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Supporting multiattribute decisions in scenario planning using a simple 

method based on ranks 
 

Abstract 

A neglected area of scenario planning is the provision of support for strategic decisions that 

involve multiple attributes. When the number of scenarios and attributes is large, 

conventional multiattribute decision analysis methods require the elicitation of a large 

number of values and weights, which can be demanding and time consuming for decision 

makers.   This paper examines the effectiveness of using a simple approximation to the 

simple multiattribute rating method (SMART) that is based purely on the ranking of options 

and attributes.  The method was tested on 250,000 simulated decision problems and was 

found to perform well when assessed on the basis of its hit rate (the percentage of times it 

identified the same best option as SMART) and the utility loss resulting from the 

approximation. In large problems, where simplifications are likely to be most useful, it 

outperformed an alternative approximation method, SMARTER, which is more complex to 

apply, and it was almost as effective as SMARTER on smaller problems.   

 

Keywords: Scenario planning, decision analysis, multiattribute decisions, SMART
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Introduction 

Proponents of scenario planning argue that it can provide effective guidance when strategic 

decisions have to be made under conditions of uncertainty (van der Heijden, K., 1996; Wright 

and Cairns, 2011). When the ‘intuitive logics’ approach to scenario planning is used it avoids 

the need to elicit subjective probabilities for future events and the  psychological biases 

associated with such estimates (van der Heijden, K., 1996. pp28-29; Wright and Goodwin 

2009). In a fast-changing world it does not rely on detailed ‘single shot’ forecasts, which are 

often based on extrapolations of past patterns (Eisenhardt and Sull, 2001). Moreover, the 

narrative nature of scenarios may be more naturally appealing to decision makers than 

quantitative assessments of future conditions. However, a neglected area of scenario planning 

is the provision of support for decision makers once the scenarios have been written.  The 

range of scenarios have been compared to a wind tunnel in that they  allow  the performance 

of strategic options to be tested to assess their effectiveness under the different conditions that 

may prevail in the future (van der Heijden, 1996, p.57) But when this performance is 

dependent on multiple attributes, such as financial metrics, environmental impact, 

organisational reputation and  stakeholder well-being, an accurate assessment of performance 

under a given scenario  can be difficult without structured support.  

This paper evaluates a simple structured support method for assessing the 

performance of alternative strategies when ‘intuitive logics’ scenario planning (Wright and 

Cairns 2011) is being applied. The support method is designed to take into account the time 

constraints faced by strategic planners and the cognitive difficulties they may encounter when 

asked to assess multiple strategies in multiple scenarios across multiple attributes.  The paper 

is structured as follows. After a review of the relevant literature, the method is demonstrated 

and then tested on 250,000 simulated decisions that were designed to reflect the diversity of 

decisions that may need to be made in strategic planning. Finally, the paper reflects on the 
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strengths and limitations of the method and indicates how any serious inaccuracies arising 

from its simplifications may be resolved. 

 

Literature Review 

Choosing between strategic options based on a scenario planning process can be challenging 

where there are multiple options than need to be evaluated across multiple criteria under the 

conditions described in multiple scenarios. There is evidence that under these circumstances 

poor choices can be made because of cognitive limitations which mean that unaided decision 

makers have difficulty in handling and comparing the large  volumes of information involved 

(e.g. Tversky, 1972). This may motivate then to oversimplify the decision problem. For 

example, choices may be based on performances on a single attribute (such as cost) while the 

attractiveness of options on other attributes (e.g. company image or environmental impact) 

are ignored. Alternatively, even when performances on multiple dimensions are taken into 

account, non-compensatory strategies may be employed to make choices because of the 

cognitive difficulties of making trade-offs between attributes (Payne, 1976).  

This has led a number of researchers to advocate the use of structured decision 

support methods in scenario planning (e.g., Schroeder and Lambert, 2011; see Stewart et al. 

(2013) for a review). These methods essentially decompose the decision problem into a series 

of simpler and less cognitively demanding tasks before recomposing the judgments made in 

these tasks, according to a set of explicit axioms, to indicate which strategic option should be 

chosen (e.g., see Goodwin and Wright, 2014, pp52-55). The benefits of decomposing 

judgments have been shown in a number of studies (e.g. MacGregor et al., 1988).  These 

structured methods also have the advantage that they provide a documented and defensible 

rationale for any decision that is made.  
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Multiattribute utility theory (MAUT) (Keeney and Raiffa, 1976) is a classic 

decomposition approach to decision making under uncertainty where there are multiple 

attributes but its application can pose significant challenges to decision makers given the 

number and the demanding nature of the judgments it requires. Although suggestions for 

simplifying the process of applying MAUT have been put forward and tested (Durbach and 

Stewart, 2012) its role in intuitive logics scenario planning is problematical because it is 

based on the assumption that probabilities can be estimated for the states of nature. Scenarios 

cannot in most cases be regarded as a mutually exhaustive set of states of nature (Durbach, 

2019) and, even if they could be, it is doubtful whether reliable probabilities could be 

estimated for them given their uniqueness and the high degree of uncertainty associated with 

scenario planning applications (Tversky and Kahneman, 1974; van der Heijden, K., 1996. 

pp28-29; but see Vilkkumaa et al., 2018 for a counter argument when scenarios can be 

assumed to be mutually exhaustive). Indeed, the probability of any given detailed scenario 

transpiring is infinitesimal –the scenarios are intended to bound the range of possible futures 

instead of representing outcomes that have a plausible chance of occurring.  

