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Unsteady Actuation of Counter-Flowing Wall Jets for  

Gust Load Attenuation 

 

Nader H. Al-Battal, David J. Cleaver and Ismet Gursul 

Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK 

Counter-flowing wall jets actuated on the upper surface of an airfoil are 

investigated for the purpose of controlling gust encounters. For periodic and 

transient actuations, phase-averaged lift force and particle image velocimetry 

measurements are presented for a NACA 0012 airfoil, at a Reynolds number 

of 660,000, for a range of reduced frequencies and three jet locations, 𝒙𝑱/𝒄 = 

0.08, 0.60 and 0.95. For periodic actuation, amplitude of lift oscillations 

decrease and phase delay increase with increasing reduced frequency. The 

effect of reduced frequency on the amplitude and phase is more significant for 

blowing locations near the leading-edge and with increasing angle of attack. 

Transient actuation reveals the slow response of the separated flow, and 

therefore lift, with the delay becoming more pronounced for blowing near the 

leading-edge. Estimated time constants are similar to previous observations 

for forced separation and reattachment. 
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Nomenclature 
α  angle of attack 

Cµ  momentum coefficient 

Cµmax  maximum momentum coefficient 

CL  lift coefficient 

CLmax  maximum lift coefficient 

CLmin  minimum lift coefficient 

CLoff  lift coefficient for no blowing 

CLon  lift coefficient for continuous blowing 

CLmean mean lift coefficient 

c = chord length 

f  = frequency 

hJ = slot width 

k   =  reduced frequency 

𝜅 =  time constant 

𝜑  =  phase angle 

ρ = density 

b = span 

𝜏  =  normalized time, U∞t/c 

xJ = location of jet 

UJ = time-dependent jet velocity 

U∞ = freestream velocity 

Re = Reynolds number 
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I. Introduction 

 The structural weight of civil transport aircraft is often determined by critical load cases caused 

by positive gust loads. Furthermore, gusts are responsible for over a third of wind related accidents 

[1], and are detrimental to passenger comfort. The efficiency and performance of aircraft is 

therefore largely dependent on the ability to counter gust loads. Current gust load alleviation 

techniques consist of ailerons and spoilers. However, these devices are sized for maneuvers. Their 

large inertia means their effectiveness reduces with gust frequency. Highly responsive high-

frequency actuation is fundamental to effective gust load alleviation [2, 3]. One possibility is a 

high-frequency mechanical device such as the mini-tab, a small mechanical surface deflected 

upwards near the trailing-edge [2, 3]. Mini-tabs located further upstream have been found to 

provide significant lift reduction [4]. 

 A second possibility for high-frequency gust load alleviation is fluidic actuators developed 

for active flow control [5]. Blowing perpendicular to the airfoil surface near the trailing-edge [3, 

6, 7] has been proposed. This concept is similar to conventional jet-flaps [8], however it is applied 

on the upper surface of the airfoil in order to decrease the lift. Even though the effectiveness of the 

blowing (with low momentum coefficients) perpendicular to the airfoil lower surface was 

demonstrated for lift increase [9], this method is not necessarily effective when applied on the 

airfoil upper surface, in particular at further upstream locations. Counter-flowing wall jets [10, 11] 

are more effective than blowing normal to the surface, in particular when the location of the jet is 

immersed in the separated flow over the airfoil. Existence of partially separated flows is a 

possibility in take-off and landing as well as during an unsteady maneuver. Again, upstream jet 

locations have been found more advantageous with increasing angle of attack. Counter-flowing 
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wall jets, generated by plasma actuators placed on the lower surface of an airfoil, have been 

previously used to produce a virtual flap effect at a low Reynolds number [12]. 

 It is clear that static (continuous) actuation of counter-flowing wall jets causes various degrees 

of separated flows over the upper surface of the airfoil, depending on their location. Unsteady 

actuation and frequency response of these actuators will be affected by the separated flows over 

the airfoil. In the case of fully separated flow over an airfoil, it is known that there are large time 

delays in the response of the flow to unsteady excitation [13]. This seems to be a limiting factor in 

the closed-loop control of lift on a low aspect ratio wing with fully separated flow [14]. As the 

response of the separated flow to actuation is a limitation, one may expect some improvement as 

the actuator location is moved downstream as the size of the separated region becomes smaller. 

However, even for fully attached flow on the airfoil surface, we expect a time delay of the lift 

response to actuation. This is due to the change of circulation and associated vorticity shedding 

from the trailing-edge. For example, when there is a sudden change in angle of attack (hence, 

circulation), the lift achieves its steady-state value slowly, similar to the response of a first-order 

dynamic system. This is known as the Wagner effect [15], which is related to the shedding of 

vorticity and can be considered as a “wake effect”.  

