

Citation for published version:
Wortham, RH, Gaudl, SE & Bryson, JJ 2019, 'Instinct: A Biologically Inspired Reactive Planner for Intelligent
Embedded Systems', Cognitive Systems Research, vol. 57, pp. 207-215.
https://doi.org/10.1016/j.cogsys.2018.10.016

DOI:
10.1016/j.cogsys.2018.10.016

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Jun. 2020

https://doi.org/10.1016/j.cogsys.2018.10.016
https://doi.org/10.1016/j.cogsys.2018.10.016
https://researchportal.bath.ac.uk/en/publications/instinct(54aa9636-b2c3-4bd6-b594-bc2310524751).html

Instinct: A Biologically Inspired Reactive Planner
for Intelligent Embedded Systems

Robert H. Worthama, Swen E. Gaudlc, Joanna J. Brysonb

aDepartment of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
bDepartment of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY, UK

cFalmouth University, Games Academy, Penryn Campus, Treliever Road, Penryn TR10 9FE, UK

Abstract

The Instinct Planner is a new biologically inspired reactive planner, based on an established behaviour based robotics methodology
and its reactive planner component — the POSH planner implementation. It includes several significant enhancements that facilitate
plan design and runtime debugging. It has been specifically designed for low power processors and has a tiny memory footprint.
Written in C++, it runs efficiently on both Arduino (Atmel AVR) and Microsoft VC++ environments and has been deployed
within a low cost maker robot to study AI Transparency. Plans may be authored using a variety of tools including a new visual
design language, currently implemented using the Dia drawing package.

Keywords: Reactive Planning, Instinct, Arduino, POSH, BOD, Bio-Inspired
2010 MSC: 00-01, 99-00

1. INTRODUCTION

From the 1950’s through to the 1980’s the study of em-
bodied AI assumed a cognitive symbolic planning model for
robotic systems — SMPA (Sense Model Plan Act) — the most
well known example of this being the Shakey robot project [1].5

In this article, we present a novel approach that can be used to
develop embodied agents beyond the scale of the original scope
of SMPA cycles. In the SMPA model, the world is first sensed
and a model of the world is constructed within the AI. Based
on this model and the objectives of the AI, a plan is constructed10

to achieve the goals of the robot. Only then does the robot act.
Although this idea seemed logical and initially attractive, it was
found to be quite inadequate for complex, real world environ-
ments. Generally the world cannot be fully modelled until the
robot plan is underway, since sensing the world requires mov-15

ing through it. Also, where environments change faster than
the rate at which the robot can complete its SMPA cycle, the
planning simply cannot keep up. Brooks [2] provides a more
comprehensive history, which is not repeated here.

In the 1990’s Rodney Brooks and others [3] introduced the20

then radical idea that it was possible to have intelligence with-
out representation [4]. Brooks developed his subsumption ar-
chitecture as a pattern for the design of intelligent embodied
systems that have no internal representation of their environ-
ment, and minimal internal state. These autonomous agents25

could traverse difficult terrain on insect-like legs, appear to in-
teract socially with humans through shared attention and gaze

Email addresses: r.h.wortham@bath.ac.uk (Robert H. Wortham),
swen.gaudl@gmail.com (Swen E. Gaudl), j.j.bryson@bath.ac.uk
(Joanna J. Bryson)

tracking, and in many ways appeared to posses behaviours sim-
ilar to that observed in animals. However, the systems produced
by Brooks and his colleagues could only respond immediately30

to stimuli from the world. They had no means of focusing at-
tention on a specific goal or of executing complex sequences
of actions to achieve more complex behaviours. The original
restrictions imposed by Brooks’ subsumption architecture were
subsequently relaxed with later augmentations such as timers,35

effectively beginning the transition to systems that used inter-
nal state in addition to sensory input in order to determine be-
haviour.

Following in-depth studies of animals such as the stickle-
back fish and gulls in their natural environments, ideas of how40

animals perform action selection were originally formulated by
Tinbergen and other early ethologists [5, 6, 7]. Reactions are
based on pre-determined drives and competences, but depend
also on the internal state of the organism [8]. Bryson [9] har-
nessed these ideas to achieve a major step forwards with the45

POSH (Parallel Ordered Slipstack Hierarchy) reactive planner
and the BOD (Behaviour Oriented Design) methodology, both
of which are strongly biologically inspired. Bryson [9] uses
BOD to successfully model and simulate primate behaviour in
a variety of realistic scenarios such as Macaques.50

It is important to understand the rationale behind biolog-
ically inspired reactive planning. It is based on the idea that
biological organisms constantly sense the world, and generally
react quickly to sensory input, based on a hierarchical set of
behaviours structured as Drives, Competences and Action Pat-55

terns. Their reactive plan uses a combination of sensory inputs
and internal priorities to determine which plan elements to ex-
ecute, ultimately resulting in the execution of leaf nodes in the
plan, which in turn execute real world actions. For further read-

Preprint submitted to Cognitive Systems Research October 8, 2018

ing see Gurney et al. [10], Prescott et al. [11] and Seth [12].60

At run-time, the reactive plan itself is essentially fixed. Various
slower reacting systems may also be used to modify priorities
or other parameters within the plan. These slower reacting sys-
tems might be compared with emotional or endocrinal states in
nature that similarly affect reactive priorities [13, 14]. Similarly65

the perception of senses can be affected by the internal state of
the plan, an example being the latching (or hysteresis) associ-
ated with sensing [15].

