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 Long noncoding RNAs (LncRNAs) affect chromatin architecture thus playing an essential role in the 

regulation of processes such as gene expression.  

 Their involvement in chromatin organization occurs both through the act of transcription and the 

transcript itself. 

 The act of transcription of a lncRNA affects local architecture by altering chromatin status or driving 

the eviction of architectural proteins such as CTCF. 

 LncRNA transcripts can hold together chromatin-modifying complexes and guide them to targets 

throughout the genome. They can also directly and specifically bind to DNA forming R-loops and 

triple helices. 

 Despite fierce scientific interest and recent technical advances, the underlying mechanisms and full 

extent of lncRNAs’ involvement in genome architecture requires further research. 

 

Abstract 

Chromatin architecture has a significant impact on gene expression. Evidence in the last two decades 

support RNA as an important component of chromatin structure 1–3. Long non-coding RNAs (lncRNAs) are 

able to control chromatin structure through nucleosome positioning, interaction with chromatin re-

modellers and chromosome looping. These functions are carried out in cis at the site of lncRNAs transcription 

or in trans at distant loci. While the evidence for a role in lncRNAs in regulating gene expression through 

chromatin interactions is increasing, there is still very little conclusive evidence for a potential role in looping 

organisation. Here, we review models for the involvement of lncRNAs in genome architecture and the 

experimental evidence to support them. 

Introduction 

Gene expression is dependent on the surrounding chromatin organization within the nuclear 

environment. Epigenetic processes such as DNA methylation and histone modifications co-ordinately alter 

the accessibility and chromatin structure, in order to orchestrate tissue- and development-specific gene 

expression programmes. As far back as 1989, experiments showed that either the digestion or the inhibition 

of nuclear RNAs could lead to the disruption of interphase chromatin structure4. Later analysis of the 

transcriptome revealed large amounts of long non-coding RNAs (lncRNAs) that are highly enriched in the 

nucleus 5,6. LncRNAs are transcribed by RNA polymerase II (RNA polII) into transcripts longer than 200 

nucleotides and are devoid of an open reading frame (ORF)7–9. Despite initially considered to be the “dark 

matter of the genome”10, lncRNAs are currently recognized as key molecules in several biological processes 

including development and disease11. According to their loci of action, lncRNAs can be classified as acting in 

cis near to their point of origin 12 or in trans by localizing to distal regions on the same chromosome 13 or 



2 
 

other chromosomes entirely 14.  

The ability of lncRNAs to fold into tertiary structures capable of specific interactions with proteins, makes 

them well suited to regulate chromatin architecture 15,16. LncRNAs are able to recruit chromatin-modifying 

complexes that can change  gene expression 14,17–20, or act as scaffold molecules to guide or hold complexes 

at specific chromosomal loci 21. They can act as decoy or sponge molecules to inhibit or disrupt the binding 

of transcription factors or RNA binding proteins 22–25. Furthermore, lncRNAs have been shown to insulate 

specific portions of the genome by stabilizing CTCFs together with other factors that mediate looping 26. The 

functional characterization of most of lncRNAs has been difficult, since their primary sequences are usually 

not conserved. This is the main reason why several lncRNAs are still uncharacterised. In addition to functions 

that can be ascribed to the lncRNA transcripts, the act of transcribing any lncRNAs can have consequences 

on the chromatin template that can affect the expression of adjacent genes27. Indeed gene expression is not 

autonomous and there are many instances within the genome where the expression of a gene affects that 

of its neighbour. The mechanisms whereby this happens have not been fully explored – and it is important 

to understand these in an era where gene therapy is fast becoming a reality.  

 

The act of transcribing a lncRNA and the effect on chromatin architecture 

Transcription occurs within minutes of activation and can be highly discontinuous, occurring through burst 

of transcriptional activity, in which many RNAs are transcribed in a short time interspersed with periods of 

inactivity 28. While only ~1.5% of the human genome encodes proteins, the 70%–90% of the genome gets 

transcribed into many diverse non-coding RNAs 29–31. Despite being heavily transcribed, lncRNAs show low 

abundance and high tissue specificity 32–34. Indeed, the low levels of lncRNAs is likely to limit their ability to 

regulate gene expression in trans, which may suggest that the act of transcription is functionally more 

relevant the RNA molecule itself.  Many lncRNAs overlap other genes whose transcription can be affected 

when the lncRNAs is transcribed 35–37. Transcription of divergent lncRNA/mRNA gene pairs has been shown 

to  open and maintain active chromatin during embryonic stem cell differentiation 38. Elongation of  lncRNA 

