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Abstract10

Floating structures are widely used for vessels, offshore platforms, and recently considered

for deep water floating offshore wind system and wave energy devices. However, modelling

complex wave interactions with floating structures, particularly under extreme conditions,

remains an important challenge. Following the three-dimensional (3D) parallel particle-in-

cell (PIC) model developed for simulating wave interaction with fixed bodies, this paper

further extends the methodology and develops a new 3D parallel PIC model for applications

to floating bodies. The PIC model uses both Lagrangian particles and Eulerian grid to solve

the incompressible Navier-Stokes equations, attempting to combine both the Lagrangian

flexibility for handling large free-surface deformations and Eulerian efficiency in terms of

CPU cost. The wave-structure interaction is resolved via inclusion of a Cartesian cut cell

method based two-way strong fluid-solid coupling algorithm that is both stable and efficient.

The numerical model is validated against 3D experiments of focused wave interaction with

a floating moored buoy. Good agreement between the numerical and experimental results

has been achieved for the motion of the buoy and the mooring force. Additionally, the

PIC model achieves a CPU efficiency of the same magnitude as that of the state-of-the-art

OpenFOAM® model for an extreme wave-structure interaction scenario.
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1. Introduction13

In the past few decades, computational fluid dynamics (CFD) methods have become more14

and more popular within the ocean engineering field. Typical examples are the grid-based15

Eulerian model such as OpenFOAM® and the particle-based Lagrangian model such as the16

smoothed particle hydrodynamics (SPH) method based SPHysics. While the former models17

are relatively efficient due to the use of a fixed grid, the latter solvers are more suitable18

for handling large free-surface deformations via using particles. In an attempt to combine19

the advantages of Eulerian and Lagrangian methods, the Particle-In-Cell (PIC) method was20

invented through a combined use of particles and grid (Harlow, 1955, 1964). Typically, the21

particles are used to solve the transport terms and track the free-surface position, while the22

gird is employed for solving the non-advection terms. Thus, it is possible to achieve both23

Lagrangian flexibilities and Eulerian efficiency in the PIC framework. However, sophisticated24

schemes must be developed for the interaction between the fixed grid and the scattered25

particles in order to drive the computation and maintain numerical accuracy and stability.26

The early versions of the PIC method are successful, see e.g. Harlow (1964), but have a few27

drawbacks such as high numerical dissipation, low accuracy and demanding memory storage28

requirement. Later, many attempts have been made to improve this method (see Brackbill29

and Ruppel (1986); Brackbill et al. (1988); Nishiguchi and Yabe (1982, 1983)). More recently,30

high-order PIC variations have become possible (see Edwards and Bridson (2012), Maljaars31

et al. (2018) and Wang and Kelly (2018)). However, so far this hybrid method has not been32

very well exploited for use in the ocean engineering field, where modelling complex wave-33

structure interaction with computational efficiency still remains an important challenge.34

Early attempts of developing a PIC method based numerical model for modelling wave-35

structure interaction processes in the coastal and offshore environment can be found in Kelly36

(2012); Kelly et al. (2015); Chen et al. (2016a,b, 2017, 2018). These studies nevertheless have37

shown great potential of the PIC method in becoming a high quality CFD tool. In particular,38

Chen et al. (2016b) developed a Cartesian cut cell method based two-way strong fluid-solid39

coupling algorithm for wave interaction with floating bodies in their two-dimensional (2D)40

PIC framework. The key point of this coupling methodology is that the velocity of the41

rigid floating body has been implicitly represented by the pressure in cells immediately42

surrounding the solid. Thus, any implicit calculations of the velocity fluxes along the solid43

surface required by the cut cell method can be integrated into the procedure for solving a44

suitably amended pressure Poisson equation (PPE). This makes the proposed scheme both45

stable and efficient, as no iterations are needed when dealing with wave interaction with46
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freely moving structures. Very recently, Chen et al. (2018) extended the PIC model of Chen47

et al. (2016b) to three spatial dimensions, and parallelised the model using the domain48

decomposition based Message Passing Interface (MPI) approach. Nevertheless, they only49

managed to apply the three-dimensional (3D) parallel PIC solver to wave interaction with50

fixed or motion prescribed structures.51

Cut cell method has been widely employed in CFD modelling as an alternative to the52

traditional structured or unstructured body-fitted grid. Instead of having to regenerate the53

body-fitted grid as the boundary moves, the cut cell method uses the boundary segment54

to intersect with a stationary background grid, leading to simply different cut cells that55

are composed of the boundary segment and grid cell segments to represent the boundary56

surface. Yang et al. (1997) developed a Cartesian cut cell method applicable to compressible57

flows around static and moving bodies. Causon et al. (2000, 2001) proposed a Cartesian58

cut cell method for shallow water flows involving fixed and moving boundaries. Qian et al.59

(2006) later employed the cut cell method developed in the aforementioned papers to their60

two-fluid solver involving fluid interaction with moving solids. While in the aforementioned61

papers the cut cell method is developed in a collocated Cartesian grid environment, Ng et al.62

(2009) proposed a cut cell method within a staggered grid arrangement for fluid interaction63

with fixed and motion prescribed structures. Later, their cut cell approach was developed64

by Chen et al. (2016b) to simulate 2D freely moving structures as mentioned above. In this65

paper, the cut cell approach of Chen et al. (2016b) is further extended to model 3D floating66

bodies.67

In the open literature, investigations on wave interaction with floating bodies have been68

carried out extensively using various numerical models and physical experiments. Physical69

experimental data is required to validate the numerical models, which in turn can help se-70

lect experimental conditions and reduce the cost of physical modelling studies. Hann et al.71

(2015) experimentally studied focused wave interaction with a simplified wave energy con-72

verter (WEC), consisting of a free-floating buoy and a mooring system that encourages the73

occurrence of extreme snatch load. Ransley et al. (2017b) simulated regular wave interaction74

with a freely-pitching, 1:10 scale model of the Wavestar using OpenFOAM® and successfully75

reproduced the fully coupled motion of the device. Using the same OpenFOAM® model,76

Ransley et al. (2017a) studied focused wave interaction with the simplified WEC presented77

in Hann et al. (2015), with an alternative mooring system that does not encounter snatch78

loads. Their OpenFOAM® model well reproduced the motion of the buoy and mooring load79

measured in physical experiments. Omidvar et al. (2013) applied the SPH method with vari-80
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able mass distribution to a single heaving-float WEC, known as the ‘Manchester Bobber’,81

in extreme waves and compared the results with experiments in a wave tank. Lind et al.82