This has led researchers to suggest much simpler methods of decision support. Some 

approaches have treated each scenario as a deterministic outcome, thereby avoiding the use of 

probabilities and allowing the use of deterministic multicriteria decision analysis (MCDA) 

methods. For example, Goodwin and Wright (2001) proposed the use of the Simple 

Multiattibute Rating Technique (SMART) (Edwards, 1977) to compare the performance of 

strategic options within each scenario in turn. Scores for the performance of options and 

weights reflecting the relative importance of the attributes are assessed across the scenarios. 

The result is a matrix displaying an aggregate score for each option-scenario combination. 

However, no formal process is used to make the final choice between options though 

Goodwin and Wright recommend that the decision should be based on considerations such as 
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whether one option dominates the others or the robustness of the options’ performances 

across the scenarios. 

More recently, Durbach (2019) has recommended the use of the Analytic Hierarchy 

Process (AHP) in the evaluation of strategic options in scenario planning. He does so partly 

on the basis of the acceptability of the method to decision makers and its associated 

widespread use, though he acknowledges that the method has limitations (see also: Belton 

and Gear, 1983, Salo and Hämäläinen, 1997). Durbach’s use of a structured method goes 

beyond that of Goodwin and Wright in that it provides an indication of the preferred final 

choice between options. It does this by treating combinations of attributes and scenarios as 

meta-attributes, allowing decision makers to express preferences, such as “I strongly prefer to 

reduce the product development time by 6 months in scenario A rather than scenario B” (see 

also Stewart et al, 2013). 

Other proposals to integrate multicriteria decision making methods and scenario 

planning include the application of goal programming (Durbach and Stewart, 2003), the use 

of scenarios in the outranking method (Durbach, 2014) and the use of regret to choose 

between strategic options (Ram et al., 2011).  Stewart et al. (2013) provide an overview and 

assessment of many of the approaches that have been suggested. 

However, despite the relative simplicity of these methods compared to MAUT, in 

many scenario planning applications a large number of judgments will still be required from 

decision makers. For example, Montibeller et al. (2006) found this when they applied the 

method proposed by Goodwin and Wright to both an English insurance company and an 

Italian property development company. Comparing N strategies over S scenarios when there 

are A attributes requires   N x S x A interval-scale values to be assessed - each reflecting the 

relative performance of a given strategy against a given objective if a given scenario prevails 

–together with A ratio-scale swing weights, that are designed to reflect the relative 
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desirability of changes from the worst to the best performance on each attribute.  For example, 

where there are 4 competing strategies being assessed on 4 attributes in each of 4 scenarios 43 

+4 = 68 potentially demanding judgments will need to be elicited.  Even then, the Goodwin 

and Wright method assumes that the same weights should apply in different scenarios. As 

Montibeller et al. found, decision makers may wish to apply different weights in different 

scenarios because priorities may change according to the environment an organisation is 

operating within. This could potentially lead to the requirement to elicit 43 + 16  =80 

judgments in the example referred to above. In some cases, these judgments may be difficult 

and unfamiliar for many decision makers. In particular, in the assessment of swing weights in 

SMART, Borcherding et al. (1991) and others have demonstrated that a number of biases can 

emerge. These demands mean that the techniques  may be unacceptable to decision makers, 

especially where large problems are involved. Alternatively, when they are used by 

inexperienced decision makers, or by decision makers who lack guidance on their use, the 

elicited judgments may be unreliable (Katsikopoulos and Fasalo, 2006). 

This raises the question of whether it is possible to employ even simpler methods in 

scenario planning while still providing an accurate indication of the choice that should be 

preferred by decision makers. Edwards and Barron (1994) have argued for the strategy of 

‘heroic approximation’. This asserts that the inaccuracies associated with a simple 

approximate model of a decision problem are likely to be outweighed by the more reliable 

judgments that result because the technique poses simpler questions to the decision maker. In 

addition, the use of even a very simple technique may result in a better decision than unaided 

judgment. Moreover, simple techniques are more likely to be used because of the reduced 

effort and greater transparency associated with them. Ideally, a simple method will therefore 

not be overly time consuming, will be intuitively appealing and hence acceptable to decision 

makers, will provide a transparent rationale for its recommendations and will be able to 
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support strategic decisions made by groups of planners. This suggests that it should meet the 

following four criteria: ì) it should allow for the simplification of the elicitation of values or 

utilities for given attributes, (ii) it should allow for the simplification of the estimation of 

weights for attributes (iii) it should allow for the simplification of the function used to 

aggregate the values or utilities, and (iv) it should permit a reduction of the number of 

judgments that are required from the decision maker. 

