Citation for published version:
Brinkworth, A, Wills, M \& Sansom, R 2019, 'Phylogenetic incongruence and homoplasy in the appendages and bodies of arthropods: Why broad character sampling is best' Zoological Journal of the Linnean Society, vol. 187, no. 1, pp. 100-116. https://doi.org/10.1093/zoolinnean/zlz024

DOI:
10.1093/zoolinnean/zlz024

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

This is a pre-copyedited, author-produced version of an article accepted for publication in Zoological Journal of the Linnean Society following peer review. The version of record Andrew R Brinkworth, Robert Sansom, Matthew A Wills, Phylogenetic incongruence and homoplasy in the appendages and bodies of arthropods: why broad character sampling is best, Zoological Journal of the Linnean Society, Volume 187, Issue 1, September 2019, Pages 100-116, is available online at: https://doi.org/10.1093/zoolinnean/zlz024

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Phylogenetic incongruence and homoplasy in the appendages and bodies of arthropods: Why broad character sampling is best

Andrew Brinkworth ${ }^{1}$, Robert Sansom ${ }^{2}$ \& Matthew A. Wills*1

Author Affiliations:	${ }^{1}$ The Milner Centre for Evolution, Department of Biology and Biochemistry, The University of Bath, The Avenue, Claverton Down, Bath BA2 7AY, UK
	${ }^{2}$ School of Earth and Environmental Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
*Correspondence:	Matthew A. Wills
	Department of Biology and Biochemistry
	The University of Bath
	The Avenue
	Claverton Down
	Bath BA2 7AY
	United Kingdom
	Telephone: 01225383504
	Fax: 01225386779
	E-mail: m.a.wills@bath.ac.uk

Phylogenetic incongruence and homoplasy in the appendages and bodies of arthropods: Why broad character sampling is best

Andrew Brinkworth*, Robert Sansom, Matthew Wills*
*Corresponding author

Abstract

Notwithstanding the rapidly increasing sampling density of molecular sequence data, morphological characters still make an important contribution to our understanding of the evolutionary relationships of arthropod groups. In many clades, characters relating to the number and morphological specialisation of appendages are ascribed particular phylogenetic significance, and may be preferentially sampled. However, previous studies have shown that partitions of morphological character matrices often imply significantly different phylogenies. Here, we ask whether a similar incongruence is observed in the appendage and non-appendage characters of arthropods. We apply tree length (incongruence length difference: ILD) and tree distance (incongruence relationship difference: IRD) tests to these partitions in an empirical sample of 52 published neontological data sets for arthropods. We find significant incongruence about one time in five: more often than expected, but markedly less often than in previous partition studies. We also find similar levels of homoplasy within limb and non-limb characters, both in terms of internal consistency and consistency relative to molecular trees. Taken together, these findings imply that sampled limb and non-limb characters are of similar phylogenetic utility and quality, and that a total evidence approach to their analysis is preferable.

Introduction

Despite the increasing ease and economy of obtaining ever larger volumes of molecular phylogenetic data - coupled with progressively more sophisticated models for their analysis - morphological characters can still contribute significantly to resolving the phylogeny of many clades (Wiens, 2004; O’Leary \& Gatesy, 2008; Gainett et al., 2014; also see discussion in Lopardo \& Hormiga, 2015). Morphological and molecular data are often reciprocally illuminating (e.g. Houde, 1994; NicolaldeMorejón et al., 2009), and can reveal hidden support when combined in a single total evidence analysis (Kluge, 1989; Gatesy et al., 1999; Gatesy \& Arctander, 2000; Wahlberg et al., 2005; Damgaard, 2008; O’Leary \& Gatesy, 2008; Padial et al., 2010; Mounce et al., 2016). For fossil species, morphology is typically the only source of phylogenetic data, despite impressive strides in obtaining sub-fossil DNA (e.g. Dabney et al., 2013; reviewed in Shapiro \& Hofreiter, 2014; Orlando et al., 2015) and the value of stratigraphic time series in a few special cases (Wills et al., 2008; Wills et al. 2009; O'Connor \& Wills, 2016). Unlike molecular sequence data, there are no widely implemented standard frameworks for coding and archiving morphological data (but see O'Leary \& Kaufman, 2011; Davies et al., 2017). Partly as a result of this, there is little systematic knowledge concerning rates of evolution and levels of homoplasy in morphological characters from different anatomical regions in different clades. Similarly, there is no consensus on the types of morphological characters that are likely to be informative for cladogeneses of different geological ages. Despite this, trees are often inferred from relatively restricted morphological character sets (Sanchez-Villagra \& Williams, 1998; Arratia, 2009; Song \& Bucheli, 2010; Mounce et al., 2016) (a practice that may be analogous to early molecular phylogenies that used small numbers of loci that may not always have evolved at appropriate rates; Bateman, 1999). For fossil taxa, this may reflect various preservation biases (Sansom et al., 2010, 2017; Sansom \& Wills, 2013; Pattinson et al., 2014). For example, molluscs typically lack all soft-part data (Castelin et al., 2017), while ostracods are almost exclusively known from their sculpted, bivalved carapaces (Briggs et al., 1993; Whatley et al., 1993).

Character sampling in arthropods

Biased character sampling may be a particular problem in arthropods, where there is growing evidence that overall levels of homoplasy are greater than in many other higher taxa (Engel, 2015). Examples include the genital morphology of acarine mites (Klimov et al., 2017) and insects (Bennik et al., 2016; Yoshizawa et al., 2016), the wing morphology of lepidopterans (Finkbeiner et al., 2017), the limbs of amphipod crustaceans (Verheye et al., 2016), and the overall morphology of cavedwelling Diplopoda (Liu et al., 2017) and Collembola (Christiansen, 1960). Moreover, historically, even the deep phylogeny of arthropods has been addressed with restricted character sets, and with a striking diversity of results (e.g. Wheeler et al., 1993; Giribet et al., 2001; Boore et al., 2005; Regier et al., 2005).

Characters pertaining to the number and morphological adaptations of limbs are particularly important for arthropod systematics and phylogenetics (Størmer, 1939; Schulz, 2007; Gainett et al., 2014). Unfortunately, such characters are often poorly recorded in fossil arthropods, and several major groups - notably trilobites (Størmer, 1939; Hughes, 2003) and ostracods (Smith, 2000) - preserve limbs only under the most exceptional circumstances. Here, we address two questions in a sample of 38 arthropod data matrices comprising predominantly extant taxa, and coding a broad sample of characters from both the limbs/mouthparts/antennae (appendages) and the rest of the body. Firstly we ask whether levels of homoplasy differ between appendages on one hand, and body and carapace characters on the other, such that the quality of data in either partition might be deemed superior (see Pettigrew, 1991; Sanchez-Villagra \& Williams, 1998; Williams, 2007; Song \& bucheli, 2010; Parker, 2016). Secondly we ask whether the hierarchical signals conveyed by appendage and body characters imply different phylogenies (see Mounce et al. 2016; Sansom \& Wills 2017; Sansom et al. 2017).

Why examine morphological character partitions in arthropods?

The rationale for this partitioning is twofold. Firstly, suites of characters can evolve in functionally or developmentally integrated modules (Clarke \& Middleton, 2008; Klingenberg, 2008; Lü et al., 2010). These can be subject to different selection pressures and evolve at different speeds (Maynard Smith, 1993; Lü et al., 2010; Parker, 2016), thereby exhausting their character spaces at different rates
(Wagner, 1995,1997; Oyston et al., 2015; Oyston et al., 2016) and containing different levels of homoplasy as a result. For example, Sánchez-Villagra \& Williams (1998) demonstrated that strong functional selection for feeding and locomotion increases the evolutionary lability of dental and postcranial characters relative to cranial characters in the skeletons of mammals, while Sansom et al. (2017) showed that mammalian dental data exhibit relatively poor congruence with independent molecular phylogenies. Similarly, the mouthparts of insects (Angelini \& Kaufman, 2005) and other arthropods (Řezáč et al., 2008; Baiocco et al., 2017) are highly labile and are extensively modified in lineage specific ways, reflecting the trophic resources that they exploit. The same is true of other appendages, which are highly conserved in their underlying structure, but which possess a great diversity of form and function across taxa of all ranks (Angelini \& Kaufman, 2005). Relatively high levels of homoplasy can also be found in arthropod body characters. For example, the classification of ostracod crustaceans is heavily contingent on characters of the carapace (Tinn \& Oakley, 2008), despite marked and misleading convergence in form. Characters of the copulatory limbs, by contrast, are much more conserved and less homoplastic (Park et al., 2000; Cohen \& Morin, 2003). Secondly, much of the arthropod (particularly insect) fossil record is concentrated within a relatively small number of Konservat-Lägerstatten (Sepkoski, 1981; Martinez-Delclòs et al., 2004; Baalbergen \& Donovan, 2013). Outside of these exceptional localities, there are usually conspicuous biases in the suites of characters or anatomical regions preserved. For example, Baalbergen \& Donovan (2013) found only the chelae of decapod crustaceans preserved (despite unusually good preservation of other arthropod groups at the same site), while Stempien (2005) reported that the chelipeds and carapaces of Brachyura were more likely to fossilize than their walking legs. Similarly, tough, sclerotized structures such as the elytrae (Martinez-Delclòs et al., 2004; Baalbergen \& Donovan, 2013) of insects are more frequently preserved than many other body parts. The calcite carapaces of ostracods frequently preserve highly homoplastic and functionally constrained details of sculpture and ornamentation, whereas limbs are only rarely fossilised (Smith, 2000). Among fossil Arachnomorpha, the taxonomically diagnostic chelicerae are rarely reserved, obfuscating the systematic placement of many specimens (Dunlop, 1997). Hence, body characters such as differentiation of the opisthosoma and segmentation of the post-abdomen are more useful in fossil chelicerate systematics (Dunlop,
1997). Such anatomical biases on character sampling could mislead attempts to infer the relationships of fossil arthropods, particularly if homoplasy is concentrated within the more readily preserved characters.

