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Gastric cancer (GC) is the fifth most common malignancy and the third cause of cancer-related deaths 

worldwide. Currently, surgery and chemotherapy remain the main therapeutic options and the prognosis 

of the disease is still poor in the metastatic setting. Avelumab is a human IgG1 antibody directed against 

PD-L1 approved for Merkel cell carcinoma and urothelial carcinoma that could be useful also for the treat- 

ment of GC. This review describes the chemical structure, the pharmacologic properties and the current 

knowledge of the efficacy of avelumab in the treatment of GC from the data available on the first and 

later phase clinical trials. The ongoing studies testing this drug either alone or in combination with other 

drugs are also described. 
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Gastric cancer (GC) is the fifth most common cancer with 1,000,000 new cases in 2018 and the third leading cause 

of cancer-related deaths, with around 783,000 estimated deaths in 2018 (around 1/12 of cancer deaths globally) [1]. 

Surgery remains the main curative option for advanced GC, even if the overall 5-year survival remains very 

poor [2]. Moreover, perioperative and adjuvant chemotherapy – as well as chemoradiation – can improve patients’ 

clinical outcomes. There are several chemotherapeutic drugs for GC. The main first-line treatment for this disease 

is the combination of platinum derivatives and a fluoropyrimidine [3,4]. Taxanes and/or irinotecan are effective 

second- or third-line treatment options [5–7]. Ramucirumab and apatinib are two inhibitors that block in a different 

way the VEGF receptor 2 (VEGFR2) that both have increased survival in pretreated GC patients [8]. Recently, 

trifluridine/tipiracil (TAS-102) chemotherapy showed to increase overall survival compared with placebo as third- 

line or later therapy for advanced GC [9]. The US FDA approved in 2017 one immunotherapeutic agent targeting 

programmed death-1 (PD-1), pembrolizumab, for the treatment of patients with locally advanced or metastatic 

GC whose tumors expressed programmed death ligand-1 (PD-L1; combined positive score ≥1) as determined 

by a US FDA-approved test, after having progressed to previous treatments. Approval of the drug came from the 

results of the KEYNOTE 059 trial [10]. In addition, nivolumab, which is a human monoclonal antibody against 

PD-1, showed a survival advantage against placebo in the randomized, double-blind, placebo-controlled, Phase III 

trial ONO-4538-12, ATTRACTION-2 [11]. This trial included 49 clinical sites of the Asian population including 

Japan, South Korea and Taiwan. Median overall survival was 5.26 months in the nivolumab group and 4.14 months 

in the placebo group. Based on these results, nivolumab has been approved in Japan. In this context, avelumab, 

a drug that was FDA-approved for the treatment of urothelial carcinoma and Merkel cell carcinoma has shown 

some positive results for the treatment of GC in early-phase clinical trials and therefore thought to be investigated 

in larger clinical settings [12]. For such reasons, avelumab appears to be a valid option also for the treatment of GC 

and there are some ongoing clinical trials that are investigating its efficacy to improve the very poor prognosis of 

 

 
 

mailto:giandomenicoroviello@hotmail.it
mailto:giandomenicoroviello@hotmail.it


[Digitare qui] [Digitare qui] [Digitare qui] 

[Digitare qui]  

 
 

this disease. The purpose of this mini-review is to recapitulate the current data available for the treatment of GC 

through avelumab therapy. Lastly, future directions will be discussed. 

 
The rationale for the use of checkpoint inhibitors in GC & gastroesophageal junction cancers 

The evasion of immune response is a hallmark for the progression and development of cancer, including tumor 

escape due to the blockade of immune checkpoint pathways [13]. Key immune checkpoints proteins such as PD- 

1, cytotoxic T-lymphocyte antigen-4, lymphocyte activation gene protein-3, indoleamine 2,3-dioxygenase, T-cell 

immunoglobulin and mucin domain-containing protein 3 are overexpressed on immune cells in patients affected 

by GC/gastroesophageal junction cancers (GEJCs) [14–16]. Noteworthy in this context is a population of T-cells 

characterized by a loss of T-cell function – and therefore called exhausted T-cells – which play a pivotal role in 

the progression of disease [17]. PD-L1, on immune and tumor cells, and its ligand PD-1, on immune cells, have 

been reported to be expressed on up to 50% of GC/GEJC neoplasms and correlated with a worse prognosis [18,19]. 

By blocking the checkpoint proteins and hence inhibitory signals, antibodies can re-establish and promote T-cells 

antitumor activity [21,22]. Moreover, several GC/GEJC tumors have been reported to have a high mutational 

burden, especially those with microsatellite instability (MSI) [23]. Tumor mutation burden has been shown to 

positively correlate with better outcome in immunotherapy-treated patients [24]. 

On the other hand, preliminary studies eliciting an immune response in GC/GEJC have been conducted: the 

Bacillus Calmette-Guerin vaccine, picibanil and polysaccharide-K treatments are some examples [25]. Moreover, it 

is currently emerging that chemotherapy might enhance cancer immunogenicity and enhance cancer vulnerability 

to immune checkpoint inhibitors in the GC/GEJC treatment scenario [26]. 

