss 8 16 10 1 

Pigeonhole 6 5 13 12 

Faulhaber 2 7 14 15 

Z-Scored Means 

Geometric 0.03 –0.14 –0.12 –0.01 

Gauss –0.08 0.18 –0.03 –0.15 

Pigeonhole –0.06 –0.14 0.12 0.08 

Faulhaber –0.13 0.00 0.20 0.24 

Frequency Top-Ranked 
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Geometric 28% 22% 22% 29% 

Gauss 17% 33% 27% 24% 

Pigeonhole 23% 21% 31% 25% 

Faulhaber 18% 25% 31% 26% 
 
Table 2. Similarity Judgments in Study 2 – Mechanical Turk. 

Note. Top panel: Raw mean similarity judgments. Second panel: Ranked similarity of each 
pair out of all 16 pairs (high numbers = more similar). Third panel: Mean similarity 
judgments, z-scored for each participant and then averaged (ignoring 3% of participants 
who entered identical scores for all items). Bottom panel: Proportion of participants 
ranking each artwork highest for a given argument (ignoring ties). 

 

We used the same three methods as in Study 1 to test whether this degree of consensus could 

be random; all three methods reject this null hypothesis. First, participants’ ranking of the pairs 

correlated with the ranking produced by the other participants more often than chance [p1t < .001, 

Wilcoxon test], although the median correlation was small in magnitude [rmed = 0.09]. 

Second, the distribution of top-ranked pieces of music differed systematically from chance 

[c2(9) = 18.66, p2t = .028, w = 0.15]. Analogous to Study 1, this result did not occur because participants 

uniformly favored certain pieces of music for all arguments. Instead, participants felt that the 

Beethoven pieces best fit the pigeonhole and Faulhaber arguments, that the Bach piece best fit Gauss’s 

summation trick, and that Schubert and Shostakovich best fit the geometric series argument. 

Participants did not just see some music as more mathematical or some mathematics as more musical, 

but ascribed a unique aesthetic to each argument.  

Third, the experienced and inexperienced Mechanical Turk subsamples were marginally 

correlated [rs(14) = .41, p1t = .059], as were the student sample and Mechanical Turk sample as a whole 

[rs(14) = .34, p1t = .096]. However, the students’ rankings were more similar to the experienced than 

to the inexperienced Mechanical Turk subsample. Whereas the former subsample correlated 

significantly and strongly with students’ ranks [rs(14) = .60, p1t = .007], the latter did not [rs(14) = .13, 
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p1t = .32]. Thus, aesthetic intuitions about mathematical arguments may develop with training in higher 

mathematics. 

 

Discussion 

These results show that, just as people can form consistent intuitions about the aesthetic 

correspondences between visual art and mathematical arguments, they can also do so for pieces of 

classical piano music. Using four different analytical methods, participants’ similarity judgments for 

pairs of music and mathematics exhibited some degree of consensus. 

Mathematical arguments are more often associated with musical rather than visual aesthetics, 

and this was reflected in the higher overall similarity judgments in Study 2. Yet, the consensus about 

correspondences between particular musical pieces and mathematical arguments was less robust 

compared to the results of Study 1 for landscape paintings. Though somewhat counterintuitive, this 

is consistent with previous findings in the empirical aesthetics literature. Aesthetic preferences are 

known to be more consistent for more concrete rather than abstract stimuli (Vessel & Rubin, 2010), 

meaning that participants may have felt less confident in their aesthetic judgments of classical music 

rather than paintings. Exacerbating this is the fact that our American participants were likely relatively 

unfamiliar with classical music, along with the methodological limitation that paintings can be 

displayed all at once, while musical clips unfold over time. Participants may have not only had duller 

intuitions about the musical pieces, since they cannot be perceived at once, but also may not have 

listened to the entire clip on each trial. It is impressive that, despite these conceptual and 

methodological limitations, participants still evinced a statistically robust consensus. 

Study 2 also provided some evidence that this consensus develops with mathematics expertise: 

The experienced Mechanical Turk subsample was more similar in their judgments to the 

undergraduate math students than either group was to the inexperienced Mechanical Turk subsample. 
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The notion that expertise can influence aesthetic judgments is further bolstered by previous work in 

aesthetics, finding, for example, that photo professionals have higher ability to process photographs 

and consequently prefer more novel and uncertain photographs (Axelsson, 2007) and that art experts 

are likelier to experience interest and less likely to experience confusion when contemplating artworks 

(Silvia, 2013). Perhaps mathematical expertise similarly deepens aesthetic preferences in the 

mathematical domain, leading to more consistent responses. 

Study 3 

In Study 3, we use a different operationalization of aesthetic experience—ratings of beauty 

and other potentially aesthetic properties—to provide converging evidence for consistency in aesthetic 

intuitions about mathematics. We have so far shown systematic consistency in judgments of similarity 

between artworks and mathematical arguments. Such aesthetic categorizations support the idea that 

mathematical arguments are experienced in some dimensions analogous to artworks—that they are 

experienced aesthetically. However, these studies have not shown how people make these evaluations. 

In the empirical aesthetics literature, a prominent view holds that people make aesthetic judgments 

based on an artwork’s collative properties, or higher-order properties relating to its arousal potential (e.g., 

complexity and novelty; Berlyne, 1960). How do such properties contribute to the aesthetics of 

mathematical arguments, and is their role in the mathematical domain similar to their role in the visual 

domain? Would participants report consistent experiences of aesthetic pleasure (beauty) in 

mathematical arguments, as they make consistent aesthetic categorizations? 

Study 3 also seeks to address an important concern about Studies 1 and 2: That the similarity 

judgments in those studies may not reflect specifically aesthetic correspondences between the artworks 

and arguments, but rather more superficial similarities. For example, in a pilot version of Study 1, one 

of the paintings we had chosen included a group of bears. Some participants reported in their written 

comments that they had paired that painting with the argument about the pigeonhole principle because 
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that argument uses an analogy to a group of friends, which would create consistency across responses 

due to a highly superficial cue. We replaced this painting in the full version of Study 1, restricting 

ourselves to pure landscape paintings, and carefully scoured participant’s comments for any further 

evidence of such thinking at an explicit level. Nonetheless, such superficial correspondences are 

difficult to rule out definitively on the basis of Studies 1 and 2 alone. 

