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35 Abstract

36 Notwithstanding the rapidly increasing sampling density of molecular sequence data, morphological 

37 characters still make an important contribution to our understanding of the evolutionary relationships 

38 of arthropod groups. In many clades, characters relating to the number and morphological 

39 specialisation of appendages are ascribed particular phylogenetic significance, and may be 

40 preferentially sampled. However, previous studies have shown that partitions of morphological 

41 character matrices often imply significantly different phylogenies. Here, we ask whether a similar 

42 incongruence is observed in the appendage and non-appendage characters of arthropods. We apply 

43 tree length (incongruence length difference: ILD) and tree distance (incongruence relationship 

44 difference: IRD) tests to these partitions in an empirical sample of 52 published neontological data 

45 sets for arthropods. We find significant incongruence about one time in five: more often than 

46 expected, but markedly less often than in previous partition studies. We also find similar levels of 

47 homoplasy within limb and non-limb characters, both in terms of internal consistency and consistency 

48 relative to molecular trees. Taken together, these findings imply that sampled limb and non-limb 

49 characters are of similar phylogenetic utility and quality, and that a total evidence approach to their 

50 analysis is preferable. 

51

52



53 Introduction

54 Despite the increasing ease and economy of obtaining ever larger volumes of molecular phylogenetic 

55 data – coupled with progressively more sophisticated models for their analysis – morphological 

56 characters can still contribute significantly to resolving the phylogeny of many clades (Wiens, 2004; 

57 O’Leary & Gatesy, 2008; Gainett et al., 2014; also see discussion in Lopardo & Hormiga, 2015). 

58 Morphological and molecular data are often reciprocally illuminating (e.g. Houde, 1994; Nicolalde-

59 Morejón et al., 2009), and can reveal hidden support when combined in a single total evidence 

60 analysis (Kluge, 1989; Gatesy et al., 1999; Gatesy & Arctander, 2000; Wahlberg et al., 2005; 

61 Damgaard, 2008; O’Leary & Gatesy, 2008; Padial et al., 2010; Mounce et al., 2016). For fossil 

62 species, morphology is typically the only source of phylogenetic data, despite impressive strides in 

63 obtaining sub-fossil DNA (e.g. Dabney et al., 2013; reviewed in Shapiro & Hofreiter, 2014; Orlando 

64 et al., 2015) and the value of stratigraphic time series in a few special cases (Wills et al., 2008; Wills 

65 et al. 2009; O’Connor & Wills, 2016). Unlike molecular sequence data, there are no widely 

66 implemented standard frameworks for coding and archiving morphological data (but see O’Leary & 

67 Kaufman, 2011; Davies et al., 2017). Partly as a result of this, there is little systematic knowledge 

68 concerning rates of evolution and levels of homoplasy in morphological characters from different 

69 anatomical regions in different clades. Similarly, there is no consensus on the types of morphological 

70 characters that are likely to be informative for cladogeneses of different geological ages. Despite this, 

71 trees are often inferred from relatively restricted morphological character sets (Sanchez-Villagra & 

72 Williams, 1998; Arratia, 2009; Song & Bucheli, 2010; Mounce et al., 2016) (a practice that may be 

73 analogous to early molecular phylogenies that used small numbers of loci that may not always have 

74 evolved at appropriate rates; Bateman, 1999). For fossil taxa, this may reflect various preservation 

75 biases (Sansom et al., 2010, 2017; Sansom & Wills, 2013; Pattinson et al., 2014). For example, 

76 molluscs typically lack all soft-part data (Castelin et al., 2017), while ostracods are almost exclusively 

77 known from their sculpted, bivalved carapaces (Briggs et al., 1993; Whatley et al., 1993). 

78

79 Character sampling in arthropods



80 Biased character sampling may be a particular problem in arthropods, where there is growing 

81 evidence that overall levels of homoplasy are greater than in many other higher taxa (Engel, 2015). 

82 Examples include the genital morphology of acarine mites (Klimov et al., 2017) and insects (Bennik 

83 et al., 2016; Yoshizawa et al., 2016), the wing morphology of lepidopterans (Finkbeiner et al., 2017), 

84 the limbs of amphipod crustaceans (Verheye et al., 2016), and the overall morphology of cave-

85 dwelling Diplopoda (Liu et al., 2017) and Collembola (Christiansen, 1960). Moreover, historically, 

86 even the deep phylogeny of arthropods has been addressed with restricted character sets, and with a 

87 striking diversity of results (e.g. Wheeler et al., 1993; Giribet et al., 2001; Boore et al., 2005; Regier 

88 et al., 2005). 

89 Characters pertaining to the number and morphological adaptations of limbs are particularly important 

90 for arthropod systematics and phylogenetics (Størmer, 1939; Schulz, 2007; Gainett et al., 2014). 

91 Unfortunately, such characters are often poorly recorded in fossil arthropods, and several major 

92 groups – notably trilobites (Størmer, 1939; Hughes, 2003) and ostracods (Smith, 2000) – preserve 

93 limbs only under the most exceptional circumstances. Here, we address two questions in a sample of 

94 38 arthropod data matrices comprising predominantly extant taxa, and coding a broad sample of 

95 characters from both the limbs/mouthparts/antennae (appendages) and the rest of the body. Firstly we 

96 ask whether levels of homoplasy differ between appendages on one hand, and body and carapace 

97 characters on the other, such that the quality of data in either partition might be deemed superior (see 

98 Pettigrew, 1991; Sanchez-Villagra & Williams, 1998; Williams, 2007; Song & bucheli, 2010; Parker, 

99 2016). Secondly we ask whether the hierarchical signals conveyed by appendage and body characters 

100 imply different phylogenies (see Mounce et al. 2016; Sansom & Wills 2017; Sansom et al. 2017). 