As the unsteady response of lift is crucial for high-frequency gust alleviation, in this paper, we 

experimentally investigate the response of the lift force to periodic and transient actuation of 

counter-flowing wall jets on the airfoil upper surface. In Reference [11], we investigated the static 

actuation (continuous blowing) of the counter-flowing wall jets and compared with surface-normal 

blowing. This paper focusses on the unsteady actuation of the counter-flowing jets with periodic 

and transient waveforms. In this paper, we experimentally investigate the response of the lift force 

to periodic and transient actuation of counter-flowing wall jets on the airfoil upper surface. We 
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consider three jet locations along the upper surface (xJ/c = 0.08, 0.60, 0.95), a momentum 

coefficient of 𝐶ఓ  = 1.6% and reduced frequencies k < 0.5, which are comparable to gust frequencies 

on civil aircraft. Phase-averaged lift force and velocity field have been measured and discussed in 

detail. Only the lift force was considered in these experiments. This is due to the concept of the 

fluidic actuator, which will only be deployed for short intervals, and therefore the associated drag 

increase is not considered to be an important issue compared to the potential load alleviation for 

the wing. 

 

II. Experimental Techniques 

Experiments were performed in a low-speed closed-circuit wind tunnel at the University of 

Bath. The working section has a length of 2.77 m, height of 1.51 m and width of 2.12 m. The 

freestream velocity for the experiments performed was 𝑈ஶ = 20 m𝑠ିଵ. Turbulence intensity was 

measured to be less than 0.5%. Experiments were performed with the symmetrical NACA 0012 

airfoil due to the availability of relevant aerodynamic data. The Reynolds number for the 

experiments is Re = 660,000. The boundary layer was tripped through trip wires of 0.3 mm 

diameter fixed at 𝑥/𝑐 = 0.1 on both the surfaces of the airfoil. This location corresponds to the 

maximum surface velocity [16] for NACA 0012 airfoil at α = 0°. Baseline lift force measurements 

for the airfoil, with no blowing, demonstrated close agreement with the lift data of Jacobs & 

Sherman [17] as discussed by Al-Battal et al. [11]. The chord length was c = 500 mm and span 

was b = 1500 mm. There was a 5 mm clearance between the walls of the wind tunnel and airfoil. 

The experiments were carried out for angles of attack 𝛼 = 0°, 5°, 8°, 10°, 13° and 16°. This is to 

observe the behavior for angles of attack ranging beyond the stall angle, which was 13 degrees. 
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In this study three jet locations were studied: 𝑥௃/𝑐 = 0.08, 0.60, and 0.95. The wing was made 

with two parts. The leading 0.725c was manufactured with a carbon fiber composite exterior, 

reinforced internally with aluminum alloy structure and Rohacell ® XT foam, see Fig. 1. This 

added greater stiffness whilst maintaining low mass. Plenum chambers for the jet were installed at 

𝑥/𝑐 = 0.08 and 0.60. These chambers were constructed from aluminum tubes with square cross-

section and had a length of 1.50 m and width of 0.022 m. A narrow slot with a width of 1 mm 

angled perpendicular to the surface was cut across the entire span. Due to the intricate internal 

design required for the jet at 𝑥௃/𝑐 = 0.95, the aft 0.275c was rapid prototyped with DuraForm ® 

PA plastic. In order to prevent warping of the plastic, the trailing edge section was separated into 

five interlocking parts. The interior of the rapid prototyped section acts a plenum chamber for the 

𝑥௃/𝑐 = 0.95 jet. For all three jet locations, 𝑥௃/𝑐 = 0.08, 0.60 and 0.95, the inlet was positioned at 

the wing root. Porous polyethylene sheets of a 2 mm thickness were fitted beneath the wing surface 

at each location, which helped to maintain a relatively uniform jet velocity in the spanwise 

direction (maximum deviation of the mean jet velocity was 5%). This was checked for the 

maximum jet speed for continuous blowing at several spanwise locations for all slots. The counter-

flowing jet was produced by the addition of a carbon fiber piece attached to the slot on the wing, 

see Fig. 1a. This piece extends 5 mm (1%c) from the slot in the upstream direction and protrudes 

0.5 mm (0.1%c), as sketched in the inset of Figure 1(a). Time-averaged force measurements were 

performed to confirm that the protrusion did not influence the lift curve when the jet was not active 

[10, 11]. Slots that are not used were covered with tape to produce a smooth surface. The tape had 

thickness of 0.13 mm and width of 19 mm. This thickness is smaller than the diameter of the trip 

wire. 

 



7 
 
 

A. Hot-Wire Measurements 

Hot-wire measurements were performed to quantify the jet exit velocity. The measurements 

were taken using a TSI® 1210 – T1.5 hot-wire anemometer, connected to a TSI® 1750 Constant 

Temperature Anemometer bridge and control resistor tailored to the hot-wire probe.  A National 

Instruments with 16-bit analogue to digital converter module, NI-9205, amplified the voltage 

signal. The hot-wire probe was calibrated in a calibration rig with a Pitot tube. The pressure was 

recorded using a Digitron 2020P digital manometer connected to the Pitot tube. Hot-wire 

measurements were taken for 42 velocities within a range of 0  50 𝑚𝑠ିଵ. Using King’s Law 

equation, a non-linear equation is determined to correlate the measured voltage values to the 

corresponding velocity. The mean jet velocity at 2 mm away from the wall (in the potential core) 

was calculated from 20,000 samples at 2 kHz for 59 equally distributed spanwise locations, and 

revealed a maximum deviation of 5%. These measurements were taken for the normal jet for 

convenience, before the small thin plate was inserted to generate the upstream blowing wall jet. 