(2016) simulated the experiment of Hann et al. (2015) using SPH with the Froude-Krylov83

approximation. Their SPH model well reproduces the snatch and non-snatch mooring load84

in non-breaking waves, but predicts the snatch mooring load less accurately in breaking85

waves. Gunn et al. (2018) investigated regular wave interaction with a floating moored86

spherical buoy also using the SPH method and provided experimental data for validation.87

Their numerical results based on the SPH method are very promising and compare well with88

the experimental measurements of the motion of the buoy. These studies provide useful data89

for validating other computational methods.90

In this paper we further extend the 3D parallel PIC model proposed in Chen et al.91

(2018) to simulate wave interaction with floating bodies using the fluid-solid coupling algo-92

rithm proposed in Chen et al. (2016b). In particular, as there is still a lack of confidence93

in the capability of numerical models on handling extreme wave events and their interac-94

tion with floating structures (Ransley et al., 2017a), physical experiments of focused wave95

interaction with a moored floating buoy, encountering both snatch and non-snatch mooring96

load, are used to validate the present numerical model. We show that the newly developed97

3D parallel PIC solver is capable of modelling extreme wave interaction with floating bodies98

both accurately and efficiently.99

The paper is organised as follows: Section 2 gives an overview of the current PIC model100

including the governing equations and major numerical implementations. Next, in Section 3101

the numerical model is validated against an existing experiment of focused wave interaction102

with a moored floating buoy. Finally, in Section 4 conclusions are drawn.103

2. Numerical Model104

2.1. Governing equations105

The present PIC model solves the incompressible Newtonian Navier-Stokes equations for106

single-phase flow:107

∇·u = 0, (1)

108

∂u

∂t
+ (u · ∇)u = f − 1

ρ
∇p+ ν∇2u, (2)

where, in 3D, u = [u, v, w]T is the velocity field; f = [0.0,0.0,-9.81 m/s2]T represents the109

body force due to gravity; p is pressure; t is time, and ν and ρ are the kinematic viscosity and110
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density of the fluid respectively. Both a set of particles and a underlying grid are employed to111

discretise the computational domain. Following Harlow and Welch (1965), a staggered grid112

is used where pressures are computed at cell centres, whose positions along the x-, y- and113

z-directions are labelled by the indices i, j and k respectively, and velocities are calculated114

at the centres of relevant cell faces, whose positions are numbered with half-integer values of115

the indices. Fig. 1 shows a schematic of the computational setup, where both the staggered116

grid and the fluid particles are sketched. The particles carry the fluid properties such as117

the mass and momentum, and are used to solve the nonlinear advection term (the second118

term on the left hand side (LHS) of Eq. 2) in a Lagrangian manner and hence track the119

configuration of the fluid including the free-surface position, while the underlying grid is120

employed solely for computational convenience for solving the non-advection terms in an121

Eulerian sense. Initially, eight particles are seeded in each cubic cell accommodating the122

fluid area, and as the simulation progresses cells occupied by the particles are marked as123

fluid cells.124

Two main steps are used to solve the governing equations, and they are an Eulerian step125

and a Lagrangian step. First, in the Eulerian step the governing equations are solved on126

the grid with the nonlinear advection term being ignored. Then, in the Lagrangian step the127

solution on the grid including a divergence-free velocity field and an acceleration field are128

used to update the velocity field carried by the particles, and the remaining advection term129

is solved by moving the particles in a Lagrangian manner. The fluid-structure interaction is130

resolved during the Eulerian step and the velocity and position of the structure are advanced131

during the Lagrangian step. It is noted that no turbulence models are incorporated in the132

present numerical model, thus the test case used for validation study in Section 3 is carefully133

selected. For full details of the solution procedure, the interested reader is referred to Chen134

et al. (2018). In what follows, the major components and equations used in the 3D PIC135

model are briefly introduced, with the implementation of the fluid-structure interaction136

algorithm for freely moving structures being highlighted.137

2.2. Eulerian step138

In the Eulerian step, the governing equations ignoring the nonlinear advection term in139

the momentum equation are solved on the grid. Note that prior to the solutions, the velocity140

field carried by the particles vn
p at the time step n is mapped onto the grid to form a velocity141

field un. This is done by using a kernel interpolation that conserves mass and momentum142

(see more details in Chen et al. (2018)). The solution uses the pressure projection method143

proposed in Chorin (1968). The governing equations are solved and the time is advanced in144
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Fig. 1: Sketch of the computational domain, the staggered grid and fluid particles.

the following steps:145

ũ− un

∆t
= ν∇2un + f , (3)

146

(un+1 − ũ)

∆t
= −ρ−1∇pn+1, (4)

147

∆tρ−1∇2pn+1 = ∇· ũ , (5)

148

un+1 = ũ−∆tρ−1∇pn+1, (6)

where ũ is a tentative velocity between un and un+1 and ∆t is the time step. Eq. 5 is a149

pressure Poisson equation (PPE), which is discretised and solved in a finite volume sense in150

the current solver. In addition, during the solution of the PPE, the boundary conditions on151

both the free surface and the structure surface are resolved.152

Following Ng et al. (2009), the boundary conditions imposed on the structure surface153

are:154

n · u = n ·Ub and n · (∆tρ−1∇p) = n · (Ũb −Un+1
b ) on ∂ΩS(x, t), (7)

where Ũb represents a tentative velocity on the structure surface; Un+1
b is the velocity

on the structure surface at time step n + 1; n is the unit outward normal vector of the

structure surface and ∂ΩS represents the structure surface. Integrating both sides of the

PPE (Eq. 5) over a fluid cell, Gijk, that is partially occupied by a solid structure and evoking
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the divergence theorem and Eq. 7, a discretised PPE can be expressed by:

Ei− 1
2
,j,k ·

∆t(pn+1
i−1,j,k − p

n+1
i,j,k)

ρ∆x
+ Ei+ 1

2
,j,k ·

∆t(pn+1
i+1,j,k − p

n+1
i,j,k)

ρ∆x
+

Ei,j− 1
2
,k ·

∆t(pn+1
i,j−1,k − p

n+1
i,j,k)

