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Abstract: 

Multiple coastal and offshore structures deployed side by side with narrow gap may be subject 

to large-amplitude free surface resonance, which can lead to green water on the deck and cause rapid 

increase of hydrodynamic loading on structures. Here, the resonant motions of the free surface inside 

a narrow gap between a fixed box and a vertical wall excited by incident regular waves with various 

wave heights are simulated using a two-dimensional numerical wave tank. The topographies of 

plane slopes with different inclinations are deployed in front of the vertical wall. The main focus of 

this paper is on the influences of the topographical variation on the fluid resonance inside the narrow 

gap. For the first time, it is found that the fluid resonant frequency decreases monotonously with the 

topographical slope, and both the amplification of the resonant wave height and the reflection 

coefficient present a pattern of fluctuation with the slope. For all the topographies considered in this 

paper, both the fluid resonant frequency and the amplification of the resonant wave height are shown 

to decrease with the incident wave height; while the variation trend of the reflection coefficient with 

the incident wave height depends on the topographical slope.     

 

Keywords: Gap resonance; Topographical effects; Resonant frequencies; Resonant wave height; 

Reflection coefficient; OpenFOAM® 
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Multiple marine structures deployed side by side with small separation distances are commonly 

adopted in the field of coastal and offshore engineering. For example, large scale bottom-mounted 

rectangular caissons with small gaps in between are widely used in real harbors (Miao et al., 2001; 

Zhu et al., 2017). Liquefied natural gas (LNG) shuttle carriers and Floating Production Storage and 

Offloading (FSPO) units are often arranged side by side with narrow gaps between them as the LNG 

production is carried from the FSPO platform to the LNG shuttle carrier (Zhao et al., 2018a; Zhao 

et al., 2018b). Large-amplitude free surface resonance may be excited in the narrow gap under 

certain wave conditions, and this phenomenon is normally referred to as “gap resonance”. Gap 

resonance can lead to the green water on the deck and cause the rapid increase of hydrodynamic 

forces on structures compared with the hydrodynamic forces on the same structure in isolation, 

which would seriously threaten the safety of engineering operations. Hence, in order to achieve the 

increased safety of the engineering operations related to the gap resonance phenomenon, more 

efforts should be made to improve the understanding of the mechanisms of hydrodynamics. 

The methods utilized in the investigation of the gap resonance problem include theoretical 

analyses, laboratory experiments, and numerical simulations. The theoretical analyses were mainly 

adopted in the early-stage study of gap resonance and were mainly based on the linear potential flow 

theory. By combining the linear potential flow theory with an asymptotic matching technique, Miao 

et al. (2000; 2001) analytically investigated the gap effects on multiple floating bodies and on twin 

bottom-mounted rectangular caissons, respectively. Similarly, based on the linear potential flow 

theory and through solving an eigenvalue equation, Molin (2001) obtained a theoretical solution for 

the resonant frequencies of piston- and sloshing-modes for the barges with infinite length and 

breadth in the infinite water depth. Subsequently, Molin et al. (2002) further extended this work to 

the gap resonance in an open-ended narrow gap. To understand gap resonance better and to examine 

previous theoretical analyses, many laboratory experiments were further carried out. Saitoh et al. 

(2006) and Iwata et al. (2007) implemented a series of two-dimensional physical model experiments 

in a wave tank to investigate the fluid resonance inside a narrow gap formed by two fixed boxes and 

that inside two narrow gaps formed by three fixed boxes, respectively. Similarly, Tan et al. (2014) 

conducted two-dimensional physical experiments to consider the fluid resonance and energy 

dissipation in a narrow gap formed by a fixed rectangular box in front of a vertical wall. To study 

the free-surface resonance between the FSPO terminal and the LNG shuttle carrier or between two 
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barges, some three-dimensional physical tests were successively carried out by Clauss et al. (2013), 

Xu et al. (2014), Li et al. (2016) and Zhao et al. (2017).  

The numerical studies implemented so far mainly employed the classical potential flow model 

combining with the boundary element method or scaled boundary finite element method (e.g., Miao 

et al. (2001), Li et al. (2005), Zhu et al. (2008), Sun et al. (2010) and Li and Zhang (2016)). Because 

the energy dissipation caused by the fluid viscosity, vortex shedding and even turbulence cannot be 

considered in the context of the potential flow theory, although both the theoretical analyses and the 

numerical simulations that are based on the potential flow model have been proved to predict the 

resonant frequency well, they were reported to overestimate the resonant wave height in the gap and 

the wave forces on the structures significantly. In order to overcome this deficiency, so far, several 

particular numerical techniques have been proposed to artificially produce and introduce the energy 

dissipation into the potential flow model (Chen, 2004; Huijsmans et al., 2001; Newman, 2004; Ning 

et al., 2015a, b). The comparisons between numerical and experimental results demonstrate that the 

potential flow model with the artificial energy dissipative term may estimate the resonant wave 

height and the corresponding wave forces satisfactorily (Lu et al., 2011a; Lu et al., 2011b). 

Nevertheless, for the rigorous potential theory, the introduction of artificial energy dissipative term 

seems somewhat arbitrary, and under certain circumstances it was found to be difficult to achieve a 

unique value for the dissipative parameter (Liu and Li, 2014; Pauw et al., 2007; Tan et al., 2014). 

Therefore, careful calibrations are indispensable by using Computational Fluid Dynamics (CFD) 

results or available experimental data.  