In nature, the equivalent process to a reactive plan is sub-
ject to possible learning that may change the plan parameters70

or even modify the structure of the plan itself as new skills and
behaviours are learned. This learning may take place ontoge-
netically, i.e. within the lifetime of an individual, or phyloge-
netically, by the process of natural selection, across the life-
times of many individuals. Bryson’s BOD approach suggests75

that humans provide most of the necessary learning in order to
improve the plan over time, in place of natural selection. How-
ever, Gaudl [16], Gaudl and Bryson [13] successfully uses ge-
netic programming to automate part of this learning process,
albeit within a computer game simulation.80

A reactive plan is re-evaluated on every plan cycle, usually
multiple times per second, and this requires that the inquiries
from the planner to the senses and the invocation of actions
should respond quickly. This fast cycling enables the reactive
plan to respond quickly to changes in the external environment,85

whilst the plan hierarchy allows for complex sequences of be-
haviours to be executed. Applying these ideas to robots we can
see that for senses, this might imply some caching of sense data.
For actions, it also implies that long running tasks (relative to
the rate of plan execution), need to not only return success or90

failure, but also another status to indicate that the action is still
in progress and the plan must wait at its current execution step
before moving on to its next step. The action may be executing
on another thread, or may just be being sampled when the call
to the action is made. This is implementation specific and does95

not affect the functioning of the planner itself. If re-invoked be-
fore it completes, the action immediately returns an In Progress
response. In this way, longer running action invocations should
not block the planner from responding to other stimuli that may
still change the focus of attention by, for example, releasing an-100

other higher priority Drive.
Each call to the planner within the overall scheduling loop

of the robot starts a new plan cycle. In this context an action
may be a simple primitive, or may be part of a more complex
pre-defined behaviour module, such as a mapping or trajectory105

calculation subsystem. It is important to note that the BOD
methodology does not predicate that all intelligence is concen-
trated within the planner. Whilst the planner drives action se-
lection, considerable complexity can still exist in sensory, actu-
ation and other probabilistic or state based subsystems within110

the overall agent [9].
The digital games industry has advanced the use of AI for

the simulation of non player characters [17]. The BehaviorTree
(BT) concept is similarly hierarchical to POSH plans, but have
additional elements that more easily allow logical operations115

such as AND, OR, XOR and NOT to be included within the

plan. For example it is possible for a goal to be reached by suc-
cessfully executing only one of a number of behaviours, trying
each in turn until one is successful. Bryson’s original design of
POSH does not easily allow for this kind of plan structure.120

BTs are in turn simplifications of Hierarchical Task Net-
work (or HTN) planners [18]. Like POSH, HTN planners are
able to create and run plans that contain recursive loops, mean-
ing that they can represent any computable algorithm.

2. THE INSTINCT PLANNER125

The Instinct Planner1 is a reactive planner based on Bryson’s
POSH [19, 9]. It includes several enhancements taken from
more recent work extending POSH [15, 13], together with some
ideas from other planning approaches, notably BehaviorTree
[BT — 20, 17, 21]. A POSH plan consists of a Drive Collec-130

tion (DC) containing one or more Drives. Each Drive (D) has
a priority and a releaser. When the Drive is released as a result
of sensory input, a hierarchical plan of Competences, Action
Patterns and Actions follows.

• Action (A): Actions represent the leaf nodes in our re-135

active plan hierarchy. Actions invoke behaviour primi-
tives encoded within the Agent. These behaviours may
be simple, such as halting robot motion, or may be more
complex, such as initiating a process to turn a robot in a
specific direction. Instinct adds the concept of an Action140

Value, a parameter stored within the Action and passed as
a parameter to the underlying primitive behaviour. This
allows specific Actions to be encoded within the Instinct
plan that invoke more general purpose behaviour primi-
tives. A simple example would be a primitive to turn a145

robot by an angle specified in the Action Value param-
eter. In the case of simple and immediate actions, the
primitive behaviour returns either success or fail. For
more complex, longer running behaviours the immedi-
ate return value would be in progress, indicating that the150

requested behaviour has commenced, but is not yet com-
plete. Subsequent invocations of the behaviour request
will return in progress until the behaviour finally returns
success. These return values are returned by the Action
itself, and use by the higher levels in the reactive plan to155

determine the plan execution path.

• Action Pattern (AP): Action patterns are used to reduce
the computational complexity of search within the plan
space and to allow a coordinated fixed sequential exe-
cution of a set of elements. An action pattern—AP =160

[α0, . . . , αk]—is an ordered set of Actions that does not
use internal precondition or additional perceptual infor-
mation. It provides the simplest plan structure in POSH
and allows for the optimised execution of behaviours. An
example would be an agent that always shouts and moves165

its hand upwards when touching an hot object. In this

1The Instinct Planner was first presented at the ICAPS PlanRob Workshop,
London, June 2016.

2

case, there is no need for an additional check between
the two Action primitives if the agent should always be-
have in that manner. An AP needs to execute all child
elements before it completes successfully.170

• Competence (C): Competences form the core part of POSH
plans. A competence C = [c0, . . . , c j] is a self-contained
basic reactive plan (BRP) where cb = [π, ρ, α, η], b ∈
[0, . . . , j] are tuples containing π, ρ, α and η: the pri-
ority, precondition, child node of C and maximum num-175

ber of retries. The priority determines which of the child
elements to execute, selecting the one with the highest
priority first. The precondition is a concatenated set of
senses that either release or inhibit the child node α. The
child node itself can be another Competence or an Ac-180

tion or Action Pattern. To allow for noisy environments
a child node can fail a number of times, specified using
η, before the Competence ignores the child node for re-
maining time within the current cycle. A Competence
sequentially executes its hierarchically organised child-185

nodes where the highest priority node is the competence
goal. A Competence fails if no child can execute or if an
executed child fails.

