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Abstract 

The formation of primary olefins from dimethyl ether (DME) was studied over ZSM-5 catalysts 

at 300 °C using a novel step response methodology in a temporal analysis of products (TAP) 

reactor. For the first time, the TAP reactor framework was used to conduct single and multiple 

step response cycles of DME (balance argon) over a shallow bed with the continuous flow 

panel. Propylene is the major primary olefin and portrays an S-shaped profile with a preceding 

induction period when it is not observed in the gas phase. Methanol and water portray 

overshoot profiles due to their different rates of generation and consumption. DME effluent 

shows a rapid rise half-way to its steady state value leading to a slow rise thereafter because 

of its high desorption rates followed by subsequent reactions involving DME in further steps 

during the induction period. To analyse the experimental data quantitatively, nine reaction 

schemes were compared and kinetic parameters were obtained by solving a transient plug 

flow reactor model with coupled dispersion, convection, adsorption, desorption, and reaction 

steps. The methoxymethyl pathway involving dimethoxyethane and methyl propenyl ether 

gives the closest match to experimental data in agreement with recent DFT studies. Gaseous 

dispersion coefficients of ca. 10-9 m2 s-1 were obtained in the TAP reactor. The novel 

experimental data validated against the transient kinetic model suggest that after the formation 

of initial species, the bottleneck in propylene formation is the transformation of the initial C-C 

bond i.e. dimethoxyethane formed initially from DME and methoxymethyl groups. DME 

adsorption on ZSM-5 catalyst generates surface methoxy groups which further react with the 

feed to give methoxymethyl groups. These methoxymethyl groups are regenerated through a 

series of reactions involving intermediates such as dimethoxymethane and methyl propenyl 

ether before propylene formation.  

Keywords: induction period; hydrocarbon pool; dimethyl ether (DME); temporal analysis of 

products (TAP) reactor; ZSM-5 zeolite; transient kinetics; MTO; microkinetic model; step 

response; methanol  
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1. Introduction 

An increasing demand in added-value chemicals and their security as well as incentives 

to reduce the carbon footprint needed for their generation and utilisation make the conversion 

of methanol to hydrocarbons (MTH) a viable chemical process. Non-conventional feedstock 

(such as biomass or organic process waste) and highly abundant resources (such as coal) 

are used to produce methanol via gasification and syngas liquefaction, and can later be 

transformed to fuels and chemicals over zeolite catalysts (1).  

The production of hydrocarbons from methanol under steady-state conditions is regulated 

by a well-established “hydrocarbon pool” mechanism also known as the dual-cycle consisting 

of an olefin and aromatic cycle over ZSM-5 catalysts (2-6). The propagation of both cycles 

over the ZSM-5 catalyst is tunable depending on process conditions (7). Methanol conversion 

can be tuned towards light olefin production (MTO) at relatively high temperatures and low 

pressures (8-10).  

Methanol undergoes a rapid equilibration process over ZSM-5 catalysts leading to the 

formation of dimethyl ether (DME) and water (11). There exists a long-standing debate on the 

evolution of the key oxygenate i.e. methanol and/or DME into the steady-state hydrocarbon 

pool. The debate centres on: (a) the role of methanol and/or DME, (b) the primary olefin(s) 

formed and (c) the exact mechanism leading from the key oxygenate to the primary olefin(s).  

Various direct mechanisms have been proposed for the conversion of methanol/DME to 

primary olefins (12). These direct mechanisms are known by their intermediates and include 

oxonium ylide (13, 14), carbene (15), methane-formaldehyde (16, 17), carbon monoxide (18-

20), methoxymethyl (21, 22) and surface methoxy groups (23-26). Using density functional 

theory (DFT) calculations, Lesthaeghe et al. (27-29) refuted some direct mechanisms based 

on high activation energy barriers and highly unstable intermediates. Conversely, primary 

olefins were proposed to form indirectly from impurities (acetone, ethanol) in the methanol 

feed (30, 31). Hunger and co-workers (23, 24, 32) later observed that the quantity of impurities 

proposed is insufficient for olefin formation.  