Finally, The Cancer Genome Atlas has categorized GCs in four molecular subtypes: MSI-high, Epstein–Barr 

virus-positive, genomically stable and chromosomally instable [27]. Considering this molecular classification, MSI- 

high and Epstein–Barr virus-positive are the subtypes that may most benefit to immune checkpoint inhibitors: 

MSI-high for the increased number of somatic mutations secondary to the defects in DNA mismatch repair and 

Epstein–Barr virus-positive for the alterations secondary to the presence of oncogenic viruses and higher levels of 

PD-L1 expression [28]. However, EBV-positive subgroup and MSI-high account for about the 20 and 10% of all 

GCs, respectively. 

 
Biologic 

Avelumab (Bavencio, MSB0010718C) is an IgG1 fully human anti-PD-L1 antibody, created by EMD Serono, 

a business of Merck KGaA, Darmstadt, Germany, to fight tumor cells [29]. Avelumab inhibits PD-L1/PD-1 

interaction in order to disinhibit T-cells and removes the suppression of T-cell activity, whose response can be 

assessed by evaluating the release of IFN-γ [30]. Avelumab does not modify PD-L2/PD-1 pathway permitting the 

continuity of PD-L2-arbitrated homeostasis [31]. Moreover, also the interaction of PD-L1 with a second inhibitory 

receptor, B7.1, is inhibited by avelumab; this receptor might be expressed on T-cells and antigen-presenting cells 

(APCs) [32]. By blocking the interaction between B7.1 and PD1 on T-cells and with PD-L1 on APCs within the 

lymph nodes or tumor microenvironment, avelumab might reactivate T-cells and the production of cytokines [33]. 

Furthermore, because of its native IgG1 crystallizable fragment (Fc) domain, avelumab conserves the ability to 

engage natural killer (NK) cells with the Fc-γ receptor to induce tumor-targeted antibody-dependent cell-mediated 

cytotoxicity (ADCC) in vitro [34]. 

This capacity to promote innate immune interactions against tumor cells makes avelumab exclusive among 

anti-PD-L1 or anti-PD1 antibodies in ongoing clinical trials. 

 
Structural basis of avelumab’s inhibition of PD-L1 

The crystal structure of the human PD-L1 (hPD-L1) complexed with the single-chain Fv fragment (scFv) of 

avelumab was established at a resolution of 3.2 Å by molecular replacement. The overall structure of the complex 
shows that avelumab uses both light chain (VL) and heavy chain (VH) to tether the N-terminal domain (IgV) 

of PD-L1 on the side. The interaction with hPD-L1 includes five of the six complementary-determining regions 

(CDRs) of both VL and VH with a hidden area of approximately 1.856 Å 2. However, the binding to hPD-L1 is 

dominated by the VH of avelumab by all three CDR loops and VL contributes with partial contacts by CDR1 and 

CDR3 loops, allowing VL CDR2 devoid of binding to hPD-L1. Further analysis based on structural superposition 

between the human PD1 (hP1)/h(PD-L1) complex and the avelumab-single-chain Fv fragment/Hpd-L1 complex 
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showed that the avelumab-binding epitope region on hPD-L1 overlapped with the hPD1-binding region; this 

result suggests that the binding of avelumab with hPD-L1 can prevent the binding of hPD1 to hPD-L1 [35] 

 

Pharmacodynamics 

The PD-1 & PD-L1 axis 

The Pd-1 gene was initially isolated in 1992 by Ishida et al. using the subtractive hybridization technique and 

classified it in the immunoglobulin gene superfamily [36]. PD-1 is a T-cell immune checkpoint receptor that has 

been detected on B-cells, activated monocytes, dendritic cells (DCs) and NK cells and NK T-cells [37]. 

The molecule is composed of an extracellular IgV domain and an intracellular domain with buried phosphory- 

lation sites placed on an immune receptor inhibitory tyrosine-based switch motif and an immune tyrosine-based 

inhibitory motif [38]. Immune tyrosine-based inhibitory motif and immune receptor inhibitory tyrosine-based 

switch motif tether the inhibitory phosphatase SHP-2 [39] and the former motif is required for the inhibitory 

activity of PD-1 on active T-cells [40]. 

PD-1 has shown to decrease the activity of tumor-infiltrating lymphocytes in cancer [20] and can bind to PD-L1 

(B7-H1/CD274) and PD-L2 (B7-DC/CD273), which promotes T-cell anergy through the interaction with the 

former receptor [41]. Therefore, only the interaction between PD-L1 and PD1 promotes T-cell anergy. Successively, 

after the interaction between PD-L1 and PD-1, the receptor becomes inactivated. Therefore, PD-1 is a negative 

regulator of antitumor T-cell effector activity [42]. 

PD-L1 plays a pivotal role in self-tolerance, safeguarding peripheral tissues from autoimmune diseases and 

inflammation [43]. 