through a super-enhancer as shown at the Hand2  locus39 further indicates that transcription of lncRNA can 

positively regulate adjacent genes. However, lncRNAs can also negatively regulate nearby genes through a 

mechanism known as transcriptional interference, where the effect of one transcriptional event suppresses 

the effects of a second one in cis 40. This has been reported for some imprinted genes where the transcription 

of a lncRNA from a specific allele (maternal or paternal)  drives the inhibition of a set of nearby associated 

genes at the same allele 41–51. Transcriptional interference/promoter occlusion has not been conclusively 

shown in eukaryotes and the physical implications of two polymerases trying to pass on the same DNA 

template requires a mechanism whereby transcriptionally paused transcripts can be rescued 52,53. This may 

also involve transcription-coupled nucleotide excision DNA repair mechanisms 54.  The majority of lncRNAs 

that have the potential for transcriptional interference are natural antisense RNAs that overlap with, and are 

transcribed independently from sense RNAs. These lncRNAs can potentially hybridize with sense RNAs to 

form double strand RNAs (dsRNAs) and silencing interfering RNAs (siRNAs), but their transcription has been 

associated with the accumulation of repressive chromatin marks such as histone 3 methylation (H3K9me3, 

H3K27me3, and H3K36me3). What is not known is whether the lncRNAs recruit these chromatin modifying 

enzymes, or whether these enzymes are part of the transcription elongation complex.  

Since transcription alone is enough to change the epigenetic state of chromatin it is easy to envisage 

that such changes will facilitate interactions between regulatory elements and transcription factor 

complexes.  The probability of loop formation between two anchored points is determined by the flexibility 

of the chromatin fibre between such points 55. Transcription of lncRNAs could feasibly change the flexibility 

of chromatin fibre and the nucleosome composition to modulate interactions between distant loci. An early 

indication that suggested transcription can reposition nucleosomes and evict CTCF/cohesin complexes was 

the elegant study by Lefevre et al, who used the inducible chicken lysozyme gene as a model locus to examine 
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the kinetics of chromatin modifications during transcriptional elongation 56. More recently a genome-wide 

study has shown that RNA polII transcription temporally erases chromatin loops in its path, including 

enhancer-promoter interactions. This is because transcription elongation can occur despite the presence of 

cohesin, CTCF and transcription factor binding, and other potential epigenetic roadblocks to disrupt 

CTCF/cohesin mediated chromatin loops 57 (Fig. 1). 

A wider role for the low level of pervasive transcription of lncRNAs has been implied in a “cat’s cradling” 

model formulated by Mele and Rinn 58. In this model several transcribing lncRNAs shape the three-

dimensional genome organization by successively opening the chromatin and producing ‘‘grip holds’’ to  pull 

and direct looping interactions 58.  What this model does not take into account, is that the transcription of 

coding genes would also influence genome organisation. Given that transcription can occur at different rates 

and frequencies across the genome, the three-dimensional organisation is most likely to be dynamically 

flexible. This may explain the variable intensities observed when visualising Topological Associated Domain 

(TAD) structures generated by next generation sequencing for chromatin conformation capture. 

An experimental based model for transcription-mediated organization of chromatin topology that could 

explain how enhancers precisely select their cognate promoter regions has been recently been shown for an 

enhancer RNA at the Bcl11b locus 59. These authors demonstrated that transcription of a lncRNA, ThymoD, 

promotes demethylation of CTCF sites within the transcribed region which then results in recruitment of 

CTCF-cohesin complexes, and a change in looping conformation to bring enhancer and promoters together. 

In this model the enhancer and promoter elements are also sequestered by lncRNAs into a single-loop 

domain 59. Further support for this model comes from the discovery of another class of lncRNAs, called trait-

relevant long-intergenic ncRNAs (TR-lincRNAs). Strong statistical evidence indicate that TR-lincRNAs 

frequently arise from enhancer regions and are often located near to the boundaries of TADs suggesting that 

proximal trait-relevant gene expression is regulated in cis through modulating local chromosomal 

architecture 60.  Recently, topological anchor point RNAs (tapRNAs) have been identified as a new class of 

conserved lncRNAs that overlap CTCFs binding sites 61. Further analysis is still required to understand how 

lncRNA-mediated genome organisation feeds into gene expression networks whether this directly relates to 

disease. 