Materials \& Methods

Datasets

The character matrices utilised in this study were obtained from peer-reviewed papers published between 2000 and 2017. We sought to sample all major living arthropod groups (Chelicerata, Pancrustacea (Crustacea and Hexapoda), Myriapoda), including matrices of varying dimensions and clades of both lower and higher ranks (genera through classes). Wherever possible, more recent and more inclusive matrices were used. We utilised Graeme Lloyd's online compilation of matrices (Lloyd,) and searches of Web of Science using higher taxon names plus the root keywords "phylog* + morphol*". The resulting sample of 52 matrices contained representatives of 21 orders in 7 classes (see Tables 1, 2). 38 matrices were collected for the incongruence tests and internal consistency tests and 15 crustacean matrices were collected for the molecular consistency tests (see below).

Definition of character partitions

The "appendage" character partition included those pertaining to the legs and leg-derived appendages. This encompassed all podomeres of the walking legs and modified legs such as brooding limbs (e.g., Jenner et al., 2009) and the spinnerets of spiders (Selden et al., 2008). Also included were characters pertaining to the mouthparts, including mandibles, maxillae, and the labium (Angelini \& Kaufman, 2005), as well as the palps, chelicerae and glossae. The labrum, hypopharynx and epipharynx were also included in the "appendage" partition as they are closely functionally associated with the other mouthparts and in some groups form a feeding apparatus for sucking or piercing in conjunction with these other elements (Angelini \& Kaufman, 2005). As such, we suspect that they are subject to similar selective pressures (Klingenberg, 2008). Antennae were also included (Angelini \& Kaufman, 2005), as were genital structures derived from legs or fused coxae such as the hypandria. Characters
pertaining to setation or other elaborations of leg, mouthpart or appendage podomeres were also included, as were characters referring to limb musculature.

The "body" character partition was defined, by default, as all those characters not encompassed above. This included the wings and elytrae of insects, since we consider these to be derived from the carapace of the thorax rather than from pre-existing limb structures (Clark-Hatchel \& Tomoyasu, 2016). The "body" partition also included all characters encoding genital structures that were not derived from appendages, such as those pertaining to the vulva, genital pore, spermatheca and ovipositor. Characters pertaining to elaborations and ornamentations of body segments were included with the "body" partition, as where characters of the eyes and internal organs. Behavioural, molecular, developmental and sperm characters were removed from each matrix (these accounted for just 3% of those analysed).

Missing and inapplicable codes

Poorly known taxa (or those that were otherwise scored for only a small number of characters) can be highly mobile in sets of optimal trees; particularly those inferred using maximum parsimony. This can, in turn, result in large numbers of MPTs, prohibitively long search times and poor resolution of consensus trees (Wilkinson, 1995; Mounce et al., 2016). Where data matrices were found to be subject to these issues empirically, we edited them (using Mesquite Version 3.40: Maddison \& Maddison 2018) by removing taxa with more than 75% of characters scored as missing ("?") or inapplicable ("-") in either partition (50% for the data set of Schulz, 2007). We also removed taxa found to be taxonomically equivalent to others (sensu Wilkinson, 1995). Any characters rendered uninformative or invariant by this process were also deleted. A mean of just 0.47 taxa ($\sim 2.2 \%$) and 3.34 characters ($\sim 3.6 \%$) were removed from each dataset in this manner (for a list of the precise taxa and characters deleted, see Appendix 1).

We did not set out to analyse matrices of fossils, since our intention was to compare signals in limb and non-limb characters. Fossil taxa often tend to contain larger proportions of missing codings (Wilkinson, 1995; Wiens, 1998; Mounce et al., 2016), and these missing codes tend to be concentrated in characters pertaining to regions of anatomy with lower preservation potential. In
particular, fossils tend to lack data for limbs and other appendages. However, fossils are often informative in phylogenetic analyses of arthropods (Legg et al., 2013) and other taxa (Cobbett et al. 2007), so fossil taxa within matrices of predominantly extant taxa (e.g. Schulz, 2007; Olesen, 2009; Liu et al., 2012) were not discounted a priori, but only as a consequence of obfuscating analyses as described above.

Measuring homoplasy

We took two approaches to measuring homoplasy: internal consistency of morphological characters relative to the most parsimonious trees derived from those same morphological characters, and molecular consistency of morphological characters when optimised onto independent molecular trees (e.g. Sansom et al. 2017, Sansom and Wills 2017). With both approaches, we used the ensemble Consistency Index (CI; Kluge \& Farris, 1969) and ensemble Retention Index (RI; Farris, 1989). CI is a commonly used and well-characterised index of homoplasy. However, it is subject to known biases, notably a correlation with the number of characters and taxa in the dataset (Archie, 1989; Mounce et al. 2016). For the internal CI, we removed these biases empirically by comparing the residuals from regression analyses of CI on both matrix dimensions. For comparisons of the CI of morphological character partitions optimised into molecular trees, however, there are no such biases because the (molecular) trees are not inferred from the (morphological) data. For molecular consistency tests, we sought independent molecular trees (Sansom and Wills 2017, Sansom et al. 2017). Taxa were pruned (typically from the morphological data set) such that both morphological and molecular trees had the same residual leaf set. This had the potential to render some morphological characters uninformative, and these were subsequently removed from the matrix. Internal consistency measures were derived using PAUP* 4.0a. 154 (Swofford, 2017) whilst molecular consistency measures were derived using TNT (Goloboff, 2008) and Mesquite (Maddison \& Maddison, 2018).

Statistical tests for incongruence

The Incongruence Length Difference (ILD) test (Mikevich \& Farris, 1981; Farris et al., 1995a; Farris et al., 1995b) is a widely implemented partition homogeneity test based upon the difference in most
parsimonious tree (MPT) length for a matrix when analysed as a whole, and the sum of MPT lengths for the partitions of the matrix analysed in isolation (MPTs). More formally, the ILD for a bipartitioned matrix is given by $\mathrm{L}_{\mathrm{AB}}-\left(\mathrm{L}_{\mathrm{A}}+\mathrm{L}_{\mathrm{B}}\right) / \mathrm{L}_{\mathrm{AB}}$, where L_{AB} is the optimal tree length (in steps) from the analysis of the entire matrix (the total evidence analysis), and L_{A} and L_{B} are the optimal tree lengths for partitions A and B analyzed independently. This ILD is compared with a distribution of ILD values (here, 999) for random bipartitions of the matrix in the same proportions as the original, and a p value is derived from the fraction of these as large or larger than the original. The ILD test has been criticized on philosophical grounds, and because it has a high Type I error rate (Dolphin et al., 2000; Barker \& Lutzoni, 2002; Ramirez, 2006; Sansom et al. 2017). However, it remains very widely applied (Mounce et al., 2016), and is used here as a measure of matrix partition incongruence rather than as a criterion for combining those partitions (Figure 1).

In addition to the ILD test, we also implemented the incongruence relationship difference (IRD) test of Ruta \& Wills (2016) and Mounce et al. (2016). This is analogous to the ILD test in that a measure of incongruence for the original data partition is compared with a distribution of incongruence values for a large number of random partitions. However, whereas for the ILD incongruence is measured in terms of additional tree length, a tree-to-tree distance metric is used for the IRD. Many such metrics are available, but here we use two tests based upon the symmetricaldifference (RF) distance $\left(\mathrm{IRD}_{\mathrm{RF}}\right.$; Robinson \& Foulds, 1981) and maximum agreement subtree (MAST) distance (IRD ${ }_{\text {D1 }}$; Goddard et al., 1994; de Vienne et al., 2007). We acknowledge that other metrics may have more desirable properties, but the RF distance in particular well characterised and widely applied. It is unusual for a single most parsimonious tree (MPT) to result from a parsimony search, and we therefore followed Mounce et al. (2016) in calculating the mean nearest neighbour distance (NND) between each tree resulting from one partition and the most similar tree in the other partition. In addition, we calculated the distances between strict, semi-strict and 50% majority rule (plus compatible groupings) trees for the two partitions, although we caution that these offer poor or positively misleading summaries of the differences between sets of trees (Mounce et al. 2016). We illustrate this latter approach for the eumalacostracan data of Jenner et al. (2009) and Wills et al. (2009) (Figure 2), and for the myriapod data of Blanke and Wesener (2014) (Figure 3). IRD tests were
initially based upon 99 random partitions of the data (c.f 999 for the computationally much faster ILD). However, in those cases where $\mathrm{p} \leq 0.10$, we re-ran the test for that data set using 499 random partitions (Figure 1).