101

102

103 Why examine morphological character partitions in arthropods?

104 The rationale for this partitioning is twofold. Firstly, suites of characters can evolve in functionally or 

105 developmentally integrated modules (Clarke & Middleton, 2008; Klingenberg, 2008; Lü et al., 2010). 

106 These can be subject to different selection pressures and evolve at different speeds (Maynard Smith, 

107 1993; Lü et al., 2010; Parker, 2016), thereby exhausting their character spaces at different rates 



108 (Wagner, 1995,1997; Oyston et al., 2015; Oyston et al., 2016) and containing different levels of 

109 homoplasy as a result. For example, Sánchez-Villagra & Williams (1998) demonstrated that strong 

110 functional selection for feeding and locomotion increases the evolutionary lability of dental and 

111 postcranial characters relative to cranial characters in the skeletons of mammals, while Sansom et al. 

112 (2017) showed that mammalian dental data exhibit relatively poor congruence with independent 

113 molecular phylogenies. Similarly, the mouthparts of insects (Angelini & Kaufman, 2005) and other 

114 arthropods (Řezáč et al., 2008; Baiocco et al., 2017) are highly labile and are extensively modified in 

115 lineage specific ways, reflecting the trophic resources that they exploit. The same is true of other 

116 appendages, which are highly conserved in their underlying structure, but which possess a great 

117 diversity of form and function across taxa of all ranks (Angelini & Kaufman, 2005). Relatively high 

118 levels of homoplasy can also be found in arthropod body characters. For example, the classification of 

119 ostracod crustaceans is heavily contingent on characters of the carapace (Tinn & Oakley, 2008), 

120 despite marked and misleading convergence in form. Characters of the copulatory limbs, by contrast, 

121 are much more conserved and less homoplastic (Park et al., 2000; Cohen & Morin, 2003). 

122 Secondly, much of the arthropod (particularly insect) fossil record is concentrated within a relatively 

123 small number of Konservat-Lägerstatten (Sepkoski, 1981; Martinez-Delclòs et al., 2004; Baalbergen 

124 & Donovan, 2013). Outside of these exceptional localities, there are usually conspicuous biases in the 

125 suites of characters or anatomical regions preserved. For example, Baalbergen & Donovan (2013) 

126 found only the chelae of decapod crustaceans preserved (despite unusually good preservation of other 

127 arthropod groups at the same site), while Stempien (2005) reported that the chelipeds and carapaces of 

128 Brachyura were more likely to fossilize than their walking legs. Similarly, tough, sclerotized 

129 structures such as the elytrae (Martinez-Delclòs et al., 2004; Baalbergen & Donovan, 2013) of insects 

130 are more frequently preserved than many other body parts. The calcite carapaces of ostracods 

131 frequently preserve highly homoplastic and functionally constrained details of sculpture and 

132 ornamentation, whereas limbs are only rarely fossilised (Smith, 2000). Among fossil Arachnomorpha, 

133 the taxonomically diagnostic chelicerae are rarely reserved, obfuscating the systematic placement of 

134 many specimens (Dunlop, 1997). Hence, body characters such as differentiation of the opisthosoma 

135 and segmentation of the post-abdomen are more useful in fossil chelicerate systematics (Dunlop, 



136 1997). Such anatomical biases on character sampling could mislead attempts to infer the relationships 

137 of fossil arthropods, particularly if homoplasy is concentrated within the more readily preserved 

138 characters.

139

140 Materials & Methods

141 Datasets

142 The character matrices utilised in this study were obtained from peer-reviewed papers published 

143 between 2000 and 2017. We sought to sample all major living arthropod groups (Chelicerata, 

144 Pancrustacea (Crustacea and Hexapoda), Myriapoda), including matrices of varying dimensions and 

145 clades of both lower and higher ranks (genera through classes). Wherever possible, more recent and 

146 more inclusive matrices were used. We utilised Graeme Lloyd’s online compilation of matrices 

147 (Lloyd,) and searches of Web of Science using higher taxon names plus the root keywords "phylog* + 

148 morphol*". The resulting sample of 52 matrices contained representatives of 21 orders in 7 classes 

149 (see Tables 1, 2). 38 matrices were collected for the incongruence tests and internal consistency tests 

150 and 15 crustacean matrices were collected for the molecular consistency tests (see below).

151

152 Definition of character partitions

153 The “appendage” character partition included those pertaining to the legs and leg-derived appendages. 

154 This encompassed all podomeres of the walking legs and modified legs such as brooding limbs (e.g., 

155 Jenner et al., 2009) and the spinnerets of spiders (Selden et al., 2008). Also included were characters 

156 pertaining to the mouthparts, including mandibles, maxillae, and the labium (Angelini & Kaufman, 

157 2005), as well as the palps, chelicerae and glossae. The labrum, hypopharynx and epipharynx were 

158 also included in the “appendage” partition as they are closely functionally associated with the other 

159 mouthparts and in some groups form a feeding apparatus for sucking or piercing in conjunction with 

160 these other elements (Angelini & Kaufman, 2005). As such, we suspect that they are subject to similar 

161 selective pressures (Klingenberg, 2008). Antennae were also included (Angelini & Kaufman, 2005), 

162 as were genital structures derived from legs or fused coxae such as the hypandria. Characters 



163 pertaining to setation or other elaborations of leg, mouthpart or appendage podomeres were also 

164 included, as were characters referring to limb musculature. 