• Drive (D): A Drive—D = [π, ρ, α, A, v]—allows for the
design and pursuit of a specific behaviour as it main-190

tains its execution state. The Drive Collection determines
which Drive receives attention based on each Drive’s π,
the associated priority of a Drive. ρ is the releaser, a set
of preconditions using senses to determine if the drive
should be pursued. α is either an Action, Action Pat-195

tern or a Competence and A is the root link to the Drive
Collection. The last parameter v specifies the execution
frequency, allowing POSH to limit the rate at which the
Drive can be executed. This allows for coarse grain con-
currency of Drive execution (see below).200

• Drive Collection (DC): The Drive Collection—DC—is
the root node of the plan—DC = [g,D0, . . . ,Di]. It con-
tains a set of Drives Da, a ∈ [0 . . . i] and is responsible
for giving attention to the highest priority Drive. To al-
low the agent to shift and focus attention, only one Drive205

can be active in any given cycle. Due to the parallel hi-
erarchical structure, Drives and their sub-trees can be in
different states of execution. This allows for cooperative
multitasking and a quasi-parallel pursuit of multiple be-
haviours at the Drive Collection level.210

For a full description of POSH and BOD see Bryson [9].

2.1. Enhancements and Innovations

The Instinct Planner is engineered to be of practical use in
simple, low cost robots. In this section we describe specific
enhancements and innovations that support this objective. In215

addition, we chose low cost, widely available, contemporary
development environments and tools, in order to make it as easy
as possible to build robots using Instinct.

The Instinct Planner includes a full implementation of what
we term Drive Execution Optimisation (DEO). DEO avoids a220

full search of the plan tree at every plan cycle which would be
expensive. It also maintains focus on the task at hand. This cor-
responds loosely to the function of consciousness attention seen
in nature [22]. A form of this was in Bryson’s original POSH,
but has not been fully implemented in subsequent versions. The225

Drive, Competence and Action Pattern elements each contain a
Runtime Element ID. These variables are fundamental to the
plan operation. Initially they do not point to any plan element.
However, when a Drive is released the plan is traversed to the
point where either an Action is executed, or the plan fails at230

some point in the hierarchy. If the plan element is not yet com-
pleted it returns a status of In Progress and the IDs of the last
successful steps in the plan are stored in Runtime Element ID
in the Drive, Competence and Action Pattern elements. If an
action or other sub element of the plan returns success, then the235

next step in the plan is stored. On the next cycle of the drive,
the plan hierarchy is traversed again but continues from where
it got to last plan cycle, guided by the Runtime Element IDs. A
check is made that the releasers are still activated (meaning that
the plan steps are still valid for execution), and then the plan240

steps are executed. If a real world action fails, or the releaser
check fails, then the Runtime Element ID is once again cleared.
During execution of an Action Pattern (a relatively quick se-
quence of actions), sensory input is temporarily ignored imme-
diately above the level of the Action Pattern. This more closely245

corresponds to the reflex behaviour seen in nature. Once the
system has started to act, then it continues until the Action Pat-
tern completes, or an element in the Action Pattern explicitly
fails. Action Patterns are therefore not designed to include Ac-
tions with long running primitive behaviours.250

In addition to these smaller changes there are three major
innovations in the Instinct Planner that increase the range of
plan design options available to developers:

• Runtime alteration of drive priority — This closely fol-
lows the RAMP model of Gaudl and Bryson [13, 14]255

which in turn is biologically inspired, based on spreading
activation in neural networks. Within the Instinct Plan-
ner we term this Dynamic Drive Reprioritisation (DDR).
DDR is useful to modify the priority of drives based on
more slowly changing stimuli, either external or internal.260

For example, a recharge battery drive might be used to
direct a robot back to its charging station when the bat-
tery level becomes low. Normally this drive might have a
medium priority, such that if only low priority drives are
active then it will return when its battery becomes dis-265

charged to say 50%. However, if there are constantly high
priority drives active, then the battery level might reach a
critical level of say 10%. At that point the recharge bat-
tery drive must take highest priority. A comparison can
be drawn here with the need for an animal to consume270

food. Once it is starving the drive to eat assumes a much
higher priority than when the animal experiences normal
levels of hunger. For example, it will take more risks to
eat, rather than flee from predators.

3

• Flexible latching — This provides for a more dynamic275

form of sense hysteresis, based not only on plan config-
uration, but also the runtime focus of the plan, follow-
ing the work of Rohlfshagen and Bryson [15]. Within
the Instinct Planner we term it Flexible Sense Hysteresis
(FSH). This hysteresis primarily allows for noise from280

sensors and from the world, but Rohlfshagen’s paper also
has some basis in biology to avoid dithering by prolong-
ing behaviours once they have begun. If the Drive is in-
terrupted by one of a higher priority, then when the sense
is again checked, it will be the Sense Flex Latch Hystere-285

sis that will be applied, rather than the Sense Hysteresis.