All parsimony searches were implemented using 25 random additions of taxa, followed by tree bisection and reconnection branch swapping, and retaining 10 trees at each step. To expedite the searches, we limited the number of trees stored in memory to 100,000 , and for the IRD tests we calculated nearest neighbour tree-to-tree distances based upon no more than 1,000 trees from each partition (2,000 trees in total and $1,999,000$ tree-to-tree distances calculated for each metric in order to find the minima). Consensus trees were calculated from all MPTs, up to the 100,000 buffer. We also condensed the resulting most parsimonious trees by collapsing branches with a minimum length of zero (Goloboff's 'amb-‘) and removing all but one of any consequently identical trees. All analyses were implemented in PAUP* 4.0a. 154 for Macintosh (Swofford, 2017), using scripts (by MAW) that produced batch files for PAUP* and summarised the log files that it produced (see Supplementary Materials).

Results

There is no difference in levels of homoplasy (CI) or retained synapomoprhy (RI) for limb and body characters

There were no significant differences in mean levels of internal homoplasy (as measured by the ensemble Consistency Index, CI) between limb and body partitions, either for the 38 datasets in combination, or for subphyla considered in isolation ($p>0.05$ in all cases) (Fig. 5). To account for the known biases in CI, residuals from regression analyses of internal CI on both the \log of the number of characters and the log of the number of taxa were also compared across partitions. The results differed little from those for raw CI (Figure 4), and no significant differences were detected. A similar set of analyses for retained synapomorphy (as measured by the Retention Index: RI) also revealed no differences between limb and body partitions, either overall or within subphyla. Our findings were similar for the 15 crustacean data sets for which we had independent molecular trees: there were no
differences between the CI or the RI of limb versus body character partitions when optimised onto those molecular trees ($\mathrm{p}<0.05$ for paired t tests) (Fig. 5).

Limb and body partitions imply significantly different trees one time in five

Both the ILD test and the $\operatorname{IRD}_{\text {RF }}$ test for nearest neighbours reported significant ($\mathrm{p}<0.05$) incongruence between the trees inferred from limb and body character partitions in about one in five cases ($8 / 38$ and $7 / 38$ respectively). The $\operatorname{IRD}_{\mathrm{D} 1}$ test for nearest neighbours reported significant ($\mathrm{p}<0.05$) incongruence slightly less often $(5 / 38)$. We note that the different tests assess different aspects of incongruence, and the p values for ILD, $\mathrm{IRD}_{\mathrm{RF}}$ and $\mathrm{IRD}_{\mathrm{D} 1}$ do not precisely coincide. Hence, a significant p -value ($\mathrm{p}<0.05$) is obtained for both $\mathrm{IRD}_{\mathrm{RF}}$ and $\mathrm{IRD}_{\mathrm{D} 1}$ in 3 datasets, and for all three tests (including the ILD) in only 2 cases. Rates of significant incongruence are summarised in Table 2. For the ILD test, our finding that 8 from 38 data sets were incongruent with $\mathrm{p} \leq 0.05$ means that incongruence is significantly more common than expected by chance (two would be anticipated: binomial test $\mathrm{p}=0.0005$). The $\mathrm{IRD}_{\mathrm{RF}}$ test also detected significant incongruence significantly more often than expected $(p=0.0025)$. Whilst reporting significant incongruence at the lowest rate, the $\operatorname{IRD}_{\mathrm{DI}}$ test also detected a significantly higher rate of incongruence than would be expected ($\mathrm{p}=$ 0.03973 , binomial test).

The outcome of the ILD and IRD tests is not significantly influenced by data set parameters or by taxonomic group

We sought to determine whether various data set dimensions and imbalances might determine the outcome of our incongruence tests ($\mathrm{p} \leq 0.05$ or $\mathrm{p}>0.05$). In addition to data matrix dimensions, previous studies (e.g., Mounce et al., 2016; Sansom et al. 2013, 2017.) have accounted for (or variously controlled) amounts of missing data within partitions or regions. In general, we found that there was no significant difference in the median percentage of cells scored as missing/inapplicable for limb and body partitions across the entire data set (Mann-Whitney $\mathrm{U}=36.9636, \mathrm{p}=0.4242$). Neither were there significant differences in the mean or variances of percentages of missing/inapplicable codings for limb and body partitions within individual sub-phyla: myriapods
(paired $t=-0.3868, p=0.7148$), crustaceans (paired $t=-0.5852, p=0.5768$), chelicerates (paired $t=-$ $0.7982, \mathrm{p}=0.4510$), hexapods (paired $\mathrm{t}=-0.4896, \mathrm{p}=0.6315)($ Fig. 6). For each data set, however, we also took account of the difference in percentage of missing data between partitions (this was a marginally significant factor in the study of Mounce et al., 2016). However, a logistic regression model (see Appendix 2) showed that the outcome of the ILD was not significantly influenced by the \log of the percentage of missing data across both partitions $(\mathrm{p}=0.6127)$, the difference in the percentage of missing data between partitions ($\mathrm{p}=0.1551$), the difference between partition sizes $(p=0.1564)$, the \log of the number of taxa $(p=0.0606), \log$ of the number of characters $(p=0.0667)$ or the interaction between these last two variables $(\mathrm{p}=0.0619)$. The model also showed that higher taxonomic group (i.e., Chelicerata, Crustacea, Hexapoda, Myriapoda) had no effect on ILD outcome. Similarly, a log-likelihood ratio test (G-test) revealed no difference in the frequencies of significant or non-significant outcomes across these higher taxa $(G=4.0863, \mathrm{p}=0.2523)$. We found similar results from logistic modelling of the outcome of the $\mathrm{IRD}_{\mathrm{RF}}$ and $\mathrm{IRD}_{\mathrm{D} 1}$ tests, with no significant effect for overall percentage of missing data ($\mathrm{p}=0.511$ and $\mathrm{p}=0.396$), the difference in percentage of missing data between partitions $(\mathrm{p}=0.330$ and $\mathrm{p}=0.987)$, the \log of the number of taxa $(\mathrm{p}=0.838$ and $\mathrm{p}=0.379)$, \log of the number of characters $(\mathrm{p}=0.692$ and $\mathrm{p}=0.417)$, or the interaction between characters and taxa ($\mathrm{p}=0.727$ and $\mathrm{p}=0.381$). Higher taxonomic group also had no effect for either test, and G-tests also revealed no difference in the frequency of significant outcomes for the four groups $\left(\operatorname{IRD}_{\mathrm{RF}}, G=\right.$ 2.7948, $\mathrm{p}=0.4244: \mathrm{IRD}_{\mathrm{D} 1}, \mathrm{G}=1.4049, \mathrm{p}=0.7044$.

Limb and body character sampling

Overall there was no significant difference in the log of number of characters sampled from each partition of the datasets in Table $1(t=-0.3461, p=0.7312$, paired t-test of logs $)$. Furthermore, no significant difference was observed in chelicerates $(t=-0.5679, p=0.5907$, paired t-test $)$ or myriapods $(t=2.1830, p=0.0808$, paired $t-t e s t)$. However, differences were observed within crustaceans $(t=2.7658, p=0.0279$, paired t-test of logs $)$ and hexapods $(t=-4.4382, p=0.0005$, paired t-test of $\log s)$. Crustacean datasets contained significantly more limb characters than those from the body, while the opposite tendency pertained in hexapod datasets. We do not assume that
these differences reflect a bias of sampling from the hypothetical universe of possible leg and body characters, since there is no reason to suppose that the two partitions should yield identical character numbers (a naïve null hypothesis). Rather, we merely report that the numbers do, in fact, differ in the case of crustaceans and hexapods.

Discussion and Conclusions

1. Levels of incongruence

Rates of significant ($\mathrm{p}<0.05$) incongruence between limb and body partitions across our sample of arthropod matrices were significantly higher than expected for all of our tests. We found 8 from 38 significant with $\mathrm{p} \leq 0.05$ for the ILD (one in five) and 7 from 38 for the $\mathrm{IRD}_{\mathrm{RF}}$, whereas two (one in twenty) would be expected by chance (binomial test $\mathrm{p}=0.0005$). The only previous, systematic studies of partition homogeneity using similar approaches to those deployed here concerned the craniodental and postcranial characters of vertebrates (Mounce et al., 2016), the dental and osteological characters of mammals (Sansom et al., 2017) and hard and soft part characters across a diversity of animal clades (Sansom \& Wills, 2017). Higher rates of significant ($\mathrm{p}<0.05$) incongruence were reported in those earlier studies: about 1 in 3 (ILD and IRD) for craniodental/body characters and hard/soft characters, and up to 1 in 2 (ILD) for dental/osteological characters (compared with 1 in 5 for the ILD and IRD across our arthropods). There is no reason to expect limb versus body partitions for arthropods to yield similar rates of null rejection to functionally and anatomically different partitions in other groups. However, levels of limb to body incongruence for our sample of arthropods are not especially high, and this is good news for those attempting to infer the relationships of fossil arthropods that lack details of appendage morphology, provided there is enough character data overall.

Lack of partition homogeneity can result from a variety of factors other than conflict between the phylogenetic signals inherent in partitions (Mounce et al., 2016; Dolphin et al., 2000; Planet, 2006). However, we demonstrate that there are no significant ($\mathrm{p}<0.05$) differences in overall levels of either internal or molecular consistency between the partitions of our data sets (CI and RI, Figures
$4,5)$, and neither are there differences in amounts of missing data. Although the levels of homoplasy contained within each partition may be comparable, the quality of this noise often misinforms the inference of phylogenies in different ways, thereby resulting in incongruence.

