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Abstract

In this short communication, we analyse the potential of the natural stress formulation (NSF) (i.e.
aligning the stress basis along streamlines) for computing planar flows of an Oldroyd-B fluid around
sharp corners. This is the first attempt to combine the NSF into a numerical strategy for solving a
transient fluid flow problem considering the momentum equation in Navier-Stokes form (the elastic
stress entering as a source term) and using the constitutive equations for natural stress variables.
Preliminary results of the NSF are motivating in the sense that accuracy of the numerical solution
for the extra stress tensor is improved near to the sharp corner. Comparison studies among the NSF
and the Cartesian stress formulation (CSF) (i.e. using a fixed Cartesian stress basis) are conducted in
a typical benchmark viscoelastic fluid flow involving a sharp corner: the 4 : 1 contraction. The CSF
needs a mesh approximately 10 times smaller to capture similar near singularity results to the NSF.

Keywords: Unsteady viscoelastic flows, Oldroyd-B model, Natural Stress Formulation, Planar contrac-
tion, Sharp corner

1 Introduction

Flow through a contraction is a benchmark problem in computational rheology [9], where viscoelastic
fluids exhibit regions of strong shearing near the walls and uniaxial extension along the centreline. The
complex flow patterns that evolve have been the subject of much interest in the literature, with attention
focused on: (i) vortex behaviour, both near the re-entrant corner (so-called lip vortices) and salient corners,
(ii) variation of the pressure drops across the contraction with strength of fluid elasticity (Weissenberg
number), (iii) particle paths upstream of the contraction and (iv) velocity overshoots along the axis of
symmetry.

The main numerical approaches to simulate this flow, have been finite-difference [21], finite-element [8]
and finite-volume [2]. Combinations of the methods, e.g. hybrid finite-element finite-volume [1] as well as
Lagrangian and semi-Langrangian methods [15,22] are also commonly employed. However, a key feature
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of all numerical schemes so far employed is that they discretize the viscoelastic constitutive equations
formulated using a fixed Cartesian basis for the stress. We refer to this formulation as the Cartesian stress
formulation (CSF) of the constitutive equations. An alternative approach is to exploit the mathematical
structure of the upper convected derivative and align the stress basis with the flow using streamlines. This
formulation uses the velocity field to span the stress field, the formulation of the constitutive equations
in this setting being termed the natural stress formulation (NSF).

The natural stress formulation was first used by Renardy [17], to demonstrate its ability to eliminate
the downstream stress instability encountered during numerical integration around re-entrant corners [18].
Although the idea of transforming the stress tensor components to a basis aligned with streamlines for
computation purposes had been recognised previously in [3,11]. However, the full power of the approach
has not yet been exploited numerically in a mathematically systematic way for the full contraction
geometry.

A key feature of the geometry is the presence of the re-entrant corner at which the velocity gradients
and stress are infinite. The singularity determination for the Oldroyd-B fluid was first given by Hinch [10],
with the asymptotic structure of the local solution completed through the upstream wall boundary layer
by Renardy [19] and the boundary layer at the downstream wall in [16] and [4,5]. An important aspect
of the solution analysis is that the natural stress formulation is an efficient way to transmit the necessary
stress information from the upstream to downstream regions. This is explicitly calculated in [6, 7] for
the UCM fluid, illustrating that the necessary stress information is contained in high-order terms of the
asymptotic expansions when using the Cartesian stress components, with the natural stress variables
being able to uncouple and extract this information.

The success of the natural stress formulation near the re-entrant corner singularity, both for asymp-
totics and numerical computation, are the motivating reasons to investigate the formulation for the full
contraction geometry.

2 Mathematical formulation

The governing equations for the incompressible flow of a viscoelastic fluid we adopt are the continuity,
momentum and Oldroyd-B constitutive equations in dimensionless form

V-v=0, (2.1)
Re(%+v-Vv)=—Vp+ﬁV2v+V-T, (2.2)
T + Wi <%—T+(V~V)T (VV)TT(VV)T) = 2(1 - B)D. (2.3)

Here v is the velocity field, p is an arbitrary isotropic pressure, T is the polymeric contribution to the
extra-stress tensor and D = 2(Vv+ (VV)T) is the rate-of-strain tensor. The dimensionless parameters are
the Reynolds number Re, Weissenberg number Wi and retardation parameter 8 € [0, 1] (the dimensionless
retardation time or solvent viscosity ratio) defined by

pUL . >\1U

Re = , Wi
Ns + Mp L

Ns
; B = , 2.4
Ns + Mp ( )

where p is the density, U and L are characteristic length and flow speeds respectively, A\; the relaxation
time, 75 the solvent viscosity and 7, the polymer viscosity. The above governing equations have been
made non-dimensional using L for the spatial variables, U for the velocity scaling and (1, + n5)U/L the
pressure and stress scalings. The total stress is ¢ = —pI + 7, with the extra-stress tensor 7 = T + 25D
being rheologically composed of polymer and Newtonian solvent contributions.