To address this problem as well as the question of what properties guide aesthetic judgments 

across the visual and mathematical domains, Study 3 asked participants to rate a variety of potentially 

aesthetic dimensions for both the paintings and the arguments used in Study 1, using a method similar 

to that of Inglis and Aberdein’s (2015) study of professional mathematicians. In choosing these 

dimensions, we faced several constraints: They had to be appropriate as descriptions of artworks and 

of mathematical arguments, they had to be plausibly related to aesthetics, and they needed to be 

intuitive and evaluable by laypeople. One possibility would be to use collative properties measured in 

the empirical aesthetics literature (e.g., complexity). However, as descriptive terms, some important 

collative properties are either unclear in context to laypeople (e.g., unity) or awkward as descriptions 

of proofs (e.g., variety). Moreover, some higher-order dimensions considered anecdotally important 

to practicing mathematicians (e.g., profundity) would be overlooked by this approach. A second 

possibility would be to start with the dimensions previously tested in studies of mathematicians’ proof 

appraisals (Inglis & Aberdein, 2015, 2016). However, this leads to the opposite problem: Some 

important dimensions for appraising proofs are non-aesthetic and do not make sense as appraisals of 

paintings (e.g., useful, applicable) and others would be difficult for laypeople to evaluate for proofs 

(e.g., rigorous). 

Although one solution would be to mix and match dimensions from each of these two 

approaches, we instead chose an approach based on first principles: Mathematicians’ own anecdotal 

reports of aesthetic pleasure from proofs. We derived 10 dimensions from the mathematician G. H. 
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Hardy’s (1940) famous discussion of mathematical beauty in A Mathematician’s Apology. Hardy discusses 

six dimensions as essential to mathematical beauty—seriousness, generality, depth, unexpectedness, 

inevitability, and economy. For the first five dimensions, we used near-synonyms for some that would 

be more appropriate for artworks: serious, universal, profound, novel, and clear. For economy, we used four 

terms capturing different aspects: simple, elegant, intricate, and sophisticated. 

 

Methods 

Participants were recruited from Mechanical Turk (N = 300, 51% female), with a larger 

subsample that was inexperienced in higher mathematics (N = 194) and a smaller subset that was 

experienced (N = 104). Participants were excluded based on the same criteria used in previous studies 

(N = 94). 

The main task had two parts, completed in a counterbalanced order. One part asked 

participants to consider each of the four paintings used in Study 1 and to rate these paintings on ten 

dimensions (“In your judgment, to what extent do the following descriptions apply to this painting?”): 

beautiful, serious, universal, profound, novel, clear, simple, elegant, intricate, sophisticated. These ratings were made 

in a random order for each painting and the paintings were presented in a random order. The other 

part asked participants to make these same ratings for the four arguments used in Studies 1 and 2. 

 

Results 

The mean judgments on each dimension are given in Table 3. The breakdown by expertise 

group (the subsamples with and without higher math experience) in Appendix D reveals that most 

aesthetic judgments—including beauty—were higher among the more expert subsample. 

Overall, participants relied on similar aesthetic criteria for assessing beauty in both the artistic 

and mathematical domains. Moreover, these dimensions predicted the similarity ratings in Study 1. 
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Consistency of aesthetic intuitions. Participants made consistent judgments of each 

aesthetic judgment, both within the artistic and mathematical domains. To quantify consistency, we 

calculated inter-rater reliability using an analogous procedure to Studies 1 and 2, separately for the 

artworks and arguments. First, in each case we treated all forty judgments (10 judgments for each of 

the 4 paintings or arguments) as observations and each participant as a scale component. This revealed 

highly reliable judgments, both for artworks [a = .98] and arguments [a = .97]. Second, we 

investigated each aesthetic judgment separately, now treating each of the 4 paintings or arguments as 

observations. We find reliable judgments on most measures, for both paintings and arguments. In all 

cases, a > .70, and usually much higher: beauty [a = .96 and a = .97, respectively], seriousness [a = 

.91 and .89], universality [a = .89 and .97], profundity [a = .98 and .93], novelty [a = .85 and .82], 

clarity [a = .94 and .99], simplicity [a = .92 and .98], elegance [a = .94 and .96], intricacy [a = .73 and 

.90], and sophistication [a = .95 and .81]. Thus, not only were beauty judgments highly reliable across 

participants, but judgments of many other potentially aesthetic properties were reliable too. 

 Yosemite Rockies Suffolk Andes 

Beauty 8.49 8.05 8.24 7.25 

Seriousness 6.49 6.13 7.07 6.56 

Universality 6.41 6.56 6.20 5.76 

Profundity 6.83 6.24 6.93 5.25 

Novelty 5.05 4.83 5.44 4.81 

Clarity 7.27 7.23 6.97 6.26 

Simplicity 4.03 3.97 3.20 4.27 

Elegance 7.07 6.84 7.05 6.08 

Intricacy 7.00 7.13 7.32 6.83 

Sophistication 6.60 6.46 6.88 5.66 

 Geometric Gauss Pigeonhole Faulhaber 

Beauty 3.95 3.54 2.56 4.27 

Seriousness 5.88 5.96 5.14 6.05 

Universality 6.88 5.56 5.10 6.72 
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Profundity 4.58 4.97 3.99 5.24 

Novelty 4.36 4.95 4.24 4.85 

Clarity 7.11 4.91 4.14 6.58 

Simplicity 6.08 3.83 3.46 5.43 

Elegance 4.04 3.72 3.02 4.68 

Intricacy 4.80 5.87 5.48 5.05 

Sophistication 4.74 5.05 4.68 5.44 
 
Table 3. Aesthetic Judgments in Study 3 – All Participants. 

Note. Entries are mean aesthetic judgments. 

