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Mapping the spatial distribution and changes of oil palm land cover using 1 

an open source cloud-based mapping platform 2 

 3 

 4 

ABSTRACT 5 

Oil palm has become well known for its oil palm yields that can be used to produce food, biodiesel 6 

and biogas. The rapid expansion of oil palm plantations over large areas has changed the land use 7 

and land cover of surroundings. Changes in land covers can be mapped and later used for further 8 

analysis. However, obtaining and classifying large coverages require massive amounts of data and 9 

computing resources and the skills and time of analysts. The remote ecosystem monitoring 10 

assessment pipeline (REMAP) provides a cloud computing platform that hosts an open-source 11 

stacked Landsat data that allows land cover classification to be implemented using a built-in 12 

random forest supervised machine learning algorithm. Classifications were performed with the aid 13 

of predictor layers to discriminate the following land covers in Peninsular Malaysia: oil palm, 14 

built-up, bare soil, water, forest, other vegetation and paddy. The classification performed on 15 

Period 1 (1999–2003) and Period 2 (2014–2017) data produced an overall accuracy of 80.34% and 16 

79.53% respectively. The analysis of the changes in oil palm distributions from Period 1 to Period 17 

2 indicated an increment of 17.24%. Further analysis revealed that oil palm expansion in 18 

Peninsular Malaysia only minimally affected forested area and is mostly resulted from the 19 

conversion of less productive crops to oil palm. Results prove the land cover mapping and change 20 

detection capabilities of REMAP as a cloud computing platform for large areas. Despite its 21 

limitations, REMAP has the potential to achieve fast-paced mapping over large areas and monitor 22 

land changes in oil palm distributions.  23 

 24 

1. Introduction 25 

Oil palm is one of the important crops that can produce the highest amount of biomass. It is 26 

mainly used for frying, and its high contents of good cholesterol or high-density lipoproteins 27 

and bad cholesterol or low-density lipoproteins enables it to balance the cholesterol in our 28 

bodies (Ong and Goh 2002; Mukherjee and Mitra 2009). In addition, the powerful 29 

antioxidants in palm oil provide protection to the body and may prevent cancer (Marcene 30 

2018). Oil palm plantations store higher amounts of carbon than other agriculture land uses, 31 

such as rubber, and are thus among the most profitable land uses (Rival 2014). Over the past 32 



decades, oil palm has been processed and extracted for many uses. After Indonesia, Malaysia 1 

is the largest oil palm exporter; consequently, Malaysia must properly manage its oil palm 2 

plantations, especially as the number of planted oil palm areas is expected to grow in the 3 

future (Sumathi, Chai, and Mohamed 2008; Chong et al. 2017). Globally, many issues have 4 

been reported due to oil palm activities, including uncontrolled deforestation, loss of 5 

biodiversity and energy crisis (Chuah et al. 2006; Fitzherbert et al. 2008; Sulaiman et al. 6 

2011; Vijay et al. 2016). During the 73
rd

 United Nations General Assembly, oil palm 7 

plantations in Malaysia were identified as a cause of severe damage to wildlife habitat, and 8 

the produced palm oil was declared harmful to health. However, Malaysia’s Prime Minister 9 

Tun Dr Mahathir emphasised the environmental aspect that significantly had been taken into 10 

account before planting the oil palm trees, and that approximately 48% of the land cover in 11 

Malaysia is still covered by virgin forest (Mohamad 2018). To ensure that oil palm 12 

production is well established, the Malaysian Palm Oil Certification Council (MSPO) will 13 

become mandatory. The Roundtable on Sustainable Palm Oil (RSPO) was formed to promote 14 

the growth and usage of sustainable palm oil products to lessen negative impacts on the 15 

environment. This initiative aims to help reduce deforestation and preserve biodiversity. 16 

Eight principles must be followed by growers to ensure that they are RSPO certified, 17 

including the use of appropriate best practices by growers and millers, environmental 18 

responsibility, conservation of natural resources and biodiversity, and commitment to 19 

continuous improvement in key areas of activity (RSPO 2013; Tillack 2013). The 20 