Recently, there has been a surge in the evidence for the direct mechanisms leading to 

primary olefin formation (18, 19, 21, 22). Li et al. (22) gave evidence, using DFT calculations 

for the formation of propylene from methanol through methoxymethyl cations. In this pathway, 

1,2-dimethoxyethane or 2-methoxyethanol were proposed as key intermediates propagating 

the direct formation of propylene. Wei et al. (21) compared formation pathways involving 

methane-formaldehyde and methoxymethyl cations for initial C-C bond formation from 

methanol. They obtained that the most favourable methane-formaldehyde pathway involved 

the formation of 1,2-ethanediol as the primary C-C bond. Nonetheless, the methoxymethyl 

pathway was more kinetically and thermodynamically favourable. Liu et al. (18), Chowdhury 
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et al. (19, 20) and Plessow and Studt (33, 34) provided spectroscopic and theoretical evidence 

for a carbon monoxide mechanism. The formation of the first C-C bond (surface acetate group) 

was shown to involve a low activation barrier of 80 kJ mol-1.     

Although theoretical calculations have shown the feasibility of the direct pathway involving 

methoxymethyl cations for the direct formation of ethylene and propylene from methanol, there 

are no kinetic studies to experimentally validate these proposals. Moreover, there is no kinetic 

model developed on a microscale level to describe and predict the formation of primary olefins 

from oxygenates particularly in the induction period.  

Recently, we observed that higher temperatures are required to desorb DME in 

comparison to methanol providing evidence that DME stays longer on the catalysts (35) and 

is the key oxygenate. This was also evidenced by Liu et al. (18) and Wei et al. (21). In this 

paper, we investigate the induction period during the formation of primary olefins from DME at 

300 °C by conducting novel step response experiments in a temporal analysis of products 

(TAP) reactor. Nine reaction schemes obtained from literature (18-22) were compared and 

used as a basis for a microkinetic model. The experimental data was simulated to extract 

kinetic parameters that describe the formation of primary olefins from DME over fresh ZSM-5 

catalysts.  

 

2. Materials and methods  

2.1. Experimental 

The ammonium form of the fresh ZSM-5 catalyst with a Si/Al ratio of 25, purchased from 

Zeolyst International, has a crystallite size of 0.10 ± 0.02 µm and an average particle size of 

30 µm (35). The ZSM-5 catalysts were pressed, crushed, and sieved to obtain pellet sizes in 

the range of 250 – 500 µm. Anhydrous DME (99.999%) and argon (99.999%) were purchased 

from CK special gases Ltd. Experiments were conducted in a transient reactor suited for the 

temporal analysis of products under close to vacuum conditions. The TAP has three chambers 

in series: (a) the reactor chamber, (b) the differential chamber and (c) detector chamber. The 

reactor chamber contains a fixed-bed reactor, 6 mm O.D. (4 mm I.D.) and 40 mm long and 

has a cone-shaped inset for uniform radial distribution. The differential chamber acts as a 

cryogenic trap to eliminate scattered molecules reaching the detector chamber where the 

quadrupole mass spectrometer (QMS) is housed. The differential chamber works as a 

molecular beam. Gases were introduced through two continuous feeding valves into the 

reactor inlet. The pressure at the exit of the reactor chamber is maintained at 10-5 Pa while the 

pressure at the end of the differential chamber is 10-6 Pa and QMS is 10-7 Pa. The response 

of the QMS, placed in the detector chamber, was calibrated by passing continuous streams of 



5 
 

various gases (methanol, DME, ethylene, propylene, etc.) in argon over an inert quartz bed 

with particle diameters between 355 – 500 µm. The QMS was operated in a multiple ion 

detection (MID) mode monitoring a maximum of 10 products simultaneously. The low base 

pressure (10-7 Pa) in the detector chamber allows for high detection sensitivity necessary for 

quantitative analysis. The inert quartz bed used for calibration had the same length as the 

catalyst bed. The time required to reach steady state or to drop from steady state was fastest 

over the inert quartz bed.  

10 mg of NH4-ZSM-5 catalyst was initially decomposed in the TAP reactor chamber by 

heating it at 10 °C min-1 up to 450 °C, holding for 30 min before bringing the sample to 300 

°C. Background signal intensities were obtained. The catalyst was then subjected to a steady 

flow of argon at 10-8 mol s-1. Afterwards, the flow was instantaneously switched to a feed of 5 

vol% DME in argon (step-up) at a flow rate of ca. 4.40 × 10-8 mol s-1. At steady state, the inlet 

DME feed was instantaneously switched to a steady flow of argon (stopped-flow). Thus, a 

single step response cycle consists of three phases: step-up, steady-flow and stopped-flow. 

During the step response cycle, the effluent was monitored with the QMS. Single and multiple 

step response cycles were carried out.  

Flow rates of the inert feed were similar to step response feed and were about 10-8 mol 

s-1, with an inlet pressure of less than 1000 Pa (36). The active catalyst bed length was short 

(2 mm) compared to the overall bed length of 25 mm (consisting of quartz wool/quartz 

beads/active catalyst bed/quartz beads/quartz wool).  