165 The “body” character partition was defined, by default, as all those characters not encompassed 

166 above. This included the wings and elytrae of insects, since we consider these to be derived from the 

167 carapace of the thorax rather than from pre-existing limb structures (Clark-Hatchel & Tomoyasu, 

168 2016). The “body” partition also included all characters encoding genital structures that were not 

169 derived from appendages, such as those pertaining to the vulva, genital pore, spermatheca and 

170 ovipositor. Characters pertaining to elaborations and ornamentations of body segments were included 

171 with the “body” partition, as where characters of the eyes and internal organs. Behavioural, molecular, 

172 developmental and sperm characters were removed from each matrix (these accounted for just 3% of 

173 those analysed). 

174

175 Missing and inapplicable codes

176 Poorly known taxa (or those that were otherwise scored for only a small number of characters) can be 

177 highly mobile in sets of optimal trees; particularly those inferred using maximum parsimony. This 

178 can, in turn, result in large numbers of MPTs, prohibitively long search times and poor resolution of 

179 consensus trees (Wilkinson, 1995; Mounce et al., 2016). Where data matrices were found to be 

180 subject to these issues empirically, we edited them (using Mesquite Version 3.40: Maddison & 

181 Maddison 2018) by removing taxa with more than 75% of characters scored as missing (“?”) or 

182 inapplicable (“-”) in either partition (50% for the data set of Schulz, 2007). We also removed taxa 

183 found to be taxonomically equivalent to others (sensu Wilkinson, 1995). Any characters rendered 

184 uninformative or invariant by this process were also deleted. A mean of just 0.47 taxa (~2.2%) and 

185 3.34 characters (~3.6%) were removed from each dataset in this manner (for a list of the precise taxa 

186 and characters deleted, see Appendix 1). 

187 We did not set out to analyse matrices of fossils, since our intention was to compare signals in limb 

188 and non-limb characters. Fossil taxa often tend to contain larger proportions of missing codings 

189 (Wilkinson, 1995; Wiens, 1998; Mounce et al., 2016), and these missing codes tend to be 

190 concentrated in characters pertaining to regions of anatomy with lower preservation potential. In 



191 particular, fossils tend to lack data for limbs and other appendages. However, fossils are often 

192 informative in phylogenetic analyses of arthropods (Legg et al., 2013) and other taxa (Cobbett et al. 

193 2007), so fossil taxa within matrices of predominantly extant taxa (e.g. Schulz, 2007; Olesen, 2009; 

194 Liu et al., 2012) were not discounted a priori, but only as a consequence of obfuscating analyses as 

195 described above.

196

197 Measuring homoplasy

198 We took two approaches to measuring homoplasy: internal consistency of morphological characters 

199 relative to the most parsimonious trees derived from those same morphological characters, and 

200 molecular consistency of morphological characters when optimised onto independent molecular trees 

201 (e.g. Sansom et al. 2017, Sansom and Wills 2017). With both approaches, we used the ensemble 

202 Consistency Index (CI; Kluge & Farris, 1969) and ensemble Retention Index (RI; Farris, 1989). CI is 

203 a commonly used and well-characterised index of homoplasy. However, it is subject to known biases, 

204 notably a correlation with the number of characters and taxa in the dataset (Archie, 1989; Mounce et 

205 al. 2016). For the internal CI, we removed these biases empirically by comparing the residuals from 

206 regression analyses of CI on both matrix dimensions. For comparisons of the CI of morphological 

207 character partitions optimised into molecular trees, however, there are no such biases because the 

208 (molecular) trees are not inferred from the (morphological) data. For molecular consistency tests, we 

209 sought independent molecular trees (Sansom and Wills 2017, Sansom et al. 2017). Taxa were pruned 

210 (typically from the morphological data set) such that both morphological and molecular trees had the 

211 same residual leaf set. This had the potential to render some morphological characters uninformative, 

212 and these were subsequently removed from the matrix. Internal consistency measures were derived 

213 using PAUP* 4.0a.154 (Swofford, 2017) whilst molecular consistency measures were derived using 

214 TNT (Goloboff, 2008) and Mesquite (Maddison & Maddison, 2018). 

215

216 Statistical tests for incongruence

217 The Incongruence Length Difference (ILD) test (Mikevich & Farris, 1981; Farris et al., 1995a; Farris 

218 et al., 1995b) is a widely implemented partition homogeneity test based upon the difference in most 



219 parsimonious tree (MPT) length for a matrix when analysed as a whole, and the sum of MPT lengths 

220 for the partitions of the matrix analysed in isolation (MPTs). More formally, the ILD for a bi-

221 partitioned matrix is given by LAB – (LA+ LB)/LAB, where LAB is the optimal tree length (in steps) from 

222 the analysis of the entire matrix (the total evidence analysis), and LA and LB are the optimal tree 

223 lengths for partitions A and B analyzed independently. This ILD is compared with a distribution of 

224 ILD values (here, 999) for random bipartitions of the matrix in the same proportions as the original, 

225 and a p value is derived from the fraction of these as large or larger than the original. The ILD test has 

226 been criticized on philosophical grounds, and because it has a high Type I error rate (Dolphin et al., 

227 2000; Barker & Lutzoni, 2002; Ramirez, 2006; Sansom et al. 2017). However, it remains very widely 

228 applied (Mounce et al., 2016), and is used here as a measure of matrix partition incongruence rather 

229 than as a criterion for combining those partitions (Figure 1).