International Union for Conservation of Nature (IUCN) introduced 17 sustainable 21 

development goals (SDGs) that must be achieved by 2030 (Blanc 2015). The impact of 22 

energy crisis has forced Malaysia to find alternatives to fossil fuel. Aside from having health 23 

benefits and contributing to food production, oil palm is the most suitable element for use as 24 

a renewable energy source (Chuah et al. 2006; Shuit et al. 2009). Even though oil palm 25 



provides countless benefits, it has negative impacts when not properly managed. Hence, 1 

producing oil palm land cover maps is important to monitor and study the pattern that 2 

contributes to oil palm changes and to examine the environmental impacts, especially in 3 

fulfilling the RSPO’s requirements. Indirectly, the study can contribute to some of the SDGs 4 

that were presented by the IUCN, namely, life habitat and providing affordable and clean 5 

energy. Even though oil palm biomass provides benefits as the major biomass crop to 6 

produce a source of renewable energy, it requires proper monitoring especially in large areas 7 

(Ibrahim 2014). Therefore, sufficient data are required to ensure efficient and proper planning 8 

and management of oil palm products. Oil palm monitoring is time-consuming and requires 9 

expensive tools. Furthermore, many countries have insufficient funds and lack resources for 10 

regular surveys, making palm monitoring expensive (Chong et al. 2017).  11 

 12 

Remote sensing can collect ground information from a large area in a short time. It 13 

captures spatial data without any direct contact and has been applied in various fields, such as 14 

urban areas, agricultural land, biomass estimation, oil palm disease detection, hazard 15 

prediction, object detection and biodiversity monitoring (Thenkabail et la. 2004; Shafri et al. 16 

2012; Cammalleri et al. 2014; Dudley at al. 2017; Gambo et al. 2018). In response to the 17 

growing demand of oil palm plantations, several studies on oil palm mapping have been 18 

conducted using remote sensing. Koh et al. (2011) conducted a study using 250 m spatial 19 

resolution data to map oil palm distributions over 2 million hectares. In a study that aimed to 20 

detect oil palm disease, Shafri and Hamdan (2009) utilised hyperspectral data obtained using 21 

an advanced imaging spectrometer for applications to produce a map of disease infection in 22 

oil palms. A study on oil palm tree counting application was successfully conducted using 23 

high-spatial-resolution data acquired from airborne imagery (Shafri, Hamdan, and Saripan 24 

2011). Li et al. (2015) used 50 m orthorectified mosaic phased array L-band synthetic 25 



aperture radar images to map oil palms in Cameroon and completed their study by using 1 

machine learning algorithms.  Despite the good quality of data, obtaining data from a large 2 

area entails high costs. Therefore, study areas are limited to a small coverage. Few authors 3 

have been able to overcome this limitation by using coarse spatial resolution, such as Landsat 4 

data. Landsat provides open-source remote sensing data and has a long record of continuous 5 

data acquisition that has made it suitable not only for monitoring but also for change 6 

detection analysis (Azzari and Lobell 2017; Zhu 2017; Gambo et al. 2018). Landsat offers 30 7 

m spatial resolution images and is thus suitable for use in crop monitoring, land cover 8 

mapping and other analyses. Wahid, Nordiana, and Tarmizi (2005), Cheng et al. (2016), 9 

Asari, Suratman, and Jaafar (2017) and Miettinen, Gaveau, and Liew (2018) successfully 10 

used Landsat data for oil palm mapping. They produced maps using a maximum likelihood 11 

classifier (MLC), vegetation indices (VIs) and support vector machine (SVM). Lee et al. 12 

(2016) conducted a study using random forest (RF) classification and regression tree (CART) 13 

and minimum distance algorithms to map oil palm land cover with the Landsat data obtained 14 

from Google Earth Engine (GEE). However, one of the drawbacks of Landsat is the presence 15 

of clouds in the data, which can affect image quality. Furthermore, clouds might cover the 16 

most crucial area that contains ground information essential for analysis. Even though the 17 

previous studies produced acceptable maps using Landsat data, they were implemented in 18 

small areas, mostly in tropical countries such as Malaysia, because image processing and 19 

classifications for large areas require a considerable amount of time, resources and effort 20 