ρ∆y
+ Ei,j+ 1

2
,k ·

∆t(pn+1
i,j+1,k − p

n+1
i,j,k)

ρ∆y
+

Ei,j,k− 1
2
·

∆t(pn+1
i,j,k−1 − p

n+1
i,j,k)

ρ∆z
+ Ei,j,k+ 1

2
·

∆t(pn+1
i,j,k+1 − p

n+1
i,j,k)

ρ∆z

= Ei+ 1
2
,j,k · ũi+ 1

2
,j,k − Ei− 1

2
,j,k · ũi− 1

2
,j,k + Ei,j+ 1

2
,k · ṽi,j+ 1

2
,k − Ei,j− 1

2
,k · ṽi,j− 1

2
,k+

Ei,j,k+ 1
2
· w̃i,j,k+ 1

2
− Ei,j,k− 1

2
· w̃i,j,k− 1

2
−
∫
Gijk

⋂
∂ΩS

n ·Un+1
b dA , (8)

where the subscripts are the space indices described in Section 2.1; E represents the area155

of a cell face that is not occupied by structures; dA represents the area differential; ∆x,156

∆y and ∆z are the grid sizes in the x-, y- and z-directions respectively and note that a157

uniform grid is currently employed in the solver, i.e. ∆x = ∆y = ∆z. The interested reader158

is referred to Ng et al. (2009) for the derivation of Eq. 8. It is noticed that the last term159

on the right hand side (RHS) of Eq. 8 is a velocity integral on the structure surface within160

the computational cell Gi,j,k, and the integral involves the velocity Un+1
b imposed on the161

structure surface at the time step n + 1. For fixed and motion prescribed structures (e.g.162

a wavemaker), Un+1
b is known. However, for freely moving structures, Un+1

b is unknown at163

the time step n when Eq. 8 needs to be solved. The Cartesian cut cell based two-way strong164

fluid-solid coupling algorithm presented in Chen et al. (2016b) is employed to resolve this165

issue. Here, the solution is to transfer the structure velocity to the fluid pressures in cells166

immediately surrounding the structure:167

Un+1 = Un + ∆tM−1
s Jpn+1 + ∆tM−1

s (Fg + Fext), (9)

where Un+1 and Un are the structure velocities at time steps n + 1 and n, respectively;168

Ms is the mass matrix of the structure; J is an operator that maps the pressures to net169

forces and torques on the structure; Fg denotes the force and torque on the structure due to170

gravity; Fext represents the external forces and torques due to, for example, moorings. Once171

the structure velocity Un+1 is constructed using Eq. 9, the velocity integral in Eq. 8 can be172

expressed purely in terms of the pressures to be solved for, leading to a revised PPE. The173

construction of operator J and the handling of the velocity integral on the structure surface174

are discussed in Section 2.4.1. The resulting linear system of equations are solved using the175
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bi-conjugate gradient (BCG) method (Press et al., 1992).176

On the free surface, the boundary condition enforced is:177

p = 0 on ζ(x, t), (10)

where ζ(x, t) represents the free-surface position reconstructed on the grid based on the178

particle position. The implementation of the free-surface boundary condition within the179

current PIC model is detailed in Chen et al. (2018) and is not repeated here.180

2.3. Lagrangian step181

In this step, the velocity field carried by the particles is updated and the particles are182

moved to solve the remaining nonlinear advection term in a Lagrangian manner. To update183

the particle velocity in the PIC framework, two approaches are commonly used. One is184

to directly interpolate the velocity field from the grid, and the other is to increment the185

particle velocity field through an acceleration field, an+1 = un+1 − un, on the grid. While186

the former approach is commonly referred to as “classical” PIC (Harlow, 1964), the latter one187

is characterised as “full particle” PIC (Brackbill and Ruppel, 1986). While “classical” PIC is188

more dissipative and stable due to the velocity interpolation back and forth, “full particle”189

PIC leads to much less numerical dissipation because the velocity increment is relatively190

small at each time step. Nevertheless, by incrementing the particle velocity at each time191

step “full particle” PIC also allows the associated numerical errors to accumulate which can192

cause numerical instability (Jiang et al., 2015). As a trade-off between numerical stability193

and accuracy, Zhu and Bridson (2005) proposed using an empirical blending coefficient194

between “classical” PIC and “full particle” PIC, which calculates the final particle velocity195

by:196

vn+1
p = c(vn

p +
∑
i

an+1Si) + (1− c)
∑
i

un+1Si , (11)

where vp is the particle velocity; Si represents an interpolation function, and c is the blending197

coefficient. Eq. 11 is used in the current PIC framework, and c is set at 0.96 following Chen198

et al. (2016b) so as to stabilise the code while keeping the associated numerical dissipation199

as low as possible. After the velocity field carried by the particles are updated, the particles200

are then moved through the divergence-free velocity field on the grid using the third-order201

accurate Runge-Kutta scheme of Ralston (1962). Details of these implementations are in-202

troduced in Chen et al. (2018). Finally, after the particles are advected one computational203

cycle of solving the Navier-Stokes equations is completed.204
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As mentioned above, the velocity and position of the structure are also advanced in this205

step. Following Chen et al. (2016b), the velocity of the structure is updated using Eq. 9,206

with Jpn+1 being replaced by an integral of the fluid pressure over the wetted area of the207

structure surface. Once the structure velocity is updated, the translational displacement208

and rotational angle of the structure, Dn, is calculated by:209

Dn =
(Un + Un−1)

2
∆t . (12)

Assuming that all rotations are small at each time step, the sequence of rotation becomes210

unimportant and the Euler angles are used in the current implementation. Take (x, y, z) to211

be a point on the structure surface with reference to a coordinate system localised at the212

moving structure. After the rotations involving three angles (θx, θy, θz) with reference to the213

axes of the local coordinate system, the new coordinate of that point (X, Y, Z) within the214

local coordinate system is calculated by:215 XY
Z

 =

cosθycosθz −cosθxsinθz + sinθxsinθycosθz sinθxsinθz + cosθxsinθycosθz

cosθysinθz cosθxcosθz + sinθxsinθysinθz −sinθxcosθz + cosθxsinθysinθz

−sinθy cosθysinθx cosθycosθx


xy
z


(13)