• Enhanced Competence — It is now possible to group a
number of competence steps by giving them the same
priority and add logical conditions to the grouping. We
refer to this grouping as a priority group. Items within a290

group have no defined order. Within a priority group, the
Competence itself can specify whether the items must all
be successfully executed for the Competence to be suc-
cessful (the AND behaviour), or whether only one item
need be successful (the OR behaviour). In the case of295

the OR behaviour, several items within the group may
be attempted and may fail, before one succeeds. At this
point the Competence will then move on to higher pri-
ority items during subsequent plan cycles. A Compe-
tence can have any number of priority groups within it,300

but all are constrained to be either AND or OR, based on
the configuration of the Competence itself. This single
enhancement, whilst sounding straightforward, increases
the complexity of the planner code significantly, but al-
lows for much more compact, sophisticated plans, with305

a richer level of functionality achievable within a single
Competence than was provided with the earlier POSH
implementations.

2.2. Multi Platform

The Instinct planner itself is able to run both within Mi-310

crosoft Visual C++ and the Arduino development environ-
ments [23] as a C++ library. The Arduino uses the Atmel AVR
C++ compiler [24] with the AVR Libc library [25] — a stan-
dards based implementation of gcc and libc. This arrange-
ment harnesses the power of the Visual C++ Integrated De-315

velopment Environment (IDE) and debugger, hugely increas-
ing productivity when developing for the Arduino platform,
which has no debugger and only a rudimentary IDE. We have
a complete implementation of the Instinct Planner on an Ar-
duino based robot named R5, see figure 1. The robot runs320

using various Instinct plans and has been successfully used in
several robot transparency experiments [26]. Due to the very
compact memory architecture of Instinct, the planner is able
to store plans with up to 255 elements within the very limited
8KB memory (RAM) available on the Arduino Mega (Atmel325

AVR ATmega2560 microcontroller). The 255 element limita-
tion arises from the use of a single byte to store plan element
IDs within the Arduino environment.

Figure 1: The R5 Arduino based Maker Robot in a laboratory test environment.
The camera mounted on the robot is used to record robot activity, but is not used
by the robot itself.

The robot itself has active infrared and ultrasonic distance
sensors, a head capable of scanning its environment, a passive330

infrared (PIR) sensor to assist in the detection of humans inter-
acting with it, and proprioceptive sensing of odometry (distance
travelled) and drive motor current. It has simple and more com-
plex underlying behaviours that can be invoked by the planner,
such as the ability to turn in the direction of the most clear path-335

way ahead, or to use its head to scan for the presence of a hu-
man. It also has a multicoloured headlight that may be used for
signalling to humans around it. Finally, it has an electronically
erasable programmable read only memory (EEPROM) that per-
manently stores both the robot’s configuration parameters and340

the Instinct plan. This leverages the planner’s ability to serialise
plans as a byte stream, and then reconstitute the plan from that
stream at startup.

2.3. Memory Management

In order to produce a planner that operates effectively in an345

environment with severely limited working memory resources
(RAM), considerable design effort has been applied to the mem-
ory management architecture within the planner. There are 6
separate memory buffers, each holding fixed record length el-
ements for each element type in the plan — Drives, Compe-350

tences, Competence Elements, Action Patterns, Action Pattern
Elements and Actions. An instance of Instinct has a single
Drive Collection — the root of the plan.

Within each plan element, individual bytes are divided into
bit fields for boolean values, and the data is normalised across355

elements to avoid variable length records. This means, for ex-
ample, that Competence Elements hold the ID of their parent
Competence, but the Competence itself does not hold the IDs
of each of its child Competence Elements. At runtime a search
must be carried out to identify which Competence Elements be-360

long to a given Competence. Thus, the planner sacrifices some
search time in return for a considerably more compact mem-
ory representation. Fortunately this search is very fast, since

4

the Competence Elements are stored within a single memory
buffer with fixed length records. Testing shows the time taken365

by this searching was negligible in comparison with the plan
cycle rate of the robot. Plan elements, senses and actions are
referenced by unique numeric IDs, rather than by name. The
memory storage of these IDs is defined within the code using
the C++ #typedef preprocessor command, so that the width370

of these IDs can be configured at compile time, depending on
the maximum ID value to be stored. This again saves memory
in an environment where every byte counts. Consideration of
stack usage is also important, and temporary buffers and similar
structures are kept to a minimum to avoid stack overflow.375

Fixed strings (for example error messages) and other data
defined within programs are usually also stored within working
memory. Within a microcontroller environment such as Ar-
duino this is wasteful of the limited memory resource. This
problem has been eliminated in the Instinct Planner implemen-380

tation by use of AVR Libc functions [25] that enable fixed data
to be stored in the much larger program (flash) memory. For
code compatibility these functions have been replicated in a
pass-through library so that the code compiles unaltered on non-
microcontroller platforms.385

2.4. Instinct Testing Environment

As a means to test the functionality of the Instinct Planner
within a sophisticated debugging environment, we have an im-
plementation of the planner within Microsoft Visual C++, and
have tested the simulation of agents within a grid based world.390

The world allows multiple robots to roam, encountering one an-
other, walls and so on. This simulator has also been extended
with a graphical user interface to better show both the world and
the real time monitoring available from within the plan [27].
However, the authors’ primary use of the Instinct Planner has395

been within the R5 robot, as a means of investigating the real
time debugging, and transparency of actual robots [28]. Build-
ing transparency into robot action selection can help users build
a more accurate understanding of the robot, see Section 2.5 be-
low.400

The Instinct Planner code is not fundamentally limited to
255 plan elements, and will support much larger plans on plat-
forms with more memory. In Microsoft Visual C++ for ex-
ample, plans with up to 65,535 nodes are supported, simply
by redefining the instinctID type from unsigned char to405

unsigned int.

