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Multiple Changepoint Estimation in
High-Dimensional Gaussian Graphical Models

A. Gibberd and S. Roy

December 18, 2017

Abstract

We consider the consistency properties of a regularised estimator for the simul-
taneous identification of both changepoints and graphical dependency structure in
multivariate time-series. Traditionally, estimation of Gaussian Graphical Models
(GGM) is performed in an i.i.d setting. More recently, such models have been
extended to allow for changes in the distribution, but only where changepoints
are known a-priori. In this work, we study the Group-Fused Graphical Lasso
(GFGL) which penalises partial-correlations with an L1 penalty while simultane-
ously inducing block-wise smoothness over time to detect multiple changepoints.
We present a proof of consistency for the estimator, both in terms of changepoints,
and the structure of the graphical models in each segment.

1 Introduction

1.1 Motivation
Many modern day datasets exhibit multivariate dependance structure that can be mod-
elled using networks or graphs. For example, in social sciences, biomedical studies,
financial applications etc. the association of datasets with latent network structures
are ubiquitous. Many of these datsets are time-varying in nature and that motivates
the modelling of dynamic networks. A network is usually characterised by a graph G
with vertex set V (the collection of nodes) and edge set E (the collection of edges).
We denote G = (V,E). For example, in a biological application nodes may denote a
set of genes and the edges may be the interactions among the genes. Alternatively, in
neuroscience, the nodes may represent observed processes in different regions of the
brain, and the edges represent functional connectivity or connectome. In both situa-
tions, we may observe activity at nodes over a period of time— the challenge is to infer
the dependency network and how this changes over time.

In this paper we consider a particular type of dynamic network model where the
underlying dependency structure evolves in a piecewise fashion. We desire to estimate
multiple change-points where the network structure changes, as well as the structures
themselves. To this end, the task is formulated as a joint optimization problem such that
change-point estimation and structure recovery can be performed simultaneously. The
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particular class of networks we aim to estimate are encoded via a multivariate Gaussian
that has a piecewise constant precision matrix over certain blocks of time. Specifically,
we assume observations X(t) = (X

(t)
1 , . . . , X

(t)
p ) are drawn from the following model

Xt ∼ N (0,Σ
(k)
0 ) , t ∈ {τk−1, . . . , τk} , (1)

where t = 1, . . . , T indexes the time of the observed data-point, and k = 1, . . . ,K +
1 indexes blocks seperated by changepoints {τk}Kk=1, at which point the covariance
matrix Σ

(k)
0 changes. The task is to assess, how well, or indeed if, we can recover both

the changepoint positions τk and the correct precision matrices Θ
(k)
0 := (Σ

(k)
0 )−1.

1.2 Literature Review
Although the topic of change-point estimation is well represented in statistics (see Bai
[1997], Hinkley [1970], Loader [1996], Lan et al. [2009], Muller [1992], Raimondo
[1998] and references therein), its application in high dimensional graphical models
is relatively unexplored. We will first review the literature on change-point detection
before moving onto graphical model estimation and the intersection of these method-
ologies.

One of the most popular methods of change-point detection is binary segmentation
[Fryzlewicz, 2014, Cho and Fryzlewicz, 2015]. The method hinges on dividing the en-
tire data into two segments based on a discrepancy measure and relating the procedure
on subsequent segments until there are no change-point available. Usually a cumu-
lative summation type test-statistic [Page, 1954] is used to compute the discrepancy
based on possible two segments of the data. Further approaches for multiple change-
point estimation in multivariate time series (not necessarily high dimensional) include:
SLEX (Smooth Localized Complex Exponentials), a complexity penalized optimiza-
tion for time series segmentation [Ombao et al., 2005]; approaches which utilise a pe-
nalised gaussian likelihood via dynamic programming [Lavielle and Teyssiere, 2006,
Angelosante and Giannakis, 2011]; or penalized regression utilising the group lasso
[Bleakley and Vert, 2011]. More recently, work on high dimensional time series seg-
mentation includes: sparsified binary segmentation via thresholding CUSUM statistics
[Cho and Fryzlewicz, 2015]; change-point estimation for high dimensional time se-
ries with missing data via subspace tracking [Xie et al., 2013], and projection based
approaches [Wang and Samworth, 2017]. Some recent works on high dimensional re-
gression with change-points are also worth mentioning here. For instance Lee et al.
[2016] consider high dimensional regression with a possible change-point due to a co-
variate threshold and develop a lasso based estimator for the regression coefficients as
well as the threshold parameter. Leonardi and Bühlmann [2016] extend this to multiple
change-point detection in high dimensional regression, the resultant estimator can be
used in conjunction with dynamic programming or in an approximate setting via binary
segmentation. The theoretical guarantees for the two methods appear to be similar and
estimate both the number and locations of change-points, as well as the parameters in
the corresponding segments.