2. Implications of incongruence

Whatever the cause of the incongruence between partitions, it is still observed more often than we would expect, with several implications. Focussing on restricted suites of characters to the exclusion of others is questionable practice, unless it has been demonstrated a priori (e.g., in a large empirical sample: Sansom et al., 2017; Sansom and Wills, 2017) that some classes of characters are intrinsically more informative and less prone to homoplasy than others. This is not the case for the appendage and body characters of arthropods. Nevertheless, uneven character sampling is commonplace in arthropod systematics (Clarke, 2011), and we find these biases in some higher taxa here. Such biases probably reflect previous expectations that certain characters are of more value or contain a stronger phylogenetic signal than others (see Sanchez-Villagra \& Williams, 1998; Williams, 2007; Song \& Bucheli, 2010; Parker, 2016; Mounce et al., 2016; Sansom et al., 2017). For example, Gainett et al. (2014) focused upon appendicular characters in their phylogeny of harvestmen, while Dunlop (1997) found that characters of body segmentation and segment differentiation were particularly helpful in determining the higher-level relationships of chelicerates (Dunlop, 1997). Our sample of data sets does not support this idea for limb and body characters across arthropods.

Such biases are most acute (and often unavoidable) in many fossil groups, where the more heavily mineralized or sclerotized cuticle of the carapace and tergites typically preserve more readily than that of the limbs. Hence, many fossil arthropod taxa lack details of the appendages, and focus, out of necessity, on 'body' characters of segmentation and ornamentation. In ostracods, for example, body characters are the most readily available (Tinn \& Oakley, 2008), despite suggestions that appendicular characters are of much greater utility (Park et al., 2002; Cohen \& Moren, 2003). Notwithstanding, many arthropod studies uncover hidden support and hidden branch support (Gatesy et al., 1999) from combined suites of morphological characters (Clarke, 2011) and from the combination of morphological and molecular data (e.g. Damgaard, 2008; Wahlberg et al., 2005). We
therefore advocate holistic character sampling (Song \& Bucheli, 2010) and principles of total evidence (Kluge, 1989; Gatesy \& Springer, 2014; Mounce et al., 2016; see also Gatesy \& Arctander, 2000) in arthropod phylogenetics.

There are other systematic problems that may occur when trees are inferred from non-random character samples, although these are usually framed in terms of the effects of missing data. In this regard, it is not the number of missing entries in a matrix so much as the amount of data that are present that influences the resolution of trees and the stability of taxa within them (Wiens, 2003ab; Cobbett et al., 2007). Non-random blocks of missing data - such as those that typically result from the concatenation of molecular data sets with different taxon samples (Chernomor et al., 2016; Dillman et al., 2016; Dobrin et al., 2018) or morphological data sets containing a mix of fossil and extant taxa (Pattinson et al., 2015; Sansom, 2015) - bring their own particular set of problems. The processes of decay prior to fossilisation obliterate soft part character data, but a recent and surprising finding is that such characters tend to optimize along branches further from the root of the tree than their more fossilizable counterparts. The simulated removal of soft part data from species within real neontological data sets therefore tends to result in the disproportionate 'stemward slippage' of lineages towards the root of the tree (Sansom \& Wills, 2013; Sansom, 2015). It is therefore likely that many fossils appear more plesiomorphic and erroneously resolve closer to the roots of phylogenies as a function of taphonomic filters (Sansom et al., 2017). This needs to be explored on greater detail across the phylogeny of arthropods.

References

Adamowicz SJ, Purvis A. 2006. From more to fewer? Testing an allegedly pervasive trend in the evolution of morphological structure. Evolution 60: 1402-1416.

Angelini DR, Kaufman TC. 2005. Insect appendages and comparative ontogenetics. Developmental Biology 286: 57-77.

Archie JW. 1989. Homoplasy excess ratios: New indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Systematic Biology 38(3): 253-269.

Arratia G. 2009. Identifying patterns of diversity of the actinopterygian fulcra. Acta Zoologica 90(1): 220-235.

Baalbergen E, Donovan SK. 2013. Terrestrial arthropods from the Late Pleistocene of Jamaica: systematics, palaeoecology and taphonomy. Geological Journal 48: 628-645.

Baiocco M, Bonato L, Cardini A, Fusco G. 2017. Shape variation of prey-catching structures in geophilomorph centipedes: A preliminary investigation using geometric morphometrics. Zoologischer Anzeiger 268: 11-18.

Banks JC, Paterson AM. 2004. A penguin-chewing louse (Insecta: Phthiraptera) phylogeny derived from morphology. Invertebrate Systematics 18: 89-100.

Barker FK, Lutzoni FM. 2002. The utility of the Incongruence Length Difference test. Systematic Biology 51(4): 625-637.

Bateman RM. 1999. Integrating molecular and morphological evidence of evolutionary radiations. In: Hollingsworth PM, Bateman RM, Gornall RJ editors. Molecular Systematics and Plant Evolution, p. 432-471.

Bennik RM, Buckley TR, Hoare RJB, Holwell GI. 2016. Molecular phylogeny reveals the repeated evolution of male genital traits in the New Zealand moth genus Izatha (Lepidoptera: Xyloryctidae). Systematic Entomology 41: 309-322.

Blagoderov V, Hippa H, Sevcik J. 2009. Asiorrhina, a new Oriental genus of Lygistorrhinidae (Diptera: Sciaroidea) and its phylogenetic position. Zootaxa 2295: 31-45.

Blanco-Bercial L, Bradford-Grieve JM, Bucklin A. 2011. Molecular phylogeny of the Calanoida (Crustacea: Copepoda). Molecular Phylogenetics and Evolution 59: 103-113.

Bochkov AV, Klimov PB, Wauthy G. 2011. Phylogeny and coevolutionary associations of makialgine mites (Acari, Psoroptidae, Makialginae) provide insight into evolutionary history of their hosts, strepsirrhine primates. Zoological Journal of the Linnean Society 162: 1-14.

Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM. 1995. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376: 163-165.

Botero-Trujillo R, Ott R, Carvalho LS. 2017. Systematic revision and phylogeny of the South American sun-spider genus Gaucha Mello-Leitão (Solifugae: Mummuciidae), with description of four new species and two new generic synonymies. Arthropod Systematics \& Phylogeny 75(1): 3-44.

Bracken-Grissom HD, Ahyong ST, Wilkinson RD, Feldmann RM, Schweitzer CE, Breinholt JW, Bendall M, Palero F, Chan T-Y, Felder DL, Robles R, Chu K-H, Tsang L-M, Kim D, Martin JW, Crandall KA. 2014. The emergence of lobsters: Phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida). Systematic Biology 63:457-479.

Bradford-Grieve JM, Blanco-Bercial L, Boxshall GA. 2017. Revision of the family Megacalanidae (Copepoda: Calanoida). Zootaxa 4229: 1-183.

Bradford-Grieve JM, Boxshall GA, Ahyong ST, Ohtsuka S. 2010. Cladistic analysis of the calanoid Copepoda. Invertebrate Systematics 24: 291-321.

Calor AR, Holzenthal RW. 2008. Phylogeny of Grumichellini Morse, 1981 (Trichoptera: Leptoceridae) with the description of a new genus from southeastern Peru. Aquatic Insects 30(4): 245-259.

Castelin M, Williams ST, Buge B, Maestrati P, Lambourdiere J, Ozawa T, Utge J, Couloux A, Alf A, Samadi S. 2017. Untangling species identity in gastropods with polymorphic shells in the genus Bolma Risso, 1826 (Mollusca, Vetigastropoda). European Journal of Taxonomy 288: 1-21.

Chamorro ML, Konstantinov AS. 2011. Cachiporrini, a remarkable new tribe of Lamprosomatinae (Coleoptera, Chrysomelidae) from South America. ZooKeys 78: 43-59.

Chan TY, Ho KC, Li CP, Chu KH. 2009. Origin and diversification of the clawed lobster genus Metanephrops (Crustacea: Decapoda: Nephropidae). Molecular Phylogenetics and Evolution 50: 411-422.

Chang S, Tshudy D, Sornhannus U, Ahyong ST, Chan T. 2016. Evolution of the thaumastocheliform lobsters (Crustacea, Decapoda, Nephropidae). Zoologica Scripta 46: 373387.

Chernomor O, von Haeseler A, Bui Quang M. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65:997-1008.

Christiansen K. 1960. Convergence and Parallelism in Cave Entomobryinae. Evolution 15: 288-301.
Clarke DJ. 2011. Testing the phylogenetic utility of morphological character systems, with a revision of Creophilus Leach (Coleoptera: Staphylinidae). Zoological Journal of the Linnean Society 163: 723-812.

Clarke JA, Middleton KM. 2008. Mosaicism, modules, and the evolution of birds: Results from a Bayesian approach to the study of morphological evolution using discrete character data. Systematic Biology 57(2): 185-201.

Clark-Hatchel CM, Tomoyasu Y. 2016. Exploring the origin of insect wings from an evo-devo perspective. Current Opinion in Insect Science 13: 77-85.

Cobbett A, Wilkinson M, Wills MA. 2007 Fossils impact as hard as living taxa in parsimony analyses of morphology. Systematic Biology 56(5): 753-766.

Cohen AC, Morin JG. 2003. Sexual morphology, reproduction and the evolution of bioluminescence in Ostracoda. The Paleontological Society Papers 9: 37-70.

Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, Valdiosera C, García N, Pääbo S, Arsuaga J-L, Meyer M. 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States 110(39): 15758-15763.

Damgaard J. 2008. Phylogeny of the semiaquatic bugs (Hemiptera-Heteroptera, Gerromorpha). Insect Systematics \& Evolution 39: 431-460.