2.4. Additional numerical implementations216

2.4.1. Construction of operator J217

As discussed in Section 2.2, the two-way strong fluid-solid coupling algorithm employed218

for floating bodies requires an operator J that maps the fluid pressure to net forces and219

torques on the structure. The operator J is formed following Batty et al. (2007). For220

example, the x-component of the translational force on the structure can be written as:221

Fx = −
∫∫

∂ΩS

pn dA = −
∫∫∫

ΩS

∇p dV ' −
∑
i,j,k

Vi+1/2,j,k
pi+1,j,k − pi,j,k

∆x
, (14)

where dA and dV are the area and volume differential respectively; Vi+1/2,j,k is the volume222

of velocity cell that is occupied by the structure; the velocity cell in this case is the cubic223

cell whose centre is located at ui+1/2,j,k. Here, in the 3D code the volume of velocity cell is224

computed in the same manner as that proposed in Chen et al. (2016b). Rewriting Eq. 14,225
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the x-component of the translational force part of the operator J is obtained:226

J1,(i,j,k) =
Vi+1/2,j,k − Vi−1/2,j,k

∆x
. (15)

The y- and z-components of the translational force part J2,(i,j,k) and J3,(i,j,k) are formed in227

the same manner.228

Similarly, the torque on a structure can be expressed by:229

T = −
∫∫

∂ΩS

(r − rc)× pn dA =

∫∫∫
ΩS

∇p× (r − rc) dV , (16)

where rc is the structure rotation centre and r is the point of action of a fluid force fraction.230

Discretising and rewriting Eq. 16 in the same manner as above, the torque part of the231

operator J with reference to the x-axis, for example, is finally obtained:232

J4,(i,j,k) = −
Vi,j+1/2,k − Vi,j−1/2,k

∆y
(zi,j,k − Zc) +

Vi,j,k+1/2 − Vi,j,k−1/2

∆z
(yi,j,k − Yc) , (17)

where Yc, Zc and yi,j,k, zi,j,k are the coordinates of the structure rotation centre and the point233

of action, respectively. Note that the torque parts with reference to the y- and z-axes J5,(i,j,k)234

and J6,(i,j,k) are computed in the same manner.235

With the operator J being constructed, the structure velocity Un+1 can be explicitly236

expressed in terms of the pressure via Eq. 9, Eq. 15 and Eq. 17. Therefore, the velocity237

integral at the RHS of Eq. 8 can also be expressed as a function of the pressure in cells238

immediately surrounding the structure. This is because the velocity at any point on the239

structure surface can be calculated by:240

Un+1
b = Un+1

t + Un+1
w ×R , (18)

where Un+1
t and Un+1

w are the translational and the angular velocities of the structure at241

time step n + 1 respectively, and R = r − rc denotes a vector pointing from the structure242

rotation centre to a point on the structure surface.243

The structure boundary is discretised into a set of triangular elements in the pre-244

processing. Fig. 2 shows a schematic of a computational cell cut by a structure surface245

(the grey area), for which the triangular elements are also depicted. So, in the cell Gi,j,k, for246
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Structure
surface

Computational
cell

Fig. 2: A sketch showing a computational cell being occupied by a structure whose surface (the grey area)
is discretised into a set of triangular elements.

example, the velocity integral of Eq. 8 can be approximated by:247 ∫
Gijk

⋂
∂ΩS

n ·Un+1
b dA '

∑
nijk

nk ·
(
U temp

k + Qk(Ms,J,∆t, p
n+1)

)
∆Ak , (19)

where the subscript k represents the kth triangular element; nk is the outward pointing unit248

normal vector; U temp
k represents the updated velocity on the structure surface due to Eq. 18249

and Un + ∆tM−1
s (Fg +Fext) in Eq. 9, of which the variables are all knowns at the time step250

n; Qk denotes the boundary velocity transferred from the pressure immediately surrounding251

the structure; ∆Ak is the area of the triangular element; nijk is the total number of triangular252

elements located inside cell Gi,j,k. nijk is computed at each time step by detecting whether253

the centroid of a triangular element is located inside the cell or not. This could lead to254

some errors when the discretisation elements of the structure surface are relatively coarse.255

Therefore, in the present work the triangular elements are generated with a characteristic256

area of approximately (∆x)2/55. Note that nk, U temp
k and Qk are all defined at the centroid257

of each triangular element, whose coordinates are denoted by (XCE, Y CE,ZCE).258

In Eq. 19, U temp
k and Qk are calculated/constructed according to Eq. 18, with Un+1

t

and Un+1
w (see Eq. 18) being the velocity components due to Un + ∆tM−1

s (Fg + Fext) (for

calculation of U temp
k ) and ∆tM−1

s Jpn+1 (for construction of Qk), respectively. For example,

the x-direction component of Qk = (UX, V Y,WZ) is expressed by (assuming that the
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rotational centre coincides with the centre of mass):

UX = ∆tM−1

m∑
q=1

J1,qp
n+1
q +

∆t

(
I21

m∑
q=1

J4,qp
n+1
q + I22

m∑
q=1

J5,qp
n+1
q + I23

m∑
q=1

J6,qp
n+1
q

)
(ZCE − Zc)−

∆t

(
I31

m∑
q=1

J4,qp
n+1
q + I32

m∑
q=1

J5,qp
n+1
q + I33

m∑
q=1

J6,qp
n+1
q

)
(Y CE − Yc)

=
m∑
q=1

Bx,qp
n+1
q , (20)

where M is the mass of structure; the subscript q denotes the index of the cells immediately259

surrounding the structure (i.e. partially occupied by the structure) and m is the total260

number of such cells at each time step; Iab (a = 1, 2, 3 and b = 1, 2, 3) is the element261

of the 3 × 3 inverse matrix of the moment of inertia matrix of the structure; Bx,q is the262

x-direction component of a coefficient vector Bq = (Bx,q, By,q, Bz,q) that is related to the263

calculations of UX, V Y and WZ. Note that V Y and WZ are constructed in the same264

manner, as are the coefficients By,q and Bz,q, respectively. The Qk related term in Eq. 19265

(i.e.
∑

nijk
nk ·Qk(Ms,J,∆t, p

n+1)∆Ak) connects all pressures immediately surrounding the266

structure, and is added to the LHS of Eq. 8, modifying the coefficient matrix of the linear267

system of equations. The coefficient matrix is now not necessarily symmetric or positive268

definite due to the above manipulation, as the Qk related term changes between cells due269

to the different cell volumes occupied by the structure in each velocity cell. However, the270

linear system of equations under these conditions are still solvable using the BCG solver271