Moving on to graph estimation, in the static i.i.d. case there are two principle
approaches to estimating conditional independence graphs. Firstly, as suggested by

2



Meinshausen and Bühlmann [2006], one may adopt a neighbourhood or local selection
approach where edges are estimated at a nodewise level, an estimate for the network
is then constructed by iterating across nodes. Alternatively, one may consider joint
estimation of the edge structure across all nodes in a global fashion. In the i.i.d. setting
a popular method to achieved this is via the Graphical lasso [Banerjee and Ghaoui,
2008], or explicitly constrained precision matrix estimation schemes such as CLIME
[Cai et al., 2011].

In the dynamic setting, one could consider extending static neighbourhood selec-
tion methods, for instance utilising the methods of Lee et al. [2016], Leonardi and
Bühlmann [2016] to estimate a graph where each node may exhibit multiple change
points. The work of Roy et al. [2016] considers a neighbourhood selection approach
for networks in the presence of a single changepoint, while Kolar and Xing [2012]
consider using the fused lasso [Harchaoui and Lévy-Leduc, 2010] to estimate multiple
changepoints at the node level. In the global estimation setting, Angelosante and Gi-
annakis [2011] proposed to combine the graphical lasso with dynamic programming to
estimate changepoints and graph structures. Alternatively, one may consider smooth-
ing variation at an individual edge level via an `1 penalty [Gibberd and Nelson, 2014,
Monti et al., 2014], or across multiple edges via a group-fused `2,1 penalty [Gibberd
and Nelson, 2017].

1.3 Paper Contribution
Unlike previous literature in high dimensional time series segmentation or high dimen-
sional regression settings with possible change-points, our framework is in the context
of a graphical model that changes its underlying structure with time in a piecewise man-
ner. We therefore desire to detect jointly, both the change-points and the parameters
specifying the underlying network structure. To achieve such estimation, we construct
an M-estimator which jointly penalises sparsity in the graph structure while addition-
ally smoothing the structure over time.

In this paper we focus on describing multiple change-point impacting the global
structural change in the underlying Gaussian graphical model. Whether a global, or
local approach is appropriate will depend on the application. For example, in cer-
tain biological applications (proteins, biomolecules etc.) node-wise changes would be
more appropriate, whereas for genetic interaction networks, social interaction or brain
networks global structural changes may be of more interest. Additionally, in many sit-
uations it is not trivial how we combine edge estimates when performing a neighbour-
hood selection approach. Because edges are estimated locally they may be inconsistent
across nodes which can make it difficult to interpret global changes.

To avoid these problems, we opt to perform global estimation and assume the pres-
ence of changepoints which impact many of the edges together. Specifically, this paper
deals with analysing the Group-Fused Graphical lasso (GFGL) estimator first proposed
in Gibberd and Nelson [2017]. In previous work it was demonstrated that empirically
GFGL can detect both changepoints and graphical structure while operating in rela-
tively high-dimensional settings. However, until now, the theoretical consistency prop-
erties of the estimator have remained unknown. In this paper, we derive rates for the
consistent recovery of both changepoints and model structure via upper bounds on the
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Figure 1: Diagramatic representation of matrix indexing and notation.

errors: maxk |τ̂ (k) − τ
(k)
0 | and ‖Θ̂(k) − Θ

(k)
0 ‖∞ under sampling from the model in

Eq. 1. We discuss the obtained convergence rates with those already described in the
literature, such as changepoint recovery rates with fused neighbourhood selection [Ko-
lar and Xing, 2012], and node-wise binary-segmentation/dynamic programming rou-
tines [Leonardi and Bühlmann, 2016]. Our theoretical results demonstrate that we can
asymptotically recover precision matrices, even in the presence of a-priori unknown
changepoints. We demonstrate that error bounds of a similar form to those presented
in the static i.i.d. graphical lasso case Ravikumar et al. [2011] can be obtained for suf-
ficient T and appropriate smoothing regularisation. Using such bounds, we attempt to
quantify the price one pays for allowing non-homogeneous sampling and the presence
of changepoints. To this end, our results indicate the efficiency of precision matrix
estimation with GFGL may be limited for shorter sequences due to the influence and
bias imposed by our assumed smoothing regularisers.