A novel methodology was developed as described above where ZSM-5 catalysts packed 

in a shallow bed were subjected to step response of probe molecules under continuous flow. 

Here, the rate is proportional to the difference of inlet and outlet concentrations. As 

conversions increase when the TAP reactor is operated as a convective flow device, the level 

of non-uniformity increases. The extent of the non-uniformity is circumvented in our 

experiments due to the use of a shallow bed. The above methodology is different from the 

conventional diffusional flow TAP reactor where the rate is proportional to the difference of 

inlet and outlet gradient of concentrations (37). Our novel methodology was developed in the 

TAP reactor to alleviate intricacies associated with the MTH reaction. Olsbye et al. (38) 

highlighted, in their review, the complexities associated with separating active species and 

deactivating species during MTO reaction during atmospheric studies. Herein, we show that 

on multiple step response cycles, deactivation is negligible under TAP conditions. As the 

pressures used were lower than 1000 Pa, external mass transfer to the particle is negligible 

due to low gas densities which allow for the absence of a stagnant film around the particle in 

the TAP reactor. They are suppressed due to negligible intramolecular collisions under 

vacuum conditions (39). In a previous contribution (35), we also showed that the rates of 

methanol and DME adsorption and desorption are limiting compared to intra-particle mass 
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transport contributions. Below (section 4), we show that these rates compete with the rate of 

transformation of intermediates during the conversion of DME to primary olefins.  

Throughout all step response experiments, the temperature and the pressure were 

constant. The raw data (QMS ion currents) were corrected for background levels and 

fragmentation contributions for the different molecules and sensitivity factors according to 

section S1 of supplementary information.  

 

2.2. Modelling 

To obtain estimates of the kinetic parameters, the reactor performance was simulated. 

The outlet concentrations of methanol, DME, water, ethylene and propylene were estimated 

using the measured inlet conditions of DME and argon in a step function as boundary 

conditions. Rate parameters were estimated by comparing experiment to model. A one-zone 

plug flow reactor model was applied. Ideal plug flow was assumed initially due to high gas 

velocities of the feed expanding to vacuum in the reactor.  

Gas: 

𝜀𝑏

𝜕𝐶𝑖,𝑔

𝜕𝑡
= −𝑢

𝜕𝐶𝑖,𝑔

𝜕𝑧
− 𝛤𝑡𝑆𝑣(1 − 𝜀𝑏)𝑅𝑖,𝑔                                                                                                       (2.1) 

where Ri,g is the rate of transformation of species in the gaseous phase and is a function of 

the concentration (Ci,g) of specie i in the gaseous phase, mol m-3; 𝜀𝑏 is bed porosity; u is the 

superficial velocity, m s-1; z is the bed length, m; t is time, s; 𝛤𝑡 is the concentration of active 

sites per unit surface area of catalyst (mol mcat
-2) and Sv is the catalyst surface area per unit 

volume (mcat
-1). Model properties are given in table 1.  

Surface:  

𝜕𝜃𝑖

𝜕𝑡
= 𝑅𝑖,𝑠                                                                                                                                                             (2.2) 

where Ri,s is the rate of transformation of adsorbed species and a function of the surface 

coverage (θi,s) of specie i.  

Initial condition: t = 0, Ci,g = 0, θi = 0.  

Boundary condition: (at t>0, z=0), Cj (0, t) = f(t), j = DME, Ar 

The reactor model was solved in MATLAB (version R2016b) using the upwind scheme 

for solving the hyperbolic 1st order partial differential equation. Backward differencing was 

applied to the convection term in the PDE. To ensure numerical stability, the Courant-

Friedrichs-Lewy (CFL) condition (40) was satisfied: 

𝐶𝐹𝐿 = |𝑎
Δ𝑡

Δ𝑧
| ≤ 1                                                                                                                                               (2.3)   

where a = u/εb. 
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Thereafter, the influence of dispersion was simulated by solving a modification of equation 2.1 

for a non-ideal PFR:  

𝜀𝑏

𝜕𝐶𝑖,𝑔

𝜕𝑡
= 𝐷𝑖,𝑒

𝜕2𝐶𝑖,𝑔

𝜕𝑧2
− 𝑢

𝜕𝐶𝑖,𝑔

𝜕𝑧
− 𝛤𝑡𝑆𝑣(1 − 𝜀𝑏)𝑅𝑖,𝑔                                                                                  (2.4) 

where Di,e is the dispersion coefficient. The broader term dispersion coefficient is used 

although diffusion may be the main contributor here. Such differentiation cannot be extracted 

from our experimental data.  