(Press et al., 1992).272

2.4.2. Numerical wave tank273

In the present work, a numerical wave tank (NWT) is established following Chen et al.274

(2018). Uni-directional waves are generated in the x-direction by a piston-type wave paddle275

employed at one end of the NWT, and the waves are absorbed at the other end of the NWT276

by a relaxation zone. For full details of the NWT in the current PIC model, the reader is277

referred to Chen et al. (2018).278
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2.4.3. Numerical algorithm279

The numerical algorithm used in the present model basically follows that presented in280

Chen et al. (2018). For presentation simplicity, only the major components with respect to281

the modelling of freely moving structures are given below.282

(1) Calculate Un + ∆tM−1
s (Fg + Fext) in Eq. 9;283

(2) Move the piston-type wave paddle according to the wave generation method;284

(3) Map the mass and momentum carried by the particles to the grid and reconstruct285

the free-surface position on the grid based on the particle location;286

(4) Construct Eq. 19 and Eq. 8 and solve the resulting linear system of equations;287

(5) Project the tentative velocity field ũ onto a divergence-free velocity field through288

Eq. 6;289

(6) Calculate the velocity acceleration field an+1 = un+1 − un on the grid;290

(7) Update the structure velocity and then update the structure position through Eq. 12291

and Eq. 13;292

(8) Update the velocity field carried by the particles through Eq. 11 and then advect the293

particles;294

(9) Conduct wave absorption in the relaxation zone;295

(10) Update the time step (see details in Chen (2017)) and repeat steps (1)-(10).296

3. Results and Discussions297

In this section, the present numerical model is validated against the laboratory mea-298

surements of focused wave interaction with a floating, hemispherical-bottomed, cylindrical299

buoy with different mooring configurations: (1) a linearly-elastic mooring that encounters300

non-snatch loads (Ransley et al., 2017a); (2) more complex mooring system that encourages301

snatch loads (Hann et al., 2015). In both test cases the numerical model is validated first302

for the focused wave generation in the absence of the buoy, and then for the motion of the303

buoy and mooring force under focused wave action.304

3.1. Test case 1: mooring configuration with non-snatch loads305

3.1.1. Experimental setup306

The experiment of Ransley et al. (2017a) was performed in the Ocean Basin at Plymouth307

University’s Coastal, Ocean And Sediment Transport (COAST) laboratory. The basin is 35308

m long and 15.5 m wide, with 24 flap-type wave paddles installed at one end and a parabolic309

beach at the other. The water depth at the wavemaker was 4 m and decreased to 2.8 m in310

13



 

Fig. 3: A sketch of the buoy (left) and a photograph from the COAST laboratory (right) showing the
experimental setup. This figure is reprinted from Ransley et al. (2017a), Copyright (2017), with permission
from Elsevier.

the region where the buoy was placed. The buoy has a diameter D = 0.5 m and consists of a311

hemispheric at the bottom and a cylinder on the top (see Fig. 3). The buoy has a total mass312

of 43.2 kg, and its centre of mass is located at 0.181 m from the bottom. The moment of313

inertia of the buoy is (1.61 1.61 0.5) kgm2. The motion of the buoy was restrained by a single314

point mooring, of which one end was attached to the bottom of the buoy and the other was315

fixed at the basin floor. The mooring can be modelled as a linear spring, having a stiffness316

k = 67 Nm−1 and a rest length of 2.18 m. Note that in this case the buoy can move in all317

6 degrees of freedom. The focused wave was generated using the NewWave theory based318

on the Pierson-Moskowitz (PM) spectrum (fp = 0.356 Hz) and wave gauges throughout the319

basin were used to measure the generated wave. For more details of the experimental setup,320

the reader is referred to Ransley et al. (2017a).321

3.1.2. Numerical results: free decay test322

Free decay tests of the buoy with and without the mooring were first used to validate323

the present solver for simulating the motion of the buoy and mooring force. The buoy324

was initially lifted up for a small distance away from its equilibrium position and then325

released, leading to a decay of the heave motion. In the numerical simulation, the buoy326

was placed at the centre of a 6 m × 6 m square domain, with the water depth being 2.8327

m. A cylindrical relaxation zone centred at the buoy with an inner radius of 1 m and an328

outer radius of approximately 3 m was used to absorb the radiated waves away from the329
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buoy. The grid size was set at ∆x = ∆y = ∆z = D/20 for the case without mooring.330

For the case with mooring, three grid sizes were used in order to conduct a grid refinement331

study (note that the buoy is moored when interacting with the focused wave). The grid332

sizes were ∆x = ∆y = ∆z = D/15, D/20 and D/25. Note that the grid size D/25 leads333

to approximately 15.3 million grid cells and 100.8 million particles; it took approximately334

8.3 hours for 5 seconds of simulated time with 64 cores at the University of Bath High335

Performance Computing System (HPCS).336

Fig. 4 shows the numerical results, in comparison with the experimental data, for the337

free decay test. All of the experimental data used for validation purposes in this test case338

are digitised from Ransley et al. (2017a). From Fig. 4(left), it is seen that the three grid339

sizes produce similar results, which indicates that the heave motion of the buoy in this case340

is not sensitive to the grid sizes used. The numerical results in general match well with341

the experimental data, although it is seen that the numerical results are less damped than342

that of the experiment especially towards the end of the time history. This is also seen343

in Fig. 4(right) which shows the comparison for the case without mooring. This may be344

because the grid size is not fine enough when the buoy motion is relatively small. However,345

the grid refinement study does not suggest great potential for a significant improvement346

if the grid size is further reduced, while maintaining feasible grid and particle resolution.347

Another concern is that in Eq. 9 the friction-related force is not considered, which may348

result in an underestimation of the damping force. As shown in the recent work of Gu et al.349

(2018), in the case of forced heave motion of a similar hemispherical base structure, the350

contribution of shear force to the drag coefficient may be of the same magnitude as that of351

pressure. However, due to the limited grid resolution in 3D modelling, the calculation of352

friction-related force (even if it is included in the current solver) is likely to be inaccurate353

as the boundary layer would not be fully resolved (Nematbakhsh et al., 2013). One solution354

may be to include a coupled dynamic adaptive grid and particle merging/splitting approach355

in the solver, such that the grid resolution around the structure could be sufficiently fine356

while the overall resolution is still feasible. Overall, the agreement between numerical and357

experimental results is reasonably good. In particular, the result of the case with mooring358

is as good as that without mooring, which provides confidence in the numerical solver for359

predicting the motion of the moored buoy under wave action. Note that based on the results360

the grid size D/20 was chosen for all the other simulations in this test case.361
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Fig. 4: Comparison between the numerical and experimental data for the heave displacement of the buoy
during the free decay test. Left figure: with mooring; right figure: without mooring. The experimental data
are digitised from Ransley et al. (2017a).