Davies TG, Rahman IA, Lautenschlager S, Cunningham JA, Asher RJ, Barrett PM, Bates KT, Bengston S, Benson RBJ, Boyer DM, Braga J, Bright JA, Claessens LPAM, Cox PG, Don X-P, Evans AR, Falkingham PL, Friedman M, Garwood RJ, Goswami A, Hutchinson JR, Jeffery S, Johanson Z, Lebrun R, Martínez-Pérez C, Marúgan-Lobón J, O’Higgins PM,

Metscher B, Orliac M, Rowe TB, Rücklin M, Sánchez-Villagra MR, Shubin NH, Smith SY, Starck JM, Stringer C, Summers AP, Sutton MD, Walsh ST, Weisbecker V, Witmer LM, Wroe S, Yin Z, Rayfield EJ, Donoghue PCJ. 2017. Open data and digital morphology. Proceedings of the Royal Society B 284: 20170194.

Del Rio MG, Malvardi AE, Lanteri A. 2012. Systematics and cladistics of a new Naupactini genus (Coleoptera: Curculionidae: Entiminae) from the Andes of Colombia and Ecuador. Zoological Journal of the Linnean Society 166: 54-71.
de Vienne DM, Giraud T, Martin OC. 2007. A congruence index for testing topological similarity between trees. Bioinformatics 23: 3119-3124.
di Giulio A, Fattorini S, Kaupp A, Taglianti AV, Nagel P. 2003. Review of competing hypotheses of phylogenetic relationships of Paussinae (Coleoptera: Carabidae) based on larval characters. Systematic Entomology 28: 509-537.

Dillman CB, Sidlauskas BL, Vari RP. 2016. A morphological supermatrix-based phylogeny for the neotropical fish superfamily Anostomoidea (Ostariophysi: Characiformes): phylogeny, missing data and homoplasy. Cladistics, 32:276-296.

Dobrin BH, Zwickl DJ, Sanderson MJ. 2018. The prevalence of terraced treescapes in analyses of phylogenetic data sets. BMC Evolutionary Biology, 18.

Dolphin K, Belshaw R, Orme CDL, Quicke DLJ. 2000. Noise and incongruence: Interpreting results of the Incongruence Length Difference test. Molecular Phylogenetics and Evolution 17(3): 401-406.

Dreyer H, Wägele JW. 2001. Parasites of crustaceans (Isopoda: Bopyridae) evolved from fish parasites: Molecular and morphological evidence. Zoology 103: 157-178.

Dunlop JA. 1997. Palaeozoic arachnids and their significance for arachnid phylogeny. Proceedings of the $16^{\text {th }}$ European Colloquium of Arachnology 65-82.

Edgecombe GD, Barrow L. 2007. A new genus of scutigerid centipedes (Chilopoda) from Western Australia, with new characters for morphological phylogenetics of Scutigeromorpha. Zootaxa 1409: 23-50.

Engel MS. 2015. Insect Evolution. Current Biology Magazine 25: 868-872.

Farris JS, Kallersjo M, Kluge AG, Bult C. 1995a. Constructing a significance test for incongruence. Systematic Biology 44(4): 570-572.

Farris JS, Kallersjo M, Kluge AG, Bult C. 1995b. Testing significance of incongruence. Cladistics 10: 315-31.

Finkbeiner SD, Briscoe AD, Mullen SP. 2017. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies. Evolution 71(4): 949-959.

Gainett G, Sharma PP, Pinto-da-rocha R, Giribet G, Willemart RH. 2014. Walk it off: predictive power of appendicular characters toward inference of higher-level relationships in Laniatores (Arachnida: Opiliones). Cladistics 30: 120-138.

Gatesy J, O’Grady P, Baker RH. 1999. Corroboration among data sets in simultaneous analysis: Hidden support for phylogenetic relationships among higher level artiodactyl taxa. Cladistics 15: 271-313.

Gatesy J, Arctander P. 2000. Hidden morphological support for the phylogenetic placement of Pseudoryx nghetinhensis with bovine bovids: A combined analysis of gross anatomical evidence and DNA sequences from five genes. Systematic Biology 49(3): 515-538.

Gatesy J, Springer MS. 2014. Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Molecular Phylogenetics and Evolution 80: 231-266.

George KH. 2017. Phylogeny of the taxon Paralaophontodes Lang (Copepoda, Harpacticoida, Laophontodinae), including species descriptions, chorological remarks, and a key to species. Zoosystematics and Evolution 93(2): 211-241.

Gerstmeier R, Eberle J. 2011. Definition and revision of the Orthrius-group of genera (Coleoptera, Cleridae, Clerinae). ZooKeys 92: 35-60.

Giribet G, Edgecombe GD, Wheeler WC. 2001. Arthropod phylogeny based on eight molecular loci and phylogeny. Nature 413: 157-161.

Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24:774-786.

Goddard W, Kubicka E, Kubicki G, McMorris FR. 1994. The agreement metric for labelled binary trees. Mathematical Biosciences 123(2): 215-226.

Grebennikov VV, Newton AF. 2009. Good-bye Scydmaenidae, or why the ant-like stone beetles should become megadiverse Staphylinidae sensu latissimo (Coleoptera). European Journal of Entomology 106: 275-301.

Grebennikov VV. 2010. First Alaocybites weevil (Insecta: Coleoptera: Curculionoidea) from the Eastern Palaearctic: a new microphthalmic species and generic relationships. Arthropod Systematics \& Phylogeny 68(3): 331-365.

Hermoso-Salazar M, Wicksten M, Morrone JJ. 2008. Phylogenetic analysis of the Paulsoni species group (Decapoda: Alpheidae) from the American Pacific, with implications for the phylogenetic classification of the genus Synalpheus. Zootaxa 1744: 19-30.

Houde P. 1994. Evolution of Heliornithidae: Reciprocal illumination by morphology, biogeography and DNA hybridization (Aves: Gruiformes). Cladistics 10: 1-19.

Hultgren KM, Hurt C, Anker A. 2014. Phylogenetic relationships within the snapping shrimp genus Synalpheus (Decapoda: Alpheidae). Molecular Phylogenetics and Evolution 77: 116-125.

Hughes NC. 2003. Trilobite Tagmosis and body patterning from morphological and developmental perspectives. Integrative and Comparative Biology 43(1): 185-206

Jenner RA, Ní Dhubhghaill CN, Ferla MP, Wills MA. 2009. Eumalacostran phylogeny and total evidence: limitations of the usual suspects. BMC Evolutionary Biology 9:21.

Karasawa H, Schweitzer CE, Feldmann RM. 2013. Phylogeny and systematics of extant and extinct lobsters. Journal of Crustacean Biology 33: 78-123.

Klimov PB, Mironov SV, OConnor B.M. 2017. Convergent and unidirectional evolution of extremely long aedeagi in the largest feather mite genus, Proctophyllodes (Acari: Proctophyllodidae): Evidence from comparative molecular and morphological phylogenetics. Molecular Phylogenetics and Evolution 114: 212-224.

Klingenberg CP. 2008. Morphological integration and developmental modularity. Annual Review of Ecology, Evolution and Systematics 39: 115-132.

Klompen H, Amin M, Gerdeman BS. 2013. A revision of the genus Afroheterozercon (Acari: Heterozerconidae). Zootaxa 3626(3): 301-325.

Kluge AG, Farris JS. 1969. Quantitative Phyletics and the Evolution of Anurans. Systematic Zoology 18(1): 1-32.

Kluge AG. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38(1): 7-25.

Koch M, Parschke S, Edgecombe GD. 2009. Phylogenetic implications of gizzard morphology in scolopendromorph centipedes (Chilopoda). Zoologica Scripta 38(3): 269-288.

Legg DA, Sutton MD, Edgecombe GD. 2013. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nature Communication 4: 2485.

Liu W, Golovatch S, Wesener T, Tian M. 2017. Convergent Evolution of Unique Morphological Adaptations to a Subterranean Environment in Cave Millipedes (Diplopoda). PLoS ONE 12(2): e0170717.

Liu X, Wang Y, Shih C, Ren D, Yang D. 2012. Early evolution and historical biogeography of fishflies (Megaloptera: Chauliodinae): Implications from a phylogeny combining fossil and extant taxa. PLoS ONE 9(9): e40345.

Lopardo L, Hormiga G. 2015. Out of the twilight zone: phylogeny and evolutionary morphology of the orb-weaving spider family Mysmenidae, with a focus on spinneret spigot morphology in symphytognathoids (Araneae, Araneoidea). Zoological Journal of the Linnean Society 173: 527-786.

Lörz AN, Brandt A. 2004. Phylogeny of Antarctic Epimeria (Epimeriidae: Amphipoda). Journal of the Marine Biological Association of the United Kingdom 84: 179-190.

Lörz AN, Held C. 2004. A preliminary molecular and morphological phylogeny of the Antarctic Epimeriidae and Iphimediidae (Crustacea, Amphiopoda). Molecular Phyogenetics and Evolution 31: 4-15.

Lü J, Unwin DM, Jin X, Liu Y, Ji Q. 2010. Evidence for modular evolution in a long-tailed pterosaur with a pterodactyloid skull. Proceedings of the Royal Society B 277: 383-389.

Ma KY, Chan TY, Chu KH. 2009. Phylogeny of penaeoid shrimps (Decapoda: Penaeoidea) inferred from nuclear protein-coding genes. Molecular Phylogenetics and Evolution 53: 45-55.