(Franklin et al. 2015; Fahnestock et al. 2016). Additionally, in Malaysia, mapping and 21 

detecting changes in oil palm spatial distributions suffer from several setbacks due to limited 22 

computing resources, skilled manpower and cloud-free data. To counter these issues, this 23 

study utilises an open-source cloud-based analysis platform called remote ecosystem 24 

monitoring assessment pipeline (REMAP) to produce oil palm land cover maps from two 25 



periods of Landsat data compositions (1999–2003) and (2014–2017) for use in change 1 

detection analysis in Peninsular Malaysia. To the best of our knowledge, this study is the first 2 

to use and test a cloud computing remote sensing tool for oil palm mapping in Malaysia.  3 

 4 

2. Data and methods 5 

2.1 Study area 6 

Malaysia is the second largest oil palm producer in the world, next to Indonesia. As a country 7 

with a humid climate and land that covers more than 5 million hectares of oil palm 8 

plantations, Malaysia has abundant oil palm biomass crops (Shuit et al. 2009). According to 9 

the Malaysian Palm Oil Board (MPOB), the oil palm plantation area of the country has 10 

increased over the past few years, resulting in changes in the land cover. To test the 11 

efficiency of mapping over a large area using cloud-based REMAP, Peninsular Malaysia was 12 

chosen as the study area, as shown in Figure 1. Peninsular Malaysia or West Malaysia has 11 13 

states and a land area of approximately 132,265 km
2
.  14 

 15 

Figure 1. [near here] 16 

 17 

Peninsular Malaysia has various land covers, including green vegetation, urban areas, 18 

water bodies and bare land. Firstly, this study aims to map the land cover of Peninsular 19 

Malaysia by using the Landsat data acquired from Period 1 (1999–2003) and Period 2 (2014–20 

2017). Then, the classified maps are assessed in terms of the changes in oil palm distributions 21 

throughout the periods. To achieve these objectives, this study implements a cloud computing 22 

technique using an open-source cloud-based analysis platform. In addition, the machine 23 

learning approach is applied to classify the maps. The flow of this study is shown in Figure 2. 24 

 25 



Figure 2. [near here] 1 

 2 

2.2 Random forest image classification 3 

RF is a type of machine learning algorithm. Machine learning is a subset of artificial 4 

intelligence and has several categories, including supervised and unsupervised classifications. 5 

For image classification, supervised machine learning works by classifying the image from 6 

the known data, whereas unsupervised classification classifies the image with no known data 7 

(Hasmadi, Pakhriazad, and Shahrin 2009). RF is a powerful machine learning algorithm that 8 

performs well in image classification and regression (Svetnik et al. 2003). Besides RF, there 9 

are other machine learning algorithms have been used for image classification, such as SVM, 10 

artificial neural network (ANN) and decision tree (DT) (Belgiu and Drăgut 2016; Lary et al. 11 

2016; Singh et al. 2016). RF is a supervised machine learning algorithm that works similarly 12 

to DT by combining decisions into a tree-like model. However, RF is more powerful and 13 

robust than DT because it combines tree-like models and becomes a forest, as shown in 14 

Figure 3 (Breiman 2001; Feng, Liu, and Gong 2015). Then, when the system receives new 15 

input, it will go through the trees in the forest. 16 

 17 

Figure 3. [near here] 18 

 19 

Rodriguez-Galiano et al. (2012) utilised RF to map land cover from Landsat data. 20 

They tested several trees and determined the best classified map by obtaining the highest 21 

kappa index. RF can classify data despite the missing values within the trees. The obtained 22 

information or value is assigned in each node and allows RF to study and identify the feature. 23 

The structure that consists of the combination of many trees that carry large amounts of 24 

information makes RF a powerful machine learning algorithm (Gislason, Benediktsson, and 25 