230 In addition to the ILD test, we also implemented the incongruence relationship difference 

231 (IRD) test of Ruta & Wills (2016) and Mounce et al. (2016). This is analogous to the ILD test in that a 

232 measure of incongruence for the original data partition is compared with a distribution of 

233 incongruence values for a large number of random partitions. However, whereas for the ILD 

234 incongruence is measured in terms of additional tree length, a tree-to-tree distance metric is used for 

235 the IRD. Many such metrics are available, but here we use two tests based upon the symmetrical-

236 difference (RF) distance (IRDRF; Robinson & Foulds, 1981) and maximum agreement subtree 

237 (MAST) distance (IRDD1; Goddard et al., 1994; de Vienne et al., 2007). We acknowledge that other 

238 metrics may have more desirable properties, but the RF distance in particular well characterised and 

239 widely applied. It is unusual for a single most parsimonious tree (MPT) to result from a parsimony 

240 search, and we therefore followed Mounce et al. (2016) in calculating the mean nearest neighbour 

241 distance (NND) between each tree resulting from one partition and the most similar tree in the other 

242 partition. In addition, we calculated the distances between strict, semi-strict and 50% majority rule 

243 (plus compatible groupings) trees for the two partitions, although we caution that these offer poor or 

244 positively misleading summaries of the differences between sets of trees (Mounce et al. 2016). We 

245 illustrate this latter approach for the eumalacostracan data of Jenner et al. (2009) and Wills et al. 

246 (2009) (Figure 2), and for the myriapod data of Blanke and Wesener (2014) (Figure 3). IRD tests were 



247 initially based upon 99 random partitions of the data (c.f .999 for the computationally much faster 

248 ILD). However, in those cases where p ≤ 0.10, we re-ran the test for that data set using 499 random 

249 partitions (Figure 1). 

250 All parsimony searches were implemented using 25 random additions of taxa, followed by 

251 tree bisection and reconnection branch swapping, and retaining 10 trees at each step. To expedite the 

252 searches, we limited the number of trees stored in memory to 100,000, and for the IRD tests we 

253 calculated nearest neighbour tree-to-tree distances based upon no more than 1,000 trees from each 

254 partition (2,000 trees in total and 1,999,000 tree-to-tree distances calculated for each metric in order to 

255 find the minima). Consensus trees were calculated from all MPTs, up to the 100,000 buffer. We also 

256 condensed the resulting most parsimonious trees by collapsing branches with a minimum length of 

257 zero (Goloboff’s ‘amb-‘) and removing all but one of any consequently identical trees. All analyses 

258 were implemented in PAUP* 4.0a.154 for Macintosh (Swofford, 2017), using scripts (by MAW) that 

259 produced batch files for PAUP* and summarised the log files that it produced (see Supplementary 

260 Materials). 

261

262 Results

263 There is no difference in levels of homoplasy (CI) or retained synapomoprhy (RI) for limb and 

264 body characters

265 There were no significant differences in mean levels of internal homoplasy (as measured by the 

266 ensemble Consistency Index, CI) between limb and body partitions, either for the 38 datasets in 

267 combination, or for subphyla considered in isolation (p > 0.05 in all cases) (Fig. 5). To account for the 

268 known biases in CI, residuals from regression analyses of internal CI on both the log of the number of 

269 characters and the log of the number of taxa were also compared across partitions. The results differed 

270 little from those for raw CI (Figure 4), and no significant differences were detected. A similar set of 

271 analyses for retained synapomorphy (as measured by the Retention Index: RI) also revealed no 

272 differences between limb and body partitions, either overall or within subphyla. Our findings were 

273 similar for the 15 crustacean data sets for which we had independent molecular trees: there were no 



274 differences between the CI or the RI of limb versus body character partitions when optimised onto 

275 those molecular trees (p<0.05 for paired t tests) (Fig. 5). 

276

277 Limb and body partitions imply significantly different trees one time in five

278 Both the ILD test and the IRDRF test for nearest neighbours reported significant (p<0.05) 

279 incongruence between the trees inferred from limb and body character partitions in about one in five 

280 cases (8/38 and 7/38 respectively). The IRDD1 test for nearest neighbours reported significant (p<0.05) 

281 incongruence slightly less often (5/38). We note that the different tests assess different aspects of 

282 incongruence, and the p values for ILD, IRDRF and IRDD1 do not precisely coincide. Hence, a 

283 significant p-value (p<0.05) is obtained for both IRDRF and IRDD1 in 3 datasets, and for all three tests 

284 (including the ILD) in only 2 cases. Rates of significant incongruence are summarised in Table 2.  For 

285 the ILD test, our finding that 8 from 38 data sets were incongruent with p≤0.05 means that 

286 incongruence is significantly more common than expected by chance (two would be anticipated: 

287 binomial test p=0.0005). The IRDRF test also detected significant incongruence significantly more 

288 often than expected (p = 0.0025). Whilst reporting significant incongruence at the lowest rate, the 

289 IRDD1 test also detected a significantly higher rate of incongruence than would be expected (p = 

290 0.03973, binomial test). 

291

292 The outcome of the ILD and IRD tests is not significantly influenced by data set parameters or 

293 by taxonomic group 

294 We sought to determine whether various data set dimensions and imbalances might determine the 

295 outcome of our incongruence tests (p≤ 0.05 or p>0.05). In addition to data matrix dimensions, 

296 previous studies (e.g., Mounce et al., 2016; Sansom et al. 2013, 2017.) have accounted for (or 

297 variously controlled) amounts of missing data within partitions or regions. In general, we found that 

298 there was no significant difference in the median percentage of cells scored as missing/inapplicable 

299 for limb and body partitions across the entire data set (Mann-Whitney U = 36.9636, p = 0.4242). 