Maddison WP, Maddison DR. 2018. Mesquite: a modular system for evolutionary analysis. Version 3.51. http://www.mesquiteproject.org

Martinez-Delclòs X, Briggs DEG, Peñalver E. 2004. Taphonomy of insects in carbonates and amber. Palaeogeography, Palaeoclimatology, Paleoecology 203: 19-64.

Maynard Smith J. 1993. The Theory of Evolution. Cambridge University Press: Cambridge.
McLaughlin PA, Lemaitre R, Sorhannus U. 2007. Hermit crab phylogeny: a reappraisal and its "fall-out". Journal of Crustacean Biology 27(1): 97-115.

Meland K, Willasen E. 2004. Molecular phylogeny and biogeography of the genus Pseudomma (Peracarida: Mysida). Journal of Crustacean Biology 24: 541-557.

Mendes AC. 2011. Phylogeny and taxonomic revision of Heteropachylinae (Opiliones: Laniatores: Gonyleptidae). Zoological Journal of the Linnean Society 163: 437-483.

Michel-Salzat A, Cameron SA, Oliveira ML. 2004. Phylogeny of the orchid bees (Hymenoptera: Apinae: Euglossini): DNA and morphology yield equivalent patterns. Molecular Phylogenetics and Evolution 32: 309-323.

Mickevich MF, Farris JS. 1981. The implications of congruence in Menidia. Systematic Zoology 30: 351-370.

Mounce RCP, Sansom R, Wills MA. 2016. Sampling diverse characters improves phylogenies: Craniodental and postcranial characters of vertebrates often imply different trees. Evolution 70(3): 666-686.

Nicolalde-Morejó F, Vergara-Silva F, Vovides AP, de los Monteros AE. 2009. Reciprocal illumination of morphological characters upon a molecular hypothesis supports proposal of a new species of cycad from Mexico. Systematics and Biodiversity 7(1): 73-79.

Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK. 2012. Phylotranscriptomics to bring the understudied into the fold: Monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Molecular Biology and Evolution 30: 215-233.

O’Connor A, Wills MA. 2016. Measuring stratigraphic congruence across trees, higher taxa and time. Systematic Biology 65(5): 792-811.

O’Leary MA, Gatesy J. 2008. Impact of increased character sampling on the phylogeny of Cetartiodactyla (Mammalia): combined analysis including fossils. Cladistics 24: 397-442.

O'Leary MA, Kaufman S. 2011. MorphoBank: phylophenomics in the 'cloud'. Cladistics. 27:1-9.
Olesen J. 2009. Phylogeny of Branchiopoda (Crustacea) - Character evolution and contribution of uniquely preserved fossils. Arthropod Systematics \& Phylogeny 67(1): 3-39.

Orlando L, Gilbert MTP, Willerslev E. 2015. Reconstructing ancient genomes and epigenomes. Nature Reviews Genetics 16: 395-408.

Oyston JW, Hughes M, Wagner PJ, Gerber S, Wills MA. 2015. What limits the morphological disparity of clades? Interface Focus 5: 20150042.

Oyston JW, Hughes M, Gerber S, Wills MA. 2016. Why should be investigate the morphological disparity of plant clades? Annals of Botany 117(5): 859-879.

Packer L, Litman J, Praz CJ. 2017. Phylogenetic position of a remarkable new fideliine bee from northern Chile (Hymenoptera: Megachilidae). Systematic Entomology 42: 473-488.

Padial JM, Miralles A, De la Riva I, Vences M. 2010. The integrative future of taxonomy. Frontiers in Zoology 7: 16.

Park LE, Martens K, Cohen AS. 2002. Phylogenetic relationships of Gomphcythere (Ostracoda) in Lake Tanganyika, East Africa. Journal of Crustacean Biology 22(1): 15-27.

Parker WG, 2016. Revised phylogenetic analysis of the Aetosauria (Archosauria: Pseudosuchia); assessing the effects of incongruent morphological characters sets. PeerJ 4, e1583.

Pattinson DJ, Thompson RS, Piotrowski AK, Asher RJ. 2014. Phylogeny, paleontology, and primates: Do incomplete fossils bias the Tree of Life? Systematic Biology 64(2): 169-186.

Pena-Barbosa JPP, Sierwald P, Brescovit AD. 2013. On the largest chelodesmid millipedes: taxonomic review and cladistic analysis of the genus Odontopeltis Pocock, 1894 (Diplopoda; Polydesmida; Chelodesmidae). Zoological Journal of the Linnean Society 169: 737-764.

Pettigrew JD. 1991. Wings or brain? Convergent evolution in the origins of bats. Systematic Zoology, 40(2): 199-216.

Planet, P. 2006. Tree disagreement: measuring and testing incongruence in phylogenies. Journal of Biomedical Informatics, 39: 86-102.

Prendini L, Esposito LA. 2010. A reanalysis of Parabuthus (Scorpiones: Buthidae) phylogeny with descriptions of two new Parabuthus species endemic to the Central Namib gravel plains, Namibia. Zoological Journal of the Linnean Society 159: 673-71.

Ramirez MJ. 2006. Further problems with the incongruence length difference test: "hypercongruence" effect and multiple comparisons. Cladistics 22:289-295.

Regier JC, Schultz JW, Kambic RE. 2005. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proceedings of the Royal Society B 272: 395-401.

Řezáč M, Pekár S, Lubin Y. 2008. How oniscophagous spiders overcame woodlouse armour. Journal of Zoology 275: 64-71.

Richter S, Scholtz G. 2001. Phylogenetic analysis of the Malacostraca (Crustacea). Journal of Zoological Systematics and Evolutionary Research 39: 113-136.

Riehl T, Wilson GDF, Malyutina MV. 2014. Urstylidae - a new family of abyssal isopods (Crustacea: Asellota) and its phylogenetic implications. Zoological Journal of the Linnean Society 170: 245-296.

Robalino J, Wilkins B, Bracken-Grissom HD, Chan TY, O’Leary M. 2016. The origin of largebodied shrimp that dominate modern global aquaculture. PLoS One 11:e0158840.

Robinson DR, Foulds LR. 1981. Comparison of phylogenetic trees. Mathematical Biosciences 53: 131-147.

Ruta M, Wills MA. 2016. Comparable disparity in the appendicular skeleton across the fish-tetrapod transition, and the morphological gap between fish and tetrapod postcrania. Palaeontology 59: 249-267.

Sánchez-Villagra MR, Williams BA. 1998. Levels of homoplasy in the evolution of the mammalian skeleton. Journal of Mammalian Evolution 5(2): 113-126.

Sansom RS. 2015. Bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data. Systematic Biology 64(2): 256-266.

Sansom RS, Gabbott SE, Purnell MA. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature 463: 797-800.

Sansom RS, Wills MA. 2013. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports 3: 2545.

Sansom RS, Wills MA. 2017. Differences between hard and soft phylogenetic data. Proceedings of the Royal Society B 284: 20172150.

Sansom RS, Wills MA, Williams T. 2017. Dental data perform relatively poorly in reconstructing mammal phylogenies: Morphological patterns evaluated with molecular benchmarks. Systematic Biology 66(5): 813-822.

Schulz JW. 2007. A phylogenetic analysis of the arachnid orders based on morphology. Zoological Journal of the Linnean Society 150: 221-265.

Schnabel KE, Ahyong ST, Maas EW. 2011. Galatheoidea are not monophyletic - Molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily. Molecular Phylogenetics and Evolution 58: 157-168.

Selden PA, Shear WA, Sutton MD. 2008. Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proceedings of the National Academy of Sciences of the USA 105(52): 20781-20785.

Sepkoski JJ. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7(1): 36-53.

Shapiro B, Hofreiter M. 2014. A Paleogenomic Perspective on Evolution and Gene Function: New Insights from Ancient DNA. Science 343(6169): 1236573.

Smith RJ. 2000. Morphology and ontogeny of Cretaceous ostracods with preserved appendages from Brazil. Palaeontology 43(1): 63-98.

Song H, Bucheli SR, 2010. Comparison of phylogenetic signal between male genitalia and nongenital characters in insect systematics. Cladistics 26: 23-35.

Stempien JA. 2005. Brachyuran taphonomy in a modern tidal-flat environment: preservation potential and anatomical bias. Palaios 20: 400-410.

Størmer L. 1939. Studies on trilobite morphology: Part I. The thoracic appendages and their phylogenetic significance. Norsk Geologisk Tidsskrift 19: 143-273

Swofford DL. 2017. PAUP*: Phylogenetic Analysis Using Parsimony, Version 4.0a.154.
Tinn O, Oakley TH. 2008. Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea). Molecular Phylogenetics and Evolution 48: 157-167.

Tshudy D, Chan TY, Sornhannus U. 2007. Morphology based cladistics analysis of Metanephrops: The most diverse extant genus of clawed lobster (Nephropidae). Journal of Crustacean Biology 27: 463-476.

Vereshchaka AL, Lunina AA. 2015. Phylogeny and taxonomy of the enigmatic genus Petalidium (Decapoda, Sergestidae), with biological remarks. Zoological Journal of the Linnean Society 174: 459-472.

Vereshchaka AL, Olesen J, Lunina AA, 2016. A phylogeny-based revision of the family Luciferidae (Crustacea: Decapoda). Zoological Journal of the Linnean Society 178: 15-32.