A bespoke valve system was used to create the unsteady jet actuation. The system comprised 

of compressed air at 6.5 bar from the University compressors split to two Ingersoll Rand ARO 

filter /regulators to stabilize the pressure. The two streams are then separated into two pairs of 

Enfield LS-V25s Proportional Pneumatic Control Valves to create four streams that are 

recombined at the wing inlet. Hot-wire measurements at the exit of each of the four valves were 

taken to ensure there was no lag between them. For periodic blowing, measurements were taken 

at the mid-span location for a range of reduced frequencies, 0 ≤ k ≤ 0.47. A total of 100 blowing 

cycles were recorded at 5 kHz and subsequently phase-averaged. For periodic actuation of the 

counter flowing wall jets, the actuators were excited with a sinusoidal waveform. An example of 
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the measured jet velocity corresponding to this type of excitation is shown in Figure 2(a). The 

momentum coefficient is defined as: 

    

𝐶ఓ =
ℎ௃𝑈௃

ଶ

1
2

𝑈ஶ
ଶ 𝑐

 

where UJ is the jet velocity and U∞ is the freestream velocity, and ℎ௃= 0.5 mm for all three jet 

locations. The uncertainty in the momentum coefficient is determined as 2.6%, taking into 

consideration the uncertainties associated with the jet area, jet velocity and dynamic pressure. The 

maximum momentum coefficient during the blowing cycle is fixed at 𝐶ఓ,௠௔௫ = 0.016. As the 

frequency of the jet actuation is increased, the valves had to be adjusted and calibrated to maintain 

a peak momentum coefficient of 𝐶ఓ,௠௔௫ = 0.016. 

 For transient measurements, the excitation waveform was selected as a step function. The 

measured (output) jet velocity resembles the response of a first-order system, with a time constant 

of the actuator. An example of the output (measured jet velocity) corresponding to this type of 

desired velocity is shown in Figure 2(b). For the jet in Figure 2(b), i.e. x/c = 0.60, the jet velocity 

reaches 90% of the maximum value in less than two convective time units. It takes slightly longer 

when jet is turned off. In both cases it is much smaller than the response time of the separated 

flows. For transient jet measurements, a total of 400 cycles were used to produce a phase-averaged 

velocity time history.  

 

B. Force Measurements 

For dynamic force measurements, a FUTEK S-type load cell was used to measure the unsteady 

lift force. A total of 350 cycles were taken at a sampling rate of 5 kHz. The airfoil was rotated 
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manually and the angle of attack measured using a rotary encoder with a precision of ± 0.02°. The 

lift force measurement system was dynamically calibrated through an electromechanical shaker 

positioned perpendicular to the airfoil to excite it sinusoidally through a carbon fiber shaft 

positioned at the center of mass for the entire system. The FUTEK S-type load cell was placed 

between the shaker and the airfoil to quantify the input force. The airfoil was forced at a range of 

frequencies between 1 Hz ≤ f ≤ 20 Hz, with 0.5 Hz intervals, at force magnitudes of ± 10 N, 25 N 

and 50 N. The amplitude ratio and phase angles were determined through averaging 100 cycles. 

The resonant frequency of the system was approximately 7.25 Hz, or k = 0.57. To avoid the 

resonance effects, we only present data for k  0.47. With increasing frequency, the amplitude 

ratio slightly increased and the phase angle increased for our experiments for k  0.47. The 

dynamic calibration data (amplitude and phase) were used to correct the load-cell output using the 

following procedure: post-processing in MATLAB was performed to determine the amplitude and 

phase angles from the signal. This process required the output signal to be assessed in the 

frequency domain, through a Fast Fourier Transform, where the phase and amplitude information 

were extracted. This information is revised using the dynamic force balance calibration data and 

reverted to the time domain, where the lift coefficient values are obtained.  

A jet reaction force occurs when the unsteady jet is activated. In order to account for this force, 

force measurements were also taken with the jet activated in zero freestream velocity. However, 

the reaction force was small, but was still deducted from force measurements taken inside the wind 

tunnel. The reason for this is that the maximum momentum coefficient was 0.016 and the direction 

of momentum flux (along the wall) is not in the lift force direction. 

Transient measurements were carried out for 𝛼 = 10° at 𝑥௃/𝑐 = 0.08, 0.60 and 0.95. In the 

transient experiments, the jet is turned on and the jet velocity remained constant for five seconds, 
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which is equivalent to 200 convective time units. We also performed experiments by turning the 

jet off and measuring the unsteady lift force. Transient measurements were repeated over 20 cycles. 