 

Aesthetic intuitions across domains and expertise. To test how participants judged beauty 

in each of these domains, we fit two hierarchical regression models—one for paintings and one for 

arguments—using judgments of beauty as the dependent variable and the nine aesthetic dimensions 

as predictors. Random intercepts were included for item and for each participant, to account for the 

repeated measures design. The coefficients are displayed in Table 4. The corresponding analyses for 

the experienced and inexperienced Mechanical Turk subsamples are presented in Appendix D. 

 
 Paintings Arguments 

Seriousness –0.068 (0.025)** 0.027 (0.024) 

Universality 0.073 (0.025)** –0.009 (0.025) 

Profundity 0.178 (0.028)*** 0.104 (0.026)*** 

Novelty –0.001 (0.026) 0.043 (0.024)º 

Clarity 0.176 (0.027)*** 0.063 (0.029)* 

Simplicity –0.062 (0.022)** 0.050 (0.027)º 

Elegance 0.316 (0.033)*** 0.679 (0.026)*** 

Intricacy 0.055 (0.030)º 0.024 (0.026) 

Sophistication 0.039 (0.031) –0.009 (0.027)* 
° p2t < .10            * p2t < .05            ** p2t < .01            *** p2t < .001 

 
Table 4. Predictors of Beauty Judgments in Study 3 – All 
Participants. 
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Note. Entries are the coefficients (SEs) in a hierarchical regression 
predicting ratings of “beautiful” from ratings of all other attributes. 

 

Overall, the three most important dimensions (adjusting for the others) for both artworks and 

arguments were elegance, followed by profundity, followed by clarity. (Elegance was the most 

important factor by far for arguments, whereas these factors were more equal for paintings.) Three 

other factors had strong relationships for paintings, but not arguments: Simplicity (negative for 

paintings, positive for arguments), universality (positive for paintings only), and seriousness (negative 

for paintings only). The other three factors (sophistication, intricacy, and novelty) played little role 

within either domain.  

We can test whether participants used similar dimensions across domains by calculating the 

correlation between the two sets of coefficients. The Pearson correlation coefficient was significant 

[r(7) = .75, p1t = .010]. However, given the very strong influence of elegance, it is useful to look at 

Spearman correlations as well, which consider only the rank-ordering of the coefficients. This 

correlation reaches marginal significance [rs(7) = .48, p1t = .097]. This similarity in rank-ordering 

between the two domains was driven by the experienced subsample [rs(7) = .53, p1t = .074], but not 

the inexperienced subsample [rs(7) = .23, p1t = .28]. This further bolsters the case that intuitions about 

mathematical beauty sharpen with experience in higher mathematics. 

To look into the expertise issue in more detail, we can compare the coefficients across 

expertise groups. For paintings, the groups with and without higher mathematics background used 

remarkably similar weights, with simplicity, profundity, and clarity the most important predictors for 

both groups. Indeed, the coefficients were very highly correlated [rs(7) = .92, p1t < .001]. However, for 

the mathematical arguments, the two groups used quite different criteria. Whereas the group with 

higher mathematics background relied mainly on profundity, clarity, and elegance (as they did for 

paintings), the group without such background relied almost exclusively on elegance (as well as a 
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smaller weight on sophistication), leading to a nonsignificant correlation between the two groups’ 

coefficient rankings [rs(7) = .07, p1t = .44]. Thus, higher mathematics training sharpens aesthetic 

intuitions in a domain-specific way, with more consistent intuitions about mathematical beauty but 

intuitions about artistic beauty similar to those of untrained novices. 

Using aesthetic intuitions to predict similarity judgments. Since participants in Study 1 

gave similarity judgments for each pair of painting and argument, we can use participant’s judgments 

about the aesthetic qualities of each painting and argument from Study 3 to model these judgments. 

To do so, we computed the pairwise similarities using the Study 3 data, in three different ways, in all 

cases using Euclidean distance to calculate (dis)similarity. 

 Yosemite Rockies Suffolk Andes 

Similarity Ranking from Beauty Judgments 

Geometric 10 6 8 2 

Gauss 13 9 12 3 

Pigeonhole 16 14 15 11 

Faulhaber 7 4 5 1 

Similarity Ranking from Elegance, Profundity, and Clarity 

Geometric 8 7 9 2 

Gauss 13 11 12 4 

Pigeonhole 16 14 15 10 

Faulhaber 6 3 5 1 

Similarity Ranking Weighted by Coefficients 

Geometric 9 7 8 2 

Gauss 13 11 12 4 

Pigeonhole 16 14 15 10 

Faulhaber 6 3 5 1 
 
Table 5. Similarity rankings computed from Study 3 data.  

Note. Entries are the ranked similarity scores using the three similarity metrics 
described in the main text, computed using Study 3 data. Higher numbers 
indicate higher similarity. 
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A simple first approach was to calculate the Euclidean distance between the beauty judgments 

for each pair: 

(𝐵#$% − 𝐵#$')) = |𝐵#$% − 𝐵#$'| 

where Bart and Barg represent beauty judgments for artworks and arguments, respectively. We then 

converted these to ranks, which are displayed in Table 5. These ranks were marginally correlated with 

the similarity rankings from Study 1 [rs(14) = .36, p1t = .088], suggesting that the Study 3 data have 

some out-of-sample predictive power for the Study 1 similarity scores. Although this measure has the 

advantage of being straightforward and capturing aesthetic pleasure in its purest form, it collapses all 

of aesthetics into a single dimension. This is limiting, since something can be beautiful in one sense 

but not another, and since aesthetic experience is broader than aesthetic pleasure. For example, 

Gödel’s incompleteness theorems might be considered very high on profundity (indeed, they 

fundamentally challenged the philosophical foundations of mathematics) but very low on simplicity 

(their proofs are extremely complicated).  