Sveinsson 2006). A more recent study on the implementation of RF for crop classification 1 

was applied by Tatsumi et al. (2015) using Landsat 7 ETM+ data. They managed to classify 2 

eight types of crops from the medium-resolution Landsat data and obtained 81% of overall 3 

accuracy. 4 

 5 

2.3 Cloud-based remote ecosystem monitoring assessment pipeline  6 

Cloud computing is the delivery of computing services, such as servers, storage, networking, 7 

databases and analytics (Hashem et al. 2015). It can be used to perform data analysis, create 8 

new apps and host websites, as shown in Figure 4. The development of cloud computing has 9 

had a considerable impact on information technology, and cloud computing is widely used in 10 

large companies, including Google, Amazon and Microsoft (Armbrust et al. 2010). It was 11 

developed to reduce the time and cost required to perform related works. Fortunately, cloud 12 

computing is not limited to data management but also offers an effective way of executing 13 

remote sensing computing (Wang et al. 2013). 14 

 15 

Figure 4. [near here] 16 

 17 

REMAP is a cloud-based platform that enables users to perform image classification. 18 

REMAP was introduced by Murray et al. (2018) and it can be used to perform land cover 19 

mapping and change detection analysis. In addition, REMAP uses geospatial data and the 20 

storage capacity of GEE, thus allowing REMAP to process and develop classified maps in 21 

the cloud in just few minutes without the need of high computational computers. REMAP is 22 

an open-source cloud-based analysis platform that provides fast land cover classification 23 

using a built-in RF machine learning algorithm. On the other hand, the utilisation of machine 24 

learning algorithms for image classification via software such as ENVI 5.3 (Exelis Visual 25 



Information Solutions, Boulder, CO, USA) and Erdas Imagine (ERDAS Inc., Atlanta, GA, 1 

USA) software will entail huge amount of time to complete the processing (Shaharum et al. 2 

2018). Furthermore, it requires knowledge of remote sensing to perform image pre-3 

processing, including handling the tools provided in the software. On top of that, massive 4 

effort, cost and time are needed to process vast amount of remote sensing data covering 5 

Peninsular Malaysia. Nevertheless, REMAP provides user-friendly platform that allows a 6 

user to access massive satellite data archives directly and handle the technical details of 7 

remote sensing that focus on training, classifying and improving the generated classified 8 

maps because it uses GEE to perform the workflow shown in Figure 5 (Murray et al. 2018). 9 

In addition, REMAP allows a beginner in remote sensing to perform image classification and 10 

monitor land use change over time (Shih 2018).  11 

 12 

2.4 Satellite data 13 

This study utilised the optical remote sensing data acquired from Landsat Enhanced Thematic 14 

Mapper and Operational Land Imager. Landsat data provide a moderate scale with 30 m 15 

spatial resolution images. However, optical sensors are sensitive to clouds, thereby reducing 16 

the quality of images in the presence of clouds. Gambo et al. (2018) and Shaharum et al. 17 

(2018) performed image stacking via Smart GeoFill to produce cloud-free image of a 18 

protected area, Krau Wildlife Reserve. Although they have successfully produced cloud-free 19 

image using several number of Landsat data, certain amount of time was required to process 20 

and stack all the data. To address this issue, REMAP provides ready-stacked images by 21 

compiling numerous images from two different periods, 1999–2003 (historical) and 2014–22 

2017 (current). In this paper, 1999–2003 is Period 1 and 2014–2017 is Period 2. The 23 

implementation of image stacking using the FMASK algorithm in GEE led to the production 24 

of quality Landsat images with fewer clouds, thereby allowing users to perform remote 25 



sensing application analysis by supporting environmental conservation, including 1 

biodiversity, land monitoring, hotspot identification and ecosystem mapping through the 2 

workflow shown in Figure 5 (Murray et al. 2018).  3 

 4 

Figure 5. [near here] 5 

 6 

2.5 Sample collection and predictor selection 7 

The training and testing samples were divided into seven classes: oil palm, forest, paddy, 8 

water, bare soil and other vegetation. The samples were selected based on the high-resolution 9 

image provided in REMAP, as shown in Figure 6. 10 

 11 

Figure 6. [near here] 12 

 13 

The samples were chosen using points that can be downloaded as JSon and CSV 14 

formats. REMAP allows users to upload their own training samples to perform classification. 15 