  

C. Particle Image Velocimetry Measurements 

The flow field was measured using a 2D-PIV system to further enhance the understanding of 

the flow physics associated with the unsteady jet. An EverGreen 200 mJ 15 Hz Nd:YAG double-

pulse dual laser was used to cover the airfoil upper surface at z/b = 0.6, as shown in Fig. 1. 

Uncertainty of the laser alignment was approximately 1 mm. The freestream air was seeded with 

olive oil droplets, atomized using a six-jet atomizer. The mean size of the droplets was 1 µm, 

which was deemed to be appropriate according to the Stokes drag equation [18]. The glass floor 

of the wind tunnel allowed two TSI® PowerView™ CCD 8 MP cameras (3,312 x 2488 pixels) to 

be placed in a tandem configuration, 1200 mm below the plane of interest. The dual camera 

configuration allows covering the entire airfoil surface while maintaining a high vector resolution. 

The cameras were fitted with two Nikon AF 50 mm NIKKOR f/1.8D lenses. A TSI® LaserPulse 

610034 synchronizer was used to synchronize the camera and laser with an external trigger. This 

allowed the cameras to capture images at specific moments in the phase cycle, determined by the 

LabView software. Processing of the PIV images was performed in the TSI® Insight 4G software, 

which made use of a recursive Fast Fourier Transform cross correlator. The interrogation window 

size was kept at 32 x 32 pixels, to produce a spatial resolution of 4 mm (0.8%c). A total of 450 

image pairs were captured to be phase-averaged. A MATLAB® code was created to merge the 

two phase-averaged velocity fields and utilized a weighted average in the overlap region between 

the two cameras. Velocity measurements have an uncertainty of 3% of the freestream velocity. 

The laser reflection is accentuated through the upstream blowing strip, therefore data were  
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collected from 5.6 mm away from the strip surface. Everywhere else it is approximately 2.3 mm 

from the wall.  

  

III. Results and Discussion 

A. Periodic Actuation 

Figure 2(a) illustrates the definitions used throughout this discussion. Included in this figure is 

the normalized velocity magnitude of the jet, using the left-hand y-axis, with the peak velocity 

occurring near the phase 𝜑 = 180°. Total harmonic distortion for Figure 2a is 27%.  This is 

determined by finding the fundamental and harmonic frequencies through Fourier analysis and 

then calculating the harmonic distortion in MATLAB®. The lift coefficient is also plotted, with 

dashed lines using the right-hand y-axis. The horizontal dashed red lines show the k = 0 steady-

state limits; blowing off at the top 𝐶୐୭୤୤, and blowing on 𝐶୐୭୬ at the bottom. The difference (𝐶୐୭୤୤ −

 𝐶୐୭୬) is therefore the lift change achievable in steady-state conditions. For unsteady conditions, 

𝐶୐୫ୟ୶ and 𝐶୐୫୧୬ represent the maximum and minimum lift coefficients, respectively, while the 

mean value of the coefficients are symbolized by 𝐶୐୫ୣୟ୬.  

The effect of reduced frequency on 𝐶୐୫୧୬ and 𝐶୐୫ୟ୶ relative to the no blowing case, i.e. 

(𝐶୐୫୧୬ −  𝐶୐୭୤୤) shown with dashed line and (𝐶୐୫ୟ୶ −  𝐶୐୭୤୤) shown with solid line, are 

demonstrated in Figures  3, 4, and 5, for jet locations 𝑥௃/𝑐 = 0.95, 0.60 and 0.08. The differences 

shown in these figures were calculated from the phase-averaged lift coefficient, hence include the 

contributions from the fundamental frequency as well as the higher harmonics. The difference 

between the lines is the amplitude of the lift fluctuations. The value at k = 0 is the change in the 

lift coefficient with continuous blowing for each angle of attack. Figure 3 shows that, for 𝑥௃/𝑐 = 
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0.95, the change in the lift coefficient for static actuation (k = 0) decreases with increasing angle 

of attack. The corresponding flow fields for k = 0 have been discussed in detail elsewhere [11]. 

Figure 3(a) for 𝛼 = 0° shows little deviation from zero in the difference between maximum lift 

coefficient and no blowing (𝐶୐୫ୟ୶ − 𝐶୐୭୤୤), until k = 0.31. Beyond this reduced frequency, the 

maximum lift coefficient begins to decrease slightly. This departure from the static value appears 

to increase with angle of attack, except for the post-stall angle of attack of 𝛼 = 16°. As reduced 

frequency increases for all angles of attack, the minimum lift coefficient increases slightly or 

remains roughly constant at high angles of attack. The maximum and minimum lift coefficients 

converge to one another, indicating a reduction in the amplitude of the lift fluctuations with 

reduced frequency. Across the reduced frequencies considered, the mean lift coefficient 

experiences minimal change for all angles of attack. 