300 Neither were there significant differences in the mean or variances of percentages of 

301 missing/inapplicable codings for limb and body partitions within individual sub-phyla: myriapods 



302 (paired t = -0.3868, p = 0.7148), crustaceans (paired t = -0.5852, p = 0.5768), chelicerates (paired t = -

303 0.7982, p = 0.4510), hexapods (paired t = -0.4896, p = 0.6315) (Fig. 6). For each data set, however, 

304 we also took account of the difference in percentage of missing data between partitions (this was a 

305 marginally significant factor in the study of Mounce et al., 2016). However, a logistic regression 

306 model (see Appendix 2) showed that the outcome of the ILD was not significantly influenced by the 

307 log of the percentage of missing data across both partitions (p=0.6127), the difference in the 

308 percentage of missing data between partitions (p=0.1551), the difference between partition sizes 

309 (p=0.1564), the log of the number of taxa (p=0.0606), log of the number of characters (p=0.0667) or 

310 the interaction between these last two variables (p=0.0619). The model also showed that higher 

311 taxonomic group (i.e., Chelicerata, Crustacea, Hexapoda, Myriapoda) had no effect on ILD outcome. 

312 Similarly, a log-likelihood ratio test (G-test) revealed no difference in the frequencies of significant or 

313 non-significant outcomes across these higher taxa (G = 4.0863, p = 0.2523). We found similar results 

314 from logistic modelling of the outcome of the IRDRF and IRDD1 tests, with no significant effect for 

315 overall percentage of missing data (p=0.511 and p=0.396), the difference in percentage of missing 

316 data between partitions (p=0.330 and p=0.987), the log of the number of taxa (p=0.838 and p=0.379), 

317 log of the number of characters (p=0.692 and p=0.417), or the interaction between characters and taxa 

318 (p=0.727 and p=0.381). Higher taxonomic group also had no effect for either test, and G-tests also 

319 revealed no difference in the frequency of significant outcomes for the four groups (IRDRF, G = 

320 2.7948, p = 0.4244: IRDD1, G = 1.4049, p = 0.7044).  

321

322 Limb and body character sampling

323 Overall there was no significant difference in the log of number of characters sampled from each 

324 partition of the datasets in Table 1 (t = -0.3461, p = 0.7312, paired t-test of logs). Furthermore, no 

325 significant difference was observed in chelicerates (t = -0.5679, p = 0.5907, paired t-test) or 

326 myriapods (t = 2.1830, p = 0.0808, paired t-test). However, differences were observed within 

327 crustaceans (t = 2.7658, p = 0.0279, paired t-test of logs) and hexapods (t = -4.4382, p = 0.0005, 

328 paired t-test of logs). Crustacean datasets contained significantly more limb characters than those 

329 from the body, while the opposite tendency pertained in hexapod datasets.  We do not assume that 



330 these differences reflect a bias of sampling from the hypothetical universe of possible leg and body 

331 characters, since there is no reason to suppose that the two partitions should yield identical character 

332 numbers (a naïve null hypothesis). Rather, we merely report that the numbers do, in fact, differ in the 

333 case of crustaceans and hexapods.

334

335 Discussion and Conclusions

336 1. Levels of incongruence

337 Rates of significant (p<0.05) incongruence between limb and body partitions across our sample of 

338 arthropod matrices were significantly higher than expected for all of our tests. We found 8 from 38 

339 significant with p≤0.05 for the ILD (one in five) and 7 from 38 for the IRDRF, whereas two (one in 

340 twenty) would be expected by chance (binomial test p=0.0005). The only previous, systematic studies 

341 of partition homogeneity using similar approaches to those deployed here concerned the craniodental 

342 and postcranial characters of vertebrates (Mounce et al., 2016), the dental and osteological characters 

343 of mammals (Sansom et al., 2017) and hard and soft part characters across a diversity of animal 

344 clades (Sansom & Wills, 2017).  Higher rates of significant (p<0.05) incongruence were reported in 

345 those earlier studies: about 1 in 3 (ILD and IRD) for craniodental/body characters and hard/soft 

346 characters, and up to 1 in 2 (ILD) for dental/osteological characters (compared with 1 in 5 for the ILD 

347 and IRD across our arthropods). There is no reason to expect limb versus body partitions for 

348 arthropods to yield similar rates of null rejection to functionally and anatomically different partitions 

349 in other groups. However, levels of limb to body incongruence for our sample of arthropods are not 

350 especially high, and this is good news for those attempting to infer the relationships of fossil 

351 arthropods that lack details of appendage morphology, provided there is enough character data 

352 overall. 

353 Lack of partition homogeneity can result from a variety of factors other than conflict between 

354 the phylogenetic signals inherent in partitions (Mounce et al., 2016; Dolphin et al., 2000; Planet, 

355 2006). However, we demonstrate that there are no significant (p < 0.05) differences in overall levels 

356 of either internal or molecular consistency between the partitions of our data sets (CI and RI, Figures 



357 4, 5), and neither are there differences in amounts of missing data. Although the levels of homoplasy 

358 contained within each partition may be comparable, the quality of this noise often misinforms the 

359 inference of phylogenies in different ways, thereby resulting in incongruence.

360

361 2. Implications of incongruence

362 Whatever the cause of the incongruence between partitions, it is still observed more often than we 

363 would expect, with several implications. Focussing on restricted suites of characters to the exclusion 

364 of others is questionable practice, unless it has been demonstrated a priori (e.g., in a large empirical 

365 sample: Sansom et al., 2017; Sansom and Wills, 2017) that some classes of characters are intrinsically 

366 more informative and less prone to homoplasy than others. This is not the case for the appendage and 

367 body characters of arthropods. Nevertheless, uneven character sampling is commonplace in arthropod 

368 systematics (Clarke, 2011), and we find these biases in some higher taxa here. Such biases probably 

369 reflect previous expectations that certain characters are of more value or contain a stronger 

370 phylogenetic signal than others (see Sanchez-Villagra & Williams, 1998; Williams, 2007; Song & 

371 Bucheli, 2010; Parker, 2016; Mounce et al., 2016; Sansom et al., 2017). For example, Gainett et al. 

372 (2014) focused upon appendicular characters in their phylogeny of harvestmen, while Dunlop (1997) 

373 found that characters of body segmentation and segment differentiation were particularly helpful in 

374 determining the higher-level relationships of chelicerates (Dunlop, 1997). Our sample of data sets 

375 does not support this idea for limb and body characters across arthropods. 