In this study, samples were created separately for each state, and 70% were used for training 16 

and 30% for testing. The training samples were used to perform image classification, and the 17 

testing samples were used to validate the classified maps. REMAP provided several predictor 18 

layers as shown in Table 1, and these layers are additional information that complements the 19 

primary information for RF image classification in REMAP. The user can easily choose and 20 

test different combinations of predictor layers for image classification to obtain the best 21 

output, given that RF is a powerful machine learning algorithm that classifies data based on 22 

assigned parameters (Svetnik et al. 2003). 23 

 24 

Table 1. [near here] 25 



 1 

Layers, such as NDVI and slope, are useful for extracting oil palm features. Shafri 2 

and Hamdan (2009) conducted a study using NDVI to detect and map disease in oil palm and 3 

accurately determined the condition of oil palm trees. A study on biomass estimation of forest 4 

and oil palm was conducted using several indices, including NDVI and NIR (Morel, Fisher, 5 

and Malhi 2012). Therefore, before any image classification can be performed in REMAP, 6 

different combinations of predictor layers were tested in the Selangor area, and the results 7 

were evaluated. After several evaluations of the classified Selangor maps, the combination of 8 

all layers listed in the spectral and topographic predictor layers was found to be the best and 9 

thus used to perform image classification in other states. 10 

 11 

2.6 Accuracy assessment 12 

Accuracy assessment is important in remote sensing applications. It compares the classified 13 

image with the ground truth data to measure the consistency between the classified map and 14 

the actual data. It also calculates the accuracy of the classified map, including classification 15 

errors. In addition, this method has also been used to measure and compare the ability of 16 

remote sensing algorithms in classifying images (Shaharum et al. 2018). Many approaches 17 

can be adopted to measure the accuracy of a classified map, but a common technique via the 18 

confusion matrix that was explained by Foody (2002) was chosen in this study to assess the 19 

accuracy of the classified maps. With the help of the data provided by Department of 20 

Agriculture, this study created training and testing samples. Of the total samples, 30% were 21 

used as testing samples to validate the accuracy of the classified maps. To avoid sample 22 

overlapping, 30% of the testing samples were generated in REMAP and exported to ArcMap 23 

version 10.4.1 to perform the assessment via the confusion matrix. 24 

 25 



The confusion matrix is normally expressed in table form and contains correctly and 1 

incorrectly classified pixel values. The classification example produced using three classes is 2 

shown in Table 3. 3 

 4 

Table 2. [near here] 5 

 6 

 7 

 8 

True positives (TP) : Model detects the condition when the condition is present 9 
True negatives (TN) : Model does not detect the condition when the condition is absent   10 
False positives (FP) : Model detects the condition when the condition is absent 11 
False negatives (FN) : Model does not detect the condition when the condition is present 12 
 13 

 14 

Table 3. [near here] 15 

 16 

The summation of TP and TN defines the accuracy of the model, while FP and FN are 17 

the errors of the classification model, which are known as Type 1 and Type 2 errors, 18 

respectively. Several types of information can be extracted from the table, such as the 19 

producer’s accuracy (PA), the user’s accuracy (UA), the overall accuracy (OA) and the kappa 20 

coefficient. Since this study focuses on the changes of oil palm from Periods 1 to 2, the 21 

calculation of PA and UA will be done only for oil palm classification. PA is the probability 22 

of the pixel to be classified correctly to the ground truth, which indirectly indicates how many 23 

pixels show the same feature as the reality. UA is the probability of the pixels predicted in 24 

several classes that belong to that class. OA is calculated based on the number of correctly 25 

classified pixels divided by the total number of pixel values. The kappa coefficient measures 26 

the agreement between the classified and true values (Foody 2002). The confusion matrix 27 

shown in Table 3 is expressed in Table 4. 28 

 29 



Table 4. [near here] 1 

 2 

 3 

2.7 Change detection of land use and land cover 4 

Aside from producing maps, one of the fundamentals in remote sensing image analysis is 5 

detecting changes in land use and land cover. Several methods can be used to perform change 6 

detection analysis, such as image differencing, image rationing and post-classification 7 

comparison (Afify 2011). Ideally, change detection is a post-classification technique that 8 

identifies changes or differences by using remotely sensed data. It provides a worldwide 9 

monitoring program by integrating the use of spatial, historical and spectral datasets. These 10 

datasets can be utilised to measure changes in vegetation, soil content, land cover and urban 11 