PD-L1 is classified as a type I transmembrane protein that consists of intracellular domains, transmembrane and 

extracellular domains (IgV-like domain, IgC-like domain, signal sequence) and shares 37% sequence homology 

with PD-L2 [44,45]. In addition, PD-L1 has been reported to be expressed on B-cells, T-cells, macrophages, 

DCs, pancreatic islet cells, vascular endothelial cells, lung, heart, liver and placenta [38]. While PD-L1 is mainly 

expressed on the surface of somatic cells following the exposure to proinflammatory cytokines [46], the PD-L2 

expression is more restricted to APCs [46]. Several proinflammatory cytokines, such as IL-10, TNF-α, INF-γ, 

GM-CSF and VEGF, promote PD-L1 expression. PD-L1 expression caused by inflammatory cytokines in the 

tumor microenvironment leads to a PD-1-mediated T-cell exhaustion, thereby inhibiting the antitumor cytotoxic 

T-cell response [47,48]. 

 
PD-1 & PD-L1 pathway in the context of cancer 

By binding its ligands, PD-1 acts as immune checkpoint under normal conditions and plays a pivotal role in 

silencing the immune system with the suppression of T-cells and upregulating Treg, which in turn decreases 

autoimmunity and enhances self-tolerance [49,50]. Once engaged with PD-L1 or PD-L2, the tyrosine phosphatases 

recruitment will start, leading to the blockade of the downstream activity of PI3K/Akt pathway with an inhibitory 

signal, and thereby to the cell cycle interruption and the T-cell activation [40,51]. 

A wide range of tumors such as renal cell cancer, multiple myeloma, leukemia, GC, bladder cancer, cutaneous 

cancer, hepatocellular cancer, glioblastoma, melanoma and breast cancer, as well as non-small-cell lung cancer show 

PD-L1 expression [52,53], whereas PD-1 has been notably observed on tumor-infiltrating lymphocytes [54]. Cancer 

cells begin to overexpress PD-L1 and PD-L2 for lowering T-cells efficiency when are attacked by the immune 

system; as a consequence, T-cells are silenced leading to immune escape [53]. Furthermore, by upregulation of 

PTEN along with the downregulation of mTOR, ERK2, S6 and phospho-Akt, PD-L1 can promote Treg cell 

development. Consequentially, PD-L1 will suppress the activation of T-cells as a result of the formation and the 

holding of Tregs [55]. Contrarly, Dong et al. have reported that PD1 suppress PI3K-mediated cell death in activated 

T-cells, leading to the downregulation of Bcl-xL and antiapoptotic proteins [41]. 

Furthermore, PD-1 can also suppress the T-cell receptor (TCR) acting on the inhibitory function provided by 

the tyrosine phosphatase SHP-2, which mediates dephosphorylation of signaling molecules downstream of the 

TCR [46], which is needed for the release of the stimulatory IL-2 factor, thereby making way for the cell cycle 

blockade and the suppression of T-cell proliferation [56]. 

 
Checkpoint inhibitors 

A large number of genetic and epigenetic modifications of all cancers provide a various range of antigens that 

our immune system uses to recognize as ‘self ’ or as ‘non-self ’. The capacity of T-cells to drive several immune 
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Figure 1.  Mechanism of action of avelumab in the programmed death-1/programmed death ligand-1 pathway for 

the treatment of gastric cancer. 

 

 

responses (by CD4+ helper T-cells), identify and eliminate antigen-expressing cells (by CD8+ effector T-cells) and 

distinguish peptides from all cellular compartments has made them an interesting target to pursue in order to tailor 

the endogenous immune system against cancer [57]. T-cell response is initiated with the TCR antigen recognition 

and it is regulated by immune checkpoints, which play a pivotal role in immune homeostasis maintenance [53,58]. 

Unrestrained immune response to pathogens or mutated/overexpressed self-antigens can cause tissue damages and 

autoimmune diseases. Immune checkpoints consist of costimulatory and inhibitory signals, enhancing the immune 

response when appropriate, but suppressing it to prevent tissue damages. 

Tumors can activate inhibitory immune checkpoint in order to suppress the immune response to tumor. 

Therefore, the immunotherapy plans to block the suppressive immune checkpoint to re-establish the immune 

response against cancer (Figure 1) [59]. 

Several inhibitory intracellular signals are initiated through membrane receptors and their ligands are either 

membrane-bound or soluble cytokines. It has been shown that the overexpression of checkpoint inhibitors are 

found to be overexpressed in the tumor microenvironment rather than in cancer and normal tissue [48]. 

 
ADCC of avelumab 

ADCC is a well-established mechanism of action for some currently used antitumoral antibodies, such as rituximab, 

cetuximab and trastuzumab [60]. Matching ADCC-promoting agents and tumor-targeting monoclonal antibodies 

(mABs) that encourage effector cells might lead to a great clinical benefit. However, engineered anti-PD-L1 IgG1 

(e.g., durvalumab or atezolizumab) and anti-PD1 IgG4 antibodies (e.g., pembrolizumab or nivolumab) have been 

developed with a low ADCC activity, based upon a hypothetical potential of ADCC to eliminate activated T- 

cells [61,62]. Nevertheless, in preclinical and clinical studies, avelumab did not show any remarkable effect on the 

number of circulating PD-L1 immune cells or on patients’ total lymphocyte count, suggesting that none immune cell 

subset is measurably depleted by avelumab treatment [30,63]. Thus, avelumab is the exclusive therapeutic antibody, 

which may exploit ADCC-mediated lysis of cancer cells and immune checkpoint inhibition simultaneously. 