376 Such biases are most acute (and often unavoidable) in many fossil groups, where the more 

377 heavily mineralized or sclerotized cuticle of the carapace and tergites typically preserve more readily 

378 than that of the limbs. Hence, many fossil arthropod taxa lack details of the appendages, and focus, 

379 out of necessity, on ‘body’ characters of segmentation and ornamentation. In ostracods, for example, 

380 body characters are the most readily available (Tinn & Oakley, 2008), despite suggestions that 

381 appendicular characters are of much greater utility (Park et al., 2002; Cohen & Moren, 2003). 

382 Notwithstanding, many arthropod studies uncover hidden support and hidden branch support (Gatesy 

383 et al., 1999) from combined suites of morphological characters (Clarke, 2011) and from the 

384 combination of morphological and molecular data (e.g. Damgaard, 2008; Wahlberg et al., 2005). We 



385 therefore advocate holistic character sampling (Song & Bucheli, 2010) and principles of total 

386 evidence (Kluge, 1989; Gatesy & Springer, 2014; Mounce et al., 2016; see also Gatesy & Arctander, 

387 2000) in arthropod phylogenetics. 

388 There are other systematic problems that may occur when trees are inferred from non-random 

389 character samples, although these are usually framed in terms of the effects of missing data. In this 

390 regard, it is not the number of missing entries in a matrix so much as the amount of data that are 

391 present that influences the resolution of trees and the stability of taxa within them (Wiens, 2003ab; 

392 Cobbett et al., 2007).  Non-random blocks of missing data – such as those that typically result from 

393 the concatenation of molecular data sets with different taxon samples (Chernomor et al., 2016; 

394 Dillman et al., 2016; Dobrin et al., 2018) or morphological data sets containing a mix of fossil and 

395 extant taxa (Pattinson et al., 2015; Sansom, 2015) – bring their own particular set of problems. The 

396 processes of decay prior to fossilisation obliterate soft part character data, but a recent and surprising 

397 finding is that such characters tend to optimize along branches further from the root of the tree than 

398 their more fossilizable counterparts. The simulated removal of soft part data from species within real 

399 neontological data sets therefore tends to result in the disproportionate ‘stemward slippage’ of 

400 lineages towards the root of the tree (Sansom & Wills, 2013; Sansom, 2015). It is therefore likely that 

401 many fossils appear more plesiomorphic and erroneously resolve closer to the roots of phylogenies as 

402 a function of taphonomic filters (Sansom et al., 2017). This needs to be explored on greater detail 

403 across the phylogeny of arthropods. 

404
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Author, Year Clade Taxa Limb 
chrs

Body 
chrs

% missing 
limb

% missing 
body

IRDRF IRDD1 ILD CI  
limb

CI 
body

RI 
limb

RI 
body

Chelicerata

Bochkov et 
al., 2010

Acari: Psoroptidae: 
Makialginae

11 27 23 1.01 5.93 0.084 0.142 0.751 0.70 0.79 0.77 0.81

Botero-
Trujillo et al., 
2017

Solifugae: 
Mummuciidae

15 14 6 2.38 9.33 0.072 0.152 1.000 1.00 0.90 1.00 0.75

Klompen et 
al., 2013

Acari: 
Heterozerconidae

10 23 6 3.04 1.67 0.56 0.81 0.202 0.60 0.75 0.58 0.80

Kuntner, 
2005

Araneae: Nephilidae: 
Nephilinae

28 69 88 13.35 13.46 0.182 0.019 0.002 0.52 0.42 0.72 0.73

Mendes, 2011 Opiliones: 
Laniatores: 
Gonyleptidae

21 46 56 11.49 13.10 0.029 0.499 0.061 0.56 0.44 0.71 0.63

Prendini & 
Esposito, 
2010

Scorpiones: Buthidae 29 28 38 0.37 1.72 0.182 0.020 0.097 0.55 0.48 0.81 0.77

Schulz, 2007 Arachnida 44 77 86 7.76 10.31 0.72 0.86 0.014 0.61 0.56 0.88 0.84

Wood et al., 
2012 

Araneae: Archaeidae 37 75 51 28.43 21.67 0.75 0.56 0.010 0.48 0.48 0.78 0.79

Crustacea

George, 2017 Copepoda: 
Laophontodinae

9 32 18 4.17 0.62 0.022 0.019 0.033 0.49 0.44 0.64 0.66

Jenner et al., 
2009

Eumalacostraca 24 99 63 9.60 19.44 0.016 0.159 0.008 0.49 0.44 0.64 0.66

McLaughlin 
et al., 2007

Anomura: Paguroidea 20 34 45 1.18 0.22 0.229 0.387 0.507 0.56 0.47 0.66 0.59

Olesen, 2009 Branchiopoda 15 44 28 30.45 29.76 0.631 0.459 0.122 0.84 0.85 0.75 0.84