Figure 4 presents the data for the jet at 𝑥௃/𝑐 = 0.60. It is seen that, in this case, the change in 

the lift coefficient for static actuation (k = 0) increases with angle of attack until the stall angle, 

and then drops off at the post-stall angle of attack. The maximum change in the lift coefficient 

occurs for the stall angle and is larger than that observed for 𝑥௃/𝑐 = 0.95. These features are due 

to the variations in the natural flow separation for the baseline case as well as the forced separation 

due to blowing as the angle of attack is varied. For periodic actuation, the effect of the reduced 

frequency is similar to the previous case of 𝑥௃/𝑐 = 0.95. The lift amplitude decreases with 

increasing reduced frequency for all angles of attack. It appears that the rate of the decrease with 

reduced frequency increases with angle of attack until the stall angle of attack is reached. Hence, 

the effectiveness of blowing for lift reduction decreases substantially with increasing frequency 

near the stall angle. The decrease of the rate with frequency slows down at the post-stall angle of 

attack 𝛼 = 16° in Fig. 4(f). 
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When the jet is located at 𝑥௃/𝑐 = 0.08, Figure 5 shows that the change in the lift coefficient for 

static actuation (k = 0) is qualitatively similar to that of the case of 𝑥௃/𝑐 = 0.60. However, the effect 

of the angle of attack is more significant. The change is very small for 𝛼 = 0°, but reaches nearly 

𝐶௅௠௜௡ − 𝐶௅௠௔௫  0.5 at the stall angle of attack, dropping again at the post-stall angle of attack. 

Similar to previous cases, the difference between the maximum and minimum lift coefficients 

decreases with increasing reduced frequency. In particular, at the stall angle of attack (𝛼 = 13°) in 

Figure 5(e), both the maximum and minimum lift coefficients reveal significant changes at higher 

reduced frequencies, resulting in a rapid drop of the lift amplitude. It is worth noting that lift 

reduction with unsteady actuation is still possible at the post-stall angle of attack (𝛼 = 16°) for this 

location of blowing (𝑥௃/𝑐 = 0.08). This is in contrast to the observations for blowing locations 

further downstream. Manipulation of the naturally separated flow near the leading-edge seems 

effective in both static [11] and the dynamic cases. 

Figure 6 summarizes the variation of the difference (𝐶௅௠௜௡ − 𝐶௅௠௔௫), or amplitude, as a 

function of reduced frequency for the angles of attack tested and the three jet locations. In terms 

of load (lift) alleviation capability, the effectiveness increases as the blowing location is moved 

upstream. Also, the effectiveness may increase or decrease with angle of attack, depending on the 

location of blowing. Generally, there is a decrease in the lift reduction with increasing reduced 

frequency. For 𝑥௃/𝑐 = 0.08 and 0.60, the rate of decay in amplitude appears to increase with 

increasing angle of attack until the stall angle is reached. 

Presented in Figure 7 is the phase angle between the lift response and the measured jet velocity 

for locations 𝑥௃/𝑐 = 0.95, 0.60 and 0.08. As the lift decreases with blowing (increase in the jet 

velocity) for the quasi-state case (continuous jet), the phase angle at k = 0 is 𝜑 = -180° as indicated 

with the dashed lines to the first data point. When comparing the phase angle of the lift with respect 
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to the quasi-state case, for all three jet locations, it is apparent that the relative phase difference 

increases with increasing frequency as the jet location is moved upstream. Both effects (increasing 

frequency and upstream jet location) can be considered to be associated with increasing extent of 

the separated flows. Also, it is apparent that the effect of angle of attack is the largest for the most 

upstream blowing location. Increasing angle of attack is also associated with increasing extent of 

the separated flows. Therefore, the phase angle of the lift seems to increase with any parameter 

that makes the flow more separated. 

Varying effects of the jet location and reduced frequency on the amplitude and phase angle of 

the lift are reflected in the hysteresis loops of the lift as a function of the blowing phase. The 

representative data are shown for 𝛼 = 5° (pre-stall) in the left column and for 𝛼 = 13° (stall angle) 

in the right column of Figure 8. All loops are clockwise. As the jet location is moved upstream, 

decreasing amplitude for the pre-stall and increasing amplitude for the stall angle are evident. For 

the pre-stall angle of attack, the hysteresis loops start with negative slope at low reduced frequency 

and then the slope decreases with the increasing reduced frequency. However, for the stall angle 

of attack, the loops may even gain positive slope at high reduced frequencies. In particular, for 

𝑥௃/𝑐 = 0.08, even at low reduced frequencies, lift response is characterized by very large phase 

lags. As can be seen with k = 0.08, the phase difference is 𝜑  -100°, subsequently causing the 

hysteresis loop to transform into a box-like form. This highlights that there is a large delay in 

response before the upstream blowing jet is able to incite a change in the flow. The loops gain a 

positive slope with increasing frequency, due to the increasing phase lag, resulting in the lift 

decreasing with blowing intensity. Existence of these hysteresis loops and large phase delays are 

inherent in the massively separated flows near stall angle and at high reduced frequencies. 