 
Pharmacokinetics & metabolism 

Avelumab pharmacokinetics was assessed in patients affected by different solid tumors at doses swinging from 1 

to 20 mg/kg every 2 weeks [65]. Patients who received 10 mg/kg had the mean volume of distribution at steady 

state of 4.72 l. Avelumab is primarily eliminated through proteolytic degradation and the circulating half-life was 

evaluated to be approximately 6 days, peculiarly shorter compared with the other monoclonal antibodies, possibly 

because of its high isoelectric point (8.9–9.3) that can raise drug uptake, distribution and clearance [66]. Forty-eight 

hours after avelumab infusion, immune cytokine responses were evident in some patients with a notable increase 

in IL-6, TNF-α and IFN-γ [66]. A dose of 10 mg/kg every 2 weeks was chosen for further developments on target 

occupancy and drug pharmacokinetics, since no maximum tolerated dose was identified [66]. 
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Clinical efficacy 

Phase I/Ib clinical trials 

The PD-L1 inhibitor avelumab has been initially tested in two studies made of GC\GEJC patients. A Phase Ib 

clinical test named JAVELIN Solid Tumor trial, made of 150 patients without (1 L-mn) or with (2 L) disease 

progression, with locally advanced or metastatic GC\GEJC received second-line avelumab (10 mg/kg every 2 

weeks) independently from the expression of PD-L1. In the 1 L-mn and 2 L subgroups, median duration of 

response corresponded to 21.4 months (95% CI: 4.0–NA) and 3.5 months (95% CI: 2.8–8.3) and disease 

control rates were of 56.7 and 28.3%, respectively. Median progression-free survival (PFS) in 1 L-mn and 2 L 

subgroups were 2.8 months (95% CI: 2.3–4.1) and 1.4 months (95% CI: 1.3–1.5) and overall survival (OS) 

of 11.1 months (95% CI: 8.9–13.7) and 6.6 months (95% CI: 5.4–9.4), respectively. The confirmed objective 

response rate (ORR) was 6.7% (n = 6; 95% CI: 2.5–13.9%) and the disease control rate was 28.3% [67]. A Phase 

I expansion cohort in Japanese patients has been investigating avelumab in patients with advanced GC\GEJC 

progressing to chemotherapy (JAVELIN Solid Tumour JPN) [68]. Among 21 heavily pretreated patients enrolled 

in the dose-expansion cohort, the ORR was 10% (95% CI: 2.8–23.7) and median OS was 9.1 months (95% CI: 

7.2–11.2). 

 
Phase III & ongoing clinical trials 

A randomized Phase III clinical trial called JAVELIN Gastric 300 (NCT02625623) has been comparing the use 

of third-line avelumab versus chemotherapy. This clinical investigation was a randomized, multicenter, open-label, 

Phase III study constituted of 371 patients with advanced GC/GEJC who progressed to two lines of therapy, 

who were not selected for PD-L1 expression. All the patients received best supportive care (BSC) as background 

therapy and were stratified according to a geographic region (Asia vs non-Asia). However, this study did not meet 

its primary end point of improving OS, with a median OS of 4.6 versus 5.0 months (hazard ratio [HR]: 1.1 [95% 

CI: 0.9–1.4]; p = 0.81) in avelumab versus chemotherapy arms. Neither the secondary end points were met for 

PFS, with a median PFS of 1.4 versus 2.7 months (HR: 1.73 [95% CI: 1.4–2.2]; p > 0.99) nor for ORR, with an 

ORR of 2.2% in avelumab (n = 4; 95% CI: 0.6–5.4) versus the 4.3% (n = 8; 95% CI: 1.9–8.3) [69]. 

Another randomized, Phase III clinical trial made of 499 patients with GC/GEJ patients, named JAVELIN 

Gastric 100 (NCT02625610), has been testing the efficacy of switch-maintenance treatment. This study has been 

comparing avelumab versus continuation of capecitabine + oxaliplatin (XELOX) or leucovorin + 5-fluorouracil (5- 

FU) + oxaliplatin (FOLFOX) in patients with advanced GC/GEJC who did not progress to first-line chemotherapy. 

The aim of this clinical trial is to test whether avelumab can provide durable antitumor activity after tumor shrinkage 

and immunogenic priming obtained because of first-line chemotherapy, with less tumor toxicity burden because of 

the additional chemotherapy. The primary end point is to demonstrate the superiority of avelumab maintenance 

therapy compared with continuation of 1 L chemotherapy in terms of OS in all randomized or PD-L1-positive 

tumor-bearing patients. Secondary objectives include the demonstration of the superiority of avelumab versus 

continuation of 1 L chemotherapy in terms of PFS, ORR, safety and tolerability and quality of life [70]. Table 1 

summarizes all the ongoing clinical trials testing avelumab in GC/GEJC patients. 