3.1.3. Numerical results: focused wave generation362

In the numerical simulation, a piston-type wave paddle based on the first-order wave-363

maker theory was employed for wave generation and a relaxation zone approach was used364

for wave absorption (see Section 2.4.2). For the focused wave generation, the motion and365

velocity of the paddle were determined via the NewWave theory, based on the PM spectrum.366

In total, 100 wave components were used, with the frequency ranging from 0.2 Hz to 1.61 Hz.367

Fig. 5 shows a scheme of the setup of the NWT. The wave paddle in the current simulation368

was placed at the same location as that of the inlet boundary of the OpenFOAM® model369

by Ransley et al. (2017a). Note that this location is 8 m forward from the wave paddle370

used in the experiment. Ransley et al. (2017a) employed the wave gauge measurement in371

the experiment at this location to derive their expression based boundary conditions for372

the inlet boundary. However, this experimental measurement was not reported in Ransley373

et al. (2017a). Therefore, a trial and error process, adjusting the input theoretical focused374

location and focused wave amplitude, was used in the current wave paddle based simulation375

to generate the desired waves. The input focused location and wave amplitude were deter-376

mined to be 5.2 m (from the numerical wave paddle) and 0.25 m respectively for this test377

case. Note that the input focused location in the experiment is expected to be much larger378

than 5.2 m. It is also worth noting that in the current simulations the generated focused379

wave amplitude was usually slightly larger than the input value, which is consistent with380

16



Wave paddle

in the experiment

Experimental

wave tank domain

Numerical wave

tank domain

Numerical wave

absorption zone

Wave paddle

in the numerical

simulation

8 m

WG2

WG3

WG4

WG1

(near focused

location)

x

y

Fig. 5: Scheme (top view) showing the setup of the NWT. WG: wave gauge.

the experimental findings presented in Hann et al. (2015). This is, as also noted in Hann381

et al. (2015), due most likely to the nonlinear effects related to wave-wave interaction, which382

could also contribute to a shift of the actual focused location.383

As the focused wave used in this test case was uni-directional (in the x-direction), to384

reduce the CPU effort the numerical domain was set at 0.5 m wide (in the y-direction)385

and 30 m long (in the x-direction), with 22.5 m dedicated to the relaxation zone. The386

water depth was set at 2.8 m. Note that the relaxation zone is relatively long because387

the peak frequency of the PM spectrum used is small: fp = 0.356 Hz, which leads to a388

wavelength of approximately 11.27 m. The relaxation zone is thus set to nearly two times389

this wavelength in order to achieve the most cost-effective performance within the present390

PIC framework (Chen, 2017). The free-surface elevations at four locations, wave gauges 1391

to 4 (see Fig. 5), along the x-direction centre line of the NWT were extracted to compare392

with the experimental data, and their distances to the wave paddle were (in metres): 1.96,393

3.87, 5.60 and 6.33. Note that wave gauge 3 is close to the focused location.394

Fig. 6 shows the numerical results of the generated focused wave compared to the ex-395

perimental data. In general, it is seen that the agreement between the numerical and ex-396

perimental data is quite good. In particular, the main crest and troughs are predicted well397

by the numerical model. This proves that in this test case by placing the numerical wave398

paddle closer to the actual focused location in the experiment and using a smaller input399

focused location, the present NWT can generate the desired focused wave, which provides400

a foundation to meaningful comparisons in the wave-structure interaction shown in the fol-401

lowing section. However, it is not believed that the numerical wave paddle can be placed402
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Fig. 6: Comparison between the numerical and experimental results for the free-surface elevations of the
generated focused wave at four difference locations differing in the distance to the wave paddle. The
experimental data are digitised from Ransley et al. (2017a).

too close to the actual focused location in the experiment, as the development of wave-wave403

interaction requires both space and time.404

3.1.4. Numerical results: wave-structure interaction test405

In this section, the focused wave described in Section 3.1.3 is used to interact with the406

moored buoy. The numerical domain is 6 m wide and 30 m long, with 22.5 dedicated to the407

relaxation zone. The water depth was set at 2.8 m. The buoy was placed at a distance of408

5.49 m from the wave paddle on the centre line of the NWT.409

Fig. 7 shows the snapshots of the numerical results at various times close to the focused410

time of the generated focused wave. In the snapshots, the width of the numerical domain is411

reduced and the mooring line is not shown to aid visualisation.412
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Fig. 7: Snapshots of the numerical results for the focused wave interaction with the buoy at different time
instants. The mooring line is not shown but it is used in the simulation.

Fig. 8 presents the numerical results of the present PIC model for the surge displacement,413

heave displacement and pitch angle of the moored buoy under focused wave action compared414

to the numerical results of an OpenFOAM® model (digitised from Ransley et al. (2017a))415

and the experimental measurements. In general, it is seen that very good agreement between416

the numerical and experimental results has been achieved, particularly during the period417

when the main crests and troughs of the focused wave move past the buoy. Also, it is418

noticed that around the third peaks of the surge and heave displacements, the present419

PIC model produces better results than the OpenFOAM® model of Ransley et al. (2017a).420

This could be due to a slightly better reproduction of the incident wave around the third421
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Fig. 8: Comparison between the numerical results of the present PIC model, the numerical results of the
OpenFOAM® model of Ransley et al. (2017a) and the experimental data for the surge displacement (top),
heave displacement (middle) and pitch angle (bottom) of the moored buoy under focused wave action. The
experimental and OpenFOAM® data are digitised from Ransley et al. (2017a).

peak in terms of the wave shape (see Fig. 6 at 5.6 m and c.f. Fig.2(c) of Ransley et al.422