1.4 Notation
Throughout the paper we will use a kind of notational overloading whereby Θ(k) ∈
Rp×p refers to a block indexed precision matrix and Θ(t) refers to a time-indexed one,
for t = 1, . . . , T . In general, each block k = 1, . . . ,K + 1 will contain multiple time-
points. It is expected that many Θ(t) will be the same, however, only a few Θ(k) will
be similar, a diagrammatic overview of the notation can be found in Figure 1.

Vector norms `a are denoted ‖x‖a, similarly the application of vector norms to a
vectorised matrix is denoted ‖X‖a. For instance, the maximum element of a matrix
is denoted ‖X‖∞ = maxi,j |Xij |. Where the Frobenius norm is used, this is denoted
‖X‖F . Additionally, we utilise the operator norm |||X|||2 which denotes the largest
singular values of X , and the `∞,∞ norm |||X|||∞ := maxi

∑
j |Xij |.

2 Estimator Formulation and Computation

2.1 The Group-Fused Graphical Lasso
To simultaneously estimate multivariate Gaussian model structure alongside change-
points, we propose to use the GFGL estimator first examined in Gibberd and Nel-
son [2017]. This takes multivariate observations x(t) ∈ Rp for t = 1, . . . , T and
estimates a set of T precision matrices represented in a block-diagonal model space
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Θ̂T ∈ R̃Tp×Tp. In the following definition, we reference each diagonal matrix as Θ̂(t)

with the full model being described by {Θ̂(t)}Tt=1.

Definition 2.1. Group-Fused Graphical Lasso estimator
Let Ŝ(t) := x(t)(x(t))> be the local empirical covariance estimator. The GFGL

estimator is defined as the M-estimator

{Θ̂(t)}Tt=1 = Argmin
{U(t)�0}Tt=1

{
lT ((U (t), x(t))Tt=1) + rT ((U (t))Tt=1)

}
(2)

where the loss-function and regulariser are respectively defined as

lT ((U (t), Ŝ(t))Tt=1) :=
T∑
t=1

{
− log det(U (t)) + trace(Ŝ(t)U (t))

}
, (3)

rT ((U (t))Tt=1) := λ1

T∑
t=1

∑
i6=j

|U (t)
i,j |+ λ2

T∑
t=2

{
p∑

i,j=1

(U
(t)
i,j − U

(t−1)
i,j )2}1/2 . (4)

Once the precision matrices have been estimated, changepoints are defined as the
time-points: {

τ̂1, . . . , τ̂K̂
}

:=
{
t |Θ̂(t) − Θ̂(t−1) 6= 0

}
.

While changepoints in the traditional sense are defined above, it is convenient later on
to consider the block separators T̂ := {1}∪{τ̂1, . . . , τ̂K̂}∪{T + 1}, the added entries
are denoted τ0 and τK̂+1.

2.2 Comparison with Alternative Estimators
The discussion in this paper studies the impact of implementing graph-wise smooth-
ness constraints on precision matrix estimation through penalising edge variation with
the group Frobenius norm. This contrasts with previous research that has predomi-
nently focussed on enforcing smoothness constraints at an edge-by-edge level [Kolar
and Xing, 2011, 2012, Monti et al., 2014, Danaher et al., 2013, Saegusa and Sho-
jaie, 2016]. For instance, one may replace the group-fused penalty in (4) with a lin-
early seperable norm such as the `1 norm, i.e. λ2

∑T
t=1 ‖Θ(t) − Θ(t−1)‖1. In the

case of `1 fusing one may interpret the estimator as a convex relaxation of the to-
tal number of jumps across all edges, we may define the number of changepoints as
K0 := (1/2)