The AHP involves pairwise comparisons of options and attributes at different levels 

of a hierarchy, including some redundancy to enable consistency checks to be made (Saaty, 

1994). This inevitably involves a large number of judgments so we will not consider this 

further, given our quest for an approach that meets the above ideal conditions. The same is 

true for methods that involve fuzzy weights or other fuzzy judgments to allow for uncertainty 

in assessments (Durbach and Stewart, 2012). For example fuzzy weights can require three 

assessments of weights (low, average and upper) or at least an assessment of the two bounds 

of an interval (Arbel and Vargas, 1993; Salo and Punkka, 2005, Aguayo et al., 2014). The 

PRIME method of Salo and Jiminez et al. (2013) allows for imprecision in judgments and 

uses a dominance structure to reduce the number of options that need to be considered. 

However, it can require the assessment  of ratios of value differences between adjacent alternatives, 

which would still be likely to be demanding in the context of scenario planning.  Given these issues, 

the following discussion focuses on simplifications of the SMART method.  

The most common way of simplifying value elicitation, where the performance of 

options on an attribute is measured on a physical scale, is to assume a linear value function 

across the range of options with values ranging from 0 for the worst performing option to 100 

(or 1) for the best. For example, a value function for  income that ranged from £20 million to 

$60  million would assign a value of 50 (or 0.5) to an income of $40 million. Edwards and 

Barron (1994) suggested that linear value functions provide an acceptable degree of 
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approximation to nonlinear functions as long as the ratio of the increase (or decrease) in value 

at one of the scale to that at the other end does not exceed 2 to 1. For attributes where the 

performances of options are qualitative (e.g. the attractiveness of alternative corporate logos) 

Edwards and Barron recommend that decision makers indicate their preferences through 

direct rating on a 0 to 100 scale.  

Most suggestions in the literature have focused on simplifying the elicitation of 

weights. In SMART these are designed to reflect decision makers’ relative preference  for 

swings between the worst and best performances of options on the different attributes (for 

example, an improvement from the worst market share to the best is only 40% as important  

as an improvement from the worst profit to the best profit).  Stillwell et al. (1981) discussed 

approximating the weights by simply asking decision makers to rank their preferences for the 

swings. The weights can then be estimated using methods such as rank sum (RS) or rank 

reciprocal (RR) (see below).  More recently, Edwards and Barron (1994) proposed converting 

ranks to approximate weights by using rank order centroid (ROC) weights. Roberts and 

Goodwin (2002) found that rank sum weights gave the most accurate approximations to 

decision maker’s preference where more than two to three attributes were involved. However, 

this may reflect two different assumptions on how decision makers assign weights. The point 

allocation method assumes that a decision maker has 100 points and allocates these across the 

attributes to reflect their relative importance (in terms of swings). In this case, the weight that 

is assigned finally is predetermined by the earlier allocations. ROC and RR and weights 

perform better when this assumption is valid (Danielson and Ekenberg, 2017). In the direct 

rating method, decision makers assign a weight of 100 to the attribute offering the most 

desired swing and lower weights to less preferable swings, but there is no constraint on what 

the weights sum to. This assumption favours RS weights. Danielson and Ekenberg (2017) 

suggest the use of cardinal counterparts to RR,RS and ROC weights in order to  reflect, not 



 11 

only the ranks of attribute swings, but the strengths of preference between them.  While these 

weights may be appropriate to many multiattribute decision problems, by also requiring 

elicitations of strength of preference, they would add to the already large number of 

judgments required in scenario planning-based decisions.  

The aggregation of values or utilities for each option can be simplified by assuming 

an additive function so that each option’s aggregate score is a weighted sum of the 

performance scores on the different attributes.  Such functions assume mutual preference 

independence between the attributes, but Stewart (1996) showed that they can provide robust 

approximations to decision makers’ preferences when outcomes are deterministic. 

There are number of ways of attempting to reduce the number of judgments that need 

to be elicited from decision makers. In the context of portfolio decision making by groups of 

decision makers, Keisler (2008) explored using equal weights and making the decision 

simply based on the performance of options on a randomly selected attribute or on the most 

important attribute. He found that the effectiveness of such simplifications depended on the 

nature of the decision and its context. In computer simulations involving ROC weights, 

Fasolo et al. (2007)  found that reliable decisions could be made when only one or two 

attributes were weighted as long as the scores on attributes were positively related and the 

true weights of the attributes were unequal. Of course, to benefit from this simplification an 

initial assessment would need to be made across all attributes to see of the  necessary 

conditions were fulfilled. 