Verheye ML, Martin P, Backeljau T, d'Udekem d'Acoz C. 2016. DNA analyses reveal abundant homoplasy in taxonomically important morphological characters of Eusiroidea (Crustacea, Amphipoda). Zoologica Scripta 45(3): 300-321.

Wahlberg N, Braby MF, Brower AVZ, de Jong R, Lee M-M, Nylin S, Pierce NE, Sperling FAH, Vila R, Warren AD, Zakharov E. 2005. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society B 272: 1577-1586.

Wagner PJ. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21(3): 248-272

Wagner PJ. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology 23(1): 115-150

Wesener T, VandenSpiegel D. 2009. A first phylogenetic analysis of Giant Pill-Millipedes (Diplopoda: Sphaerotheriida), a new model Gondwanan taxon, with special emphasis on island gigantism. Cladistics, 25: 545-573.

Whatley RC, Siveter DJ, Boomer ID. 1993. Arthropoda (Crustacea: Ostracoda). In: Benton MJ editor. The Fossil Record 2. London, Chapman \& Hall, p. 343-356.

Wheeler WC, Cartwright P, Hayashi CY. 1993. Arthropod phylogeny: A combined approach. Cladistics 9: 1-39.

Wiens JJ. 1998. Does adding characters with missing data increase or decrease phylogenetic accuracy? Systematic Biology 47(4): 625-640.

Wiens JJ. 2003a. Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 52:528-538.

Wiens JJ. 2003b. Incomplete taxa, incomplete characters, and phylogenetic accuracy: Is there a missing data problem? Journal of Vertebrate Paleontology, 23:297-310.

Wiens JJ. 2004. The role of morphological data in phylogeny reconstruction. Systematic Biology 53(4): 653-661.

Wilkinson M. 1995. Coping with abundant missing data in phylogenetic inference using parsimony. Systematic Biology 44(4): 501-514

Williams BA. 2007. Comparing levels of homoplasy in the primate skeleton. Journal of Human Evolution 52(5): 480-489.

Wills MA, Barrett PM, Heathcote JF. 2008. The modified Gap Excess Ratio (GER*) and the stratigraphic congruence of dinosaur phylogenies. Systematic Biology 57(6): 891-904.

Wills MA, Jenner RA, Ní Dhubhghaill CN. 2009. Eumalacostracan evolution: Conflict between three sources of data. Arthropod Systematics and Phylogeny 67: 71-90.

Wilson GDF. 2009. The phylogenetic position of the Isopoda in the Peracarida (Crustacea: Malacostraca). Arthropod Systematics and Phylogeny 67: 159-198.

Wipfler B, Machida R, Müller B, Beutel RG. 2011. On the head morphology of Grylloblattodea (Insecta) and the systematic position of the order, with a new nomenclature for the head muscles of Dicondylia. Systematic Entomology 36: 241-266.

Wood HM, Griswold CE, Gillespie RG. 2012. Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into evolution of the "neck" and predatory behaviours of the superfamily Palpimanoidea. Cladistics 28: 598-626

Wyngaard GA, Hołyńska M, Schulte JA. 2010. Phylogeny of the freshwater copepod Mesocyclops (Crustacea: Cyclopidae) based on combined molecular and morphological data, with notes on biogeography. Molecular Phylogenetics and Evolution 55: 753-764.

Yoshizawa K. 2004. Molecular phylogeny of major lineages of Trichadenotecnum and a review of diagnostic morphological characters (Psocoptera: Psocidae). Systematic Entomology 29: 383394.

Yoshizawa K, Lienhard C. 2010. In search of the sister group of the true lice: A systematic review of booklice and their relatives, with an updated checklist of Liposcelididae (Insecta: Psocodea). Arthropod Systematics \& Phylogeny 68(2): 181-195.

Yoshizawa K, Yao I, Lienhard C. 2016. Molecular phylogeny reveals genital convergences and reversals in the barklouse genus Trichadenotecnum (Insecta: Psocodea: 'Psocoptera': Psocidae). Molecular Phylogenetics and Evolution 94: 358-364

Author, Year	Clade	Taxa	$\begin{aligned} & \underline{\text { Limb }} \\ & \underline{\text { chrs }} \end{aligned}$	$\frac{\text { Body }}{\text { chrs }}$	$\begin{aligned} & \text { \% missing } \\ & \underline{\underline{\text { limb }}} \end{aligned}$	$\frac{\% \text { missing }}{\text { body }}$	$\underline{I R D}_{\underline{\text { RF }}}$	$\underline{\text { IRD }}_{\underline{\text { D }}}$	ILD	$\frac{\underline{\text { CI }}}{\underline{\text { limb }}}$	$\frac{\text { CI }}{\text { body }}$	$\underline{\underline{\text { RI }}}$	$\frac{\text { RI }}{\underline{\text { body }}}$
Chelicerata													
Bochkov et al., 2010	Acari: Psoroptidae: Makialginae	11	27	23	1.01	5.93	0.084	0.142	0.751	0.70	0.79	0.77	0.81
Botero- Trujillo et al., 2017	Solifugae: Mummuciidae	15	14	6	2.38	9.33	0.072	0.152	1.000	1.00	0.90	1.00	0.75
Klompen et al., 2013	Acari: Heterozerconidae	10	23	6	3.04	1.67	0.56	0.81	0.202	0.60	0.75	0.58	0.80
$\begin{aligned} & \text { Kuntner, } \\ & 2005 \end{aligned}$	Araneae: Nephilidae: Nephilinae	28	69	88	13.35	13.46	0.182	0.019	0.002	0.52	0.42	0.72	0.73
Mendes, 2011	Opiliones: Laniatores: Gonyleptidae	21	46	56	11.49	13.10	0.029	0.499	0.061	0.56	0.44	0.71	0.63
Prendini \& Esposito, 2010	Scorpiones: Buthidae	29	28	38	0.37	1.72	0.182	0.020	0.097	0.55	0.48	0.81	0.77
Schulz, 2007	Arachnida	44	77	86	7.76	10.31	0.72	0.86	0.014	0.61	0.56	0.88	0.84
Wood et al., 2012	Araneae: Archaeidae	37	75	51	28.43	21.67	0.75	0.56	0.010	0.48	0.48	0.78	0.79
Crustacea													
George, 2017	Copepoda: Laophontodinae	9	32	18	4.17	0.62	0.022	0.019	0.033	0.49	0.44	0.64	0.66
Jenner et al., 2009	Eumalacostraca	24	99	63	9.60	19.44	0.016	0.159	0.008	0.49	0.44	0.64	0.66
McLaughlin et al., 2007	Anomura: Paguroidea	20	34	45	1.18	0.22	0.229	0.387	0.507	0.56	0.47	0.66	0.59
Olesen, 2009	Branchiopoda	15	44	28	30.45	29.76	0.631	0.459	0.122	0.84	0.85	0.75	0.84
Richter \& Scholz, 2001	Malacostraca	19	34	41	10.22	22.21	0.098	0.461	0.161	0.59	0.58	0.68	0.65
Riehl et al., 2014	Isopoda: Asellota: Urstylidae	28	283	124	15.57	26.64	0.294	0.950	0.002	0.52	0.56	0.76	0.70

Vereshchaka et al., 2016	Decapoda: Luciferidae	29	119	48	33.20	24.31	0.390	0.330	0.213	0.72	0.74	0.85	0.91
Vereshchaka \& Lunina, 2015	Decapoda: Sergestidae	23	100	48	24.40	19.02	0.51	0.22	0.223	0.72	0.78	0.72	0.83
	Hexapoda												
 Paterson, 2004	Phthiraptera: Philopteridae	16	14	41	1.79	7.47	0.59	0.29	0.624	0.85	0.58	0.94	0.74
Blagoderov et al., 2009	Diptera: Sciaroidea: Lygistorrhinidae	18	25	35	10.47	7.14	0.81	0.920	0.121	0.55	0.45	0.67	0.60
Calor \& Holzenthal, 2008	Trichoptera: Leptoceridae	11	10	21	9.09	12.99	0.099	0.269	0.411	0.86	0.74	0.93	0.82
Chamorro \& Konstantinov $, 2011$	Coleoptera: Chrysomelidae: Lamprosomatinae	13	5	21	12.30	3.66	0.042	0.011	0.103	1.00	0.81	1.00	0.85
Clarke, 2011	Coleoptera: Staphylinidae	24	26	104	2.16	1.64	0.32	0.190	0.616	0.68	0.55	0.86	0.77
Del Rio et al., 2012	Coleoptera: Curculionidae: Entiminae	11	9	40	0.00	5.23	0.45	0.35	0.691	0.68	0.58	0.58	0.55
Di Guilio et al., 2003	Coleoptera: Carabidae	9	26	30	0.85	16.30	0.46	0.57	0.703	0.76	0.75	0.76	0.77
Gerstmeier \& Eberle, 2011	Coleoptera: Cleridae: Clerinae	12	10	13	2.50	8.33	0.180	0.820	0.062	0.61	0.50	0.72	0.68
Grebennikov \& Newton, 2009	Coleoptera: Scydmaenidae	38	106	105	3.80	5.66	0.57	0.51	0.042	0.34	0.30	0.70	0.66
Grebennikov, 2010	Coleoptera: Curculionoidea	16	10	13	6.25	7.21	0.220	0.210	0.014	0.84	0.96	0.82	0.94
$\begin{aligned} & \text { Liu et al., } \\ & 2012 \end{aligned}$	Megaloptera: Chauliodinae	24	17	24	18.38	6.08	0.450	0.044	0.921	0.85	0.54	0.95	0.81
Michel-Salzat	Hymenoptera:	23	19	18	4.58	0.00	0.089	0.056	0.191	0.79	0.76	0.95	0.95