 
Safety & tolerability 

Avelumab is considered to be well tolerated according to the results of Phase I and II JAVELIN trials. As to the safety 

results of the use of avelumab from the JAVELIN phase Ib clinical trial, 17 of the patients in the dose escalation 

receiving avelumab did not have a dose-limiting toxicity and the maximum tolerated dose was not reached. Of the 

40 patients enrolled in the dose-expansion part, 21 (52.4%) received ≥3 prior lines of therapy for the advanced 

disease; three of the 40 patients (7.5%) had grade 3 treatment-related adverse events (AEs) (hyponatremia, alanine 

aminotransferase increase and anemia) and no grade ≥4 treatment related AEs. Five of the patients (12.5%) had 

immune-related AE all grade 1 or 2. Therefore, avelumab had a relatively safe profile in the Japanese population 

with advanced GC [68]. Data from the JAVELIN II, multicenter, open-label, single-arm, Phase II trial showed 

that in the 1738 GC patients, grade ≥3 treatment-related adverse events (TRAEs) occurred in 177 (10.2%). The 

most common adverse events were fatigue (in 17 patients; 1.0%) and infusion-related reactions (in ten patients; 

0.6%). TRAE leads to discontinuation in 107 patients (6.2%) and death in four patients (0.2%). Grade ≥3 

immune-related adverse events (irAEs) occurred in 39 patients (2.2%) leading to discontinuation in 34 patients 

(2.0%). Moreover, avelumab is well tolerated with a manageable safety profile [71]. 



[Digitare qui] [Digitare qui] [Digitare qui] 

 

 

 

Table 1.  Selected ongoing trials with avelumab in gastric cancer. 

Clinical trial Study design Intervention/s Setting Primary end Phase Status 

identifier    point   
NCT03399071 40 participants, parallel FLOT + avelumab First-line pCR II Recruiting 

 assignment, open label      
NCT02625610 499 participants, parallel 

assignment, open label 

Avelumab maintenance or 

continuation of first-line 

chemotherapy oxaliplatin–

fluoropyrimidine doublet 

after induction with 

First-line 

maintenance 

OS III Active, not 

recruiting 

NCT01943461 57 participants, single group Avelumab (dose escalation) First-line DLT I Active, not 

 assignment, open label     recruiting 

NCT03475953 212 patients, nonrandomized, 

single group assignment 

Avelumab and regorafenib Second-line Phase I: RPF2D 

Phase II: 

assessment of 

antitumor 

activity 

I/II Recruiting 

NCT02554812 560 patients, randomized, parallel      Avelumab + utomilumab or 

assignment, open label PF-04518600 or PD0360324 or 

utomilumab + PF-04518600 

Second-line DLT II Recruiting 

NCT03288350 55 patients, single group mDCF + avelumab Perioperative pCR II Recruiting 

 assignment, open label     
NCT03783936 63 participants mFOLFOX6 + trastuzumab + First-line bORR II Not yet recruiting 

 Intervention model: avelumab     
 single group assignment, open     
 label     

bORR: Best objective response rate; DLT: Dose-limiting toxicity; OS: Overall survival; pCR: Pathological complete response; RPF2D: Recommended Phase II dose. 

 

Regulatory affairs 

On 23rd March 2017, avelumab received the FDA approval for the treatment of metastatic Merkel cell carcinoma 

as a monotherapy in patients aged more than 12 years in the US and in Europe [72]. On May 2017, avelumab 

received the approval for patients with locally advanced or metastatic urothelial carcinoma whose disease progressed 

during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant platinum- 

containing chemotherapy. Avelumab is administrated intravenously with a dose of 10 mg/kg over 60 min every 

2 weeks [73]. Patients must undergo prior medication with antihistamine and acetaminophen to prevent infusion 

reactions for the first four treatments and afterward if necessary [74]. 

 
Conclusion 

The stomach is susceptible to infections that trigger T-cell signaling and response leading to cancer. In fact, 

Capitani et al. showed that HP1454, a Gram-negative bacterium triggered T-cell antigen receptor-dependent 

signaling, Th1/Th17 inflammatory responses and lymphocyte proliferation and CXCL12-dependent cell adhesion 

and migration [75]. This shows how the stomach’ environment is already used to mechanisms triggering the immune 

system and using a drug modulating such system could be a good auxiliary approach to conventional drugs. 

Avelumab is the most recent anti-PD-L1 antibody efficient for the Merkel cell carcinoma as it has reached FDA 

approval for the treatment of this disease. Despite the negative results obtained for avelumab versus chemotherapy 

from the Phase III clinical trial made of 371 GC patients, termed JAVELIN Gastric 300, the results from another 

Phase III clinical trial made of 499 patients, named JAVELIN Gastric 100, experimenting avelumab maintenance 

therapy versus continuation of chemotherapy could still demonstrate the survival efficacy of this recently developed 

monoclonal anti-PD-L1 therapy that had demonstrated its capacity of eliciting clinical responses and safety profiles 

in early phase clinical trials. 