The Danckwerts boundary conditions (41) were applied to solving equation 2.4 for DME and 

argon:  

𝐶𝑖,0 = 𝐶𝑖(0+) −
𝐷𝑖

𝑢

𝑑𝐶𝑖(0+)

𝑑𝑧
                                                                                                                            (2.5) 

𝑑𝐶𝑖(1−)

𝑑𝑧
= 0                                                                                                                                                        (2.6) 

The sum of square error (SSE) between experiment and model was obtained according to 

(42, 43):  

𝑆𝑆𝐸 = ∑ ∑ 𝑤𝑛,𝑚(𝑌𝑛,𝑚
𝑜𝑏𝑠 − 𝑌𝑛,𝑚

𝑐𝑎𝑙)
2

→ 𝑚𝑖𝑛

𝑁𝑑

𝑚=1

                                                                                              (2.7)

𝑁𝑐

𝑛=1

 

where:  
n component number;  
m    observation number;  
Nc    total number of components;  
Nd    total number of observations;  
wn,m weighting factor of the m-th observation of component n.  
Yobs  experimental data 
Ycal  model data 

 
Table 1: Catalyst and reactor properties used in the kinetic model  

Parameter Value Unit 

Active bed length 2  mm 

Overall bed length 25  mm 

Si/Al ratio 25 - 

Brønsted acid site density 356  µmol g-1 

BET surface area 413  m2 g-1 

𝛤𝑡 0.862  µmol mcat
-2 

εb 0.5 - 

𝑆𝑣 2.0 × 105  mcat
-1 

Velocity, u 0.25  mm s-1 

* Brønsted acid site density and BET surface area are obtained from a previous 
communication (35) 
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Furthermore, to assess the sensitivity coefficients, the initial rate constants of each 

elementary step was multiplied by perturbation factors while other rate constants were kept 

constant. The relative changes in the sum of square error between the experimental and 

model were obtained with or without the perturbation factor. Subsequently, the sensitivity 

coefficient was obtained according to: 

𝐾𝑠 =
ln (𝑌𝑝/𝑌𝑜)

ln(𝐹)
                                                                                                                                                 (2.8) 

where Yp and Yo are the SSE values with or without the perturbation factor and F is the 

perturbation factor.  

The initial parameter estimates were improved greatly by reducing the sum of squares 

error between model and experiment. Parameter optimisation through the minimisation of the 

sum of square error using an “fminsearch” function was implemented in MATLAB. The 

“fminsearch” function uses a Nelder-Mead simplex algorithm as described by Lagarias et al. 

(44). Nine reaction schemes involving methoxymethyl groups, methane-formaldehyde and 

carbon monoxide intermediates were compared.  

 

3. Results 

Firstly, it was important to establish the full range of gaseous species obtained at steady-

state. As shown in Fig. 1, no substantial gaseous products greater than an m/z ratio of 56 was 

observed.  
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Fig. 1: Full spectrum of gaseous species at steady-state formed after a step response of 5 
vol% DME (balance argon) over ZSM-5 (25) catalysts at 300 °C. Argon signals at m/z=20 and 
40 have been removed for better clarity.   

 

Propylene (m/z= 41) is the major olefin produced at 300 °C over ZSM-5 catalysts (Figs 

1 & 2). The formation of propylene follows an S-shaped profile with a 44-min induction period. 

The S-shaped propylene profile is caused mainly by the formation of a series of stable 

intermediates (45, 46) during the induction period leading to the hydrocarbon pool chemistry 

at steady-state.  
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Fig. 2: Step response of 5 vol% DME at 300 °C over 10 mg of ZSM-5 (25) catalysts. Total 
molar flow rate (5 vol% DME, balance Ar) at STP = 4.4 × 10-8 mol s-1. Steady state conversion 
is 34.8% 

 
During the induction period of propylene formation, water is generated and released into 

the gas phase and consumed until steady-state effluent values are reached resulting in a stark 

overshoot profile. Methanol effluent mirrors this overshoot behaviour although its features are 

much subtler. DME effluent rises in two stages: rapidly at the beginning and then slowly until 

it reaches steady state. All effluent species attain steady-state at the same time. Steady-state 

conversion of DME into hydrocarbons is 34.8%.  

After steady molar flowrates of all effluent species were achieved at 300 °C, the catalyst 

was purged by a flow of argon for 20 min (i.e. after 80 min time on stream in Fig. 2). 