A second approach which allows for similarity scores that account for multiple dimensions 

was to rely on the three dimensions that were important predictors of beauty judgments, both for 

artworks and for arguments: elegance, profundity, and clarity. For each pair, we computed: 

(𝐸#$% − 𝐸#$')) + (𝑃#$% − 𝑃#$')) + (𝐶#$% − 𝐶#$')) 

where Eart and Earg represent elegance judgments, Part and Parg represent profundity judgments, and Cart 

and Carg represent clarity judgments. The resulting similarity rankings (see Table 5) correlated 

significantly with participants’ similarity judgments from Study 1 [rs(14) = .44, p1t = .046]. This ranking 

has the benefit of taking account of multiple dimensions, but arbitrarily applies equal weight to all 

dimensions. 
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A third approach which allows for the weight to vary across dimensions is to compute a vector 

of weights w, where each entry in the vector wi is a weight to be applied to each of the nine aesthetic 

dimensions, by multiplying the two coefficients for that dimension, for artworks and arguments [bi,art 

* bi,arg ], found in the top panel of Table 5. This approach weights dimensions to the extent that they 

have predictive power (in the same direction) for both artworks and arguments. These weights were 

then applied to the nine judgment dimensions: 

(𝐷1,#$% − 𝐷1,#$')) ∙ 𝑤1

5

167

 

where Di,art and Di,arg represent the ith of the nine dimensions, respectively for artworks and arguments. 

Once again, these similarity rankings (shown in Table 5) were significantly correlated with the similarity 

rankings made out-of-sample in Study 2 [rs(14) = .44, p1t = .047]. 

 

Discussion 

Study 3 builds on the findings of Studies 1 and 2 in several respects. First, participants relied 

principally on the same three dimensions for evaluating artistic and mathematical beauty—elegance, 

profundity, and clarity. This further supports the notion that people have aesthetic intuitions about 

mathematics which are related to our broader aesthetic sensibilities. Second, intuitions about these 

aesthetic dimensions sharpened with mathematics training, consistent with evidence from Studies 1 

and 2 that people develop expertise in these aesthetic judgments. Third, the individual aesthetic 

judgments of artworks and arguments in Study 3 could be used to model the similarity judgments 

made out-of-sample in Study 1, lending further support to the claim that the Study 1 judgments were 

indeed judgments of aesthetic similarity, rather than more superficial features. 
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Although we did not test professional mathematicians in Study 3, we can compare our results 

to Inglis and Aberdein (2015), who asked professionals to assess mathematical arguments on 80 

different dimensions. In fact, of the remaining 79 dimensions, elegance was the strongest predictor of 

beauty within their sample too, with judgments of profundity and clarity also reaching significance. 

Simplicity and intricacy were not significantly associated with beauty among the professionals in this 

study, consistent with our finding of at most a weak relationship between beauty and these dimensions. 

Once again, this suggests some commonality among the dimensions used by (experienced) novices 

and experts, with the qualification that our inexperienced subsample relied only on elegance among 

these dimensions. In fact, this is the same pattern we found in Study 2, where student “experts” had 

similar judgments to the experienced subsample but not the inexperienced subsample. Even a modest 

dose of higher math training appears to develop aesthetic intuitions in the direction of professional 

mathematicians, consistent with research in categorization, which finds that expertise alters the 

dimensions we use in categorization (Chi et al., 1981; Medin et al., 1997), and in empirical aesthetics, 

which finds that experts experience more nuanced aesthetic emotions (Fayn et al., 2018). 

 

General Discussion 

Paul Erdős used to say that a mathematician did not need to believe in God, but did need to 

believe in The Book—a platonic collection of mathematical statements with their most beautiful 

proofs. Mathematicians to this day will colloquially refer to particularly beautiful proofs as “being form 

The Book.” When two mathematicians, Gunther Aigner and Martin Ziegler (1998), published a “first 

approximation” to The Book, containing a collection of beautiful statements with particularly beautiful 

proofs, the result was a bestseller in the mathematical community. 

Can laypeople, like mathematicians, discern which proofs belong in The Book and which do 

not? Our studies demonstrate that, when mathematical arguments are stated in a simple form, 
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laypeople have consistent intuitions about the aesthetics of mathematics. Participants’ ratings of how 

mathematical arguments corresponded to different artworks had strong internal consistency, as well 

as some relationship to those of experts. This was true for landscape paintings (Study 1) and classical 

music (Study 2). Moreover, people relied on several of the same dimensions for evaluating 

mathematical and artistic beauty (Study 3), with the pairwise similarity between aesthetic ratings 

predicting judgments of similarity in a separate sample. Mathematical beauty, then, does not appear to 

be solely in the eye of the beholder but appears to have deep psychological roots.   

Several results spoke to the role of expertise in aesthetic judgments. In Study 1, lay participants’ 

judgments were weakly correlated with expert mathematicians’ judgments (only reaching significance 

using Pearson correlations). This may suggest a shift in aesthetic beliefs associated with expertise, 

although caution is warranted given the small sample of professionals. In Study 2, laypeople with 

experience in higher mathematics were more similar to math undergraduates than either group was to 

laypeople without such expertise, suggesting a shift due to expertise in a more convincing way. In 

Study 3, laypeople with and without higher mathematics experience used very similar dimensions for 

judging the aesthetics of paintings, but differed wildly in how they judged mathematical arguments, 

once again speaking to a shift with expertise. Overall, expertise appears to shift the dimensions along 

which mathematical beauty is computed, much as expertise shapes our categorization schemes and 

similarity judgments in other domains (Chi et al., 1981; Medin et al., 1997) and aesthetic expertise 

specifically shapes aesthetic experience (Fayn et al., 2018; Leder et al., 2012, 2014). 

 

Relation to Cognitive Science Broadly 

The results of these studies inform several areas of inquiry in cognitive science, including 

empirical aesthetics, expertise, education, reasoning, and the philosophy of mathematics. 
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First, within empirical aesthetics, these results contribute to the research tradition 

documenting aesthetic commonalities across individuals. For instance, people share aesthetic 

knowledge within a culture for geometric figures (Westphal-Fitch & Fitch, 2017). Moreover, these 

interpersonally shared intuitions are largely automatic: People can form stable aesthetic judgments 

about paintings on time-scales as short as 50ms (Verhavert, Wagemans, & Augustin, 2018). 