expansion (Mouat, Mahin, and Lancaster 2008; Wu et al. 2017). 12 

  13 

Several studies implementing change detection analysis were conducted using 14 

Landsat data. One of these studies was conducted by Zhu and Woodcock (2014) to detect 15 

changes in forest land cover. Sets of images obtained from 2001 to 2002 were used to 16 

monitor forest changes (Zhu, Woodcock, and Olofsson 2012). El-Kawy et al. (2011) 17 

performed change detection analysis to observe the conditions of the western Nile delta. They 18 

utilised Landsat data obtained from four different years. Change detection was applied using 19 

the post-classification approach by classifying the image via supervised classification to 20 

detect changes in agriculture and barren lands. The changes from one feature to another can 21 

be seen and observed. Thus, the results can be analysed for further action. The present study 22 

utilised the same post-classification technique in the change detection analysis of oil palm 23 

land cover over a large area. This technique was applied on two sets of stacked Landsat data 24 

from Periods 1 and 2, which were classified using RF. 25 



 1 

Utilising the post-classification technique in change detection requires at least two 2 

different images from two different periods. It is one of the easiest methods that result in a 3 

direct from-to results from the classified images. The changes for each class were compared 4 

and analysed by using different classified images (Almutairi and Warner 2010). The changes 5 

can be calculated using the following formula: 6 

 7 

𝐴1 − 𝐴2 = 𝐴 
 8 

A1 = Area of a class in Period 1 9 

A2 = Area of a class in Period 2 10 

A = Difference between the areas of the two periods 11 

 12 

3. Results and discussion 13 

3.1 Land cover assessments 14 

Figures 7(a) and 7(b) show the land cover maps of Peninsular Malaysia produced for Periods 15 

1 and 2. The OA, PA and UA of oil palm for all states are listed in Table 5. 16 

 17 

Figure 7. [near here] 18 

 19 

The classified maps were evaluated by using the testing samples (30% of the total samples), 20 

the assessment was conducted by using a tool provided in ArcMap version 10.4.1, and the 21 

calculation was performed using the confusion matrix as explained in Section 2.6. A forest 22 

consists of dense trees, mangroves and forest, while other vegetation feature plantations, less 23 

dense forests and agriculture crops other than oil palm and paddy. Bare soil consists of bare 24 

land, that is, open space, sand and areas where trees have been cleared. Lastly, built-up areas 25 

consist of buildings and roads. 26 

 27 

(Eq. 1) 



Table 5. [near here] 1 

 2 

 3 

The OA of the classified maps produced for Periods 1 and 2 are 80.34% and 79.53% 4 

respectively. For Period 1, Selangor obtained the highest OA of 87.39% with a kappa value 5 

of 84%, while Kelantan obtained the least OA of 72.99% with a kappa value of 67.17%. For 6 

Perlis, the oil palm area was small (MPOB 2018). Although the samples for oil palm in Perlis 7 

were created, the samples were limited, and the area was misclassified as forest. Perak 8 

produced the highest OA of 85.43% for Period 2, while Selangor had the least OA of 74.24%. 9 

Table 6 shows that most of the obtained PAs and UAs have an accuracy of more than 75%.  10 

However, the UAs and PAs produced for Periods 1 and 2 varied and were further investigated 11 

based on the oil palm area tabulated in Table 5.  12 

 13 

Table 6. [near here] 14 

 15 

 16 

 17 

Table 6 shows the oil palm area obtained from REMAP and the MPOB inventory for 18 

each state in Peninsular Malaysia for Periods 1 and 2. By comparing the results obtained from 19 

REMAP with the inventory from MPOB, the errors produced do not exceed 15%. 20 

Terengganu produced the nearest oil palm area to the MPOB statistics for Period 1, while 21 

Melaka produced the nearest oil palm area for Period 2. Although the UA and PA produced 22 

for Melaka in Period 1 exceeded 70%, the mapped oil palm area was sparser than indicated 23 

by the MPOB statistics. Kelantan produced an overestimated oil palm area by having more 24 

than twice the oil palm area provided by MPOB. Misclassifications of oil palm as other 25 



classes, such as forest and other vegetation, probably occurred due to the similarity of the 1 

spectral signal. Moreover, the effect of image stacking, which probably contains different 2 

illuminations, could contribute errors to image classification (Cheng, Han, and Lu 2017; 3 