(2017a)). Another reason could be that after the main wave has passed (resulting in large423

buoy motion), the quality of the dynamic mesh used in the OpenFOAM® model is not as424

good as the initial one, which however is not the case for the current cut cell method where425

the underlying mesh is fixed and unchanged during the simulation. The comparison for the426

pitch amplitude, however, shows a slightly less satisfying agreement during the period of free427

oscillation of the buoy after the main wave has passed. This may be more evidence that the428

present PIC model predicts less damping effects when the buoy motion is small as discussed429

in Section 3.1.2. Nevertheless, the generally very good reproduction of the motion of the430

buoy clearly demonstrates the capability of the present PIC model as well as the two-way431

strong fluid-solid coupling algorithm for handling full 3D scenarios of wave interaction with432

floating bodies.433

Fig. 9 shows the comparison for the mooring force. Again, very good agreement be-434

tween the numerical and experimental results has been achieved, as a result of the good435
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Fig. 9: Comparison between the numerical results of the present PIC model, the numerical results of the
OpenFOAM® model of Ransley et al. (2017a) and the experimental data for the mooring force on the
moored buoy under focused wave action. The experimental and OpenFOAM® data are digitised from
Ransley et al. (2017a).

reproduction of the motion of the buoy.436

Following the validation test, the motion of the buoy, without the mooring, under the437

same focused wave action was also investigated using the PIC model. This case could be438

considered as a situation when the mooring fails. Although there is no experimental data to439

compare with, the PIC model should be capable of predicting useful results since it has been440

validated using the above moored case. The results are plotted in Fig. 10, in comparison441

with those of the moored buoy. It can be observed that the surge displacement of the buoy442

is greatly affected by the mooring after the main focused wave has passed. Without the443

mooring the buoy tends to be shifted in the wave direction, rather than being pulled back444

as is the case when the mooring is attached. Similarly, the mooring appears to play an445

important role on the pitch motion of the buoy. In the unmoored case, the amplitude and446

the period of the pitch motion of the buoy are both larger. This is most likely because of the447

missing restoring forces on the buoy due to the mooring. Finally, it is seen from the middle448

panel that the heave displacement of the buoy is less affected by the mooring, compared to449

the surge displacement and the pitch angle. To understand this, the wave forces on the buoy450

with and without the mooring are examined. Fig. 11 shows the present numerical results for451

the wave forces on the buoy with and without the mooring. As can be seen, the wave forces452

in the surge direction (Fx) and heave direction (Fz) are less affected by the mooring than the453

torque in the pitch direction (My). However, the magnitude of the wave force in the heave454

direction is one order greater than that of the wave force in the surge direction, and the455

latter is in the same order as the magnitude of the mooring force (see Fig. 9). Therefore, the456
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Fig. 10: Comparison between the numerical results of the motion of the buoy, with and without the mooring,
under the focused wave action: surge displacement (top), heave displacement (middle) and pitch angle
(bottom).

mooring has a smaller effect on the heave displacement of the buoy, as the mooring force is457

relatively small compared to the wave force in the heave direction. It is noticed that before458

the arrival of the main wave group, the wave force in the heave direction is greater in the459

moored case than that in the unmoored case. This is because that in the moored case the460

mooring is pretensioned, resulting in a larger draft of the buoy and hence larger hydrostatic461

force than those in the unmoored case.462

Finally, in terms of the CPU cost on simulating the moored buoy case, it took approx-463

imately 32.9 hours for 30 s of simulated time using 160 cores at the University of Bath464

HPCS to run the present PIC model, while it took almost 500 hours of CPU time for 28 s465

simulation running on 6 processors for the OpenFOAM® model of Ransley et al. (2017a).466

As a very rough comparison using a coefficient ε = Total CPU time
simulated time

, the values of ε for the467

PIC model and the OpenFOAM® model are 176 and 107, respectively. So, the hybrid468

Eulerian-Lagrangian PIC model achieves a CPU efficiency of the same magnitude as the469

state-of-the-art OpenFOAM® model. It may be worth mentioning that for the PIC sim-470
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Fig. 11: Comparison between the numerical results of the wave forces on the buoy, with and without the
mooring, under the focused wave action: wave force in the surge direction Fx (top), wave force in the heave
direction Fz (middle) and pitch torque My (bottom).

ulation, approximately 31.72 million grid cells and 253.75 million particles were used to471

accommodate the water area only.472

3.2. Test case 2: mooring configuration with snatch loads473

3.2.1. Experimental setup474

The experiment of Hann et al. (2015) is used for validation purpose in this test case.475

This experiment was also conducted in the Ocean Basin at Plymouth University’s COAST476

laboratory. The same water depth (2.8 m) was used at the working section of the basin. Also,477

the same buoy was used, but with a different mooring setup that encourages snatch loads,478

which are transient but very large mooring forces experienced in extreme wave conditions479

(Lind et al., 2016). Here, the mooring system was composed of a spring (k =0.064 N/mm) in480

series with a very stiff long Dyneema® rope (spring constant, k ≈ 35 N/mm). In addition,481

the maximum length of the spring was limited by another four short Dyneema® ropes in482

a parallel arrangement. So, the mooring force could encounter two phases: at first the483

mooring force is determined only by the spring extension, and then after the spring reaches484

23



its maximum length the snatch load occurs due to further extensions in the ropes. The rest485

and the maximum lengths of the spring were 0.152 m and 0.406 m respectively, and in still486

water the spring was extended to 0.257 m. The focused wave used in this test case was487

generated in the manner as that in the previous test case. Both breaking and non-breaking488

waves were tested in the experiment, although only a non-breaking wave case is used for the489

current numerical validation, namely case ST1 in Hann et al. (2015) with peak frequency490

fp = 0.356 Hz and measured crest amplitude A = 0.285 m. To simulate the breaking wave491

cases, the numerical model would need further inclusions of an air phase (for effects like air492

cushioning) and a turbulence model (to handle the flow during and post wave breaking);493

the method presented in Kamath et al. (2016) for numerical modelling of breaking wave494

interaction with a vertical cylinder should be referred to. For full details of the experimental495

setup, the reader is referred to Hann et al. (2015).496

3.2.2. Numerical results497

In the experiment of Hann et al. (2015), the wave group of the chosen case (ST1) was498

focused at 18.51 m from the wave paddle, which was also located at the front face of the499

buoy in its initial rest location. In the current numerical simulation, to save on CPU cost500

the focused location was shifted to be 5.6 m from the wave paddle so that exactly the same501