Evolutionary accounts of aesthetics (e.g., Dutton, 2009; Hekkert, 2014; Pinker, 1997) have typically 

focused on aesthetic perception, grounded in the idea that aesthetic pleasure draws us toward 

adaptively beneficial objects, such as resource-rich savannahs, reproductively fit mates, and readily 

processed visual stimuli. The current results suggest that we need a broader conceptualization to 

capture the full range of human aesthetic experiences, including the aesthetics of ideas. We think an 

enriched evolutionary approach, accounting for the adaptiveness of aesthetically appealing ideas, is a 

promising avenue for future research (see Hekkert, 2014 and “Future Research” below). 

Second, within the psychology of expertise, these results contribute to the longstanding 

question of what distinguishes experts from laypeople within a domain. For example, chess experts 

are not distinguished from non-experts so much in terms of their calculating speed or ability to look 

ahead large numbers of moves, but instead in their ability to recall and reason about a large number 

of known chess positions (Chase & Simon, 1973). In fact, chess experts even use the fusiform face 

area to recognize naturalistic (but not scrambled) chess positions (Bilalic, Langner, Ulrich, & Grodd, 

2011). The current results suggest that expertise is not only associated with different quantities and 

types of knowledge, but also with different aesthetic preferences. That is, while the judgments of 

experts usually bore some similarity to those of laypeople, the balance of the evidence suggests a shift 

in what criteria are used to evaluate the beauty of mathematical arguments. 

The role of aesthetic judgments and domain expertise would be interesting to investigate in 

other domains, such as chess, where other aspects of expert development are better-understood. 
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Indeed, aesthetic judgments about chess are common among chess experts (Margulies, 1971). The 

writer Vladimir Nabokov even published Poems and Problems—a book containing 53 poems and 18 

chess problems—stating that “Chess problems demand from the composer the same virtues that 

characterize all worthwhile art: originality, invention, conciseness, harmony, complexity and splendid 

insincerity” (Nabokov, 1969). Perhaps aesthetic intuitions play an aesthetic role in chess play, as some 

mathematicians have reported that they do in guiding their mathematics. 

Third, within educational psychology, these results might inform debates about the teaching 

of mathematics and the introduction of rigorous proof. Students appear to struggle with proof because 

of unfamiliarity with concepts, the difficulty of mathematical notation and language, and uncertainty 

about where to start (Moore, 1994). It is not unreasonable to introduce rigorous proof in the context 

of geometry, which is laden with less mathematical notation than other areas of mathematics. But if 

adults’ shared sense of mathematical aesthetics is shared in adolescence or earlier (an open question), 

educators may be missing opportunities to capitalize on students’ aesthetic sensibilities. Perhaps 

students introduced to formal proof with aesthetically pleasing arguments would not only be likelier 

to understand them, but also develop an affection for mathematics (see Sinclair, 2004). 

Fourth, within the psychology of reasoning, these results speak to the role of aesthetic 

considerations in guiding inference. Some have argued that people infer that an explanation is true 

when it strikes them as elegant, beautiful, or satisfying—that is, aesthetically pleasing (Johnson, 2017; 

Lipton, 2004). This fits anecdotal evidence from scientists and mathematicians who claim to use 

beauty as a guide to the truth (e.g., Dirac, 1963). And indeed, previous studies do suggest that people 

find explanations likely to the extent that they are satisfying (Khemlani et al., 2011; Lombrozo, 2007) 

and that satisfying explanations are often “truth-tracking” in conforming to the laws of probability 

(Johnson et al. 2016, 2017; Johnston et al., 2016). However, the current studies are the first, to our 
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knowledge, to directly demonstrate an aesthetic component to lay explanation by measuring beauty 

directly or correspondences to aesthetic objects. 

Finally, and most directly, these results inform the debate about the aesthetics of mathematical 

arguments, which has long raged among philosophers and mathematicians. Many mathematicians 

have claimed that aesthetic beauty is an objective property of mathematical arguments (e.g., Hardy, 

1940; Poincaré, 1913; Tao, 2007). On the other hand, some writers have argued that statements made 

about mathematical beauty are really about the truth or utility of the underlying argument (e.g., Harré, 

1958; Rota, 1997; Todd, 2010). One piece of evidence against the latter view is that professional 

mathematicians’ appraisals of proofs are characterized by several dimensions, including aesthetics, 

intricacy, utility, and precision, with aesthetic components strongly affecting judgments of beauty 

(Inglis & Aberdein, 2015). The current evidence suggests that even among laypeople, proof appraisals 

have an aesthetic component akin to the aesthetic evaluation of artworks, almost as though they treat 

proofs as artworks, and indeed Study 3 found that mathematically experienced laypeople relied on 

many of the same dimensions as the experts in Inglis and Aberdein (2015). 

 

Future Research 

Cognitive mechanisms. Although the current results suggest that people can experience 

mathematical arguments aesthetically, there are lingering questions about the extent and cognitive 

underpinnings of this ability. For example, all of our arguments were conventionally “beautiful” 

proofs. Would laypeople also be able to distinguish between beautiful and ugly proofs, as 

mathematicians seem to (Wells, 1990)? 

Moreover, these studies do not tell us what cues people rely on to judge the underlying 

dimensions of their proof appraisals, such as elegance. There is research on how simplicity guides 

explanatory judgments broadly (Bonawitz & Lombrozo, 2012; Johnson et al., 2017; Lombrozo, 2007), 
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though much less in the mathematical domain. But very little is known about how people judge 

aesthetic qualities such as elegance or profundity. What drives such judgments? Both emotions versus 

semantic content seem to play roles in guiding aesthetic judgments in different domains (Brielmann 

& Pelli, 2017; Palmer et al., 2013; Vessel & Rubin, 2010). In other domains, such as photography, 

semantic content is known to be an important driver of aesthetic preferences. Eliciting more multi-

dimensional ratings from participants (e.g., Blijlevens et al., 2017; Inglis & Aberdein, 2015) would help 

to uncover the finer basis of these judgments in affective or cognitive processes. 