2.1 Cartesian stress formulation
Denoting by i and j the unit vectors in fixed Cartesian  and y directions, we have
v =ui+vj = (u,v)" (2.5)

and

T = Tyii" + Tio (i7" +3i") + Toojj” (2.6)
The component form of the polymer constitutive equation (2.3) for the Cartesian extra-stresses T11, T2, Taa
is
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2.2 Natural stress formulation

Aligning the polymer stress basis along streamlines, introduces the so called natural stress variables.
We follow the construction of Renardy [17] (see also [20] and [23]). Introducing the configuration tensor

A by
(1-8)
T= A-1 2.
-, 28)
the polymer constitutive equation (2.3) becomes
0A T 1
aﬁL(VV)A*(VV)A*A(VV) +W(A71)—0 (29)

We now express A in terms of the dyadic products of the velocity v and an orthogonal vector w defined
as follows

1 T
w = e (—v,u)",
so that
A = v+ pvw? 4 wvl) +vww? (2.10)

where A, i, v are termed the natural stress variables. However, a detraction of this construction is that
the basis vectors v, w are degenerate when the velocity field vanishes. As such, it is convenient to use
instead, unit vectors in their directions. Hence, we write

A = 3T+ awT 4+ we ) + oww” (2.11)

where v R v
V=, w = |V|Wa A= |V|2)‘7 A= v=—s. (2'12)
vl lv|?

The scaled natural stress variables 5\, [t, U then satisfy the component equations
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with
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with the inverse relationship being
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These expressions link the Cartesian and natural stress components together.

3 Numerical method

3.1 CSF and NSF schemes

The first step involved in the algorithm of the schemes is the solution of the conservative equations
(2.1)=(2.2) which can be written as follows:

ou Ov

2oy 2 1
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For this purpose, in the context of a finite difference Marker-And-Cell (MAC) methodology, a projection
scheme for solving viscoelastic problems is applied in order to uncouple velocity and pressure fields in
Egs. (3.1)-(3.3), as carefully detailed in [13]. In summary, the momentum equations (3.2)—(3.3) are solved
via a semi-implicit scheme maintaining the convective terms, pressure gradient and divergence of the
stress tensor discretized in the n time-level. After this, the projection step is applied for obtaining the
final velocity and pressure fields (u"*1 v+l pntl),

Once the final velocity field is computed, the constitutive equations of the CSF or NSF can be solved. In
the case of the CSF, the final extra stress components (775, T75T Tubt!) are directly calculated solving
Eqs. (2.7) by an explicit scheme [13]. For the NSF, the final values for the NS variables (A"+1, g t1, pnt1)
are computed by solving equations (2.13) via an explicit discretization scheme. The relationships (2.14)
are then used to construct the necessary Cartesian extra stress components for use in the momentum
equation. Therefore, according to the choice of the scheme (CSF or NSF), at this stage of the algorithm,
all variables are updated; a new computational cycle then begins and the process continues until steady
state is reached.



3.2 Initial and Boundary conditions

In order to solve Egs. (2.13) numerically, initial conditions for the natural stress variables 5\, 1 and
U are required. For instance, at ¢ = 0, based on the relations (2.15) and considering that the Cartesian
extra-stress tensor is initialized as T = 0, we have adopted A=0=1and a=0.

The boundary conditions used in this work for the application of the NSF are: prescribed inflows,
outflows, and rigid walls. At the inlet, the boundary conditions on the NS variables are constructed as
function of the extra-stress tensor. For instance, assuming the fully developed flow, we have imposed:

w11 v=0 4<y<4 (3.4)
- 4 16 ) - ) — y — ) N
and )
ou ou
T =2(1-8)Wi| — Tio=(1- — T = 0. 3.5
11 ( B) 1(83/) ) 12 = ( ﬁ)(ay)’ 22 (3.5)
Substituting v = 0 in (2.15), we can obtain the inlet boundary conditions for the natural stress variables:
< Wi Wi Wi
A= ——=T 1 | = ——=T )= ——=T: 1. .
1—3) 1+ 1, i 1—3) 12; v -5 22+ (3.6)

At an outlet, the homogeneous Neumann condition is employed for the velocity field and for the NS
variables. For rigid walls, the no-slip condition is used for the velocity field. It is not necessary to impose
boundary conditions for the 5\, [ and U at rigid walls since the Eqgs. (2.13) are considered hyperbolic.
However, in order to improve the stability behaviour of the numerical method, we have applied a linear
extrapolation for the NS variables at this type of boundary.