 Given the challenges of applying multiattribute decision analysis in scenario planning, 

Wright and Cairns (2011) proposed an extremely simple method that meets the four criteria 

listed above. The method draws on many of the ideas presented above to simplify the 

SMART-based method for selecting strategic options in scenario planning proposed by 

Goodwin and Wright (2001). However, as shown below, when assessing the performance of 
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options on attributes, ranks replace the interval-scaled values used  in SMART. Given that the 

method places the minimum possible demands on decision makers in order to provide 

decision support, it is referred to here as MINIMOD (or Minimal Modelling). However, 

while the Wright and Cairns proposal self-evidently simplifies the application of  

multiattribute decision analysis in scenario planning, the extent to which its indications are 

likely to reflect the true preferences of decision makers has not been assessed. In this paper, 

following a discussion and illustration of MINIMOD, computer-based simulations are used to 

perform this assessment. 

 

The  MINIMOD method 

We focus on the multiattribute value evaluation process that involves identifying individual 

attributes that are relevant to the decision problem. These attributes are non-redundant in the 

sense that they do not duplicate other attributes and are such that the performances of at least 

two options on a given attribute will differ. For a given scenario, the options are evaluated on 

each attribute to form an ''attributes by options'' matrix (Roberts and Goodwin, 2002) as 

shown in Table 1. 

**Please insert Table 1 about here** 

 

Here vi j  is the value (or score) assigned to the ith option and jth attribute, with minj(vij) = 0, 

and maxj (vij) = 100 for the worst and best performing option, respectively. The wj    re 

weights reflecting the relative importance of the ranges of the attribute values,  with 

1
1

 

n

j jw . In addition,  w1   w2  ………   wn > 0 

 and   v(Oi) = ji

n

j jvw 1
 where v(Oi) is the aggregate multi attribute value (or score) for 

option i in the range 100  v  0.  
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In this process the vi j  are measured on an interval scale while the wj    are measured on a ratio 

scale. An underlying assumption of the  calculation of  v(Oi)  is that the attributes are 

mutually preference independent. The option with the maximum value of v(Oi) is taken to be 

the option that the decision maker should prefer given the values and weights that have been 

elicited. 

The MINIMOD method involves two approximations to the above process. First, 

instead of obtaining the vi j  from the decision maker a set of ranks is elicited  which reflect 

the decision maker’s order of preferences for each option on  a given attribute in descending 

order  (i.e. a rank of 1 is given to the least preferred option on the attribute, 2 to the second 

least preferred and on).  Of course, if the decision maker prefers to provide ranks in 

ascending order then these ranks can easily be converted to descending order ranks by simply 

subtracting each rank from the maximum rank +1. Essentially, the ranks are equivalent to a 

set of interval scaled scores when there are equal intervals between adjacent scores. 

  The second approximation is similar to that of the SMARTER method. Instead of 

eliciting the wj    the swings between the worst and best performers on each attribute are 

merely ranked in ascending order to reflect their relative importance or desirability. However, 

unlike SMARTER, the MINIMOD method then converts these ranks to weights using the 

rank sum procedure (Stillwell et al, 1981). In this procedure the weights, )(RSwi , are simply 

the individual ranks normalized by dividing by the sum of the ranks. The formula producing 

the weights, in its simplest form can be written as: 

 

Wi(RS) = 2Ri/(n
2+n) 

 

where the ith rank is denoted by Ri  and the ranks are assigned in descending order so that the 

largest swing has the highest rank (i.e., the largest number). The use of  rank sum weights has a 
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number of advantages over ROC weights, for which the  formula for the ith most important attribute 

is given below: 

n,........,1i,j/1)n/1()ROC(w
n

ij

i  


 

First, they are more transparent in their derivation and are more easily calculated. Indeed, for 

any given decision problem even the normalization step is not strictly necessary as the 

ordering of the aggregate scores for the options will remain the same without it.  More 

fundamentally,  ROC weights are based on the assumption the decision maker’s ‘true’ 

weights will naturally sum to a fixed total of 1 or 100 (Roberts and Goodwin, 2002). In this 

case the elicitation of  the weights can be viewed as a points allocation procedure with (say) 

100 points being distributed between the attributes to reflect the importance of the swings that 

are associated with them. As Doyle et al (1997)  point out achieving this would impose 

greater cognitive demands on the decision maker who simultaneously has to assess the 

relative importance of swings between the worst and best performances on each attribute 

while also ensuring that the resulting weights sum to exactly 1 or 100.  

In usual applications of SMART no such constraint is imposed and a direct rating 

procedure is used (Goodwin and Wright, 2014). Here decision makers first assess the most 

important swing  and assign it a weight of 100 (or 1). Weights are then assigned to the other 

swings by directly comparing their importance with this ‘benchmark’ swing.  The sum of 

these ‘raw’ weights will clearly exceed 100 (or 1) so they are normalized to ensure that they 

sum to this total. On the basis  that people more naturally use direct rating, Roberts and 

Goodwin (2002)  assumed that their true raw weights (for all but the most important attribute) 

will be uniformly distributed between 0 and 100, an  assumption that is consistent with 

Bayes’ criterion (e.g. Kwon, 1978 p142; Jia et al. 1998). They then derived the expected 

values for the normalized weights. These expected values, which they referred to as Rank 
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Order Distribution (ROD) weights, were found to be very similar to rank sum weights, with 

the similarity being greater as the number of attributes in a decision problem increased. 