Due to the rapid developments of computing technology and numerical technique, the CFD 

based numerical simulations have gradually become an effective alternative method in studying the 

gap resonance problem in recent years. By using a Navier-Stokes equations model combined with 

a CLEAR-VOF technique for free surface capture, Lu et al. (2011a) and Lu et al. (2011b) 

systematically investigated the resonant wave height inside the narrow gap between multi-bodies in 

close proximity and the corresponding wave forces on the multi-bodies, respectively. Subsequently, 

based on an open-source CFD package OpenFOAM®, Moradi et al. (2015) and Moradi et al. (2016) 

comprehensively studied the influences of inlet configuration and water depth on wave resonance 

in the narrow gap between two fixed bodies, respectively. Recently, Feng et al. (2017) adopted 

OpenFOAM® to examine the viscous effects on the gap resonance between two side-by-side barges. 
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More recently, also based on the OpenFOAM® model, Jiang et al. (2018) and Jiang et al. (2019) 

investigated the wave resonance between two side-by-side non-identical boxes and the 

corresponding wave forces on both boxes by utilizing a two-dimensional numerical wave tank. 

Subsequently, Gao et al. (2019a) also employed OpenFOAM® to systematically investigate various 

hydrodynamic characteristics of the gap resonance between two fixed boxes in close proximity, 

which include the harmonic analyses of the free-surface elevation inside the gap and wave loads on 

both boxes, the effects of the incident wave height on the reflection, transmission and energy loss 

coefficients, and the quantitative estimation of the response time and the damping time of gap 

resonance. All these investigations found that the numerical results obtained by the CFD simulations 

agreed very well with the available experimental data.  

Although numerous research efforts into the gap resonance problem have been performed, the 

majority have concentrated on the analyses of the wave resonance in the gap formed by the multiple 

floating (or fixed) structures and the corresponding wave loads on these structures (e.g., Feng and 

Bai (2015); Feng et al. (2017); Jiang et al. (2019); Jiang et al. (2018); Lu et al. (2011a); Lu et al. 

(2011b); Moradi et al. (2015, 2016); Ning et al. (2016); Ning et al. (2018); Zhu et al. (2017)). The 

investigations on the fluid resonance inside the narrow gap formed by a large vessel berthing in 

front of a wharf are relatively rare. By combining the numerical simulations and physical model 

experiments, Kristiansen and Faltinsen (2009) investigated the resonant behavior of the fluid in the 

gap between a ship and a fixed bottom-mounted terminal subject to incoming waves in shallow 

water, and the ship was restrained from moving. By employing both laboratory experiments and a 

semi-analytical analysis, Tan et al. (2014) investigate the mechanical energy dissipation involved in 

the fluid resonance inside a narrow gap between a fixed floating box and a vertical wall. Recently, 

Meringolo et al. (2018) adopted a two-dimensional Smoothed Particles Hydrodynamics (SPH) 

model to perform an energy balance analysis for the fluid resonance problem occurred in the gap 

formed by a fixed barge placed in front of a vertical wall. It should be noted that in all of these three 

papers, the seabed in front of the bottom-mounted terminal (or the vertical wall) was always 

assumed to be flat, and the effects of the topographical variation on gap resonance were not taken 

into consideration. In fact, the bottom inside real harbors is usually uneven and the water depth in 

front of the terminal is often variable on most occasions (Gao et al., 2016a; Gao et al., 2016b; Wang 

et al., 2013; Wang et al., 2014). In light of this, to further enhance the understanding of related 
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phenomena involved in gap resonance, this paper considers the influences of the topographic 

variation on the gap resonance problem for the first time. As in Kristiansen and Faltinsen (2009), 

Tan et al. (2014) and Meringolo et al. (2018), the fluid resonance inside a narrow gap formed 

between a fixed box and a vertical wall is taken as the background of this study, and the 

investigations in the current paper are carried out in two-dimensions.   

This paper is organized as follows. Section 2 briefly describes the numerical model employed 

in this work. Section 3 presents the incident wave parameters and the setup of the numerical wave 

tank. Section 4 validates the numerical model via available laboratory experiments. The numerical 

results and discussions are presented in Section 5 to show the effects of the seafloor topography on 

the fluid resonant frequency, the resonant free-surface amplification in the gap and the reflection 

coefficient of the box-wall system. Concluding remarks based on the results are drawn in Section 6. 

 

2. Numerical model description 

To consider the physical energy dissipation near the gap due to the viscous effect, a viscous 

flow solver is necessary. Similar to Moradi et al. (2015, 2016), Feng et al. (2017), Jiang et al. (2018) 

and Jiang et al. (2019), the numerical wave tank in this paper is also based on the OpenFOAM® 

multiphase solver “interFoam” with modifications to incorporate the “waves2Foam” toolbox 

proposed by Jacobsen et al. (2012) for wave generation and absorption. 

2.1. Governing equations 

The continuity and Navier-Stokes equations are utilized as the governing equations to solve 

the two-phase flow of water and air:  
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where ρ is the fluid density,  , ,
x y z

  

  
   is the gradient operation, u=(u, v, w) is the velocity 

vector of the fluid, x=(x, y, z) is the Cartesian coordinate vector, g is the gravitational acceleration, 

P is the pressure in excess of the hydrostatic part, μ is the dynamic viscosity of the fluid, t  is the 

surface tension coefficient and k  is the surface curvature. The above equations are solved for 

both water and air simultaneously. Note that ρ=ρ(x) varies with the volume fraction of water α in 

the computational cell, and the mixed fluid is also tracked by using the scalar field α which takes a 
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value of 1 for water and 0 for air and intermediate values for a mixture of water and air. 