Other kinds of data could also help to illuminate the cognitive underpinnings of both 

mathematical aesthetic experiences and aesthetic experiences of ideas more broadly. First, 

developmental data could be useful in pinpointing which cognitive abilities are required for aesthetic 

experiences of mathematics, such as explanatory reasoning abilities (Bonawitz & Lombrozo, 2012; 

Johnston et al., 2016). More provocatively, perhaps the developmental trajectory is reversed: Maybe 

broader explanatory reasoning abilities are dependent on aesthetic experiences. In that case, perhaps 

aesthetic preferences can be harnessed to facilitate math education, as suggested by Sinclair (2004). 

Second, brain data could useful for further understanding the relationship between novices’ and 

experts’ aesthetic experiences of mathematics, following on studies of the neural correlates of 

mathematicians’ aesthetic judgments of proofs (Zeki et al., 2014) and developmental changes in the 

neural correlates of music appreciation (Nieminen, Istók, Brattico, Tervaniemi, & Huotilainen, 2011).  

Consensus and expertise. These studies do not tell us whether the moderate degree of 

consensus we see among novices reflects an underlying Platonic sense of beauty. While this is 

ultimately a philosophical question, further empirical evidence could be relevant to the normative 

debate. For example, Inglis and Aberdein (2016) find that professional mathematicians experience a 

surprisingly high degree of disagreement in their appraisals of at least one proof, in apparent contrast to 

our finding that laypeople experience a surprisingly high degree of agreement. This paradox may be 
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more apparent than real, if we expect a very high degree of consensus from mathematicians and low 

degree of consensus from laypeople, but in fact find a moderate degree of consensus among both 

groups. It is also possible that some proofs are divisive for mathematicians (e.g., “clever” proofs that 

elegantly prove some theorem while providing relatively little illumination), whereas others are widely 

agreed as beautiful or ugly. Both of these possibilities are not testable with our current data, since our 

sample of professional mathematicians was small and Inglis and Aberdein (2016) tested only one 

argument. Further studies testing a larger sample of mathematicians and laypeople on an expanded set 

of arguments could help to resolve this issue. 

Cross-cultural data could illuminate the related issue of (dis)agreement across cultures. In some 

cases, aesthetic preferences do appear to be similar across cultures (e.g., Palmer et al., 2013). However, 

given that culture shapes approaches to logical reasoning (Peng & Nisbett, 1999) and categorization 

(Medin & Atran, 2004), might people from different cultures have different aesthetic sensibilities 

about mathematical arguments? A negative answer would tend to support a more Platonic view of 

mathematical aesthetics, whereas a positive answer would support a more subjectivist view. Our 

suspicion is that there is substantial cross-cultural consensus, in keeping with the idea that aesthetic 

preferences in mathematics are rooted in broader evolved capacities. This would also be in keeping 

with anecdotes about some mathematicians with little formal training in Western mathematics, such 

as Srinivasa Ramanujan (Kanigal, 2016). Ramanujan discovered mathematics widely perceived as both 

strikingly original and deeply beautiful by the world mathematical community, some of these 

discoveries pointing toward deep and mysterious structures that are still not fully understood. Still, it 

is entirely possible that such aesthetic judgments manifest themselves differently across cultures, just 

as there is variability in musical preferences across cultures despite the apparent existence of some 

evolved aspects of our musical faculties (Hauser & McDermott, 2003). 
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The aesthetics of ideas. Finally, we hope that this work serves as a broad call to action in 

investigating the aesthetics of abstract ideas. If people experience aesthetic pleasure and make reliable 

aesthetic judgments about a domain as abstract as mathematics, it is likely that aesthetic experiences 

in less abstract domains of ideas would be even more powerful. Scientists often invoke aesthetic 

considerations in justifying their preference for one theory over another, which perhaps helps to guide 

scientists toward truth (if we believe Dirac, Einstein, and Keats). Social engineers may experience 

aesthetic pleasure at contemplating particularly beautiful social arrangements, and such considerations 

may play a role in political decision-making, particularly in regimes unconstrained by democratically 

expressed preferences. Consumers may be attracted to particular ideas expressed in the marketplace, 

especially in the less tangible domain of services, complementing insights about physical products in 

consumer behavior and product design (e.g., Desmet & Hekkert, 2007; Hoyer & Stokburger-Sauer, 

2012). Understanding the aesthetics of ideas could prove to be a critical link between the affective and 

cognitive sciences. 
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Appendices 
 

Appendix A: Text of Arguments 
 
Geometric: Sum of an infinite geometric series 

 
 
Gauss: Gauss’s summation trick for positive integers* 

 

                                                
* The minor typo in this item (can you spot it?) was present in the experimental materials. However, 
it is unlikely that this substantially influenced the results of the study, as (a) it scores as well as or 
better than the other proofs on the dimensions measured in Study 3, and (b) Study 1 participants 
had the opportunity to write comments at debriefing, and no participant mentioned the typo. 
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Pigeonhole: Pigeonhole principle 

 
 
 
Faulhaber: Geometric proof of a Faulhaber formula 
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Appendix B: Study 1 Results by Subgroup 
 

 Yosemite Rockies Suffolk Andes 

Raw Means 

Geometric 3.41 2.88 3.08 2.88 

Gauss 2.31 2.15 2.28 1.88 

Pigeonhole 2.23 1.99 2.09 2.37 

Faulhaber 2.77 2.64 3.06 2.35 

Ranks 

Geometric 16 12.5 15 12.5 

Gauss 7 4 6 1 

Pigeonhole 5 2 3 9 

Faulhaber 11 10 14 8 

Z-Scored Means 

Geometric 0.48 0.23 0.33 0.20 

Gauss –0.12 –0.24 –0.12 –0.38 

Pigeonhole –0.10 –0.38 –0.31 –0.02 

Faulhaber 0.19 0.09 0.33 –0.17 

Frequency Top-Ranked 

Geometric 39% 18% 23% 20% 

Gauss 32% 18% 31% 19% 

Pigeonhole 31% 11% 19% 39% 

Faulhaber 28% 23% 36% 14% 
 
Table B1. Similarity Judgments in Study 1 – Mechanical Turk Sample 
Without Higher Mathematics Training. 