Moreover, there are other immune checkpoint inhibitors that have been tested in Phase III clinical trials for 

GC/GEJC. CheckMate 649 (NCT02872116) is a Phase III trial that has been comparing nivolumab plus ipili- 

mumab arm versus nivolumab plus investigator choice of chemotherapy (folfox or xelos) arm versus chemotherapy 

alone arm. ATTRACTION 4 (NCT02746796) is a Phase II/III trial evaluating nivolumab plus chemotherapy 

(oxaliplatin plus either capecitabine or S-1) arm versus chemotherapy alone arm in Asian patients. KEYNOTE-062 

(NCT02494583) is a Phase III clinical trial comparing pembrolizumab arm or pembrolizumab and cisplatinum/5- 

FU (or capecitabine) arm versus cisplatin/5-FU alone arm for treating PD-L1-positive GC/GEJC patients. 
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The results from the ongoing clinical trials testing avelumab and other immunotherapies are eagerly awaited 

to evaluate the capacity of checkpoint inhibitors to improve advanced GC/GEJC clinical outcomes. Of note, 

as an alternative strategy the checkpoint inhibitor could be used in combination with stimulators of T-cells’ 

receptors. For example, nivolumab and/or ipilimumab have been tested for advanced GC/GEJC (NCT03126110) 

in combination with INCAGN91876 (anti-glucocorticoid-induced tumor necrosis factor receptor-related protein) 

versus ipilimumab alone. 

Moreover, there is a need in future to have accurate predictive biomarkers that could help clinicians to decide 

whether patients would best respond or not to checkpoint inhibitors. Since in a large cohort of 2220 lung cancer 

patients in a Phase III, multicenter, open-label study showed that patients respond better to checkpoint inhibitors 

when they have a high tumor burden, even better than in patients with high PD-L1 [76], it might be interesting in 

future to test tumor burden as a predicting biomarker for the efficacy of immunotherapy in GC/GEJC. 

 

 
 
 

Financial & competing interests disclosure 

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or finan- 

cial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, 

stock ownership or options, expert testimony, grants or patents received or pending, or royalties. 

No writing assistance was utilized in the production of this manuscript. 

 
Company review 

In addition to the peer-review process, with the author’s consent, the manufacturer of the product discussed in this article was 

given the opportunity to review the manuscript for factual accuracy. Changes were made by the author at their discretion and 

based on scientific or editorial merit only. The author maintained full control over the manuscript, including content, wording and 

conclusions. 

 

References 

Papers of special note have been highlighted as: • of interest; •• of considerable interest 

1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and 

mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018). 

• It shows the impact the disease has in the clinical world and how important it is to find an alternative way to better treat the 

disease. 

2 Niccolai E, Taddei A, Prisco D, Amedei A. Gastric cancer and the epoch of immunotherapy approaches. World J. Gastroenterol. 21, 

5778–5793  (2015). 

3 Kang Y-K, Kang W-K, Shin et al. Capecitabine/cisplatin versus 5-fluorouracil/cisplatin as first-line therapy in patients with advanced 

gastric cancer: a randomised Phase III noninferiority trial. Ann. Oncol. 20, 666–673 (2009). 

4 Cunningham D, Starling N, Rao S et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N. Engl. J. Med. 358, 36–46 

(2008). 

5 Thuss-Patience PC, Kretzschmar A, Bichev D et al. Survival advantage for irinotecan versus best supportive care as second-line 

chemotherapy in gastric cancer – a randomised Phase III study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Eur. J. Cancer 

47, 2306–2314 (2011). 

6 Kang JH, Lee S Il Lim DH et al. Salvage chemotherapy for pretreated gastric cancer: a randomized Phase III trial comparing 

chemotherapy plus best supportive care with best supportive care alone. J. Clin. Oncol. 30, 1513–1518 (2012). 

7 Ford HER, Marshall A, Bridgewater JA et al. Docetaxel versus active symptom control for refractory oesophagogastric adenocarcinoma 

(COUGAR-02): an open-label, Phase 3 randomised controlled trial. Lancet. Oncol. 15, 78–86 (2014). 

Executive summary 

Background 

• Gastric cancer (GC) is the fifth most common malignancy and the third cause of cancer-related deaths worldwide. 

Biologic 

• Avelumab is a human IgG1 antibody directed against PD-L1 that could be useful also for the treatment of GC. 

• The chemical structure, pharmacologic properties and current knowledge of the efficacy of avelumab in the 

treatment of GC from the data available are described. 

Clinical efficacy 

• The ongoing studies testing this drug either alone or in combination with other drugs are also reported. 



[Digitare qui] [Digitare qui] [Digitare qui] 

 

 

 

8 Roviello G, Ravelli A, Fiaschi AI et al. Apatinib for the treatment of gastric cancer. Expert Rev. Gastroenterol. Hepatol. 10, 1–6 (2016). 

9 Shitara K, Doi T, Dvorkin M et al. Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer 

(TAGS): a randomised, double-blind, placebo-controlled, Phase III trial. Lancet Oncol. 19, 1437–1448 (2018). 