et al., 2004	Apinae: Euglossini												
Packer et al., 2017	Hymenoptera: Megachilidae	27	87	127	1.53	6.27	0.23	0.79	0.362	0.41	0.36	0.68	0.65
Wipfler et al., 2010	Grylloblattodea	18	49	55	6.24	8.83	0.33	0.61	0.924	0.64	0.67	0.67	0.72
Yoshizawa, 2004	Psocoptera: Psocidae	14	11	22	7.79	2.92	0.27	0.26	0.390	0.75	0.81	0.84	0.90
Yoshizawa \& Leinhard, 2010	Psocoptera: Liposcelididae	14	9	16	0.00	8.93	0.32	0.32	0.845	0.71	0.93	0.81	0.83
	Myriapoda												
Blanke \& Wesener, 2014	Diplopoda	16	23	33	2.99	5.11	0.015	0.027	0.094	0.87	0.74	0.94	0.86
Edgecombe \& Barrow, 2007	Chilopoda: Scutigeromorpha	21	41	14	10.57	17.35	0.53	0.99	0.407	0.91	0.79	0.97	0.92
Koch et al., 2009	Chilopoda: Scolopendromorpha	30	46	34	2.54	19.31	0.030	0.520	0.089	0.60	0.60	0.85	0.86
Pena-Barbosa et al., 2009	Diplopoda: Polydesmida: Chelodesmidae	15	31	16	17.20	8.33	0.457	0.904	0.689	0.61	0.62	0.76	0.80
Pitz \& Sierwald, 2010	Diplopoda: Helminthomorpha	33	34	20	7.75	0.00	0.98	0.24	0.800	0.46	0.63	0.74	0.78
Wesener \& VandenSpiegel, 2009	Diplopoda: Sphaerotheriida	38	48	41	1.15	1.16	0.110	0.240	0.053	0.55	0.60	0.83	0.83

Table 1 - Summary of the 38 published morphological datasets across all arthropod groups utilised in this study, and the results of all tests. IRD test results based upon 999 randomisations (where quoted to 3 decimal places) or 99 randomisations (where quoted to 2 decimal places, and were $\mathrm{p}<0.20$).

$\begin{aligned} & \text { Morphology } \\ & \text { Author, Year } \end{aligned}$	Molecular Author, Year	Clade	Taxa	$\frac{\text { Limb }}{\underline{\text { chrs }}}$	$\begin{aligned} & \text { Body } \\ & \underline{\text { chrs }} \end{aligned}$	$\frac{\text { CI }}{\underline{\operatorname{limb}}}$	$\frac{\text { CI }}{\underline{\text { body }}}$	$\frac{\underline{\text { RI }}}{\underline{\underline{i m b}}}$	$\frac{\text { RI }}{\underline{\text { body }}}$
		Crustacea							
Admowicz \& Purvis 2006	Meland \& Willassen 2004	Pseudomma	18	26	5	0.31	0.28	0.30	0.23
Bradford-Grieve et al., 2010.	Blanco-Bercial et al., 2011	Calanoida	29	93	7	0.29	0.53	0.58	0.75
Bradford-Grieve et al., 2017	Bradford-Grieve et al., 2017	Megacalanidae	12	37	5	0.29	0.53	0.58	0.75
Chang et al. 2016	Chang et al. 2016	Nephropidae	13	23	28	0.62	0.65	0.75	0.75
Dreyer \& Wägele 2001	 Wägele 2001	Bopyridae	21	37	13	0.50	0.65	0.66	0.73
HermosoSalazar et al., 2008	Hultgren et al., 2014	Synalpheus	13	22	12	0.45	0.44	0.40	0.17
Karasawa et al., 2013	BrackenGrissom et al., 2014	Pleocyemata	19	22	43	0.87	0.51	0.95	0.72
Lörz \& Brandt	Lórz \& Held 2004	Epimeriidae	16	41	49	0.45	0.46	0.67	0.54
Oakley et al., 2012	Tinn \& Oakley 2008	Ostracoda	34	22	12	0.77	0.75	0.92	0.93
Robalino et al., 2016	Ma et al., 2009	Penaeidae	37	103	94	0.34	0.27	0.63	0.54
Schnabel et al., 2011	$\begin{aligned} & \text { Schnabel et al., } \\ & 2011 \end{aligned}$	Anomura	64	58	61	0.32	0.35	0.76	0.76
Tshudy et al., 2007	$\begin{aligned} & \text { Chan et al., } \\ & 2009 \end{aligned}$	Metanephrops	10	8	14	0.47	0.54	0.44	0.64
Wills et al., 2009	$\begin{aligned} & \text { Jenner et al., } \\ & 2009 \end{aligned}$	Eumalacostraca	14	59	54	0.35	0.39	0.23	0.32
Wilson 2009	Wilson 2009	Peracarida	75	124	55	0.29	0.27	0.69	0.68
Wyngaard et al., 2010	Wyngaard et al., 2010	Mesocyclops	15	41	9	0.62	0.40	0.67	0.40

Table 2 - Summary of the 15 published crustacean morphological and molecular datasets used for molecular consistency tests

Figure 1 - Calculation of p values associated with the Incongruence Length Difference (ILD) test (Mikevich \& Farris, 1981; Farris et al., 1995a; Farris et al., 1995b) and the Incongruence Relationship Difference (IRD) test (Ruta \& Wills 2016; Mounce et al., 2016) using the Robinson Foulds (RF) distance ($\mathrm{IRD}_{\mathrm{RF}}$). A. A hypothetical data set is partitioned into 'limb' characters (left hand) and 'nonlimb' or body characters (right hand). For illustrative purposes, limb and non-limb character numbers are both contiguous, and both partitions are the same size. This need not be the case. Each matrix partition is then analysed independently using PAUP*, and a single most parsimonious tree (MPT) is inferred from each. The lengths of these are summed (marked ${ }^{*}$). The incongruence length difference (ILD) is not shown here, but would be equivalent to the difference between this summed length and the length of the MPT(s) resulting from the analysis of both partitions simultaneously). The number of nodes unique to one or both trees is also tallied as the Robinson Foulds (RF) distance (\dagger). B. Characters are partitioned at random to yield null distributions of sums of lengths and RF distances. Random partitions contain the same number of characters as the original partitions, and the procedure is repeated a large number of times (999 in this example). C. The randomised partitions in ' B ' yield empirical distributions of sums of tree lengths (left hand histogram, ILD) and RF distances (right hand histogram, $\mathrm{IRD}_{\mathrm{RF}}$). The ILD p -value is calculated as the fraction of the random partitions (plus the original partition) for which the sum of MPT tree lengths is less than or equal to that for the original partition $(p=126 / 1000=0.126)$. Random partitions with sums of lengths less than the original are those in which the internal consistency of each partition ('leg' or 'body') is greater than that in the original. The $\mathrm{IRD}_{\mathrm{RF}} \mathrm{p}$-value is calculated as the fraction of the random partitions (plus the original partition) for which the sum of MPT tree lengths is greater than or equal to that for the original partition ($\mathrm{p}=384 / 1000=0.384$).

Figure 2 - Tanglegram of the 50% majority rule consensus (plus compatible groupings) trees inferred from the "limbs" (left) and "body" (right) partitions of the eumalacostracan data of Jenner et al. (2009) and Wills et al. (2009). The IRD $_{\text {RF }}$ test revealed the partitions to be significantly incongruent $(\mathrm{p}=0.016)$. Nodes unique to each tree are marked with black dots: only two nodes are shared by the trees inferred from the "limb" and "body" partitions. Majority rule trees are figured for illustrative
purposes. We advocate measures based upon the mean distance between nearest neighbours in the two partitions.

Figure 3 - Tanglegram of majority consensus trees implied by a "limbs" (left) and "body" (right) partition of the diplopod data of Blanke \& Wesener (2014), shown to be significantly incongruent by $\operatorname{IRD}_{\mathrm{RF}}(\mathrm{p}=0.015)$ and $\operatorname{IRD}_{\mathrm{D} 1}(\mathrm{p}=0.025)$. Unique nodes in each phylogeny are indicated by black dots. In this case, the tree inferred from the "limbs" partition contains all of the same nodes as the strict consensus tree derived from the entire data set by Blanke \& Wesener (2014).

Figure 4 - A.B. Box and whisker plots of the distribution of ensemble CI (A) and RI (B) values obtained for limb and non-limb partitions of 38 datasets across all arthropod groups (summarised in Table 1). There were no significant differences in CI or RI between partitions overall, or in any individual taxonomic grouping. C.D. Boxplots comparing residual $\mathrm{CI}(\mathrm{C})$ and $\mathrm{RI}(\mathrm{D})$ values for the same sample of datasets, modelling out the effects of data matrix dimensions (number of characters and number of taxa). There were no significant differences between the partitions, either overall or in any individual taxonomic grouping.

Figure 5 - Box and whisker plots of the distribution of ensemble CI and RI (B) values obtained for limb and non-limb partitions of 15 morphological datasets of crustaceans. Characters have been optimised onto corresponding but independently derived molecular trees for the same leaf set (summarised in Table 2). There were no significant differences in CI or RI between partitions.

Figure 1.

Figure 2.

Figure 3.

Figure 4

Figure 5