2.5. Instinct Transparency Enhancements

The planner has the ability to report its activity as it runs, by
means of callback functions to to a monitor C++ class. There
are six separate callbacks monitoring the Execution, Success,410

Failure, Error and In-Progress status events, and the Sense ac-
tivity of each plan element. In the Visual C++ implementation,
these callbacks write log information to files on disk, one per
robot instance. This facilitates the testing and debugging of the
planner. In the Arduino robot, the callbacks write textual data415

to a TCP/IP stream over a wireless (wifi) link. A Java based In-
stinct Server receives this information, enriches it by replacing

element IDs with element names, and logs the data to disk. This
communication channel also allows for commands to be sent to
the robot while it is running.420

With all nodes reporting all monitor events over wifi, a plan
cycle rate of 20Hz is sustainable. By reducing the level of mon-
itoring, we reduce the volume of data sent over WiFi and plan
cycle rates of up to 40Hz are achievable. In practice a slower
rate is likely to be adequate to control a robot, and will reduce425

the volume of data requiring subsequent processing. In our ex-
periments a plan cycle rate of 8Hz was generally used.

SERVER ROBOT

Plan Manager

Reactive
Planner

Action
Selection

Behaviour
Library

Sensor model

Internal
Robot State

TCP/IP over WiFi

Plan
Monitor

WORLD

Instinct
Planner

Figure 2: Software Architecture of the R5 Robot showing interfaces with the
World and the Instinct Server. The Instinct Planner provides the action selection
subsystem of the robot.

Figure 2 shows how the planner sits within the robot soft-
ware environment and communicates with the Instinct Server.

2.6. Instinct Command Set430

The robot command set primarily communicates with the
planner which in turn has a wide range of commands, allow-
ing the plan to be uploaded and altered in real time, and also
controlling the level of activity reporting from each node in the
plan. When the robot first connects to the Instinct Server, the435

plan and monitoring control commands are automatically sent
to the robot, and this process can be repeated at any time while
the robot is running. This allows plans to be quickly modified
without requiring any re-programming or physical interference
with the robot.440

2.7. Creating Reactive Plans with iVDL

POSH plans are written in a lisp like notation, either using
a text editor, or the ABODE editor [29, 30]. However, Instinct
plans are written very differently, because they must use a much
more compact notation and they use IDs rather than names for445

5

plan elements, senses and actions. We have developed the In-
stinct Visual Design Language (iVDL) based on the ubiquitous
Unified Modelling Language (UML) notation. UML is sup-
ported by many drawing packages and we have developed a
simple Python export script to allow plans to be created graph-450

ically within the Dia drawing tool [31]. The export script takes
care of creating unique IDs and allows the plans to use named
elements, thus increasing readability. The names are exported
alongside the plan, and whilst they are ignored by the planner
itself, the Instinct-Server uses this export to convert IDs back455

into names within the log files and interactive display.

Figure 3: Instinct Plan element types and their relationship, shown within the
DIA drawing tool.

Figure 3 shows the Instinct plan template within Dia. We
use the UML class notation to define classes for the six types
of element within the Instinct plan, and also to map the exter-
nal numerical identifiers (IDs) for senses and robot actions to460

names. We use the UML aggregation connector to identify the
connections between the plan elements. This can be read, for
example, as “A Drive can invoke an Action, a Competence or
an Action Pattern”.

Figure 4 shows a plan for the R5 robot. At this level of465

magnification the element details are not legible, but this screen
shot gives an impression of how plans can be laid out. This par-
ticular plan searches the robot’s environment, avoiding objects
and adjusting its speed according to the space around it. As it
moves around it attempts to detect humans within the environ-470

ment. The robot also temporarily shuts down in the event of
motor overload, and it will periodically hibernate when not in
open space to conserve battery power. Such a plan might be
used to patrol hazardous areas such as industrial food freezers,
or nuclear facilities.475

The plan was designed and debugged within the space of
a week. During the debugging, the availability of the trans-

Figure 4: The plan used by the R5 robot to enable it to explore an environment,
avoid obstacles, and search for humans. The plan also includes emergency
behaviours to detect and avoid excessive motor load, and to conserve battery by
sleeping periodically.

parency data logged by the Instinct Server was extremely use-
ful, because mere observation of the robot’s emergent behaviour
is frequently insufficient to determine the cause of plan mal-480

function. For example, there were specific cases where the
robot would unexpectedly hit an obstacle, rather than correctly
avoid it. These cases could not easily be reproduced, but ob-
serving the robot together with the real-time debug trace during
the error scenario quickly isolated the problem as an interaction485

between two Drives within the plan. The actual positioning of
plan elements within the drawing is entirely up to the plan de-
signer. Since Dia is a general purpose graphical editor, other
symbols, text and images can be freely added to the file. This
is useful at design time and during the debugging of the robot.490

It also provides an additional vehicle for the creation of longer
term project documentation. We suggest that an in-house stan-
dard is developed for the layout of plans within a development
group, such that developers can easily read one another’s plans.

2.8. Plan Debugging and Transparency495

Currently, work is underway within the Artificial Models
of Natural Intelligence (AmonI) research group at the Univer-
sity of Bath2 to create a new version of the ABODE plan ed-
itor [32]. This version directly writes Instinct plans, and also
reads the real-time transparency data emanating from the In-500

stinct Planner, in order to provide a real-time graphical display

2AmonI — http://www.cs.bath.ac.uk/ai/AmonI.html

6

of plan execution. In this way we are beginning to explore both
runtime debugging and wider issues of AI Transparency.