The distribution of α is modelled by the following advection transport equation: 

     r1 0,
t


  


     

u u   (3) 

in which 
r water air u u u is a relative velocity between the water and the air. The last term on the 

left hand side of the above equation is often referred to as the interface compression term, which 

limits the smearing of the interface. Briefly, the implementation is based on an explicit first-order 

time integration routine, and the detailed descriptions of the solution algorithm can be found in 

Berberović et al. (2009). Using α, the spatial variation of any fluid property φ (e.g., the fluid density 

ρ and the dynamic viscosity μ) can be expressed through a weighting:  

  water air1      ,  (4) 

in which the subscripts “water” and “air” denote the corresponding fluid property of water and air, 

respectively.  

2.2. Boundary conditions and numerical implementations  

All the simulations in this paper are carried out by using OpenFOAM® version 3.0.1. The 

relaxation-based toolbox “waves2Foam” proposed by Jacobsen et al. (2012) is employed to generate 

and absorb waves at the boundaries (see Fig. 1). At the inlet boundary, the velocity is defined as that 

of a regular incoming wave, and the pressure gradients are set to zero. A relaxation zone is deployed 

at the inlet boundary to absorb the reflected waves. The details of the wave-generation method and 

the relaxation zone technique can be found in Jacobsen et al. (2012). At the upper part of the tank, 

the boundary condition is set as “atmosphere”; while at the solid walls of the fixed box, the bottom 

and right boundaries of the tank, “no-slip” boundary condition is applied. For a two-dimensional 

problem, the boundary condition on the walls in the third dimension is set to “empty”.  

The governing equations (1)-(2) and the advection transport equation (3) are solved using the 

finite volume method. The velocity-pressure coupling is resolved using the PISO (Pressure Implicit 

with Splitting of Operator) algorithm (Jasak, 1996). Gradients are approximated by the Gaussian 

integration method based on a linear interpolation from cell centers to cell faces. The time 

derivatives are solved by a first-order Euler scheme. The Gauss Convection-specific schemes are 

used for the evaluation of the divergence terms. Identical to Feng et al. (2017), in order to produce 

accurate and stable results, the largest Courant number is set to 0.25 in all simulations.  
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Fig. 1. Sketch of the numerical wave tank: (a) boundary conditions and the definition of the 

coordinate system; (b) positions of wave gauges and the definition of the geometric parameters. 

 

3. Numerical wave tank 

Fig. 1 presents the sketch of the two-dimensional numerical wave tank employed in the current 

research. The numerical wave tank has a height of 0.8 m, a length of 14.0 m, and a width of W=0.1 

m. The Cartesian coordinate system (o, x, y, z) is defined in such a way that the origin is located on 

the still water level (SWL) of the left inlet boundary; x is in the wave propagation direction and z is 

in the upward direction. The thickness of the wave tank in the y-axis direction corresponds to one 

computational cell. A fixed box is placed in the vicinity of the right boundary of the wave tank that 

acts as a fully reflective vertical wall. The box height is H=0.5 m, the breadth is B=0.5 m, the draft 

d=0.25 m, the gap width Bg=0.05 m. The air depth is a constant, ha=0.3 m. The water depth at the 

region from x=0 to x=12.0 m is also a constant, h=0.5 m. While at the region from x=12.0 m to 

x=14.0 m, there exists a plane slope underneath the fixed box, and the horizontal length of the plane 

slope is a constant, Ls=2.0 m. For the water depth in front of the vertical wall, hs, there are six 

different values, and they are 0.5 m, 0.45 m, 0.40 m, 0.35 m, 0. 30 m and 0.27 m; the slopes of the 

plane slope, S, are correspondingly equal to 0, 0.025, 0.050, 0.075, 0.100 and 0.113 (S=0 is viewed 
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as a special case of the plane slope in this study). For the case of S=0 (i.e., h=hs=0.5 m), its 

configuration is in accordance with the physical model experiments in Tan et al. (2014).  

 

Table 1. Physical meanings and magnitudes of all the parameters associated with the set-up of the 

numerical wave tank   

Parameter Physical meaning  Magnitude  

(o, x, y, z) Cartesian coordinate system - 

B Breadth of the box 0.5 m 

Bg Width of the gap 0.05 m 

d Draft of the box 0.25 m 

H Height of the box 0.5 m 

H0 Incident wave height 0.005 m, 0.024 m, 0.05 m, 0.075 m, 0.1 m 

ha Air depth 0.3 m 

h Water depth at the deeper region  0.5 m 

hs Water depth in front of the vertical wall 0.5 m, 0.45 m, 0.4 m, 0.35 m, 0.3 m, 0.27 m 

Ls Horizontal length of the slope 2.0 m 

L Incident wavelength From 1.85 m to 5.24 m 

kh Dimensionless wavenumber From 0.6 to 1.7 

S Topographical slope 0, 0.025, 0.050, 0.075, 0.100, 0.113 

ω Incident wave frequency From 2.514 rad/s to 5.586 rad/s 

W Width of the numerical wave tank 0.1 m 

Ws Width of the relaxation zone  8.0 m 

 

In the simulations, the incident regular waves with different wave heights and frequencies are 

generated at the left boundary of the tank. Five different wave heights are considered, which are 

H0=0.005 m, 0.024 m, 0.050 m, 0.075 m and 0.100 m. The incident wave frequency, ω, ranges from 

2.514 rad/s to 5.586 rad/s. According to the following linear dispersion relationship  