Subsequently, a second step response cycle of 5 vol% DME was passed over the ZSM-5 

catalyst at ca. 100 min. As shown in Fig. 2, the initial induction time of propylene effluent 

observed in the first step response cycle was eliminated. The steady flow of propylene effluent, 

which follows an S-shaped profile, shows that no deactivation of the catalyst had occurred 

over the timescale of this experiment at 300 °C. Also, there is no overshoot in the water effluent 

on subsequent step response cycles. The DME effluent rises immediately in the second and 

subsequent cycles in comparison to its slower pace in the first cycle. 

Nine reaction schemes were compared to explain the induction period observed. These 

nine reaction schemes are based on the methane-formaldehyde, methoxymethyl and carbon 
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monoxide pathways. Three routes were analysed for the methane-formaldehyde pathway 

leading to ethanol (P1), 1,2-ethanediol (P2) and  2-methoxyethanol (P3) as the initial C-C bond 

(21). Two further routes were analysed that involved the formation of carbon monoxide without 

Brønsted acid sites (P4) according to the work of Liu et al. (18) or with Brønsted acid sites 

(P5) according to the work of Plessow and Studt (33) and Anderson and Klinowski (47). Three 

conventional routes resulting in the formation of the initial C-C bond from the reaction of 

methoxymethyl groups with methane, methanol and DME leading to ethyl methyl ether (P6), 

2-methoxyethanol (P7) and dimethoxyethane (P8) respectively were analysed. A further route 

was analysed according to the work of Hoang et al. (48) that involves the conversion of 

dimethoxyethane to methyl propenyl ether which subsequently breaks down to propanal. 

Propanal forms dimers and trimers and leads to trimethylbenzene, thus initiating the aromatic 

cycle before ethylene and propylene formation via the aromatic dealkylation chemistry (P9). 

All reaction mechanisms are given in section S2 of the supplementary information. Finally, the 

effect of dispersion on the P8 route was analysed.  

The experimental data was modelled initially using an ideal plug flow reactor model with 

the various reaction schemes described (table 2). Initial estimates were obtained by comparing 

experimental data to each model. Parameter optimization was then carried out alongside 

sensitivity analysis as described in section 2.2 above. The influence of dispersion was then 

modelled, although the relative proportions between kinetic parameters stayed constant as 

observed without dispersion.  

 

Table 2: Comparison of different pathways for primary olefin formation from dimethyl ether  

Code Pathway Initial C-C bond SSE (× 10-11) 

P1 

Methane-formaldehyde 

Ethanol 2.76 

P2 1,2-ethanediol 2.74 

P3 2-methoxyethanol 3.21 

P4 

Carbon monoxide 

Surface acetate^ 7.00 

P5 Surface acetate
+ 11.9 

P6 

Methoxymethyl 

Ethyl methyl ether  2.41 

P7 2-methoxyethanol 2.34 

P8 Dimethoxyethane& 2.27 

P9 Dimethoxyethane# 5.83 

^ - carbon monoxide forms in the gas phase 
+ - carbon monoxide forms in the presence of Brønsted acid sites  
& - pathway involving secondary oxygenates (dimethoxyethane) leading to primary olefins  
# - pathway involving secondary oxygenates and an aromatic cycle leading to primary olefins 
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* Reaction schemes for P1-P7 and P9 are given in section S2 of the supplementary 
information. Optimised parameters from P2 and P5 are given in section S2 in comparison with 
P8 given below.  
 

4. Discussion 

The debate on the formation of primary olefins is focused on advancing understanding on 

the mechanism through which the key oxygenate transforms during the induction period. This 

contribution is focused on the chemical kinetics of DME transformation to primary olefin(s) at 

low pressures in the TAP reactor at 300 °C. A focus on the chemical kinetics would help 

elucidate the major bottlenecks involved in primary olefin formation from DME. Ultimately this 

study fits within the larger framework of quantitatively describing the evolution of the 

hydrocarbon pool that subsequently regulates product distribution over zeolite and zeotype 

catalysts at steady-state.  

The methane-formaldehyde (16, 17, 29), carbon monoxide (18-20, 33, 34, 47, 49) and 

methoxymethyl (21, 22) pathways are competing pathways for the direct formation of primary 

olefins. The first route (P1) following methane and formaldehyde intermediates lead to the 

formation of ethanol as the initial C-C bond. Ethanol decomposes over ZSM-5 catalysts 

leading to ethylene as the primary olefin. Ethylene is then methylated by surface methoxy 

groups to propylene which is observed. This route has been previously suggested to be 

unfavourable due to the very slow reaction rates for the conversion of methane and 

formaldehyde to ethanol (29). Yamazaki et al. (50) further showed that the methylation of 

ethylene to produce propylene occurs at a far slower rate compared to the reaction of DME 

with surface methoxy groups. Low reaction rates leading to the formation of ethanol as well 

as negligible rates of the formation of propylene from ethylene and surface methoxy groups 

lead to the unfavorability of this reaction pathway.  