Finally, as Belton and Stewart (2002, p142) point out,  when ROC weights are used the ratio 

of the highest to the lowest weights is very large which  means that that the lowest ranked 

attribute will only have a very marginal influence on the decision. Attributes with a relative 

importance as low as this would be eliminated from the decision model in many practical 

situations. The use of  rank sum weights reduces this extreme ratio problem. 

 

Illustration of the MINIMOD method 

We illustrate the simplicity of the MINIMOD method compared to SMART  with an example 

which relates to the choice of strategies under a given scenario. Five alternative strategies (A 

to E) have been identified and the their performance on each of  five attributes is shown in  

table 2. 

**Please insert Table 2 about here** 

 

In the SMART method, values on a 0 (worst) to 100 (best) scale are assigned to the 

strategies to assess their performances on each attribute in turn.  For the numeric attributes 

(NPV and market share) these may indicate a non-linear value function and this is the case in 

the values assigned in table 3. 

 

**Please insert Table 3 about here** 

 

The decision maker ranks the swings on each attribute from the worst to best 

performances in order of importance. The most desirable swing (an improvement in NPV 

from $586m to $790m) is assigned a weight of 1. Improving Risk from Very High to Very 

Low is considered to 90 percent as preferable as the improvement in NPV so it is assigned a 
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weight of 90.  These, and the remaining weights, are shown in Table 4. The weights are then 

normalised to sum to 1 and, assuming that mutual preference independence applies, the 

aggregate value for each strategy is calculated by taking a weighted sum of the individual 

values across the attributes. For example, for strategy A the aggregate value is (100 x 0.31) + 

(40 x 0.06) + (0 x 0.09) + (30 x 0.28) +(0 x 0.26) = 41.5. When this calculation is applied to 

all the strategies it reveals that strategy E achieves the highest aggregate value of  79.1, under  

the given scenario, with D a close second at 74.1. 

 

**Please insert Table 4 about here** 

 

In MINIMOD the swings are ranked, as before, with the most desirable swing 

receiving the highest rank, in this case 5 and rank sum weights are then calculated as shown 

in Table 5 

**Please insert Table 5 about here** 

 

 

Rather than being assigned values, as in SMART, the performances of the strategies 

on each attribute are simply ranked, as shown in Table 6 (where 5 = best performance).  

 

**Please insert Table 6 about here** 

 

Again, assuming that mutual preference independence applies, the overall 

performance of each strategy across the attributes is simply obtained by multiplying the 

performance ranks by the rank sum weights. For example, for strategy A the score for overall 

performance is: (5 x 0.33) + (2 x 0.07) + (1 x 0.13) + (2 x 0.27) + (1 x 0.20) = 2.66.  Similar 

calculations indicate that strategy E, with an aggregate score of 3.94, achieves the highest 
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performance under the given scenario as was the case with SMART.  Strategy D is again a 

close second with an aggregate score of 3.54. It can be seen that MINIMOD avoids the need 

to assess ratios for the swing weights and values for the performance of the strategies. In both 

cases only ranks are required. Scenario planning exercises usually involve groups of planners. 

As Ahn and Park (2008) argue, “In the situation where there is a group of decision makers, it 

may be realistic to expect agreement only on a ranking of weights.” The same may be true of 

the performances of strategies on attributes. 

Sensitivity analysis can be a crucial element in applications of decision support 

methods, but for many existing methods it can be problematical.  Ideally, sensitivity analysis 

should indicate to decision makers the effect of making changes to the judgments (e.g. the 

weights assigned to the attributes) that they have put forward. However, in SMART the 

relationship between the score achieved by an option and  a given pre-normalized weight is 

non-linear. To avoid this complexity, software products normally provide sensitivity analysis 

on the normalized weights, but this makes the relationship between the analysis and the 

decision maker’s original judgments indirect. In alternative multiattribute decision methods 

such as Even-Swaps (Hammond et al., 1998; Belton et al. 2008)  sensitivity analysis is not 

possible at all, while, for the Analytic Hierarchy Process (Saaty, 1994) , specialist software is 

required. 

Unlike these methods,  MINIMOD  easily lends itself to sensitivity analysis. Figure1 

shows the effect on the score of the options as the rank of  net present value (NPV) changes 

from 1 (the least important attribute) to 5 (the most important). The other attributes retain 

their relative ranks in the analysis.  In this case it can be seen that strategy E is preferred in 

the given scenario, irrespective of the rank that is assigned to NPV. 