  2 tanhgk kh  ,  (5) 

the dimensionless wavenumber, kh, ranges from 0.6 to 1.7, in which k=2π/L denotes the 

wavenumber and L denotes the incident wavelength. Three wave gauges, G1-G3 as shown in Fig. 1, 

are deployed to record the time histories of free surface elevations at three different locations. Based 

on the wave analysis technique in Goda and Suzuki (1976), the wave height of the reflected waves 

from the box-wall system can be obtained by using the free-surface elevations at G1 and G2. The 
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reflection coefficient Cr is further calculated as the ratio of the reflected wave height to the incident 

wave height H0. The distance between G1 and G2 is set to 0.25 m, and G2 is arranged at 2.0 m from 

the toe of the plane slope. G3 is placed in the middle of the gap to obtain the free surface elevation 

inside the narrow gap. One relaxation zone of Ws=8.0 m is deployed at the inlet boundary of the 

wave tank to absorb the reflected waves. The length of 8.0 m is approximately 1.53 times of the 

maximum wavelength that corresponds to the incident waves with ω=2.514 rad/s. To facilitate the 

reader’s understanding of this paper, all the parameters related to the setup of the numerical wave 

tank and their physical meanings and magnitudes are listed in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Side view of typical meshes in the computational domain: (a) the meshes above the 

topography; (b) the meshes around the box (taking the topography with S = 0.100 as an example) 

 

Two built-in mesh generation utilities supplied by OpenFOAM®, “blockMesh” and 

“snappyHexMesh”, are utilized to generate the meshes. A typical computational mesh is illustrated 

in Fig. 2, where the topography with S = 0.100 is taken as an example. Non-uniform meshes are 

adopted for saving the computational time. The fine meshes with higher resolution are employed 

around the boxes, especially in the vicinity of the narrow gap. In order to accurately capture the 

motion of the free surface, the mesh density gradually becomes larger from the atmosphere and the 

bottom boundaries to the still water level.  

 

(a) 

Box  

(b) 
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Fig. 3. Dependence of the free-surface elevation in the gap on the mesh resolution for the incident 

waves with kh=1.286 and H0=0.024 m, in which A0= H0/2 denotes the amplitude of the incident 

waves. (a) and (b) correspond to the topographies with S = 0 and 0.100, respectively. 

 

Table 2. Details of the coarse, medium and fine meshes for the topography with S=0 

Mesh type No. of cells No. of points No. of faces 
No. of cells across the gap 

Along the x-axis Along the z-axis 

Coarse 117,280 238,890 466,243 20 240 

Medium 203,890 410,860 817,100 26 280 

Fine 281660 566,744 1,128,353 34 330 

 

To check the effects of different mesh resolutions on the numerical result, the response of the 

free surface inside the narrow gap between the box and the vertical wall is simulated by employing 

three different meshes, namely the coarse, medium and fine meshes. For the topography with S=0, 

the details of the three different meshes are listed in Table 2. For the other five topographies with 

S=0.025, 0.050, 0.075, 0.100 and 0.113, because the mesh underneath the plane slope is removed 

by snappyHexMesh, the numbers of the cells for these three meshes are slightly less than those for 

the topography with S=0. According to the numerical results which will be presented in Section 4.1, 

for the topography with S=0, the free-surface resonance inside the narrow gap occurs at kh=1.286. 

The resonant free-surface elevations inside the narrow gap excited by the incident waves with 

kh=1.286 and H0=0.024 m are illustrated in Fig. 3, in which A0=H0/2 denotes the amplitude of the 

incident waves. Besides, to examine the mesh convergence of the numerical result for the 
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topography with 0S  , the free-surface elevations inside the gap induced by the incident waves with 

the same frequency and wave height under the condition of S=0.100 are also presented in this figure. 

It is seen that under both conditions of S=0 and 0.100, the time series of the free-surface elevations 

inside the narrow gap for the three mesh configurations are almost identical to each other, which 

indicates that the numerical results are insensitive to the selected meshes. Considering that the 

medium mesh can provide more accurate simulations of the wave fields excited by the incident 

waves with higher frequencies as compared to the coarse mesh, in all our numerical simulations, the 

medium mesh configuration is adopted in all numerical simulations.  

A total time of 40.0 s is simulated for all the cases. It can be observed from Fig. 3 that the free 

surface elevation in the narrow gap has already reached a steady state at t=20.0 s. All the numerial 

results that will be shown in Section 4.1 and Section 5 are based on the simulated steady-state data 

ranging from 20.0 s to 40.0 s. All simulations are implemented on a Dell Workstation with Intel 

Xeon E5-2640 CPU and do not use the parallel computing technique. For each case, the 

computational time of 6 h – 12 h is required, which mainly depends on the frequency and wave 

height of the incident regular waves.    

 

4. Numerical model validation 

To ensure the reliability of the numerical model and the accuracy of the numerical results, the 

numerical model and the numerical wave tank presented in Sections 2 and 3 are first validated by 

comparing the present results obtained by OpenFOAM® with available experimental data. For the 

cases with S=0 and H0=0.024 m described in Section 3, Tan et al. (2014) have implemented a series 

of laboratory experiments. Comparisons of the present numerical results with the experimental data 

of Tan et al. (2014) are presented in Section 4.1. Because this paper mainly focuses on influences of 

the topographical variation on the gap resonance problem, it is obvious that the incident wave 

parameters such as wave height would change due to the topographical variation, which would 

further affect the wave fields around the box and inside the gap. Hence, it is necessary to further 

validate the capacity of the present numerical model in terms of predicting the wave transformation 

over an uneven seabed. Ohyama et al. (1995) conducted a set of physical experiments for wave 

evolutions during passage over a submerged bar under various wave conditions. The numerical 

reproductions for part of their experiments are carried out in Section 4.2.  
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4.1. Validation of gap resonance  

 

 

Fig. 4. Amplification of the free-surface elevation inside the narrow gap for the cases with S=0 and 

H0=0.024 m, in which Hg denotes the wave height inside the narrow gap. 