10 Fuchs CS, Doi T, Jang RW-J et al. KEYNOTE-059 cohort 1: efficacy and safety of pembrolizumab (pembro) monotherapy in patients 

with previously treated advanced gastric cancer. J. Clin. Oncol. 35, 4003–4003 (2017). 

11 Kang Y-K, Boku N, Satoh T et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or 

intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, 

placebo-controlled, Phase 3 trial. Lancet 390, 2461–2471 (2017). 

12 Kaufman HL, Russell JS, Hamid O et al. Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell 

carcinoma after ≥1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J. Immunother. Cancer 6, 7 (2018). 

••  Data from JAVELIN Merkel 200, which is a Phase II clinical trial on the Merkel cell carcinoma that brought to the US FDA 

approval of avelumab for Merkel cell carcinoma. 

13 Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. 

Immunol. 3, 991–998 (2002). 

14 Cheng G, Li M, Wu J et al. Expression of Tim-3 in gastric cancer tissue and its relationship with prognosis. Int. J. Clin. Exp. Pathol. 8, 

9452–9457  (2015). 

15 Takaya S, Saito H, Ikeguchi M. Upregulation of immune checkpoint molecules, PD-1 and LAG-3, on CD4+ and CD8+ T cells after 

gastric cancer surgery. Yonago Acta Med. 58, 39–44 (2015). 

16 Kim JW, Nam KH, Ahn S-H et al. Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell 

infiltration within the tumor microenvironment in gastric cancer. Gastric Cancer 19, 42–52 (2016). 

17 Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion. Immunology 129, 474–481 (2010). 

18 Dai C, Wang M, Lu J et al. Prognostic and predictive values of PD-L1 expression in patients with digestive system cancer: a 

meta-analysis. Onco. Targets. Ther. 10, 3625–3634 (2017). 

19 Wu P, Wu D, Li L, Chai Y, Huang J. PD-L1 and survival in solid tumors: a meta-analysis. PLoS ONE 10, e0131403 (2015). 

20 Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. 

Immunol. 24, 207–212 (2012). 

21 Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015). 

22 Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 

39, 98–106 (2016). 

23 Bass AJ, Thorsson VV, Shmulevich I et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 

(2014). 

24 Chan TA, Yarchoan M, Jaffee E et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology 

clinic. Ann. Oncol. 30(1), 44–56 (2018). 

25 Raufi AG, Klempner SJ. Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical 

investigations. J. Gastrointest. Oncol. 6, 561–569 (2015). 

26 Hato SV, Khong A de Vries IJM, Lesterhuis WJ. Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics. 

Clin. Cancer Res. 20, 2831–2837 (2014). 

27 Bass AJ, Thorsson V, Shmulevich I et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 

(2014). 

28 Togasaki K, Sukawa Y, Kanai T, Takaishi H. Clinical efficacy of immune checkpoint inhibitors in the treatment of unresectable 

advanced or recurrent gastric cancer: an evidence-based review of therapies. Onco. Targets. Ther. 11, 8239–8250 (2018). 

29 Boyerinas B, Jochems C, Fantini M et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab 

(MSB0010718C) on human tumor cells. Cancer Immunol. Res. 3, 1148–1157 (2015). 

30 Grenga I, Donahue RN, Lepone LM, Richards J, Schlom J. A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances 

antigen-specific T-cell responses. Clin. Transl. Immunol. 5, e83 (2016). 

31 Van Allen EM, Miao D, Schilling B et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 

207–211  (2015). 

32 Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 

costimulatory molecule to inhibit T cell responses. Immunity 27, 111–122 (2007). 

33 Brown JA, Dorfman DM, Ma F-R et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and 

cytokine production. J. Immunol. 170, 1257–1266 (2003). 

34 Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nat. Commun. 7, 10262 (2016). 



 

[Digitare qui]  

 

 

35 Liu K, Tan S, Chai Y et al. Structural basis of anti-PD-L1 monoclonal antibody avelumab for tumor therapy. Cell Res. 27, 151–153 

(2017). 

36 Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon 

programmed cell death. EMBO J. 11, 3887–3895 (1992). 

37 Ceeraz S, Nowak EC, Noelle RJ. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. 34, 556–563 

(2013). 

38 Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 

(2008). 

39 Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 

27, 450–461 (2015). 

40 Riley JL. PD-1 signaling in primary T cells. Immunol. Rev. 229, 114–125 (2009). 

41 Dong H, Strome SE, Salomao DR et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. 

Nat. Med. 8, 793–800 (2002). 

42 Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018). 

43 Chakravarti N, Prieto VG. Predictive factors of activity of anti-programmed death-1/programmed death ligand-1 drugs: 

immunohistochemistry analysis. Transl. lung cancer Res. 4, 743–751 (2015). 

44 Latchman Y, Wood CR, Chernova T et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 

(2001). 

45 Tseng SY, Otsuji M, Gorski K et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 

193, 839–846 (2001). 

46 Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34, 

539–573  (2016). 

47 Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 5, 915–919 (2015). 

48 Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012). 