Gambo et al. 2018; Shaharum et al. 2018). 4 

 5 

 6 

3.2 Analysis of the changes in the oil palm area 7 

The changes were observed and analysed using a post-classification technique. The increment 8 

in oil palm area that occurred from Periods 1 to 2 for each class is illustrated in Figure 8. 9 

 10 

Figure 8. [near here] 11 

 12 

Figure 8 shows the estimated percentage of each class in Period 1 that was converted 13 

to oil palm as classified in Period 2. The rate of conversion from forest to oil palm was 14 

12.96%. Despite the misclassifications between oil palm and forest, this rate alone cannot 15 

explain the loss of forest to oil palm land cover (Vijay et al. 2016). Gatti et al. (2019) stated 16 

that oil palm plantation has caused deforestation and increased in number of tree loss. They 17 

conducted a study using data obtained from Global Forest Watch (GFW), and concluded that 18 

certified productions of oil palm are not sustainable. However, Hegarty and d’Enghien (2018) 19 

found that data obtained from GFW has several limitations: cannot distinguish between oil 20 

palm and natural forest, failed to distinguish between tree cover loss and forest cover loss and 21 

plantation regrows is considered as tree loss. Moreover, zero tree removal was detected in 22 

both certified and uncertified oil palm productions. It is because replanting was taking place 23 

and although oil palm area continued to grow from Periods 1 to 2, the deforestation rate 24 

started to slow down from 1980s (Miyamoto et al. 2014). These findings revealed that oil 25 



palm plantation in Peninsular Malaysia is sustainable and it is not the main proximate cause 1 

of deforestation. Figure 8 clearly shows that other vegetation is the biggest contributor to the 2 

17.24% of oil palm expansion measured from Periods 1 to 2 (14 years). A total of 70.98% of 3 

other vegetation classified in Period 1 was converted to oil palm partly due to the reduction of 4 

rubber trees within the 14 years (Miyamoto et al. 2014). Furthermore, Wicke et al. (2011) 5 

found that permanent crops, mainly export crops natural rubber and coconut, decreased 6 

significantly. These findings explain the high conversion rate of other vegetation in oil palm 7 

expansion. The increment of the oil palm area was also due to the replanting activities that 8 

converted bare soil and plantations into oil palm crops (Agus et al. 2013). Meanwhile, the 9 

degraded land remains stagnant over time (Wicke et al. 2011), and oil palm was reported to 10 

grow at a slow rate after 2010 (MPOB 2018). 11 

4. Conclusion 12 

With a powerful built-in RF machine learning algorithm and the availability of the cloud 13 

service, REMAP has become a powerful tool that can be used to generate land cover maps 14 

over a large area in a short time. Through the cloud computing service, REMAP provides 15 

quality images with fewer clouds worldwide. For the first time, the combination of cloud 16 

computing and machine learning via REMAP was utilised and proved successful in 17 

conducting oil palm mapping and change detection in Peninsular Malaysia. REMAP 18 

produced maps of oil palm distributions for the state of Peninsular Malaysia, with accuracies 19 

of 80.34% and 79.53% respectively for Periods 1 and 2. Furthermore, via the change 20 

detection approach, the rate and patterns of change could be observed and analysed (Wulder 21 

et al. 2018). The results produced from REMAP indicated that oil palm plantation in 22 

Peninsular Malaysia is sustainable and does not result in adverse effects on the forest 23 

environment, thus achieving the sustainable development objectives of the country.  24 

Although REMAP provides fast image processing and map making, it is limited only to 25 



Landsat data and the RF classifier. Furthermore, the data are fixed and cannot be improved or 1 

adjusted. We have several recommendations to improve this study, such as the utilisation of 2 

other sensors, such as Sentinel 2 and Sentinel 1. Furthermore, optical and radar data can be 3 

integrated to improve image quality. Then, the utilisation of other machine learning 4 

algorithms, such as SVM, ANN and the deep learning approach, in the REMAP environment 5 

can be tested. 6 

 7 
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