 

Fig. 4 presents the amplification of the free-surface elevation inside the narrow gap induced by 

the incident waves with H0=0.024 m for the cases with S=0. Hg in this figure denotes the wave height 

inside the narrow gap. It is seen that the predicted resonant frequency, kh=1.286, by the present 

numerical model is identical to that obtained by the laboratory experiments of Tan et al. (2014) (i.e., 

the resonant period of 1.35 s). Moreover, the overall variation of Hg/H0 with respect to kh also agrees 

well between the numerical and experimental results.  

Fig. 5 illustrates the comparison of the wave height inside the gap predicted by OpenFOAM® 

and those measured by Tan et al. (2014) when the gap is exposed to a set of incident waves with 

kh=1.286 and various wave heights. Based on the experimental data, Tan et al. (2014) obtained a 

fitted curve to describe the variation of the wave height inside the gap: 

 0.64

g 010.16H H   (6) 

The units of both H0 and Hg used in the above equation are centimeter. It can be observed from this 

figure that the numerical results agree well with both the experimental data and the fitted curve of 

Tan et al. (2014). It is also clear that the relative damping of the box-wall system considerably 

increases with the incident wave height, which is due to the effects of vortex shedding and flow 

separation at the bottom corner of the box. Fig. 6 presents the velocity vectors around the lower 

right corner of the box at t=30.25 s for the three cases with H0=0.005 m, 0.03 m and 0.05 m. The 

time instant t=30.25 s corresponds to the time when the free surface elevation in the gap is at its 
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mean level near zero and the fluid is moving upward with the maximum velocity. It is clear that the 

larger the incident wave height is, the more obvious the vortex shedding and the flow separation 

around the corner become.  

 

  

Fig. 5. Variation of the wave height in the narrow gap with respect to the incident wave height for 

the cases with S=0 and kh=1.286. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Velocity vectors around the bottom corner of the box at t=30.25 s. (a)-(c) correspond to the 

cases with H0=0.005 m, 0.03 m and 0.05 m, respectively.   

 

As Tan et al. (2014) pointed out, the reflection coefficient is useful for evaluating the energy 

dissipation due to the fluid resonance between the box and the vertical wall. Hence, it is also 

necessary to further examine the capacity of the numerical model to predict the reflection coefficient. 
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Fig. 7 shows the comparison of the reflection coefficient Cr predicted by OpenFOAM® and those 

measured by Tan et al. (2014) for the cases with S=0 and H0=0.024 m. Similar to Figs. 4 and 5, the 

overall agreement between the numerical results and the measured data in Tan et al. (2014) is also 

observed. This demonstrates that the numerical wave tank shown in Fig. 1 and the medium mesh 

described in Section 3 can obtain accurate and reliable numerical results for the gap resonance 

problem formed by the fixed box in front of the vertical wall.    

 

Fig. 7. Reflection coefficient Cr for the cases with S=0 and H0=0.024 m 

 

4.2. Validation of wave transformation on submerged bar  

Ohyama et al. (1995) performed physical model experiments in a wave tank with a length of 

65 m, a width of 1.0 m, and a height of 1.6 m. The configuration of a submerged trapezoidal bar 

adopted in their experiments and the location of the wave gauges are shown in Fig. 8. The still water 

depths in the deeper region and over the horizontal part of the submerged bar were 0.50 m and 0.15 

m, respectively. The distance from the center of the bar to a piston-type wave generator, fixed at one 

end of the tank, was 28.3 m. A wave absorber, formed by coarse material, was arranged at the other 

end of the tank. In the physical experiments, six wave conditions were considered, emerging from 

the combination of two wave heights with three wave periods. In this paper, only the incident regular 

waves with the larger wave height are simulated (H0/h0=0.1), which results in a total of three wave 

conditions, i.e. Cases 2, 4 and 6 in Ohyama et al. (1995) with the wave periods of T0(g/h)1/2= 5.94, 

8.91 and 11.88, respectively.    
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Fig. 8. Configuration of submerged trapezoidal bar and locations of wave gauges in the physical 

experiments of Ohyama et al. (1995). 

 

 

Fig. 9. Sketch of the numerical wave tank for the experiments of Ohyama et al. (1995).  

 

Fig. 9 illustrates the sketch of the two-dimensional numerical wave tank used for reproducing 

the experiments of Ohyama et al. (1995). Due to the employment of the relaxation technique, the 

length of the numerical wave tank can be greatly reduced comparing with that of the physical wave 

tank. The numerical wave tank has a length of 26.0 m and a height of 0.8 m. The submerged bar is 

placed at the middle of the wave tank. Similar to the numerical wave tank shown in Fig. 1, the air 

depth is 0.3 m and the water depth at the deeper region is 0.5 m. Two relaxation zones of 8.5 m long 

each are arranged at the inlet and outlet boundaries of the wave tank to absorb the reflected and 

transmitted waves. The length of 8.5 m is equal to 1.50 times of the maximum wavelength that 

corresponds to the incident waves with T0(g/h)1/2=11.88, which guarantees a good wave-absorbing 

performance for the two relaxation zones (Jacobsen et al., 2012). Because only the time series of 

the free surface elevations at Gauges 3 and 5 were presented in Ohyama et al. (1995), only these 

two gauges are deployed in the numerical wave tank, and their distances to the wave inlet boundary 

are 13.75 m and 16.55 m, respectively. Considering that water depth in the deeper region and the 
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height of the numerical tank shown in Fig. 9 are identical to those in Fig. 1, a mesh configuration 

that has a similar mesh density with the medium mesh described in Section 3 is adopted.  