Obviously, this is not desirable for control purposes but inevitable.   
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Differences in the phase-averaged velocity fields for 𝛼 = 13° and k = 0.39 are presented in 

Figures 9, 10, and 11 for 𝑥௃/𝑐 = 0.95, 0.60 and 0.08 respectively, alongside the time-averaged 

velocity for no blowing and continuous blowing. Also shown are the associated lift and jet velocity. 

In Figure 9, for the no blowing case there is a small separated region starting at approximately 𝑥/𝑐 

≈ 0.70. Once the jet is activated in the continuous blowing case the separated region becomes 

larger, resulting in a change in the lift coefficient of ∆𝐶୐  -0.09. For periodic blowing, the 

maximum and minimum lift coefficients do not reach the corresponding values of the baseline 

case and continuous blowing. The smallest separated region and the maximum lift coefficient are 

observed at around 𝜑 = 90°. When the jet velocity is maximum (at 𝜑 = 180°), the separated region 

is not the largest, but earlier separation occurs at 𝜑 = 270° when the lift is near minimum. 

Generally, the amplitude of lift variation is small, which is in broad agreement with the flow field 

measurements.   

For 𝑥௃/𝑐 = 0.60 in Figure 10, continuous blowing produces a large recirculation region, with 

flow appearing to separate upstream of the jet at 𝑥/𝑐 ≈ 0.25. This is caused by the jet flow 

impinging with oncoming flow to deflect it away from the airfoil surface. The high velocity region 

near the leading edge is reduced in size, therefore contributing to the lift reduction, with ∆𝐶୐  -

0.23 for the continuous blowing. Again, phase-averaged flow fields for the periodic blowing 

exhibit separated regions with sizes in between those of the baseline case and the continuous 

blowing. At the beginning of the cycle, 𝜑 = 0°, lift coefficient is near its minimum value. The 

recirculation region is reduced relative to continuous blowing. Subsequently, as lift returns to the 

maximum lift coefficient, wake size begins to reduce at 𝜑 = 180°, when the jet velocity is 

maximum. Hence, there is a very large phase lag, almost 180 (see also Figure 7). 
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For 𝑥௃/𝑐 = 0.08 in Figure 11, continuous blowing forces separation to occur immediately at this 

location, deflecting the shear layer away from the surface at a larger angle to that seen with 𝑥௃/𝑐 = 

0.60. The combination of the larger recirculation region and deflection of the shear layer causes  

the largest change in lift coefficient observed throughout the cases considered, ∆𝐶୐  -0.48. 

Minimum lift coefficient for periodic blowing occurs near 𝜑 = 60°, despite the jet velocity not 

being maximum at this phase. In fact, Figure 7 shows that there is a very large phase lag in this 

case. The flow fields show the separated region grows between 𝜑 = 0° and 90° in agreement with 

the lift measurements. Flow near the leading-edge accelerates at 𝜑 = 180°, with the separated 

region becoming even smaller at 𝜑 = 270° and the lift becoming maximum in between the two 

phases (at around 𝜑 = 230°). 

 

B. Transient Actuation  

To further understand the development of the phase-averaged lift and flow during a step-like 

actuation, Figures 12, 13 and 14 present the data for 𝛼 = 10° and 𝐶ఓ,௠௔௫ = 1.6% for 𝑥௃/𝑐 = 0.95, 

0.60 and 0.08, respectively. The jet velocity measured by the hot-wire probe shows that it reaches 

the maximum velocity very quickly (within one convective time unit) in terms of the convective 

time scale, 𝜏 = U t/c, once the jet is activated at 𝜏 = 0. The flow fields are shown at various 

instants. In Figure 12 for 𝑥௃/𝑐 = 0.95, the flow field at a convective time of 𝜏 = -10 is representative 

of the baseline case. There is a small separated region near the trailing-edge in this case. After the 

activation of the jet, the separated region grows and reaches a steady-state between 𝜏 = 6 and 9, 

which  is in broad agreement with the lift time history. 
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For 𝑥௃/𝑐 = 0.60 in Figure 13, the final separated region is larger and the response of the flow is 

slower. The time taken to reach the steady-state lift is roughly 𝜏 = 20. After 𝜏 = 10, the changes 

in the flow fields are smaller. Again, the lift and flow measurements are consistent. For 𝑥௃/𝑐 = 0.08 

in Figure 14, the final separated region covers roughly the whole airfoil surface. The lift time 

history suggests that it takes approximately 20 convective time units to reach the steady-state 

value. An interesting feature of the lift in this case is the initial increase and the peak around 𝜏  5 

following the activation of the jet at 𝜏 = 0. Similar observations were made for a separated flow 

over a flat-plate flap, following the termination of the excitation Darabi & Wygnanski [13]. The 

initial overshoot, which also occurred around 𝜏  5 in their case, was attributed to the formation of 

a large vortex over the flap. The time to reach the steady-state force was around 𝜏 = 20 to 30, 

depending on the angle of attack of the flap. Qualitatively similar observations were made in the 

reattachment process after the excitation is started [19], with the initial overshoot occurring around 

𝜏  3 and the reattachment time around 𝜏 = 20. The development of the flow field in Figure 14 is 

in agreement with the lift data. Surprisingly the separation point is still downstream of the jet slot 

at 𝜏 = 5 and is seen to reach the jet slot location after 𝜏 = 10. The fully developed flow is only 

attained around 𝜏 = 15. 