The route leading to the formation of 1,2-ethanediol (P2) is the most favourable methane-

formaldehyde pathway following DFT studies (21). The lowest SSE is observed in this route 

compared to other routes involving methane-formaldehyde intermediates. Double methylation 

of 1,2-ethanediol leads to the formation of dimethoxyethane which leads to ethylene and 

propylene formation on decomposition on the ZSM-5 catalysts. A lower agreement is observed 

for the generation of 2-methoxyethanol (P3) as the initial C-C bond compared to 1,2-ethanediol 

(P2) from the methane-formaldehyde pathway. This is due to the faster rate of formation of 

the first C-C bond from the reaction of methanol with adsorbed formaldehyde. The rate of 

formation of 1,2-ethanediol exceeds 2-methoxyethanol formation by a factor of 5.     

Carbon monoxide in pathways P4 and P5 involving surface acetate groups have the effect 

of reducing the induction time required to form propylene. Carbon monoxide functions as a 

co-catalyst (33, 34) as the predicted induction time is a factor of 10 times lower than the 
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observed induction period leading to a high sum of squares error (SSE). The relative mismatch 

could be due to its negligible contribution at low pressures.  

Methoxymethyl pathways are the most thermodynamically and kinetically favourable (21) 

and as a result have the better agreement amongst the three pathways to experimental data. 

The route involving dimethoxyethane (P8) shows the best agreement to experimental data 

given its low SSE and relatively high induction time prediction (Fig. 3). The reaction scheme 

is given below as:  

 

𝐶𝐻3𝑂𝐶𝐻3 + 𝐻𝑍 ⇌ 𝐶𝐻3 ∙ 𝑍 + 𝐶𝐻3𝑂𝐻                                                                                                      (𝑃8.1) 

𝐶𝐻3𝑂𝐻 + 𝐻𝑍 ⇌ 𝐶𝐻3 ∙ 𝑍 + 𝐻2𝑂                                                                                                                 (𝑃8.2) 

𝐻2𝑂 + 𝐻𝑍 ⇌ 𝐻2𝑂 ∙ 𝐻𝑍                                                                                                                                 (𝑃8.3) 

𝐶𝐻3 ∙ 𝑍 + 𝐶𝐻3𝑂𝐻 ⇌ 𝐶𝐻3𝑂𝐶𝐻3 ∙ 𝐻𝑍                                                                                                         (𝑃8.4) 

𝐶𝐻3 ∙ 𝑍 + 𝐶𝐻3𝑂𝐶𝐻3 → 𝐶𝐻3𝑂𝐶𝐻2 ∙ 𝑍 + 𝐶𝐻4                                                                                           (𝑃8.5) 

𝐶𝐻3𝑂𝐶𝐻2 ∙ 𝑍 + 𝐶𝐻3𝑂𝐶𝐻3 → 𝐶𝐻3𝑂𝐶𝐻2𝐶𝐻2𝑂𝐶𝐻3 ∙ 𝐻𝑍                                                                       (𝑃8.6) 

𝐶𝐻3𝑂𝐶𝐻2𝐶𝐻2𝑂𝐶𝐻3 ∙ 𝐻𝑍 → 𝐶𝐻3𝐶𝐻𝐶𝐻𝑂𝐶𝐻3 ∙ 𝐻𝑍 + 𝐻2𝑂                                                                  (𝑃8.7) 

𝐶𝐻3𝐶𝐻𝐶𝐻𝑂𝐶𝐻3 + 𝐻𝑍 ⇌ 𝐶𝐻3𝐶𝐻𝐶𝐻𝑂𝐶𝐻3 ∙ 𝐻𝑍                                                                                    (𝑃8.8) 

𝐶𝐻3𝐶𝐻𝐶𝐻𝑂𝐶𝐻3 + 𝐶𝐻3 ∙ 𝑍 → 𝐶3𝐻6 + 𝐶𝐻3𝑂𝐶𝐻2 ∙ 𝑍                                                                             (𝑃8.9) 

 