Fig. 10 presents the comparisons of the experimental and simulated time-series of the free-

surface elevations at Gauges 3 and 5 for Cases 2, 4 and 6. For both gauges, very good agreement 

between the experimental and numerical results is observed. Similar to Morgan and Zang (2011), 

the nonlinear wave transformation (such as obvious high-order wave components) during passage 

over the submerged bar is well captured by the OpenFOAM® model. It proves that the numerical 

model is able to accurately simulate the evolution of the wave fields over varying topography.       

  

 

Fig. 10. Comparison of the present results by OpenFOAM® (lines) and experimental data of 

Ohyama et al. (1995) (circles) for the free-surface elevations at Gauges 3 and 5 in Cases 2, 4 and 6 

 

5. Numerical results and discussion 

The validation investigations in the previous section illustrate that the present numerical wave 

tank can accurately reproduce the studied scenario of gap resonance between a fixed box and a 

vertical wall, and the numerical model is able to well simulate the wave transformation over uneven 

topography. They are further used to study the effects of the topographical variation on the fluid 

resonance in the narrow gap formed by the fixed box in front of the vertical wall under wave actions. 

As mentioned in Section 3, the plane slopes with S=0, 0.025, 0.050, 0.075, 0.100 and 0.113 and the 
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incident regular waves with H0=0.005m, 0.024 m, 0.050 m, 0.075 m and 0.100 m are considered 

herein (refer to Table 1). Numerical results include the amplification of the free-surface elevation in 

the narrow gap for all cases, and the variations of the fluid resonant frequency, the resonant wave 

height and the reflection coefficient under the gap-resonance condition with respect to the 

topographical slope and the incident wave height.   

 

 

Fig. 11. The amplification of the free-surface elevation in the gap excited by the incident regular 

waves with various wave heights. (a)-(e) correspond to H0=0.005 m, 0.024 m, 0.050 m, 0.075 m and 

0.100 m, respectively.    

 

Fig. 11 shows the amplification of the free-surface elevation inside the narrow gap induced by 

the incident regular waves with various wave heights. There are two obvious phenomena that can 

be intuitively observed from this figure. First, for all the incident wave heights considered in this 
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paper, the fluid resonant frequency inside the narrow gap always decreases with the increase of the 

topographical slope, S. Second, for each topography, the maximum wave amplification inside the 

gap gradually decreases as the incident wave height increases. These two phenomena and other more 

phenomena related to the fluid resonance in the gap will be revealed and analyzed in detail in the 

following.   

 

Fig. 12. The variation of the fluid resonant frequency, (kh)Hg, with respect to the topographical slope, 

S.  

 

In order to better present the first phenomenon shown in Fig. 11, the variation of the fluid 

resonant frequency, (kh)Hg, with respect to the topographical slope, S, is further presented in Fig. 12. 

It is seen that the fluid resonant frequency decreases monotonously with the topographical slope, 

and in general, the decreasing rate of the fluid resonant frequency is aggravated as the topographical 

slope increases. These findings are similar to those by Moradi et al. (2016) who conducted a series 

of two-dimensional numerical simulations to investigate the effect of water depth on resonance 

behavior of the fluid trapped between two side-by-side bodies, although the bottoms of the 

numerical tank employed in Moradi et al. (2016) are always flat and the variation of the water depth 

refers to its variation in the whole water domain. In the current study, the increase of the 

topographical slope results in the decrease of the local water depth beneath the gap. Hence, it can 

be further concluded that in shallow and transitional water regimes, only the reduction of the local 

water depth under the narrow gap can lead to the notable decease of the fluid resonant frequency, 

and it is not necessary to reduce the water depth in the whole water domain.  
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Fig. 13. The variation of the fluid resonant frequency, (kh)Hg, with respect to the incident wave 

height, H0.   

Table 3. Comparisons of the fluid resonant frequency, (kh)Hg, under the conditions of H0=0.005 m 

and 0.100 m for all the topographies considered in this paper. Ψ in the table denotes the declining 

rate of (kh)Hg when H0 increases from 0.005 m to 1.000 m.    

 0 0.025 0.050 0.075 0.100 0.113 

0.005 1.325 1.286 1.234 1.150 1.000 0.820 

0.100 1.260 1.235 1.200 1.000 0.850 0.700 

Ψ (%) 4.91 3.97 2.76 13.04 15.00 14.63 

 

By further observing Fig. 12, it can also be found that for all the topographies considered in 

this paper, the fluid resonant frequency is affected by the incident wave height as well, especially 

for the topographies with larger slopes. Fig. 13 shows the variations of the fluid resonant frequency, 

(kh)Hg, with respect to the incident wave height, H0. For all the topographies considered in this paper, 

the fluid resonant frequency exhibits different degrees of downward tendencies with the increase of 

the incident wave height. It can be seen that in general the declining degrees of the fluid resonant 

frequency for the topographies with smaller slopes are relatively small, while these for the 

topographies with larger slopes become much larger. To better illustrate this phenomenon, Table 3 

presents the quantitative comparisons of the fluid resonant frequencies under the conditions of 

H0=0.005 m and 0.100 m. When the incident wave height increases from 0.005 m to 0.100 m, for 

the topographies with S=0, 0.025 and 0.050, the declining rates of the fluid resonant frequencies are 

4.91%, 3.97% and 2.76%, respectively. While for the other three topographies with S=0.075, 0.100 

and 0.113, the declining rates of the fluid resonant frequencies reach up to 13.04%, 15.00% and 
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14.63%, respectively.   