Note. Top panel: Raw mean similarity judgments. Second panel: Ranked similarity of each 
pair out of all 16 pairs (high numbers = more similar). Third panel: Mean similarity 
judgments, z-scored for each participant and then averaged (ignoring participants who 
entered identical scores for all items). Bottom panel: Proportion of participants ranking 
each artwork highest for a given argument (ignoring ties). 
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 Yosemite Rockies Suffolk Andes 

Raw Means 

Geometric 3.76 3.27 3.79 3.44 

Gauss 2.55 2.40 2.77 2.13 

Pigeonhole 2.85 2.71 2.62 2.75 

Faulhaber 3.45 3.01 3.56 2.66 

Ranks 

Geometric 15 11 16 12 

Gauss 3 2 8 1 

Pigeonhole 9 6 4 7 

Faulhaber 13 10 14 5 

Z-Scored Means 

Geometric 0.36 0.14 0.35 0.20 

Gauss –0.15 –0.31 –0.13 –0.43 

Pigeonhole –0.06 –0.11 –0.16 0.04 

Faulhaber 0.32 –0.06 0.20 –0.24 

Frequency Top-Ranked 

Geometric 31% 24% 18% 27% 

Gauss 19% 25% 38% 19% 

Pigeonhole 23% 21% 21% 35% 

Faulhaber 31% 19% 35% 15% 
 
Table B2. Similarity Judgments in Study 1 – Mechanical Turk Sample 
With Higher Mathematics Training. 

Note. Top panel: Raw mean similarity judgments. Second panel: Ranked similarity of each 
pair out of all 16 pairs (high numbers = more similar). Third panel: Mean similarity 
judgments, z-scored for each participant and then averaged (ignoring participants who 
entered identical scores for all items). Bottom panel: Proportion of participants ranking 
each artwork highest for a given argument (ignoring ties). 
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 Yosemite Rockies Suffolk Andes 

Raw Means 

Geometric 4.19 3.30 3.20 2.17 

Gauss 3.40 3.46 2.84 2.34 

Pigeonhole 2.27 2.59 2.31 2.08 

Faulhaber 4.19 3.61 2.95 2.81 

Ranks 

Geometric 15.5 11 10 2 

Gauss 12 13 8 5 

Pigeonhole 3 6 4 1 

Faulhaber 15.5 14 9 7 

Z-Scored Means 

Geometric 0.67 0.06 –0.02 0.02 

Gauss 0.19 0.31 –0.16 –0.38 

Pigeonhole –0.55 –0.14 –0.35 –0.57 

Faulhaber 0.56 0.48 0.02 –0.14 

Frequency Top-Ranked 

Geometric 29% 14% 14% 43% 

Gauss 50% 25% 12% 12% 

Pigeonhole 25% 12% 25% 38% 

Faulhaber 38% 12% 12% 38% 
 
Table B3. Similarity Judgments in Study 1 – Mathematicians. 

Note. Top panel: Raw mean similarity judgments. Second panel: Ranked similarity of each 
pair out of all 16 pairs (high numbers = more similar). Third panel: Mean similarity 
judgments, z-scored for each participant and then averaged (ignoring participants who 
entered identical scores for all items). Bottom panel: Proportion of participants ranking 
each artwork highest for a given argument (ignoring ties). 
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Appendix C: Study 2 Results by Subgroup 

 Schubert Bach Beethoven Shostakovich 

Raw Means 

Geometric 4.66 4.38 4.49 4.79 

Gauss 4.47 5.01 4.63 4.29 

Pigeonhole 4.33 4.35 4.98 4.96 

Faulhaber 4.53 4.58 5.07 5.19 

Ranks 

Geometric 10 4 6 11 

Gauss 5 14 9 1 

Pigeonhole 2 3 13 12 

Faulhaber 7 8 15 16 

Z-Scored Means 

Geometric –0.03 –0.17 –0.07 0.06 

Gauss –0.14 0.12 –0.03 –0.16 

Pigeonhole –0.13 –0.20 0.18 0.12 

Faulhaber –0.07 0.00 0.22 0.29 

Frequency Top-Ranked 

Geometric 24% 21% 25% 30% 

Gauss 15% 32% 27% 26% 

Pigeonhole 18% 19% 36% 27% 

Faulhaber 20% 23% 29% 28% 
 
Table C1. Similarity Judgments in Study 2 – Mechanical Turk Sample 
Without Higher Mathematics Training. 

Note. Top panel: Raw mean similarity judgments. Second panel: Ranked similarity of each 
pair out of all 16 pairs (high numbers = more similar). Third panel: Mean similarity 
judgments, z-scored for each participant and then averaged (ignoring participants who 
entered identical scores for all items). Bottom panel: Proportion of participants ranking 
each artwork highest for a given argument (ignoring ties). 

 

 

 
 
 
 



Mathematical Aesthetics  / 55 

 Schubert Bach Beethoven Shostakovich 

Raw Means 

Geometric 5.04 4.43 4.11 4.30 

Gauss 4.91 5.32 4.71 4.32 

Pigeonhole 4.97 4.60 4.73 4.58 

Faulhaber 3.91 4.61 5.06 4.78 

Ranks 

Geometric 14 5 2 3 

Gauss 12 16 9 4 

Pigeonhole 13 7 10 6 

Faulhaber 1 8 15 11 

Z-Scored Means 

Geometric 0.18 –0.08 –0.23 –0.14 

Gauss 0.05 0.29 –0.04 –0.14 

Pigeonhole 0.07 –0.01 0.01 –0.01 

Faulhaber –0.26 –0.01 0.19 0.12 

Frequency Top-Ranked 

Geometric 35% 22% 17% 25% 

Gauss 21% 33% 25% 21% 

Pigeonhole 31% 25% 22% 22% 

Faulhaber 16% 27% 36% 21% 
 
Table C2. Similarity Judgments in Study 2 – Mechanical Turk Sample 
With Higher Mathematics Training. 