4 A preliminary result: planar contraction flow

The applicability and accuracy of the NSF is now investigated in a typical benchmark problem in-
volving a sharp re-entrant corner: the 4 : 1 planar contraction flow (see Fig. 1a)). For this test, we have
considered U = 1.0 m/s for the velocity scaling while the length scaling is the half-width of the narrower
channel of the contraction with L = 1.0 m. Moreover, some simplifications are adopted:

e Reduction of the channel lengths. The main objective of this work is to present an alternative
strategy for improving the computation of the non-Newtonian stress tensor around sharp corners.
Therefore, the contraction domain is reduced in order to save CPU time and to give more emphasis
in the numerical solution near to the re-entrant corner of the problem (see Fig. 1b)). The domain
description is presented in Fig. 1a) where the inlet (upstream) and outlet (downstream) channels
are constructed using a length of 8. This simplification is acceptable since we are imposing fully
developed velocity and stress tensor profiles at the inlet (see Section 3.2). In addition, a relatively
small value for the Weissenberg number (Wi = 1) is applied in all simulations of this Section to
avoid the presence and growth of a lip vortex.

e Regularization. The basis vectors used in (2.10) (or in Eq. (2.11)) become degenerate where the
velocity field vanishes, typically near solid boundaries and stagnation points. Although using the
scaled variables (2.12) is beneficial, the transformation remains singular and care is needed in using
(2.13). Therefore, terms are regularised in these equations in order to avoid numerical division by
zero, where it may be encountered. In particular, a regularization constant tol = 1076 is adopted
in all simulations.

In all simulations, we have set the following parameters: Re = 1, Wi = 1.0 and 8 = 0.5. The influence
of varying these parameters as well as the regularization constant tol will be carefully investigated in
further work.
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Figure 1: a) Sketch of the 4 : 1 contraction geometry. b) Sketch of the mesh around the re-entrant corner.

This work seeks to improve the convergence of the solution near the geometric singularity using
transient computations of the NSF. Therefore, in the preliminary results presented here, the formulations
are verified using a coarse uniform mesh, denoted as M1, and a non-uniform mesh named M2. Details
about these meshes can be found in Table 1. In addition, the construction of the non-uniform mesh will
be discussed in the continuation of this work.

Table 1: Details of the uniform and non-uniform meshes.

Mesh Space-step Numbers of cells
M1 (uniform) dox = dy = 0.05 32000
M2 (non-uniform) OTmin = 0Ymin = 0.004 39600

We have investigated the transient behaviour of 771 near to the geometric singularity of the contraction,
specifically, in the center of the shaded cell shown in Fig. 1b). Fig. 2 shows that the NSF gives considerably
larger 17 values than the CSF in the region of the sharp corner for both meshes. The growth of the extra
stress tensor when r — 0, evident in Fig. 2 for the mesh M2, is expected from the asymptotic analysis
which indicates that Th; o r—3. It is worth remarking in Fig. 2 that the value of T}; produced by the
NSF in the coarse mesh is similar to the value reached by the CSF in a non-uniform mesh (approximately
10 times smaller).

Finally, in Fig. 3, we have depicted the asymptotic behaviour of the properties considering results
along of the r line (vertical direction) illustrated in Fig. 1b) i.e. § = «/2 in Fig. 1la). We have chosen
this direction consistent with the literature for ease of comparison of the results (e.g. [1,2,12,14]). The
results in Fig. 3 for the CSF scheme on the non-uniform mesh agree very well with those presented
in [2,14] for comparable mesh spacing. From these figures, we observe a significant improvement of the
numerical solutions using the NSF. As can we see in Fig. 3a), even with the application of the NSF on a
coarse mesh, the values of log(|T11|) for the nearest three points of the corner are fitted with the slope
expected for the stress. For the other stress components, the numerical solutions obtained by the NSF
are in good agreement with the asymptotic analysis for » — 0. In particular, it can be observed that both
formulations produce similar results for the velocity field. In all figures, we have included the expected
slope for the extra stress tensor and the velocity field according to asymptotic analyses of [5,10]. It is
worth mentioning that away from the singularity, numerical results for both formulations are very similar.



90

NSF, M1 +
NSF, M2
g0 | CSE. ML % |
CSF,M2 o
70 E
60 [ E
— 50 E
&
40 E
30 E
20 4
10 F , b o D+ 5 9 % 5 5 F & & 5 & 5 & &
+
o +
o+ !
0 £ ¥ * * X * * * * | * * * * * | * * * * * \ * * * * *
0 2 4 6 8 10

time

Figure 2: Comparison between NSF and CSF for the transient behaviour of 771 near to singularity using
uniform (M1) and non-uniform (M2) meshes with Re =1, Wi=1 and 5 = 0.5.
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5 Discussion

In this work, we have numerically investigated an alternative method for solving sharp corner flows
involving the Oldroyd-B model. The mathematical formulation is based on a dyadic decomposition of the
conformation tensor resulting in the natural stress formulation originally proposed by Renardy [17].

The main contributions of this short communication can be summarized as follows:

e The NSF equations relevant to modelling two dimensional unsteady flows have been presented and
used to numerically solve a complex flow;

e The numerical results indicate that the NSF gives an effective formulation for capturing the expected
behaviour of the stress near to the singularity even in the application of coarse meshes;

In the extension of this work, further details regarding the construction of the numerical method for
the NSF will be provided along with the possibility of devising a hybrid scheme in which the CSF is used
at solid boundaries.
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