The above findings are different from those by Feng and Bai (2015) who found that the fluid 

resonant frequency for the piston mode shifts slightly to a higher frequency as the wave steepness 

increases. This difference may be caused by the following two reasons. First, the configurations of 

the gap resonance problem are different in the present paper and in Feng and Bai (2015). In this 

paper, the narrow gap is formed by a box and a vertical wall; while in Feng and Bai (2015), the 

narrow gap was formed between two side-by-side three-dimensional barges. For the former, except 

that part of the wave energy is dissipated around the box and inside the gap, the incident waves can 

only be reflected from the box-wall system. For the latter, part of the incident wave energy can also 

be transmitted through the two barge system and be radiated from the two ends of the gap. Second, 

the numerical models employed in these two papers are different. A fully nonlinear potential flow 

model was employed in Feng and Bai (2015). As stated in the Introduction, the energy dissipation 

caused by the fluid viscosity, vortex shedding and turbulence cannot be considered in the context of 

the potential flow theory. On the contrary, the energy dissipation caused by them is automatically 

accounted for by the OpenFOAM® model used in this paper.        

 

 

Fig. 14. The variation of the amplification of resonant wave height, (Hg/H0)max, with respect to the 

topographical slope, S.   

 

Fig. 14 illustrates the variations of the amplification of resonant wave height, (Hg/H0)max, with 

respect to the topographical slope, S. It is seen that for all the incident wave heights considered in 

this paper, the amplification of resonant wave height presents a pattern of fluctuation with the 

topographical slope. This is different from the related finding in Moradi et al. (2016) who found that 

for a given body draft and gap width, the amplification of the resonant wave height gradually 
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increase with the decrease of the water depth. As mentioned above, in Moradi et al. (2016), the 

bottoms of the numerical tank employed in their study are always flat and the variation of the water 

depth refers to its variation in the whole water domain. While in the current study, the topographies 

with various slopes change the local water depth underneath the box and the gap. There are two 

different factors that jointly determine the amplification of resonant wave height inside the gap. On 

one hand, the shoaling effect of the incident waves over the plane slope tends to intensify the 

resonant wave height. On the other hand, due to the existence of the slope, the perpendicular distance 

from the lower right corner of the box to the bottom of the flume becomes small, which can hinder 

the transmission of the incident wave energy into the gap and decrease the resonant wave height. 

Hence, the fluctuation of the amplification of resonant wave height with the topographical slope 

shown in this figure is attributed to the combined effects of these two factors. It is noteworthy that 

for each incident wave height, the minimum value of (Hg/H0)max always occurs under the condition 

of S=0.113, where the local water depth in front of the vertical wall is hs=0.27 m. Comparing with 

the draft of the box d=0.25 m, it can be found that the perpendicular distance from the lower right 

corner of the box to the slope is extremely small (about 2.0 cm). Under this condition, obvious 

vortex shedding and flow separation near the box and inside the gap is expected, which results in 

significant energy dissipation.  

 

 

Fig. 15. The variation of the amplification of resonant wave height, (Hg/H0)max, with respect to the 

incident wave height, H0.   

Fig. 15 further presents the variation of the amplification of resonant wave height, (Hg/H0)max, 

with respect to the incident wave height, H0. For all the topographies studied in this paper, the 

amplification of resonant wave height decrease gradually with the increase of the incident wave 
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height. It is probably because in general the larger incident wave height results in larger wave 

reflection from the box-wall system (this will be shown in the following). The portion of the wave 

energy that transmits into the gap correspondingly decreases with the incident wave height. Hence, 

the amplification of resonant wave height inside the gap decreases as the incident wave height 

increases. Besides, it can also be seen that as the incident wave height increases, the decreasing rate 

of the amplification of resonant wave height gradually decreases. A possible reason for this will be 

presented in the following.       

 

Fig. 16. The variation of the resonant wave height, (Hg)max, with respect to the incident wave height, 

H0.   

 

If a train of incident waves has a large wave height and excites the fluid resonance inside the 

gap, the resonant fluid is expected to possess a very large free-surface elevation, which would 

probably result in wave overtopping on the ship deck or on the wharf. Hence, apart from the 

amplification of the resonant wave height discussed above, from the viewpoint of wave overtopping, 

it is also essential to further examine the resonant wave heights inside the narrow gap for all cases. 

Fig. 16 presents the variation of the resonant wave height, (Hg)max, with respect to the incident wave 

height, H0, under the conditions of various topographies. As expected, for all the topographies 

considered in this paper, the resonant wave height increases monotonously with the increase of the 

incident wave height. Besides, it is also seen that the resonant wave heights for the slope S=0.113 

are always less than those for the other four slopes. Hence, from the viewpoint of wave overtopping, 

the topography with S=0.113 is the safest seabed for all the incident wave heights. Moreover, it can 

also be found that when the incident wave height is relatively small (i.e., H0=0.005 m, 0.024 m and 
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0.050 m), the slope S=0.100 always results in the largest resonant wave height inside the gap. 

However, when the incident wave height becomes larger (i.e., H0=0.075 m and 0.100 m), the largest 

resonant wave height inside the gap always appears at the slope S=0.075. These indicate that from 

the viewpoint of wave overtopping, the topographies with S=0.100 and S=0.075 are the most 

dangerous seabeds for relatively small incident wave heights and for larger incident wave heights, 

respectively.  