 

** Please insert Figure 1 about here** 
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Testing the MINIMOD method 

Given that the  MINIMOD method is an approximation of a SMART model it is 

important to assess the extent to which this approximation is likely to give misleading 

indications to a decision maker on  which option should be chosen. We therefore followed the 

procedure of other researchers (e.g., Barron and Barrett, 1996; Salo and Hämäläinen, 2001; 

Jimenez, et al., 2013) and used simulation to test the method  -in our case on 250,000 

simulated decisions. For each of these decisions we compared the ‘true’ results obtained from 

a full SMART model with the following four methods 

 

1. MINIMOD using rank sum weights, as illustrated above  (MINIMOD(RS)). 

 

2. MINIMOD but using rank-reciprocal weights. (MINIMOD(RR)). Rank reciprocal weights 

were also suggested by Stillwell et al. (1981) and are obtained  using the following formula 

n,........,1i)j/1/()i/1()RR(w
n

1j

i  


 

 

3. MINIMOD using rank order centroid (ROC) weights (MINIMOD(ROC)).  

 

4. SMARTER  -which, as we indicated earlier, uses ROC weights but also uses actual scores 

rather than ranks to evaluate the options on the attributes. A comparison of (3) and( 4) will 

therefore show the effect of this simplification. 

 

Following Barron and Barrett’s procedure, the simulated decisions had  3, 6, 9, 12 or 

15  attributes and 5, 10, 15, 20 or 25 options. This yielded 25 decision ‘sizes’. For each of 
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these decision sizes 10,000 simulated decisions were generated.  As Danielson and Ekenberg 

(2017) point out, the results of such simulations are heavily dependent on the assumptions 

that underpin the mechanism that generates the simulations.  For example, the assumptions 

underlying the simulations conducted by Edwards and  Barron (1994) favoured the use of 

ROC weights. A common mechanism is to generate the  ‘true’ weights in each decision by  

selecting  them randomly from a uniform distribution on the basis that these true weights are 

generally unknown (Jia et al. 1998) . However, the efficacy of an approximation to SMART  

may depend on the skewness of the true  weight distribution.  Table 7 shows examples of  

five possible distributions of non-normalized weights for a five attribute decision.  For 

example, in the case of positive skew the majority of the weights are at the lower end of the 0 

to 1 scale.  Equal weights apply when  the decision maker is indifferent between the swings 

from worst to best performance on the  different attributes. 

 

**Please insert Table 7 about here** 

 

The same distributions could also apply to the true values (or scores)  associated with 

the performance of options on a given attribute, with the exception of the equal weights 

distribution which would imply that an attribute was redundant as it did not discriminate 

between the options. Generating simulated weights or values solely from a uniform 

distribution would bias the results in favour of the MINIMOD  method as the use of ranks 

assumes equal intervals between the true individual values or weights.  To counter this, and 

to make the results representative of a wide range of possible decisions,  unless equal weights 

applied, the true weights and values were randomly sampled from beta distributions which 

allow a range of different shaped distributions to be modelled (Vose, 2000). The distributions 

used were beta (0.8, 02) for positive skew, beta(1,1) for a uniform distribution, beta(4,4) for a 

bell-shaped distribution and beta(0.2,0.8) for negative skew.  The weights and values were 
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generated using the inverse transform method based on uniformly distributed random 

numbers sampled from the range  0 to 1. 

For a given sized decision the simulations proceeded as follows. For each attribute 

one of the four beta distributions was randomly selected and this was then used to randomly 

generate the true scores of the options on that attribute. These were then rescaled so that that 

the lowest score was 0 and the highest 100. A similar method was then used to generate the 

weights - though here the selection was randomly made from the four beta distributions plus 

equal weights. The weights were subsequently normalized to sum to 1.  For each decision 

size the following results were recorded for each of the four methods after the 10,000 

simulations: 

 

1. The Hit Rate (if there was no tie between two ‘best options)  i.e. the percentage of decision 

where the approximation method selected the best option indicated by the full SMART model 

 

2. The mean percentage utility loss (if no tie) i.e.    

                  v*  - va   x 100 

          v* - vw 

 

Where:  v* = the  aggregate score of the best option in SMART 

 

  va  = the aggregate SMART score of  the option selected by the approximation  

          method  

 

  vw  = the aggregate score of the worst option in SMART 

 

For example, if in the  SMART model the best option scores 80 and  the worst 20, but  the 

approximation selects an option with a SMART score of 60 the utility loss will be: 

 

      80 - 60  x  100    = 33.3% 
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      80 – 20 

 

The advantage of utility loss as a measure of performance is that, when an approximation 

method identifies an option which is a close second best in the SMART model, this will only 

result in a small utility loss. 

 

 

Results of testing 

Figure 2 shows the hit rates for decisions of different sizes while figure 3 shows the mean 

percentage utility losses for these decisions.  

 

** Please insert Figure 2 about here** 

 

** Please insert Figure 3 about here** 

 

In terms of hit rates SMARTER tends to outperform the MINIMOD (RS) method  for 

small problems, but the gap closes as the number of attributes increases and also as the 

number of options gets smaller. Indeed, for very large problems (which is precisely where its 

simplifications are likely to be most useful) the performance of MINIMOD(RS) is 

indistinguishable from SMARTER. Its hit rates are typically around 75%, but more 

importantly its mean % utility loss is very  low –typically around 2%-4%. Other weighting 

systems are not so successful.  