Strategies to dissect and uncouple the functions due to the lncRNA transcript and the act of transcription 

have been developed by using siRNAs 62 or by terminating transcription through the insertion of a polyA 

cassette 63. In this regard, while early studies suggested that the presence of the Airn lncRNA induces 

epigenetic silencing by  changing the 3D organization allele-specifically to interfere with Igf2r promoter 46,  it 

was subsequently demonstrated that merely  the act of transcribing Airn can evict RNA polII and silence Igf2r 
48. Conversely, the same strategy used in experiments to uncouple the Lockd lncRNA from its associated cis 

elements revealed that the Cdkn1b gene is positively regulated by a cis element at the promoter of the 

adjacent Lockd locus, whereas the transcribed Lockd lncRNA is dispensable for this function. Therefore, the 

Lockd locus acts as an enhancer for Cdkn1b to promote its transcription but not the Lockd lncRNA itself 64. 

Transcription at enhancer elements in so called enhancer RNA (eRNAs) 65–68 raises the question of whether 

the transcriptional activity at these loci contributes to the enhancers function as cis elements. As with the 

TR-lincRNAs described above, transcription of an eRNAs can enable enhancers to interact with a specific 

promoter and allow the engaged RNA polII to recruit chromatin modifiers. 

The above evidence points to a role for transcription enabling chromatin conformation at the very least 

through changing local chromatin structure through the repositioning of nucleosomes, modification of 

histones, changing DNA methylation states and regulating accessibility of key chromatin architectural 

proteins such as CTCF and cohesin. Transcriptional elongation through key regulatory elements may mediate 

the chromatin changes and future analysis should examine the extent to which chromatin modifiers form 

part of the polymerase elongation complex. Transcription of lncRNAs may serve as the pioneer event to 
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change chromatin structure to facilitate promoter-enhancer interactions, which can then be stabilised 

through higher order chromatin looping structures.   

There is evidence supporting that some lncRNAs can be functional both through the act of transcription 

and through the transcript while for others only one or the other has been proven69–71. It remains to be 

understood how these overlap in time or to which extend they are functionally connected. 

 

Effect of lncRNA transcripts 

The product of a lncRNA is by definition long, mobile and capable of interaction with proteins and DNA, 

and can have a far-reaching impact.  This can take place either in proximity to the transcription locus to 

regulate adjacent genes in trans 72 or several hundred kb away while still on the same chromosome 

(intrachromosomal interactions) or on another chromosome entirely (interchromosomal interactions) 21,73–

75. Several lncRNAs interact with chromatin-modifying proteins such as Polycomb and Tritorax protein groups, 

histone acetyl and DNA methyl transferases76–78, where they have been reported to function as scaffolds 

holding the complexes together and/ or recruiters guiding them to genome-wide targets. The capacity of 

lncRNA transcripts to specifically interact with more than one protein partner further enhances their 

potential to affect multiple targets in different regions 79,80. Apart from interacting with chromatin-modifying 

proteins, lncRNAs can also directly bind to DNA. The latter includes the formation of R-loops or of RNA-DNA 

triple helices that can act as docking sites during recruitment of chromatin-remodellers 81,82. Terra is an 

example that showcases the ability of a lncRNA to facilitate several chromatin modifier functions. Thus, 

besides ensuring telomeric DNA stability by being an integral part of telomere architecture, Terra also targets 

thousands of genomic regions in trans and its binding correlates with that of the chromatin remodeller ATRX 

as well as that of a catalytic subunit of Polycomb group proteins 83. Telomeric lncRNAs such as Terra are 

encoded by sequences that include telomeric repeats and that allows them to form R-loops at telomeres 

without the need of an intermediate RNA binding protein 84. Another example of a lncRNA that forms triple 

helices illustrating how they can affect looping is the recently discovered lncRNA, PARTICLE. PARTICLE is 

located within the MAT2A gene and its activation leads to the formation of a triple helix between the lncRNA 

and the region upstream of the MAT2A gene promoter, where it governs the methylation status of an 

associated CpG island and thus the expression of MAT2A 81,84,85. 

As described above, many eRNAs can modulate enhancer activity by coordinating chromatin looping 

between enhancers and promoters 86,87. Interestingly, down-regulation of eRNAs reduces the looping and the 

expression of nearby target genes hinting at their direct involvement in the looping and the importance of 

their presence 87,88. They may therefore directly contribute to looping by interacting with proteins bound to 

target promoters. This was shown for example in the case of ncRNA-a7, which physically interacts with the 

Mediator complex that allows the enhancer–promoter looping interaction and causes the activation of target 

genes 89. Recently, Fanucchi et al identified the lncRNA UMLILO and showed that it also interacts with a super-

enhancer in order to prime immune genes for activation 90. Furthermore, a study on the myogenesis-involved 

lncRNA Charme, led to a model in which Charme associates with chromatin and mediates the formation of a 

loop at its site of expression 91. Other enhancer-like lncRNAs, such as HOTTIP 92 and CCAT1-L 93, can interact 

with CTCF to orchestrate the chromatin loop and regulate gene expression in cis 94. 