49 Fife BT, Pauken KE. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann. NY Acad. Sci. 1217, 45–59 (2011). 

50 Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236, 219–242 (2010). 

51 Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int. Immunol. 19, 813–824 (2007). 

52 Li Y, Li F, Jiang F et al. A mini-review for cancer immunotherapy: molecular understanding of PD-1/PD-L1 pathway & translational 

blockade of immune checkpoints. Int. J. Mol. Sci. 17, 1151 (2016). 

53 Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467–477 (2008). 

54 Ahmadzadeh M, Johnson LA, Heemskerk B et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 

and are functionally impaired. Blood 114, 1537–1544 (2009). 

55 Francisco LM, Salinas VH, Brown KE et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. 

J. Exp. Med. 206, 3015–3029 (2009). 

56 Sheppard K-A, Fitz LJ, Lee JM et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and 

downstream signaling to PKCθ. FEBS Lett. 574, 37–41 (2004). 

57 Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 

331, 1565–1570 (2011). 

58 Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu. Rev. Immunol. 23, 515–548 (2005). 

59 Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation Cell. 4144(5), 646–674 (2011). 

60 Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 10, 317–327 

(2010). 

61 Gettinger S, Herbst RS. B7-H1/PD-1 blockade therapy in non-small cell lung cancer. Cancer J. 20, 281–289 (2014). 

62 Herbst RS, Soria J-C, Kowanetz M et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. 

Nature 515, 563–567 (2014). 

63 Donahue RN, Lepone LM, Grenga I et al. Analyses of the peripheral immunome following multiple administrations of avelumab, a 

human IgG1 anti-PD-L1 monoclonal antibody. J. Immunother. Cancer 5, 20 (2017). 

64 Gaiser MR, Bongiorno M, Brownell I. PD-L1 inhibition with avelumab for metastatic Merkel cell carcinoma. Expert Rev. Clin. 

Pharmacol. 11, 345–359 (2018). 

65 US FDA. Information., E.S.I. and P.I.B. (avelumab) injection: U. (2017). www.fda.gov 

66 Heery CR, O’Sullivan-Coyne G, Madan RA et al. Avelumab for metastatic or locally advanced previously treated solid tumours 

(JAVELIN solid tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol. 18, 587–598 (2017). 

http://www.fda.gov/


[Digitare qui] [Digitare qui] [Digitare qui] 

 

 

 

••  Results from the JAVELIN in Solid Tumors Phase Ia dose-escalation clinical trial. 

67 Chung HC, Arkenau H-T, Lee J et al. Avelumab (anti–PD-L1) as first-line switch-maintenance or second-line therapy in patients with 

advanced gastric or gastroesophageal junction cancer: phase 1b results from the JAVELIN Solid Tumor trial. J. Immunother. Cancer 7, 30 

(2019). 

68 Doi T, Iwasa S, Muro K et al. Phase 1 trial of avelumab (anti-PD-L1) in Japanese patients with advanced solid tumors, including dose 

expansion in patients with gastric or gastroesophageal junction cancer: the JAVELIN Solid Tumor JPN trial. Gastric 

Cancer (2018). (Epub ahead of print). 

••  Results of avelumab in Japanese patients with advanced gastric cancer Phase Ib clinical trial. 

69 Bang Y-J, Ruiz EY, Van Cutsem E et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line 

treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann. 

Oncol. 29, 2052–2060 (2018). 

••  Results of the JAVELIN Gastric 300. 

70 Moehler M, Ryu M-H, Dvorkin M et al. Maintenance avelumab versus continuation of first-line chemotherapy in gastric cancer: 

JAVELIN Gastric 100 study design. Future Oncol. fon-2018-0668 (2018). 

••  The design of the latest large clinical trial testing avelubam maintenance therapy versus continuation of first-line chemotherapy. 

71 Kelly K, Infante JR, Taylor MH et al. Safety profile of avelumab in patients with advanced solid tumors: a pooled analysis of data from 

the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials. Cancer 124, 2010–2017 (2018). 

72 Dreyer NA. Advancing a framework for regulatory use of real-world evidence. Ther. Innov. Regul. Sci. 52, 362–368 (2018). 

••  The safety profile of avelumab in patients with advanced solid tumors. 

73 Stenger M. Avelumab in locally advanced or metastatic urothelial carcinoma – the ASCO Post. (2018). 

www.ascopost.com/issues/october-10-2017/avelumab-in-locally-advanced-or-metastatic-urothelial-carcinoma/ 

74 FDA; CDER. Highlights of prescribing information. www.fda.gov/Drugs/default.htm 

75 Capitani N, Codolo G, Vallese F et al. The lipoprotein HP1454 of Helicobacter pylori regulates T-cell response by shaping T-cell receptor 

signalling. Cell. Microbiol. e13006 (2019). 

76 Hellmann MD, Ciuleanu T-E, Pluzanski A et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. 

Engl. J. Med. 378, 2093–2104 (2018). 

http://www.ascopost.com/issues/october-10-2017/avelumab-in-locally-advanced-or-metastatic-urothelial-carcinoma/
https://www.fda.gov/Drugs/default.htm