∑T−1
t=2 ‖Θ

(t)
\ii − Θ

(t−1)
\ii ‖0, where ‖ · ‖0 counts the number of non-zero

differences.
Alternatively, the grouped nature of GFGL assumes that the graph structure under-

lying a process changes in some sense systematically. Rather than edges changing indi-
vidually, we presume that many of the edges change dependency structure at the same
time. In this case, we consider smoothness at the graph level by counting the number
of non-zero differences in a non-seperable norm, such thatK0 := |{‖Θ(t)

\ii−Θ
(t−1)
\ii ‖ 6=

0}|. In this case, the estimator assumes that many of the active edges may change at
the same time and that changes in graphical structure are therefore syncronised.
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2.3 Numerical Optimisation
Due to both the convexity and linear composition properties of the cost function (2),
optimisation may be performed relatively efficiently. Although not the main focus
of this work, we here suggest an alternating directed method of moments (ADMM)
algorithm which is suitable for the task of minimising the GFGL cost. The algorithm
presented here is a modified version of that found in the original GFGL paper [Gibberd
and Nelson, 2017], a similar independently developed algorithm that is applicable to
this problem can be found in the work of Hallac et al. [2017].

Specifically, we propose to minimise an augmented Lagrangian for (2) where the
variables are grouped into sets corresponding to; primal U , auxiliary V , transforma-
tions of auxiliary variables W , and dual variables {V1,V2,W}:

L(U, V1, V2,W,V1,V2,W) :=
T∑
t=1

(
− log det(U (t)) + tr(U (t)S(t))

)
. . .

+ λ1

T∑
t=1

‖[V (t)
1 ]\ii‖1 + λ2

T∑
t=2

‖W (t)‖F +
γV1

2

( T∑
t=1

‖U (t) − V (t)
1 + V(t)

1 ‖2F − ‖V
(t)
1 ‖2F

)
. . .

+
γV2

2

( T−1∑
t=1

‖U (t) − V (t)
2 + V(t)

2 ‖2F − ‖V
(t)
2 ‖2F

)
. . .

+
γW
2

( T∑
t=2

‖(V (t)
1 − V (t−1)

2 )−W (t) +W(t)‖2F − ‖W(t)‖2F
)
.

The quantities γV1
, γV2

, γW are algorithmic tuning parameters which assign weight
to deviation between the auxilary and primal parameters, for instance via terms like
(γV1/2)‖U (t)−V (t)

1 ‖F . In practice, the algorithm appears numerically stable for equal
weighting γV1

= γV2
= γW = 1. The ADMM algorithm proceeds to perform dual as-

cent iteratively (and sequentially) minimising L{·} for U, V1, V2,W and then updating
the dual variables. Pseudocode for these operations are given in Algorithm 1, a more
detailed schema can be found in the Supplementary Material.
Algorithm 1. ADMM algorithm for the minimisation of the GFGL cost function.

Input: Data and regulariser parameters: X,λ1, λ2, convergence thresholds:
tp, td

Output: Precision matrices: {Θ̂(t)}Tt=1 and changepoints: {τ̂1, . . . , τ̂K̂}
Init: U (t) = V (t) = W (t) = I ∈ Rp×p
while εp > tp, εd > td do

Update Primal Estimate: U (t)
n+1 = arg minU L{} - Eigen-decomposition;

Update Auxilary Estimates:
V

(t)
1;n+1 = arg minV1

L{·} - Soft-threshold;

V
(t)
2;n+1 = arg minV2 L{·} - Matrix multiplication;
W t
n+1 = arg minW L{·} - Group soft-threshold differences;

Update Dual variables: c.f. V(t)
1;n+1 = V(t)

1;n + U tn+1 − V
(t)
1;n ;

return {Θ̂(t)}
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In particular, due to seperability of the ADMM updates, this algorithm can be triv-
ially parallelised across time-points and obtains an iteration time complexity of or-
der O(p3T ) in terms of the number of data-points and dimension p. This contrasts
favourably with dynamic programming, which has a naiive cost O(T 2) [Angelosante
and Giannakis, 2011], or O(T log(T )) in the pruned case [Killick et al., 2012], the
binary segmentation scheme of Leonardi and Bühlmann [2016] also obtains this lat-
ter rate. The cubic cost with regards to dimension is due to the eigen-decomposition
step. Potentially, this may be reduced if some form of covariance pre-screeneing can be
achieved, for instance as suggested in Danaher et al. [2013] it may be possible to break
the p dimensional problem into a set of independent p1, . . . , pM dimensional problems
where

∑M
m=1 pm = p . We leave such investigations as directions for further work.