3. CONCLUSIONS AND FURTHER WORK

In this article, we presented the Instinct planner, a reac-505

tive planner for designing behaviour-based AI, including but
not limited to embodied agents such as the presented R5 robot.
The Instinct planner is a major re-engineering and enhancement
of Bryson’s original work, focusing on an extremely tiny mem-
ory footprint and specifically low power CPUs. It is the first510

POSH-based planner that focuses on embedded systems, and
allows deployment in practical real time physical environments
such as our Arduino based maker robot. By using a very lean
coding style and efficient memory management, we maximise
both the size of plan that can be dynamically loaded, and the515

performance in terms of execution rate.
The transparency capabilities, novel to this implementation

of POSH, provides the necessary infrastructure to deliver real
time plan debugging. Work is currently underway to leverage
this architecture with a real time visual debugging tool, initially520

to assist the work of reactive plan designers, but also as a re-
search tool for the investigation of wider AI Transparency is-
sues. The Visual Design Language (iVDL) is a novel represen-
tation of reactive plans, and we demonstrate that such plans can
be designed using a standard open source drawing package and525

exported with a straightforward plug-in script. We envisage the
development of similar plug-ins for other commercial drawing
tools such as Microsoft Visio.

Although primarily developed for physical robot implemen-
tations, the Instinct Planner has obvious applications in teach-530

ing, simulation and game AI environments. For example, the
planner is embedded within a graphical agent simulation envi-
ronment, the Instinct Robot World [27], where the planner is
used to control simple agents within a grid based world. A
previous POSH implementation has been used to control game535

agents in domains such as real-time strategy games (RTS) [33]
or first-person shooters (FPS) [34], which shows further poten-
tial application domains for Instinct and related approaches. We
would like to see the implementation of Instinct on other em-
bedded and low cost Linux computing environments such as540

the Raspberry Pi [35]. With more powerful platforms such as
the Pi, much larger plans can be developed and we can evalu-
ate both the runtime performance of very large plans, and the
design efficiency of iVDL with multi-user teams.

4. Acknowledgements545

This work is funded by the University of Bath and in parts
by EC FP7 grant 621403 (ERA Chair: Games Research Oppor-
tunities).

1. Nilsson NJ. Shakey the Robot. Tech. Rep.; SRI International; Technical
Note 323; 1984.550

2. Brooks RA. Intelligence Without Reason. In: Steels L, Brooks RRA,
eds. The Artificial Life Route to Artificial Intelligence: Building Em-
bodied, Situated Agents. Mahwah, New Jersey, USA: L. Erlbaum Asso-
ciates. ISBN 0805815198, 9780805815191; 1991:25–81. URL: http:
//idlebrain.yolasite.com/resources/Article-AI.pdf.555

3. Breazeal C, Scassellati B. Robots that Imitate Humans. Trends in Cogni-
tive Sciences 2002;6(11):481–7.

4. Brooks RA. Intelligence Without Representation. Artificial Intelligence
1991;47(1):139–59.

7

http://idlebrain.yolasite.com/resources/Article - AI.pdf
http://idlebrain.yolasite.com/resources/Article - AI.pdf
http://idlebrain.yolasite.com/resources/Article - AI.pdf

5. Tinbergen N. The Study of Instinct. Oxford, UK: Oxford University560

Press; 1951. ISBN 9780198577225. URL: https://books.google.
co.uk/books?id=WqZNkgEACAAJ.

6. Tinbergen N. The Curious Behavior of the Stickleback. Scientific Ameri-
can 1952;187(6):22–6. doi:10.1038/scientificamerican1252-22.

7. Tinbergen N, Falkus H. Signals for Survival. Oxford: Claren-565

don Press; 1970. URL: http://books.google.co.uk/books?id=
5LHwAAAAMAAJ.

8. Bryson JJ. The Study of Sequential and Hierarchical Organisation of Be-
haviour Via Artificial Mechanisms of Action Selection. M. phil.; Univer-
sity of Edinburgh; 2000. URL: https://www.cs.bath.ac.uk/~jjb/570

ftp/mphil.pdf.
9. Bryson JJ. Intelligence by Design: Principles of Modularity and Co-

ordination for Engineering Complex Adaptive Agents. Ph.d; MIT;
2001. URL: https://dspace.mit.edu/bitstream/handle/1721.
1/8230/50172578-MIT.pdf?sequence=2.575

10. Gurney KN, Prescott TJ, Redgrave P. The Basal Ganglia Viewed as an
Action Selection Device. In: Eighth International Conference on Ar-
tificial Neural Networks. London, UK: Springer; 1998:1033–8. URL:
http://www.shef.ac.uk/~abrg/publications/icann98.pdf.

11. Prescott TJ, Bryson JJ, Seth AK. Introduction. Modelling Natural Ac-580

tion Selection. Philosophical transactions of the Royal Society of London
Series B, Biological sciences 2007;362(1485):1521–9. doi:10.1098/
rstb.2007.2050.

12. Seth AK. The Ecology of Action Selection: Insights from Artificial Life.
Philosophical Transactions of the Royal Society of London Series B, Bi-585

ological Sciences 2007;362(1485):1545–58. doi:10.1098/rstb.2007.
2052.

13. Gaudl SE, Bryson JJ. The Extended Ramp Goal Module: Low-
Cost Behaviour Arbitration for Real-Time Controllers based on Bio-
logical Models of Dopamine Cells. In: Computational Intelligence in590

Games (CIG) 2014 IEEE Conference On. Dortmund, Germany; 2014:1–
8. URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
{&}arnumber=6932887.