In this scheme, steps P8.if and P8.ib refer to the forward and backward reaction of P8.i 

respectively. A comparison of experimental data and simulations using initial estimated 

parameters is given in Fig. S3_P8 (see section S3 of the supplementary information).  
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Fig. 3: Step response of DME over ZSM-5 catalysts at 300 °C using optimised parameters 

 

The dissociative adsorption, and desorption of DME, methanol and water as well as the 

reaction of surface methoxy groups and methanol govern their initial release into the gas 

phase and the early concentrations of methoxy groups on the catalyst surface. The desorption 

of DME is much faster than its adsorption and the desorption of methanol is faster than its 

adsorption. DME desorption is faster than methanol desorption under reactive conditions 

(table 3). Gaseous DME reacts with surface methoxy groups and methoxy methyl groups in 

reaction steps P8.5 and P8.6 to produce methoxymethyl groups and dimethoxyethane 

respectively. The higher reverse dissociation rate of gaseous DME (step P8.1) on the active 

site is necessary to supply its gaseous form needed for reactions later (steps P8.5 and P8.6) 

during the induction period. In Fig. 3, DME effluent reaches steady state slowly following an 

initial rapid rise. The initial rapid rise is due to a fast-backward rate constant in step P8.1 

leading to large releases of DME into the gas phase. The slower rate of rise following 

afterwards is due to the reactions involving DME in steps P8.5 and P8.6 later during the 

induction period. Alternatively, it could be due to DME saturation on the active sites ZSM-5 

catalyst if molecular adsorption is considered. A better fit has been obtained with dissociative 

adsorption, however.  
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Table 3: Parameters for the conversion of DME to propylene over ZSM-5 catalysts in a TAP 
reactor* 

Parameters 
Initial 
estimates 
(ideal PFR) 

Optimised 
values (ideal 
PFR) 

Values (non-
ideal PFR) 

Unit 

k1f 0.00045 0.000421  Pa-1 s-1 

k1b 5.2 4.27  Pa-1 s-1 
k2f 0.00182 0.00253  Pa-1 s-1 
k2b 0.1010 0.468  Pa-1 s-1 
k3f 0.0003 0.000142  Pa-1 s-1 
k3b 50 152  s-1 

k4f 0.00028 7.85e-8  Pa-1 s-1 

k4b 1.7 0.215  s-1 

k5f 0.02 0.028  Pa-1 s-1 
k6f 0.5 0.469  Pa-1 s-1 
k7f 0.129 0.0973  s-1 

k8f 0.00375 0.00878  Pa-1 s-1 
k8b 812.5 1.24  s-1 

k9f 125 10.5  Pa-1 s-1 

*kif and kib refer to forward and backward rate constant of reaction step P8.i.   
 

Surface methoxy groups are generated early in the induction period and consumed later 

leading to the formation of intermediates and propylene. Slow generation of surface methoxy 

groups occurs given the dissociation rates of DME and methanol in reaction steps P8.1f and 

P8.2f respectively. Surface methoxy groups are also slowly consumed leading to the formation 

of adsorbed DME (step P8.4f) and generation of methoxymethyl groups (step P8.5f). However, 

they are rapidly consumed in step P8.9f leading to the formation of propylene.  

Water effluent portrays an overshoot profile with time on stream. The water effluent is 

controlled by its molecular adsorption and desorption (step P8.3) and the dissociative 

adsorption and desorption of methanol (step P8.2) and the formation of methyl propenyl ether 

from dimethoxyethane (step P8.7). Methanol adsorption and desorption leads to little 

concentrations of water in the gas phase (step P8.2). Once formed, water remains mostly in 

the gas phase (step P8.3). Step P8.7f shows a large reaction rate constant for water formation 

from dimethoxyethane. Although water is rapidly produced in step P8.7f and rapidly desorbed 

in step P8.3b, it reacts rapidly with surface methoxy groups to give methanol in step P8.2b. 

Thus, the overshoot in water effluent is due to the competing dynamics governing its formation 

and consumption during the induction period.    

Gaseous methanol effluent is affected by the early reactions (steps P8.1, P8.2 and P8.4). 

Desorption rates greater than adsorption rates in steps P8.1 and P8.2 lead to a slow release 

of methanol in the gas phase. In step P8.4f, methanol is slowly consumed, although the rate 

of reaction is slower than its nominal formation rate in steps P8.1f and P8.2b. Thus, small 

concentrations of methanol are generated in steps P8.1 and P8.2, which are slowly consumed 

in step P8.4 during the induction period. The difference between the rates of methanol 
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formation and consumption is responsible for its slight overshoot depicted in Fig. 3.  Methanol 

overshoot effectively mirrors water overshoot except that its features are subtler. This is 

probably due to reaction step P8.2. connecting methanol, water and surface methoxy groups.  