NWT as that in the previous test case can be used, with only the buoy being placed at502

5.85 m (= 5.6 + D/2) from the paddle. Also, the same grid size (0.025 m) was used in this503

test case. Fig. 12 shows the comparison between the numerical result and the experimental504

measurement for the time history of the surface elevation at the focused locations. It can be505

seen that the focused wave is well reproduced in the numerical simulation, demonstrating506

that the setup of the NWT is acceptable for this test case. Note that the surface elevations507

are both normalised by the theoretical crest value (0.267 m) used in the experiment, and508

both data series have been shifted in time so that the main crest occurs at t = 0 s. All of509

the experimental data used in this test case for validation purposes are digitised from Hann510

et al. (2015).511

In the current simulation, once the spring reaches its maximum length the snatch mooring512

load is calculated following Lind et al. (2016):513

Fm = −keqxm − cẋm, (21)

where keq is the equivalent spring constant for the mooring system and is set to keq =514

28 N/mm following Lind et al. (2016), xm and ẋm are the mooring extension and rate of515
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Experimental data are digitised from Hann et al. (2015).

extension respectively and c = 2ζ
√
keqm, where ζ is the damping ratio and m is the mass of516

the buoy. The damping ratio has been determined numerically to be approximately ζ = 0.25,517

although Lind et al. (2016) suggested using ζ = 0.175 according to their SPH modelling on518

the same case. It will be seen in what follows that the simulated snatch loads are sensitive519

to the damping ratio.520

Fig. 13 shows the comparison between experimental and numerical results for the mooring521

load, surge, heave and pitch motion of the buoy. Note that the mooring loads are normalised522

by the force required to reach the maximum length of the spring (9.4 N), and the surge and523

heave displacements of the buoy are normalised by the diameter of the buoy. Moreover, all524

of the numerical data series have been shifted in time so that the peak of the first snatch load525

occurs at t = 0 as is the case of the experimental data. It can be seen from Fig. 13(a) that526

the duration and occurring time of the snatch loads are well predicted by the PIC model.527

Furthermore, the PIC model well predicts the peak of the first snatch load but over-predicts528

the peak of the second snatch load by approximately 55%. In fact, as seen from Fig. 14,529

the second snatch load is more sensitive to the damping ratio ζ (see Eq. 21) than the first530

snatch load. The peak value of the second snatch load decreases and occurs earlier as the531

damping ratio increases. In addition, when the damp ratio is set to zero the second snatch532

load is larger than the first one, and when the damping ratio goes very high (e.g. 0.45) an533

unphysical third snatch load happens. These results are consistent with the findings of Lind534
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et al. (2016), and similar results from their SPH simulation can also be seen in Fig. 13(a).535

From Fig. 13(b) and (c) it can be seen that the current PIC model well reproduces the536

surge and the heave responses of the buoy. In particular, the double peaks occurring in537

phase with the snatch loads in the heave motion are also predicted very well. However,538

as can be seen from Fig. 13(d) there is a large discrepancy between the experimental and539

numerical results for the pitch motion after the occurrence of the snatch loads. While the540

numerical result follows the same trend as seen in the previous elastic-spring mooring case541

(see Fig. 8), the experimental data exhibit a relatively small pitch motion. The reason for542

this large discrepancy remains unclear at the time of writing. In general, the performance543

of the current PIC model is reasonably good in such a complex wave-structure interaction544

scenario involving extreme snatch mooring loads.545

4. Conclusions546

This paper extends the 3D parallel PIC model proposed in Chen et al. (2018) to simulate547

extreme wave interaction with floating bodies, using the Cartesian cut cell based two-way548

strong fluid-solid coupling algorithm proposed in Chen et al. (2016b). The PIC model solves549

the incompressible Navier-Stokes equations for free-surface flows. The novelty of this model550

lies in the fact that both Lagrangian particles and Eulerian grid are employed; the particles551

carry the fluid material information such as mass and momentum, and are used to solve552

the nonlinear advection term and track the free surface, while the grid is employed for553

computational convenience in solving all the non-advection terms. This makes the model554

both flexible on handling large free-surface deformations and efficient in terms of CPU555

cost. The two-way strong fluid-solid coupling algorithm features the fact that the velocity556

of the structure is represented by the fluid pressures in cells immediately surrounding the557

structure and any velocity integral along the structure surface due to the cut cell method558

can be integrated into the procedure of solving the PPE with a suitably amended coefficient559

matrix. This technique can resolve fluid interaction with floating bodies both stably and560

efficiently.561

The present PIC model is validated against two existing physical experiments of focused562

wave interaction with a floating, hemispherical-bottomed, cylindrical buoy with either a563

linearly-elastic mooring or a more complex mooring configuration that encourages extreme564

snatch loads. Although both test cases involve extreme wave-structure interaction, the waves565

do not break and the structure has a smooth geometry that tends to cause less turbulences566

so that the lack of a turbulence model in the numerical simulations is acceptable. This is567
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Fig. 13: Comparison between experimental and numerical results for (a) mooring load, (b) surge, (c) heave
and (d) pitch motion of the buoy. The experimental results are digitised from Hann et al. (2015) and the
SPH result is provided by Lind et al. (2016) (time shifted by -14.438 s).

confirmed at least in the first test case where both the laminar OpenFOAM® model and568

PIC model have achieved good results compared with the experiment. It is demonstrated569

through the comparisons with the experimental data that the PIC model can satisfactorily570

predict the motion of the moored buoy and the mooring force in such extreme wave-structure571

interaction scenarios. Also, as demonstrated in the first test case, the PIC model achieves a572

CPU efficiency of the same magnitude as that of the state-of-the-art OpenFOAM® model.573

Nevertheless, it is seen that the memory storage requirement is demanding for the PIC574

model due to the double grid system. Also, the PIC model may predict inaccurate damp-575

ing effects when the buoy motion is small, due likely to the limited grid resolution in 3D576

modelling. This situation may be improved by including in the solver a dynamic adaptive577
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grid combined with particle merging/splitting, such that the grid could be sufficiently fine578

around the structure while maintaining a feasible overall grid resolution.579
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