14. Gaudl SE, Bryson JJ. The Extended Ramp Model: A
Biomimetic Model of Behaviour Arbitration for Lightweight Cog-595

nitive Architectures. Cognitive Systems Research 2018;50:1–
9. URL: http://swen.fairrats.eu/research/papers/

2018-CognitiveSystems-ExtendedRamp-Gaudl-Bryson-preprint.

pdf.
15. Rohlfshagen P, Bryson JJ. Flexible Latching: A Biologically-600

Inspired Mechanism for Improving the Management of Homeostatic
Goals. Cognitive Computation 2010;2(3):230–41. doi:10.1007/
s12559-010-9057-0.

16. Gaudl S. Building Robust Real-Time Game AI: Simplifying and Au-
tomating Integral Process Steps in Multi-Platform Design. Phd; Uni-605

versity of Bath; 2016. URL: http://swen.fairrats.eu/research/
papers/Gaudl-PhD-RobustGameAI.pdf.

17. Champandard AJ, Dunstan P. The Behavior Tree Starter Kit. In: Rabin
S, ed. Game AI Pro: Collected Wisdom of Game AI Professionals. Game
Ai Pro; A. K. Peters, Ltd.; 2013:72–92.610

18. Ghallab M, Nau DS, Traverso P. Automated Planning: Theory and Prac-
tice. Morgan Kaufmann Series in Artificial Intelligence; Elsevier/Morgan
Kaufmann; 2004. ISBN 9781558608566. URL: https://books.

google.co.uk/books?id=eCj3cKC{_}3ikC.
19. Bryson J. Parallel-rooted, Ordered Slip-stack Hierarchy.615

http://www.cs.bath.ac.uk/˜jjb/web/posh.html; 2008. URL:
http://www.cs.bath.ac.uk/~jjb/web/posh.html.

20. Champandard AJ. AI Game Development. New Riders Publishing; 2003.
21. Lim BY. Improving Understanding and Trust with Intelligibil-

ity in Context-Aware Applications. Ph.d; Carnegie Mellon Univer-620

sity; 2012. URL: http://repository.cmu.edu/cgi/viewcontent.
cgi?article=1147{&}context=dissertations.

22. Bryson JJ. A Role for Consciousness in Action Selection. In: Chrisley
R, Clowes R, Torrance S, eds. Proceedings of the AISB 2011 Symposium:
Machine Consciousness. York: SSAISB; 2011:15–.625

23. Arduino . Arduino Website. https://www.arduino.cc/; 2016. URL:
https://www.arduino.cc/.

24. Atmel Corporation . Atmel Studio Website.
http://www.atmel.com/Microsite/atmel-studio/; 2016. URL:
http://www.atmel.com/Microsite/atmel-studio/.630

25. Atmel Corporation . AVR Libc Reference Manual.
http://www.atmel.com/webdoc/avrlibcreferencemanual/; 2016. URL:
http://www.atmel.com/webdoc/avrlibcreferencemanual/.

26. Wortham RH, Theodorou A, Bryson JJ. Robot Transparency: Improv-
ing Understanding of Intelligent Behaviour for Designers and Users.635

In: Gao Y, Fallah S, Jin Y, Lakakou C, eds. Towards Autonomous
Robotic Systems: 18th Annual Conference, TAROS 2017, Guildford,
UK, July 1921, 2017; vol. 10454. Berlin: Springer. ISBN 978-3-
319-64106-5; 2017:274–89. URL: http://link.springer.com/10.
1007/978-3-319-64107-2. doi:10.1007/978-3-319-64107-2.640

27. Wortham RH, Bryson JJ. A Role for Action Selection in Conscious-
ness: An Investigation of a Second-Order Darwinian Mind. CEUR Work-
shop Proceedings 2016;1855:25–30. URL: http://ceur-ws.org/

Vol-1855/.
28. Wortham RH, Theodorou A, Bryson JJ. What Does the Robot Think?645

Transparency as a Fundamental Design Requirement for Intelligent Sys-
tems. In: IJCAI-2016 Ethics for Artificial Intelligence Workshop.
New York, USA; 2016:URL: http://opus.bath.ac.uk/50294/1/

WorthamTheodorouBryson{_}EFAI16.pdf.
29. Brom C, Gemrot J, Bida M, Burkert O, Partington SJ, Bryson JJ. POSH650

Tools for Game Agent Development by Students and Non-Programmers.
In: Mehdi Q, Mtenzi F, Duggan B, McAtamney H, eds. The Nineth In-
ternational Computer Games Conference: AI, Mobile, Educational and
Serious Games. Dublin, Ireland; 2006:1–8. URL: http://opus.bath.
ac.uk/5366/.655

30. Theodorou A. ABOD3: A Graphical Visualization and Real-Time De-
bugging Tool for BOD Agents. CEUR Workshop Proceeding 2016;1855.
URL: http://opus.bath.ac.uk/53506/.

31. Macke S. Dia Diagram Editor. http://dia-installer.de/; 2014. URL: http:
//dia-installer.de/.660

32. Theodorou A, Wortham RH, Bryson JJ. Why is my Robot Behaving Like
That? Designing Transparency for Real Time Inspection of Autonomous
Robots. In: AISB Workshop on Principles of Robotics. Sheffield, UK;
2016:URL: http://opus.bath.ac.uk/49713/.