In order to understand why the flow separation is so slow to respond, close-up images of local 

flow near the leading edge are presented in Figure 15 for 𝜏 = -10, 5, 10, 15 and 60. Figure 16 

shows the corresponding vorticity plots for the same instants. Given that the slot exit is 0.5 mm 

(0.1%c), the boundary layer upstream of flow separation is thin, and the reflections near the wall 

exist, the details of the interaction of the wall-jet with the approaching boundary layer and the 

initial separation on the wall cannot be resolved. However, the development and growth of the 

flow separation as well as the lift-off of the shear layer from the surface are captured in Figures 15 
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and 16. Figures 15(a) and 16(a) show the initial state of the flow prior to the activation of the jet, 

with no sign of vorticity. For 𝜏 = 5, slight changes in the velocity field are observed for 𝑥/𝑐  0.15 

where a velocity reduction occurs. The vorticity plot for the same instant captures weak vorticity 

off the surface. As time increases to 𝜏 = 10, the flow separation starting upstream of the counter-

flowing jet becomes apparent, in particular in the vorticity plot (Figure 16(c)). For 𝜏  15, the 

separated flow is fully developed. In summary, the forced separation process has inherently large 

relaxation time and there is a trend of slight increase of the separation time with the size of the 

final separated region. 

We also carried out experiments for the reattachment process. The counter-flowing jet was 

turned off at 𝜏 = 0 as shown in the example in Figure 17 for 𝑥௃/𝑐 = 0.08 and 𝛼 = 10°. As the jet 

velocity diminishes, there is an oscillation of the jet velocity. However, the effect of this oscillation 

is not observable in the lift response or flow fields. There is an overshoot of the lift in the opposite 

direction before it starts to increase. This is similar to the observations for the forced separation 

case shown in Figure 14. The time that takes to reach the steady-state case is still around 20 

convective time units, which is also similar to the forced separation case. The similarities between 

our results and those of Darabi and Wygnanski [13, 19] for a flat-plate flap are striking. The 

velocity fields in Figure 17 reveal the slow process of reattachment of the flow. 

As discussed earlier, the lift requires a long time (of the order of 10-20 convective time units) 

to reach the steady-state value. A better, more quantitative and more useful measure is the time 

constant, where the lift is approximated as the response of a first-order system. With this 

idealization, the time constant 𝜅 can be estimated from the response of the lift to a step or ramp 

input. The details of the curve fitting procedure are the same as Heathcote [20] proposed. 

Normalized time constants of various  transient cases tested at different angles of attack and for jet 
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locations 𝑥௃/𝑐 = 0.08, 0.60 and 0.95 are shown in Figure 18. There is a trend of increasing 𝜅𝑈ஶ/c 

with increasing angle of attack, whereas the effect of blowing location is weaker. Also, the time 

constants for the forced separation (jet turned on) and reattachment (jet turned off) are similar. It 

is worth noting that a different method of altering the lift by dynamic deployment of a mini-tab 

located at x/c = 0.85 for forced separation and reattachment also provided similar estimates of the 

time constant [21]. These observations are in broad agreement with the data for a flat-plate flap of 

Darabi and Wygnanski [13,19], who observed similar force responses for forced separation and 

reattachment. 

 

IV. Conclusions 

Phase-averaged lift force and two-dimensional PIV measurements were performed for unsteady 

actuation of counter-flowing wall jets employed on the upper surface of a NACA 0012 airfoil in 

order to study their capability for gust load attenuation. Although the change in the lift coefficient 

for continuous blowing (k = 0) depends on the chordwise location of blowing and the angle of 

attack, the effect of reduced frequency is similar for all cases. A reduction in the amplitude of the 

lift oscillations with increasing reduced frequency is observed. The rate of decay in the lift 

amplitude depends on the angle of attack and the location of the jet slot. Also, increasing phase 

lag of the lift has been observed with more separated flows, i.e. with increasing angle of attack and 

for upstream locations of the jet. These unsteady effects may result in the lift decreasing with 

increasing blowing intensity in the cycle. The large phase delays in the lift are consistent with the 

delays observed in the phase-averaged flowfields. 

When a step-like variation of the jet velocity is employed, transient PIV measurements 

demonstrate that the separated region grows slowly, in agreement with the force data. With 
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increasing size of the separated region in the final state (for upstream locations of blowing), the 

response of the flow and lift force becomes slower. PIV measurements reveal the slow lift-up of 

the boundary layer vorticity as the wall jet interacts with the oncoming flow and separated wake. 

Estimated time constants for turning the jet on or off are similar, and increase with increasing angle 

of attack. Magnitude of the time constants as well as the general response of the flows are similar 

to those of other experiments on the forced separation and reattachment. 