Note. Top panel: Raw mean similarity judgments. Second panel: Ranked similarity of each 
pair out of all 16 pairs (high numbers = more similar). Third panel: Mean similarity 
judgments, z-scored for each participant and then averaged (ignoring participants who 
entered identical scores for all items). Bottom panel: Proportion of participants ranking 
each artwork highest for a given argument (ignoring ties). 
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 Schubert Bach Beethoven Shostakovich 

Raw Means 

Geometric 5.17 5.86 4.72 4.78 

Gauss 5.21 5.51 4.76 5.20 

Pigeonhole 4.99 4.96 5.09 4.76 

Faulhaber 4.04 4.34 6.01 5.11 

Ranks 

Geometric 11 15 3 6 

Gauss 13 14 4.5 12 

Pigeonhole 8 7 9 4.5 

Faulhaber 1 2 16 10 

Z-Scored Means 

Geometric 0.08 0.38 –0.13 –0.13 

Gauss 0.07 0.20 –0.10 0.07 

Pigeonhole 0.01 0.15 0.10 –0.13 

Faulhaber –0.37 –0.42 0.51 0.01 

Frequency Top-Ranked 

Geometric 18% 39% 18% 25% 

Gauss 26% 26% 30% 19% 

Pigeonhole 12% 28% 44% 16% 

Faulhaber 11% 15% 41% 33% 
 
Table C3. Similarity Judgments in Study 2 – Yale Math Undergraduates. 

Note. Top panel: Raw mean similarity judgments. Second panel: Ranked similarity of each 
pair out of all 16 pairs (high numbers = more similar). Third panel: Mean similarity 
judgments, z-scored for each participant and then averaged (ignoring participants who 
entered identical scores for all items). Bottom panel: Proportion of participants ranking 
each artwork highest for a given argument (ignoring ties). 
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Appendix D: Study 3 Results by Subgroup 

 Yosemite Rockies Suffolk Andes 

Beauty 8.46 7.97 8.27 7.06 

Seriousness 6.37 6.10 7.08 6.64 

Universality 6.22 6.40 6.05 5.59 

Profundity 6.65 6.10 6.81 4.96 

Novelty 4.67 4.53 5.24 4.51 

Clarity 7.38 7.35 6.98 6.04 

Simplicity 3.88 3.94 2.97 4.23 

Elegance 6.98 6.65 6.94 5.71 

Intricacy 6.94 7.06 7.43 6.79 

Sophistication 6.46 6.27 6.64 5.26 

 Geometric Gauss Pigeonhole Faulhaber 

Beauty 3.52 3.12 2.05 3.93 

Seriousness 5.79 5.89 5.00 6.04 

Universality 6.70 5.43 4.72 6.50 

Profundity 4.22 4.78 3.83 5.11 

Novelty 4.07 4.67 3.94 4.60 

Clarity 6.93 4.56 3.54 6.40 

Simplicity 5.87 3.41 2.88 5.26 

Elegance 3.52 3.26 2.42 4.32 

Intricacy 4.51 5.97 5.58 5.00 

Sophistication 4.31 4.89 4.38 5.25 
 
Table D1. Aesthetic Judgments in Study 3 – Mechanical Turk Sample 
Without Higher Mathematics Training. 

Note. Entries are mean aesthetic judgments. 
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 Yosemite Rockies Suffolk Andes 

Beauty 8.52 8.17 8.17 7.61 

Seriousness 6.72 6.15 7.01 6.35 

Universality 6.73 6.84 6.46 6.06 

Profundity 7.14 6.51 7.14 5.80 

Novelty 5.78 5.45 5.83 5.40 

Clarity 7.06 7.01 6.98 6.73 

Simplicity 4.27 4.00 3.61 4.34 

Elegance 7.26 7.27 7.31 6.81 

Intricacy 7.14 7.33 7.16 6.90 

Sophistication 6.91 6.89 7.43 6.47 

 Geometric Gauss Pigeonhole Faulhaber 

Beauty 4.82 4.38 3.57 4.99 

Seriousness 6.03 6.03 5.36 6.02 

Universality 7.18 5.76 5.77 7.10 

Profundity 5.23 5.34 4.26 5.45 

Novelty 4.93 5.46 4.75 5.37 

Clarity 7.44 5.54 5.25 6.89 

Simplicity 6.48 4.59 4.53 5.73 

Elegance 5.10 4.67 4.20 5.45 

Intricacy 5.35 5.67 5.24 5.17 

Sophistication 5.52 5.38 5.30 5.82 
 
Table D2. Aesthetic Judgments in Study 3 – Mechanical Turk Sample 
With Higher Mathematics Training. 

Note. Entries are mean aesthetic judgments. 
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 Paintings Arguments 

Mechanical Turk (Without Higher Math) 

Seriousness –0.027 (0.044) 0.015 (0.047) 

Universality 0.123 (0.042)** 0.007 (0.052) 

Profundity 0.145 (0.045)** 0.027 (0.053) 

Novelty –0.027 (0.042) 0.072 (0.043)º 

Clarity 0.187 (0.045)*** 0.041 (0.059) 

Simplicity –0.048 (0.035) 0.029 (0.051) 

Elegance 0.266 (0.055)*** 0.683 (0.051)*** 

Intricacy 0.019 (0.049) 0.060 (0.046) 

Sophistication 0.007 (0.051) 0.113 (0.050)* 

Mechanical Turk (With Higher Math) 

Seriousness –0.081 (0.030)** 0.041 (0.028) 

Universality 0.057 (0.032)º –0.012 (0.028) 

Profundity 0.180 (0.034)*** 0.133 (0.030)*** 

Novelty –0.008 (0.033)* 0.023 (0.028) 

Clarity 0.170 (0.035)*** 0.072 (0.033)* 

Simplicity –0.008 (0.028)** 0.069 (0.033)* 

Elegance 0.343 (0.041)*** 0.678 (0.032)*** 

Intricacy 0.077 (0.038)* 0.026 (0.032) 

Sophistication 0.066 (0.040)º –0.068 (0.032)* 
° p2t < .10            * p2t < .05            ** p2t < .01            *** p2t < .001 

 
Table D3. Predictors of Beauty in Study 3 by Subgroup. 

Note. Entries are the coefficients (SEs) in a hierarchical regression 
predicting ratings of “beautiful” from ratings of all other attributes. 

 