Clearly, where there are more options available there is a greater chance that an 

approximation method will miss the best options and figure 2, shows that the hit rate of all 

methods declines as the number of options increases. In contrast, the percentage utility loss 

declines for all methods as the number of options get larger (for a given number of attributes). 
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When  more options are available their aggregate scores tend to fill the space between 0 and 

100 more intensively. Hence a second or third best option is likely to have a score closer to 

the best score. For example for three options the scores might be 90, 40 and 10 so the second 

option has a utility loss of 62.5%. For 10 options we might have scores of 90, 85, 72, 64, 54, 

45, 42, 32, 21 and 10 so the second option has a utility loss of only 6.25%. 

Interestingly, the performance of  MINIMOD(RS) on both  hit rate and utility loss 

tends to be less affected by the number of attributes than that of SMARTER.  The ROC 

method tends to assign a high percentage of the total of the weights to the first and second 

most important attributes. For example, when there are 15 attributes the top 2 attributes  

receive 38% of the total of the weights, compared to only 24% in the rank sum method. Thus 

the ROC method will tend to be most  reliable when the top few attributes dominate the 

decision problem and the other attributes are relatively insignificant. This is less likely to be 

the case when there a large number of attributes. It is also interesting to note that the ROC 

weights do not combine well with the ranked scores. The performance of MINIMOD(ROC) 

was generally worse than both SMARTER and MINIMOD(RS). 

 

Discussion 

Overall, the MINIMOD(RS)  approach appears to provide a reliable approximation to 

SMART, despite its extreme simplicity. On occasions where the decision maker’s intuition is 

at variance with the recommendation of the model this simplicity and the transparency of 

MINIMOD(RS)  lends itself to easy investigation so that  the conflict can be explored, and 

hopefully resolved, and a  requisite decision model obtained (Phillips, 1984). According to 

Phillips such investigations can lead to deeper understanding about the decision problem so 

that the final decision can  be made with greater confidence and insight. 

 



 23 

When discrepancies do arise between the decision maker’s intuition and the 

recommendation of MINIMOD(RS) then this investigation may involve eliciting scores, 

rather than ranks for an attribute which is suspected to be the source of the conflict.   For 

example, when the  underlying performance variable is quantifiable (e.g. where performance 

is measured in monetary returns) the method can  make implicit assumptions  that may be in 

sharp contrast with a decision maker’s preferences. For example, suppose that six options 

offer monetary returns of $0, $50m, $75m, $90m, $99m and $100m, respectively. MINIMOD 

would assume that an increase in returns from $99 to $100m is just as desirable as an increase 

from $0 to $50m, suggesting an increasing marginal utility for money, when diminishing 

marginal utility is the reality. In this  case scores of  0, 70, 90, 98,99,100 might be elicited. 

These can be easily converted to a scale compatible with the ranks being used for the other 

attributes using the following formula (we will call the results ‘rank scores’). 

  

 ‘Rank score’ =    1+  x(m-1)/100 

          

where x is the elicited score and m is the number of options. In this case a score of 70, for 

example, would be converted to a ‘rank score’ of  1 +70(6-1)/100 = 4.5 and the new 

aggregate scores could then be calculated to see if the discrepancy with the decision maker’s 

intuition has been resolved. 

Another potential problem can emerge when the performances of strategies tie on 

particular attributes. For example, if there are five strategies and the three worst performers 

tie, their ranks (5= best) will be  5,4,3,3 and 3.  This has two effects. It narrows the range of 

scores to one which will only be 50% of that for attributes with no ties.  This will mean that 

the worst performers are being wrongly treated as if they are halfway between the worst and 

best performers in calculations. It also opens the possibility of rank reversal in the aggregate 
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scores if some strategies are removed (Wang and Luo, 2009). In this case, as above, direct 

scores could be elicited and then converted to ‘rank scores’ using the above formula. 

There are inevitably a number of limitations associated with the results of this study. 

First, the  underlying assumption is that decision makers employ a direct rating method when  

assigning weights to attributes as opposed to a point allocation system where, say, 100 points 

are distributed between the attributes to reflect the relative importance of their swings from 

worst to best performances. As indicated earlier, the point allocation approach appears to be 

more cognitively demanding for decision makers as the sum of the weights has to meet the 

constraint represented by the original number of points available. No such constraint applies 

in the direct rating method and there is evidence that it more reliable than point allocation, at 

least where individual judgment are concerned (Bottomley and Doyle, 2013). Nevertheless, 

point allocation would have favoured ROC weights in the simulations. 

Second, the simulation assumed that each of the probability distributions selected for 

the values and weights was equi-probable and that these distributions reflect the skewness of 

distributions of values and weights that would be found in real scenario planning exercises. 

However, without a representative survey of such exercises –assuming this would be 

practically possible -  it is not possible to verify the validity of this assumption. All that we 

can conclude is that the MINIMOD method gave a robust performance over the many 

combinations of distributions that were simulated. A further limitation is that the distributions 

were generated independently so that the effect of correlations between values on different 

attributes was not investigated. Of course, many of the simulations would have contained 

such correlations by chance,  especially where the number of options was small. 