The phenomenon of X chromosome inactivation (XCI) efficiently demonstrates several ways in which 

lncRNA function can orchestrate genome architecture (Fig. 2). Xist, the most extensively studied of all 

lncRNAs, directs XCI by coating the whole chromosome ensuring that the genes that need to be active or 

suppressed are repositioned accordingly 35,95. Xist covers and repositions the extra X chromosome by binding 

to many locations across the chromosome non-specifically but with preference to gene-dense locations while 

avoiding the genes that need to escape XCI. Additionally, it interacts with RNA-binding proteins such as 

SHARP and ATRX and recruits Polycomb group complexes 96–99. There are other lncRNAs that are involved in 
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the accurate orchestration of XCI, including Tsix which ascertains that the active X chromosome escapes 

silencing by determining methylation status of Xist CpG islands 100,101. Jpx is a another lncRNA encoded 

proximal to the Xist locus and it is thought to activate Xist by interacting with CTCF and removing it from the 

Xist promoter 102,103. This interaction requires the existence of an RNA binding region (RBR) within CTCF. In a 

recent study, the RBR was identified and shown to interact with Wrap53 in order to regulate expression of 

p53 104. Given the known role of CTCF in higher order chromatin structure, further exploration of direct 

interactions between CTCF and lncRNAs is required to determine whether CTCF-RNA interactions are globally 

essential for chromatin conformation. This will require the identification of additional RNAs that can bind to 

CTCF.  

Beyond a potential function in enabling chromatin looping conformation to facilitate gene regulation. 

lncRNAs have also been reported to play a role in the formation of subnuclear structures such as the 

nucleolus (pRNA) and paraspeckles (NEAT1 and MALAT1) 105–109. 

 

Future considerations 

LncRNAs clearly exert varied functions and in recent years this has become an intense focus in the field 

of chromatin architecture.  However, there is still little insight into the mechanisms whereby they function. 

Indeed, despite advances in computational, biochemical and genome wide technologies, we still lack the 

capability to accurately predict and resolve the secondary structure of lncRNAs, how they interact with 

proteins and DNA. Most lncRNAs are not evolutionary conserved and present in as little ten copies per cell. 

To envisage how such lncRNAs can have multiple genome-wide targets, technologies are required whereby 

we can identify and manipulate the effects of transient interactions. The rapid advances in CRISPR-based 

methods provide a glimpse into the future exploration of this field. One example is CRISPR-interference 

(CRISPR-i), a variation of the technique that can be used to block transcription by causing 

heterochromatinization of a specific target sequence 110,111. Used in conjunction with siRNA or antisense 

nucleotides (ASOs) which target the produced transcript, can help to distinguish between the effects of the 

transcript and those caused by the act of transcription. Similarly, other newly developed CRISPR-based 

methods can be used to either specifically knock-out lncRNA promoters or knock-in polyA stop sites thus 

complementing existing methodologies and further characterizing the function of lncRNAs112. Other 

variations such as CRISPR-genome organiser (CRISPR-GO) which can be used to reposition a sequence in the 

genome 113 are particularly promising for understanding how lncRNAs are involved in the determination of 

chromatin structure. Techniques for the  study of genome architecture 114 and dissecting the function of 

lncRNAs 115 have been extensively reviewed elsewhere.  It is now time to build upon these technologies to 

develop streamlined methodologies whereby the mechanistic intersection of lncRNAs and genome 

architecture can be studied.  
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Figure Legends: 

Figure 1: A model for how transcription of a lncRNA can interfere with the genome architecture. The 

transcriptional machinery of a lncRNA (transcript shown in blue) can temporally erase chromatin loops by 

evicting CTCF/cohesin (violet/yellow) complexes that are in its path. 

 

Figure 2: A model for how a lncRNA transcript can alter three-dimensional genome architecture. A 

lncRNA (blue) can bring together distant regions of the chromosome into closer proximity to its locus of 

transcription (yellow). These structural changes caused by the lncRNA may propagate by pulling new 

regions toward the same genomic locus to finally coat the locus or even the whole chromosome. (An 

example would be Xist). 
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