    In order to demonstrate more hydrodynamic characteristics related to the gap resonance, the 

reflection coefficients of the box-wall system for all the cases in which the gap resonance occurs are 

further analyzed. Fig. 17 presents the variation of the reflection coefficient under the gap-resonance 

condition, Cr, with respect to the topographical slope, S. It is seen that similar to the amplification 

of resonant wave height shown in Fig. 14, the reflection coefficient under the gap-resonance 

condition also shows a pattern of fluctuation with the topographical slope. This fluctuation 

characteristic is mainly due to the reflection of the incident waves on the topography. Suh et al. 

(1997) investigated a train of regular waves propagating over plane slopes with different inclinations 

by using two time-dependent equations, and the reflection coefficient in front of these plane slopes 

was systematically analyzed. Obvious fluctuation of the reflection coefficient with respect to the 

topographical slope was found in their study. Subsequently, this finding was further confirmed by 

Madsen et al. (2006), Yao et al. (2012) and Gao et al. (2017; 2019b).  

 

 

Fig. 17. The variation of the reflection coefficient under the gap-resonance condition, Cr, with 

respect to the topographical slope, S.   
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Fig. 18. The variation of the reflection coefficient under the gap-resonance condition, Cr, with 

respect to incident wave height, H0. 

 

    Fig. 18 further shows the variation of the reflection coefficient under the gap-resonance 

condition, Cr, with respect to incident wave height, H0. It can be seen from this figure that the 

variation trend of the reflection coefficient with the incident wave height depends on the 

topographical slope. Specifically speaking, when the topographical slope is relatively small (i.e., 

S=0, 0.025 and 0.050), the value of Cr decreases slightly first and then increase remarkably with the 

increase of the incident wave height; while for the topographies with larger slopes (i.e., S=0.075, 

0.100 and 0.113), the former is shown to increase gradually with the increase of the latter. Moreover, 

it can also be observed that at the range of H0≥0.024 m, although the reflection coefficients for all 

the topographies increase with the incident wave height, all of their increasing rates gradually 

decrease as the incident wave height increases. It can be further inferred that the decreasing rate of 

the portion of the wave energy that transmits into the gap gradually decreases with the incident wave 

height, which probably explains the phenomenon shown in Fig. 15 that the decreasing rate of the 

amplification of resonant wave height gradually decreases with the incident wave height.        

 

6. Conclusions 

The CFD-based numerical model, OpenFOAM®, is employed to investigate the hydrodynamic 

behaviors of fluid resonance inside a narrow gap between a fixed box and a vertical wall induced 

by the incident regular waves with various wave heights. The “waves2Foam” toolbox, proposed by 

Jacobsen et al. (2012), is adopted to generate and absorb waves in the numerical wave tank. 

Compared to the previous investigations, the influences of the topographical variation on the gap 

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8
C

r

H0 (m)

 S=0

 S=0.025

 S=0.050

 S=0.075

 S=0.100

 S=0.113



25 

 

resonance are investigated for the first time in this paper. The capacities of the numerical model to 

accurately reproduce the gap resonance and the wave transformation over varying topography are 

firstly validated by using the experimental data of Tan et al. (2014) and Ohyama et al. (1995), 

respectively. Then, the effects of the topographical variation on the fluid resonance, including the 

fluid resonant frequency, the resonant wave height in the gap and the reflection coefficient from the 

box-wall system under the gap-resonance condition, are systematically investigated. The results of 

this study have provided new insights of the hydrodynamic characteristics involved in the fluid 

resonance inside the gap formed by large vessels berthing in front of wharfs.  

The following conclusions can be drawn from the results of the present study: 

1. For all the incident wave heights considered in this paper, the fluid resonant frequency, (kh)Hg, 

decreases monotonously with the topographical slope, and the decreasing rate of the fluid 

resonant frequency is aggravated as the topographical slope increases overall. Besides, for all 

the topographies studied in this paper, the fluid resonant frequency is also shown to gradually 

decrease with the incident wave height, and the decreasing degree depends on the topographical 

slope. For the topographies with smaller slopes (i.e., S=0, 0.025 and 0.050), the declining rate 

of the fluid resonant frequency is relatively small (2.76-4.91%); while for the topographies with 

larger slopes (i.e., S=0, 0.025 and 0.050), the declining rate of the fluid resonant frequency 

become significantly increased (up to 13.04-15.00%). 

2. For all the incident wave height considered in this paper, due to the influence of the wave 

transformation over the topography, the amplification of the resonant wave height, (Hg/H0)max, 

presents a pattern of fluctuation with the topographical slope. In addition, for all the 

topographies studied in this paper, the amplification of the resonant wave height decreases 

gradually with the increase of the incident wave height, and the declining rate of the former is 

also shown to gradually decrease with the increase of the latter. 

3. From the viewpoint of wave overtopping on the ship deck or on the wharf, the topography with 

S=0.113 is the safest seabed for all the incident wave heights considered in this paper. While 

the most dangerous topography depends on the incident wave height. The topographies with 

S=0.100 and S=0.075 are most dangerous for relatively small incident wave heights and for 

larger incident wave heights, respectively.   

4. The reflection coefficient under the gap-resonance condition is always shown to fluctuate with 
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respect to the topographical slope. Besides, the variation trend of the reflection coefficient with 

respect to the incident wave height also depends on the topographical slope. When the slope is 

relatively small (i.e., S=0, 0.025 and 0.050), the reflection coefficient decreases slightly first 

and then increase remarkably with the increase of the incident wave height; while for the 

topographies with larger slopes (i.e., S=0.075, 0.100 and 0.113), the former is shown to increase 

gradually with the latter.   

Finally, we reaffirm here that these conclusions are only valid for the given geometric layout 

(including the size and draft of the box, the gap width and the water depth) and the ranges of the 

incident wave height and the topographical slope studied in this paper. 
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