Richter & 
Scholz, 2001

Malacostraca 19 34 41 10.22 22.21 0.098 0.461 0.161 0.59 0.58 0.68 0.65

Riehl et al., 
2014

Isopoda: Asellota: 
Urstylidae

28 283 124 15.57 26.64 0.294 0.950 0.002 0.52 0.56 0.76 0.70



Vereshchaka 
et al., 2016

Decapoda: 
Luciferidae

29 119 48 33.20 24.31 0.390 0.330 0.213 0.72 0.74 0.85 0.91

Vereshchaka 
& Lunina, 
2015

Decapoda: 
Sergestidae

23 100 48 24.40 19.02 0.51 0.22 0.223 0.72 0.78 0.72 0.83

Hexapoda

Banks & 
Paterson, 
2004

Phthiraptera: 
Philopteridae

16 14 41 1.79 7.47 0.59 0.29 0.624 0.85 0.58 0.94 0.74

Blagoderov et 
al., 2009

Diptera: Sciaroidea: 
Lygistorrhinidae

18 25 35 10.47 7.14 0.81 0.920 0.121 0.55 0.45 0.67 0.60

Calor & 
Holzenthal, 
2008

Trichoptera: 
Leptoceridae

11 10 21 9.09 12.99 0.099 0.269 0.411 0.86 0.74 0.93 0.82

Chamorro & 
Konstantinov
, 2011

Coleoptera: 
Chrysomelidae: 
Lamprosomatinae

13 5 21 12.30 3.66 0.042 0.011 0.103 1.00 0.81 1.00 0.85

Clarke, 2011 Coleoptera: 
Staphylinidae

24 26 104 2.16 1.64 0.32 0.190 0.616 0.68 0.55 0.86 0.77

Del Rio et al., 
2012

Coleoptera: 
Curculionidae: 
Entiminae

11 9 40 0.00 5.23 0.45 0.35 0.691 0.68 0.58 0.58 0.55

Di Guilio et 
al., 2003

Coleoptera: 
Carabidae

9 26 30 0.85 16.30 0.46 0.57 0.703 0.76 0.75 0.76 0.77

Gerstmeier & 
Eberle, 2011

Coleoptera: Cleridae: 
Clerinae

12 10 13 2.50 8.33 0.180 0.820 0.062 0.61 0.50 0.72 0.68

Grebennikov 
& Newton, 
2009

Coleoptera: 
Scydmaenidae

38 106 105 3.80 5.66 0.57 0.51 0.042 0.34 0.30 0.70 0.66

Grebennikov, 
2010

Coleoptera: 
Curculionoidea

16 10 13 6.25 7.21 0.220 0.210 0.014 0.84 0.96 0.82 0.94

Liu et al., 
2012

Megaloptera: 
Chauliodinae

24 17 24 18.38 6.08 0.450 0.044 0.921 0.85 0.54 0.95 0.81

Michel-Salzat Hymenoptera: 23 19 18 4.58 0.00 0.089 0.056 0.191 0.79 0.76 0.95 0.95



et al., 2004 Apinae: Euglossini
Packer et al., 
2017

Hymenoptera: 
Megachilidae

27 87 127 1.53 6.27 0.23 0.79 0.362 0.41 0.36 0.68 0.65

Wipfler et al., 
2010 

Grylloblattodea 18 49 55 6.24 8.83 0.33 0.61 0.924 0.64 0.67 0.67 0.72

Yoshizawa, 
2004

Psocoptera: Psocidae 14 11 22 7.79 2.92 0.27 0.26 0.390 0.75 0.81 0.84 0.90

Yoshizawa & 
Leinhard, 
2010

Psocoptera: 
Liposcelididae

14 9 16 0.00 8.93 0.32 0.32 0.845 0.71 0.93 0.81 0.83

Myriapoda

Blanke & 
Wesener, 
2014

Diplopoda 16 23 33 2.99 5.11 0.015 0.027 0.094 0.87 0.74 0.94 0.86

Edgecombe 
& Barrow, 
2007

Chilopoda: 
Scutigeromorpha

21 41 14 10.57 17.35 0.53 0.99 0.407 0.91 0.79 0.97 0.92

Koch et al., 
2009

Chilopoda: 
Scolopendromorpha

30 46 34 2.54 19.31 0.030 0.520 0.089 0.60 0.60 0.85 0.86

Pena-Barbosa 
et al., 2009

Diplopoda: 
Polydesmida: 
Chelodesmidae

15 31 16 17.20 8.33 0.457 0.904 0.689 0.61 0.62 0.76 0.80

Pitz & 
Sierwald, 
2010

Diplopoda: 
Helminthomorpha

33 34 20 7.75 0.00 0.98 0.24 0.800 0.46 0.63 0.74 0.78

Wesener & 
Vanden- 
Spiegel, 2009

Diplopoda: 
Sphaerotheriida

38 48 41 1.15 1.16 0.110 0.240 0.053 0.55 0.60 0.83 0.83

780

781 Table 1 –  Summary of the 38 published morphological datasets across all arthropod groups utilised in this study, and the results of all tests. IRD test results 

782 based upon 999 randomisations (where quoted to 3 decimal places) or 99 randomisations (where quoted to 2 decimal places, and were p < 0.20).

783

784



785

Morphology
Author, Year

Molecular 
Author, Year

Clade Taxa Limb 
chrs

Body 
chrs

CI 
limb

CI 
body

RI 
limb

RI 
body

Crustacea

Admowicz & 
Purvis 2006

Meland & 
Willassen 2004

Pseudomma 18 26 5 0.31 0.28 0.30 0.23

Bradford-Grieve 
et al., 2010.