Third, the analysis described here only investigated the effectiveness of the methods 

when decisions of different ‘sizes’ were being made.  There was no analysis of the effect of 

other characteristics of decisions on the efficacy of the approximation methods, such as 
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different  levels of skewness  or  the degree of nonlinearity of value functions. This was 

because the MINIMOD method is designed to minimize the amount of assessment that need 

to be made.  If a pre-assessment was required before a decision was made to administer the 

method this would increase the demand placed on decision makers. In particular, it would 

clearly be nonsensical to require an assessment of exact values or weights before 

subsequently approximating them. Thus application of the method relies on post-modelling 

assessment and modification through Philips’s ‘requisite process’ (Phillips, 1984)  to ensure 

its reliability rather than pre-modelling assessment of its suitability. 

 

Conclusions 

The above results suggest that, despite its simplicity, the MINIMOD(RS)  method provides a 

reliable approximation to SMART. Even when the method fails to identify the best option the 

utility loss tends to be low and managers always have the option of replacing scores for some 

attributes with ‘rank scores’ if they are uncomfortable with the indications of the method.   

As Phillips (1984) argues, the investigation of discrepancies between intuition and decision 

models can itself lead to new insights into the decision problem being faced and 

investigations like this are likely to be less burdensome when MINIMOD is being used.  

Because the method is simple and relatively quick to implement it is likely to appeal to busy 

managers who need to evaluate the performance of strategic options under a range of 

scenarios. This is particularly likely to be the case when the number of attributes and options 

is large so that the number of scores and weights that would need to be elicited for a full 

SMART model would be both demotivating and fatiguing. In addition the transparency of 

MINIMOD(RS) makes it suitable for use by diverse groups of stakeholders when they meet 

to form strategic planning teams (Cairns et al., 2016).  
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Of course, as Edwards and Barron (1994) pointed out, approximations like this may 

deny decision makers the benefits that come from the ‘deep soul searching’ and reflection 

that more advanced decision analysis methods may demand. These benefits may include 

deeper insights and a greater understanding of the decision problem. Nevertheless, there are 

likely to be many occasions where the MINIMOD(RS)  method is likely to be useful and 

appropriate, not the least where the use of an alternative method would be either unacceptable 

to decision makers or infeasible because of time constraints.  
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  O1 O2 . Om 

 w1 v11 v21 . vm1 

 w2 v12 v22 . vm2 

 . . . . . 

 wn v1n v2n . vm n 

Totals 1 v(O1) v(O2) . v(Om) 

 

Table 1 Decision Matrix 
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Attributes 
  

Strategy 
NPV 
($m) 

Market 
share 

Environmental 
impact 

Risk Flexibility 

A 790 15% Very High High Very Low 

B 731 10% High Very High Low 

C 586 21% Small Medium Medium 

D 686 25% None Low High 

E 697 18% Medium Very Low Very High 

 

Table 2 Choice of strategies in a given scenario 
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Attributes 
  

Strategy 
NPV 
($m) 

Market 
share 

Environmental 
impact 

Risk Flexibility 

A 100 40 0 30 0 

B 90 0 30 0 10 

C 0 55 90 50 30 

D 55 100 100 80 75 

E 60 50 40 100 100 

 

Table 3 Values assigned to strategies in SMART 
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Attribute  Swing Weight Normalised 
weight 

NPV $586m to $790m 100 0.31 

Risk Very High to Very Low 90 0.28 

Flexibility Very Low to Very High 85 0.26 

Environmental impact Very  High to None 30 0.09 

Market share 10% to 25% 20 0.06 

 

Sum 325 
  

 

Table 4 Weights assigned to strategies in SMART 
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Rank Attribute     Swing 
Rank 
sum 

weight 

5 NPV    $586m to $790m 0.33 

4 Risk    High to Very Low 0.27 

3 Flexibility    Low to High 0.20 

2 Environmental impact    High to Small 0.13 

1 Market share    10% to 25% 0.07 

 

Table 5 Weights assigned to strategies in MINIMOD 
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Strategy 
NPV 
($m) 

Market 
share 

Environmental 
impact 

Risk Flexibility 

A 5 2 1 2 1 

B 4 1 2 1 2 

C 1 4 4 3 3 

D 2 5 5 4 4 

E 3 3 3 5 5 

 

 

Table 6 Performance ranks of strategies on attributes 
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Positive 
skew Uniform 

Bell-
shaped Equal 

Negative 
skew 

0.13 0.11 0.10 1.00 0.11 

0.14 0.33 0.40 1.00 0.22 

0.18 0.56 0.55 1.00 0.90 

0.75 0.78 0.40 1.00 0.95 

1.00 1.00 1.00 1.00 1.00 

 

Table 7 Possible distributions of non-normalized, unconstrained weights 
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Figure Legends 

 

 

 

Figure 1  Sensitivity analysis 

 

Figure 2  Hit rates  

 

Figure 3   Mean percentage utility losses  

 

 

 

 

 

 

 

 

 

 