Propylene is formed very rapidly (step P8.9f) from the initial species (methanol, DME, 

water, surface methoxy groups, methoxymethyl groups) through a series of intermediates 

(dimethoxyethane and methyl propenyl ether). Both intermediates are readily available in the 

pores of the ZSM-5 catalyst and in the gas phase due to high desorption rates respectively. 

After the formation of initial species (methanol, DME, water, surface methoxy groups and 

methoxymethyl groups), the bottleneck in propylene formation which is also a very important 

step according to the sensitivity analysis (Fig. 4) is the transformation of dimethoxyethane 

(step P8.7) formed initially from DME and methoxymethyl groups (step P8.6). 

 

Fig. 4: Sensitivity analysis for elementary steps involved in the formation of propylene from 
DME over ZSM-5 catalysts at 300 °C 

 

Kobayashi (45, 46) observed that an S-shaped profile observed during the induction 

period is due to the slow transformation of several stable intermediates. Hoang et al. (48) 

proposed reaction pathways that looked at the formation of dimers and trimers of aldehydes 

leading to aromatics formation which consequently dealkylate to give primary olefins. We 

modelled this pathway (P9) allowing for the formation of secondary oxygenates and aromatics 

before primary olefin formation. We observed that to obtain the detected propylene selectivity, 

the transformation rates between secondary oxygenates and aromatics must be rapid. The 
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high rates of transformation, however lead to lower induction times. The induction times are 

accurately predicted only at low rates of dimer and trimer transformation but leading to lower 

propylene selectivities than those observed. Based on the pathway giving the lowest sum of 

squares error, the dimethoxymethane route of the methoxymethyl pathway, as suggested by 

Fan and co-workers (21, 22) gives the closest agreement to experimental data.  

The inclusion of the steady-state hydrocarbon pool chemistry along with the induction 

period chemistry (as investigated in this paper) would lead to a full description of the S-shaped 

propylene profile observed. It is beyond the scope here to investigate the effect of the 

hydrocarbon pool chemistry on the S-shaped propylene profile and indeed there are already 

collections of review articles (7, 12) on this topic. As soon as the primary olefin is formed in 

the induction period, olefin methylation, oligomerisation and cracking, and hydrogen transfer 

and cyclisation as well as aromatic methylation and dealkylation chemistries regulate steady-

state conversion of initial oxygenates (methanol, DME) to hydrocarbons. Nonetheless, in this 

article, we have provided mechanistic insights on the challenges of the chemistries occurring 

only during the induction period.  

Yablonsky et al. (51) proposed a reactive mixing index analysis (REMI) function for 

diagnostics of the hydrodynamic regime during ideal and non-ideal flow of pulse inputs into 

the TAP reactor. The REMI criterion for the characterization of the mixing quality in a catalytic 

reactor which, initially at steady-state, is perturbed by small pulses of a chemical reactant. 

CSTR, ideal PFR and non-ideal PFR were considered. In our analysis, step response has 

been carried out using the continuous feeding valves of the TAP reactor over a shallow bed 

hence representing the non-ideal PFR as convection and dispersion effects were considered. 

The effects of dispersion were modelled using equation 2.4 and dispersion coefficients were 

of the order of ca. 10-9 m2 s-1. The trend observed in rate constants without dispersion effects 

were the same as those when dispersion was included in the model. 

 

5. Conclusions 

The formation of primary olefins from dimethyl ether (DME) has been studied over ZSM-

5 catalyst using a novel step response methodology in a temporal analysis of products (TAP) 

reactor. Propylene is the major olefin formed at 300 °C and portrays an S-shaped profile. 

Overshoot profiles are depicted by methanol and water with time on stream. DME effluent 

reaches its steady state flowrate in two phases: rapidly up until half its steady-state value and 

then slowly. The results were explained using a transient kinetic model that considers 

dispersion, convection, adsorption, desorption and reaction for step response cycles applied 

to ZSM-5 catalysts in a shallow bed packing configuration. Nine reaction schemes were tested 

using recent density functional theory studies.  The methoxymethyl pathway involving 
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dimethoxyethane as the first C-C bond gives the closest agreement to experiment. After the 

formation of primary products (methanol, water, surface methoxy groups, methoxymethyl 

groups and methane) from DME, the transformation of the first C-C bond (reaction of 

methoxymethyl group with DME to give dimethoxyethane) represents the major bottleneck in 

propylene formation over ZSM-5 catalysts. 
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