Blanco-Bercial 
et al., 2011

Calanoida 29 93 7 0.29 0.53 0.58 0.75

Bradford-Grieve 
et al., 2017

Bradford-Grieve 
et al., 2017

Megacalanidae 12 37 5 0.29 0.53 0.58 0.75

Chang et al. 
2016

Chang et al. 
2016

Nephropidae 13 23 28 0.62 0.65 0.75 0.75

Dreyer & 
Wägele 2001

Dreyer & 
Wägele 2001

Bopyridae 21 37 13 0.50 0.65 0.66 0.73

Hermoso-
Salazar et al., 
2008

Hultgren et al., 
2014

Synalpheus 13 22 12 0.45 0.44 0.40 0.17

Karasawa et al., 
2013

Bracken-
Grissom et al., 
2014

Pleocyemata 19 22 43 0.87 0.51 0.95 0.72

Lörz & Brandt Lórz & Held 
2004

Epimeriidae 16 41 49 0.45 0.46 0.67 0.54

Oakley et al., 
2012

Tinn & Oakley 
2008

Ostracoda 34 22 12 0.77 0.75 0.92 0.93

Robalino et al., 
2016

Ma et al., 2009 Penaeidae 37 103 94 0.34 0.27 0.63 0.54

Schnabel et al., 
2011

Schnabel et al., 
2011

Anomura 64 58 61 0.32 0.35 0.76 0.76

Tshudy et al., 
2007

Chan et al., 
2009

Metanephrops 10 8 14 0.47 0.54 0.44 0.64

Wills et al., 2009 Jenner et al., 
2009

Eumalacostraca 14 59 54 0.35 0.39 0.23 0.32

Wilson 2009 Wilson 2009 Peracarida 75 124 55 0.29 0.27 0.69 0.68
Wyngaard et al., 
2010

Wyngaard et al., 
2010

Mesocyclops 15 41 9 0.62 0.40 0.67 0.40

786

787 Table 2 – Summary of the 15 published crustacean morphological and molecular datasets used for 
788 molecular consistency tests

789

790

791

792

793



794 Figure 1 – Calculation of p values associated with the Incongruence Length Difference (ILD) test 

795 (Mikevich & Farris, 1981; Farris et al., 1995a; Farris et al., 1995b) and the Incongruence Relationship 

796 Difference (IRD) test (Ruta & Wills 2016;  Mounce et al., 2016) using the Robinson Foulds (RF) 

797 distance (IRDRF). A. A hypothetical data set is partitioned into ‘limb’ characters (left hand) and ‘non-

798 limb’ or body characters (right hand). For illustrative purposes, limb and non-limb character numbers 

799 are both contiguous, and both partitions are the same size. This need not be the case. Each matrix 

800 partition is then analysed independently using PAUP*, and a single most parsimonious tree (MPT) is 

801 inferred from each. The lengths of these are summed (marked *). The incongruence length difference 

802 (ILD) is not shown here, but would be equivalent to the difference between this summed length and 

803 the length of the MPT(s) resulting from the analysis of both partitions simultaneously). The number of 

804 nodes unique to one or both trees is also tallied as the Robinson Foulds (RF) distance (†). B. 

805 Characters are partitioned at random to yield null distributions of sums of lengths and RF distances. 

806 Random partitions contain the same number of characters as the original partitions, and the procedure 

807 is repeated a large number of times (999 in this example). C. The randomised partitions in ‘B’ yield 

808 empirical distributions of sums of tree lengths (left hand histogram, ILD) and RF distances (right hand 

809 histogram, IRDRF). The ILD p-value is calculated as the fraction of the random partitions (plus the 

810 original partition) for which the sum of MPT tree lengths is less than or equal to that for the original 

811 partition (p = 126/1000 = 0.126). Random partitions with sums of lengths less than the original are 

812 those in which the internal consistency of each partition (‘leg’ or ‘body’) is greater than that in the 

813 original. The  IRDRF p-value is calculated as the fraction of the random partitions (plus the original 

814 partition) for which the sum of MPT tree lengths is greater than or equal to that for the original 

815 partition (p = 384/1000 = 0.384). 

816 Figure 2 – Tanglegram of the 50% majority rule consensus (plus compatible groupings) trees inferred 

817 from the “limbs” (left) and “body” (right) partitions of the eumalacostracan data of Jenner et al. 

818 (2009) and Wills et al. (2009). The IRDRF test revealed the partitions to be significantly incongruent 

819 (p=0.016). Nodes unique to each tree are marked with black dots: only two nodes are shared by the 

820 trees inferred from the “limb” and “body” partitions. Majority rule trees are figured for illustrative 



821 purposes. We advocate measures based upon the mean distance between nearest neighbours in the two 

822 partitions.

823 Figure 3 – Tanglegram of majority consensus trees implied by a “limbs” (left) and “body” (right) 

824 partition of the diplopod data of Blanke & Wesener (2014), shown to be significantly incongruent by 

825 IRDRF (p=0.015) and IRDD1 (p=0.025). Unique nodes in each phylogeny are indicated by black dots. 

826 In this case, the tree inferred from the “limbs” partition contains all of the same nodes as the strict 

827 consensus tree derived from the entire data set by Blanke & Wesener (2014).

828 Figure 4 – A.B. Box and whisker plots of the distribution of ensemble CI (A) and RI (B) values 

829 obtained for limb and non-limb partitions of 38 datasets across all arthropod groups (summarised in 

830 Table 1). There were no significant differences in CI or RI between partitions overall, or in any 

831 individual taxonomic grouping. C.D. Boxplots comparing residual CI (C) and RI (D) values for the 

832 same sample of datasets, modelling out the effects of data matrix dimensions (number of characters 

833 and number of taxa). There were no significant differences between the partitions, either overall or in 

834 any individual taxonomic grouping.

835 Figure 5 – Box and whisker plots of the distribution of ensemble CI and RI (B) values obtained for 

836 limb and non-limb partitions of 15 morphological datasets of crustaceans. Characters have been 

837 optimised onto corresponding but independently derived molecular trees for the same leaf set 

838 (summarised in Table 2). There were no significant differences in CI or RI between partitions.

839
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