33. Gaudl S, Davies S, Bryson JJ. Behaviour Oriented Design for Real-665

Time-Strategy Games: An Approach on Iterative Development for STAR-
CRAFT AI. Foundations of Digital Games Conference 2013;:198–
205URL: http://opus.bath.ac.uk/34386/.

34. Partington SJ, Bryson JJ. The Behavior Oriented Design of an Unreal
Tournament Character. Lecture Notes in Computer Science (including670

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 2005;3661 LNAI:466–77. doi:10.1007/11550617_39.

35. Raspberry Pi Foundation . Raspberry Pi Website.
https://www.raspberrypi.org/; 2016. URL: https://www.

raspberrypi.org/.675

8

https://books.google.co.uk/books?id=WqZNkgEACAAJ
https://books.google.co.uk/books?id=WqZNkgEACAAJ
https://books.google.co.uk/books?id=WqZNkgEACAAJ
http://dx.doi.org/10.1038/scientificamerican1252-22
http://books.google.co.uk/books?id=5LHwAAAAMAAJ
http://books.google.co.uk/books?id=5LHwAAAAMAAJ
http://books.google.co.uk/books?id=5LHwAAAAMAAJ
https://www.cs.bath.ac.uk/~jjb/ftp/mphil.pdf
https://www.cs.bath.ac.uk/~jjb/ftp/mphil.pdf
https://www.cs.bath.ac.uk/~jjb/ftp/mphil.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/8230/50172578-MIT.pdf?sequence=2
https://dspace.mit.edu/bitstream/handle/1721.1/8230/50172578-MIT.pdf?sequence=2
https://dspace.mit.edu/bitstream/handle/1721.1/8230/50172578-MIT.pdf?sequence=2
http://www.shef.ac.uk/~abrg/publications/icann98.pdf
http://dx.doi.org/10.1098/rstb.2007.2050
http://dx.doi.org/10.1098/rstb.2007.2050
http://dx.doi.org/10.1098/rstb.2007.2050
http://dx.doi.org/10.1098/rstb.2007.2052
http://dx.doi.org/10.1098/rstb.2007.2052
http://dx.doi.org/10.1098/rstb.2007.2052
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=6932887
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=6932887
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp={&}arnumber=6932887
http://swen.fairrats.eu/research/papers/2018-CognitiveSystems-ExtendedRamp-Gaudl-Bryson-preprint.pdf
http://swen.fairrats.eu/research/papers/2018-CognitiveSystems-ExtendedRamp-Gaudl-Bryson-preprint.pdf
http://swen.fairrats.eu/research/papers/2018-CognitiveSystems-ExtendedRamp-Gaudl-Bryson-preprint.pdf
http://swen.fairrats.eu/research/papers/2018-CognitiveSystems-ExtendedRamp-Gaudl-Bryson-preprint.pdf
http://swen.fairrats.eu/research/papers/2018-CognitiveSystems-ExtendedRamp-Gaudl-Bryson-preprint.pdf
http://dx.doi.org/10.1007/s12559-010-9057-0
http://dx.doi.org/10.1007/s12559-010-9057-0
http://dx.doi.org/10.1007/s12559-010-9057-0
http://swen.fairrats.eu/research/papers/Gaudl-PhD-RobustGameAI.pdf
http://swen.fairrats.eu/research/papers/Gaudl-PhD-RobustGameAI.pdf
http://swen.fairrats.eu/research/papers/Gaudl-PhD-RobustGameAI.pdf
https://books.google.co.uk/books?id=eCj3cKC{_}3ikC
https://books.google.co.uk/books?id=eCj3cKC{_}3ikC
https://books.google.co.uk/books?id=eCj3cKC{_}3ikC
http://www.cs.bath.ac.uk/~jjb/web/posh.html
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1147{&}context=dissertations
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1147{&}context=dissertations
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1147{&}context=dissertations
https://www.arduino.cc/
http://www.atmel.com/Microsite/atmel-studio/
http://www.atmel.com/webdoc/avrlibcreferencemanual/
http://link.springer.com/10.1007/978-3-319-64107-2
http://link.springer.com/10.1007/978-3-319-64107-2
http://link.springer.com/10.1007/978-3-319-64107-2
http://dx.doi.org/10.1007/978-3-319-64107-2
http://ceur-ws.org/Vol-1855/
http://ceur-ws.org/Vol-1855/
http://ceur-ws.org/Vol-1855/
http://opus.bath.ac.uk/50294/1/WorthamTheodorouBryson{_}EFAI16.pdf
http://opus.bath.ac.uk/50294/1/WorthamTheodorouBryson{_}EFAI16.pdf
http://opus.bath.ac.uk/50294/1/WorthamTheodorouBryson{_}EFAI16.pdf
http://opus.bath.ac.uk/5366/
http://opus.bath.ac.uk/5366/
http://opus.bath.ac.uk/5366/
http://opus.bath.ac.uk/53506/
http://dia-installer.de/
http://dia-installer.de/
http://dia-installer.de/
http://opus.bath.ac.uk/49713/
http://opus.bath.ac.uk/34386/
http://dx.doi.org/10.1007/11550617_39
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/

	INTRODUCTION
	THE INSTINCT PLANNER
	Enhancements and Innovations
	Multi Platform
	Memory Management
	Instinct Testing Environment
	Instinct Transparency Enhancements
	Instinct Command Set
	Creating Reactive Plans with iVDL
	Plan Debugging and Transparency

	CONCLUSIONS AND FURTHER WORK
	Acknowledgements