High-frequency actuation is necessary for effective gust load alleviation. However, using 

unsteady actuation has inherent limitations. Generality of these observations imply that the 

limitation is due to the response of the separated flows to any unsteady actuation. The gust load 

alleviation becomes more limited if the flow is more separated, i.e. with increasing angle of attack 

and for upstream locations of the jet.   
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Figure 1. a) Schematic of the wing and jet slot; b) Experimental setup. 



25 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Examples of measured jet velocity and lift variation for a) periodic actuation, x/c = 0.95, k
= 0.31, C = 1.6%,  = 0 deg, b) transient actuation, x/c = 0.60,  = 10 deg. 
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Figure 3. Variations of (𝑪𝐋𝐦𝐢𝐧 −  𝑪𝐋𝐨𝐟𝐟) and  (𝑪𝐋𝐦𝐚𝐱 − 𝑪𝐋𝐨𝐟𝐟) with reduced frequency for 𝒙𝒋/𝒄 = 0.95 at a) α = 
0°, b) α = 5°, c) α = 8°, d) α = 10°, e) α = 13° & f) α = 16°. 
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Figure 4. Variations of (𝑪𝐋𝐦𝐢𝐧 −  𝑪𝐋𝐨𝐟𝐟) and  (𝑪𝐋𝐦𝐚𝐱 − 𝑪𝐋𝐨𝐟𝐟) with reduced frequency for 𝒙𝒋/𝒄 = 0.60 at a) α = 
0°, b) α = 5°, c) α = 8°, d) α = 10°, e) α = 13° & f) α = 16°. 
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Figure 5. Variations of (𝑪𝐋𝐦𝐢𝐧 −  𝑪𝐋𝐨𝐟𝐟) and  (𝑪𝐋𝐦𝐚𝐱 − 𝑪𝐋𝐨𝐟𝐟) with reduced frequency for 𝒙𝒋/𝒄 = 0.08 at a) α = 
0°, b) α = 5°, c) α = 8°, d) α = 10°, e) α = 13° & f) α = 16°. 
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Figure 6. Variation of (𝐂𝐋𝐦𝐢𝐧 −  𝐂𝐋𝐦𝐚𝐱 ) with reduced frequency for a) 𝒙𝒋/𝒄 = 0.95, b) 𝒙𝒋/𝒄 = 0.60 & c) 𝒙𝒋/𝒄 = 
0.08. 
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Figure 7. Variation of phase angle between lift coefficient and jet velocity at varying angles of attack for a) 𝒙𝒋/𝒄 
= 0.95, b) 𝒙𝒋/𝒄 = 0.60 & c) 𝒙𝒋/𝒄 = 0.08. 
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Figure 8. Phase-averaged loops of lift versus momentum coefficient for 𝒙𝒋/𝒄 = 0.95, a) 𝜶 = 5° and b) 𝜶 = 13°; 

𝒙𝒋/𝒄 = 0.60, c) 𝜶 = 5° and d) 𝜶 = 13°; 𝒙𝒋/𝒄 = 0.08, e) 𝜶 = 5° and f) 𝜶 = 13°. All loops are clockwise. 
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Figure 9. Phase-averaged velocity magnitude and streamlines at varying phases for k = 0.39, 𝒙𝒋/𝐜 = 0.95, and 
α = 13°. 
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Figure 10. Phase-averaged velocity magnitude and streamlines at varying phases for k = 0.39,  𝒙𝒋/𝐜 = 0.60, and 
α = 13°. 
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Figure 11. Phase-averaged velocity magnitude and streamlines at varying phases for k = 0.39,  𝒙𝒋/𝐜 = 0.08, and 
α = 13°. 
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Figure 12. Phase-averaged velocity magnitude and streamlines at different instants for transient jet at 𝒙𝒋/𝒄 = 
0.95 and α = 10°. 
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Figure 13. Phase-averaged velocity magnitude and streamlines at different instants for transient jet at 𝒙𝒋/𝒄 = 
0.60 and α = 10°. 
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Figure 14. Phase-averaged velocity magnitude and streamlines at different instants for transient jet at 𝒙𝒋/𝒄 = 
0.08 and α = 10°. 
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Figure 15. Velocity magnitude and streamlines at τ = -10, b) τ = 5, c) τ = 10, d) τ = 15 & e) τ = 60, for 𝒙𝒋/𝒄 = 
0.08, α= 10°. 
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Figure 16. Vorticity magnitude at a) τ = -10, b) τ = 5, c) τ = 10, d) τ = 15 & e) τ = 60, for 𝒙𝒋/𝒄 = 0.08, α= 10°. 
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Figure 17. Phase-averaged velocity magnitude and streamlines at different instants for transient jet at 𝒙𝒋/𝒄 = 
0.08 at α = 10°. 
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Figure 18. Estimated time constants for transient jets at 𝒙𝒋/𝒄 =0.08, 0.60 & 0.95. 