2.4 Optimality conditions
To assess the statistical properties of the GFGL estimator, we first need to derive a
set of conditions which all minimisers of the cost function obey. We connect this
condition to the sampling of the model under (1) by the quantity Ψ(t) := Ŝ(t) − Σ(t)

which represents the difference between the ground-truth covariance and the empirical
covariance matrix X(t)(X(t))>.

Since we are dealing with a fused regulariser, it is convinient to introduce a matrix
Γ(t) corresponding to the differences in precision matrices. For the first step let Γ(1) =
Θ(1), then for t = 2, . . . , T , let Γ(t) = Θ(t) − Θ(t−1). The sub-gradients for the non-
smooth portion of the cost function are denoted respectively as R̂(t)

1 , R̂
(t)
2 ∈ Rp×p, for

the `1 and the group-smoothing penalty. In full, these can be expressed as

R̂
(t)
1;(i,j) =

{
sign(

∑
s≤t Γ

(s)
i,j ) if

∑
s≤t Γ

(s)
i,j 6= 0

[−1, 1] otherwise
; R̂

(t)
2 =

{
Γ̂(t)

‖Γ̂(t)‖F
if Γ̂(t) 6= 0

BF (0, 1) otherwise
,

where BF (0, 1) is the Frobenius unit ball.

Proposition 1. The minimiser {Θ̂(t)}Tt=1 of the GFGL objective satisfies the following

T∑
t=l

{
(Θ(t))−1 − (Θ̂(t))−1

}
−

T∑
t=l

Ψ(t) + λ1

T∑
t=l

R̂
(t)
1 + λ2R̂

(l)
2 = 0 ,

for all l ∈ [T ] and R̂(1)
2 = R̂

(T )
2 = 0.

3 Theoretical Properties of the GFGL Estimator

3.1 Consistent Changepoint Estimation
We here present two complimentary results for changepoint consistency with the GFGL
estimator. The first represents a standard asymptotic setting where p is fixed and
T → ∞. The second result utilises a different concentration bound to constrain
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changepoint estimation error even in high-dimensions where p > T , in the doubly
asymptotic setting (p, T ) → ∞. Further to the Gaussian sampling model in (1),
the high-dimensional result holds for any collection (X(1), . . . , X(T )) where each
X

(t)
i /(Σ

(t)
ii )1/2 for t = 1, . . . , T and i = 1, . . . , p is sub-Gaussian with parameter

σ.
The changepoint consistency result presented here will take the form of an up-

per bound on the maximum error of estimating a changepoint. Let {δT }T≥1 be a
non-increasing positive sequence that converges to zero as T → ∞. This quantity
should converge at a rate which ensures an increasing absolute quantity TδT → ∞
as T → ∞. The target of our results is to bound the maximum error to an ever
decreasing proportion of the data, i.e. maxk |τ̂k − τk|/T ≤ δT . To establish a
bound, we consider the setting where the minimum true distance between changepoints
dmin := mink∈[K+1] |τk − τk−1| increases with T , for simplicity let us assume this is
bounded as a proportion γmin < dmin/T .

In order to control the variance in the underlying model it is required to introduce
several assumptions on the generating process:

Assumption 1. Bounded Eigenvalues
There exist a constant φmax < ∞ that gives the maximum eigenvalues of the true

covariance matrix (across all blocks) such that φmax = maxk∈[K+1]{Λmax(Σ(k))}.
Assumption 2. Bounded jump size

There exists a constant M > 0 such that the difference between any two blocks is
bounded by a constant maxk,k′∈[K+1] ‖Σ(k′) −Σ(k)‖F ≤M . Additionally, the jumps
are lower bounded according to mink∈[K+1] ‖Σk − Σk−1‖F ≥ ηmin.

In addition to controlling variation in the sampling, we also need to ensure the
regularisers λ1, λ2 are set appropriately. Generally one can increase or decrease the
smoothing regulariser λ2 to respectively decrease or increase the number of estimated
changepoints However, in practice, we do not know a-priori the true number of change-
points in the model. Pragmatically, we may adopt a cross-validation strategy to choose
the regularisers from data. However, in the theoretical setting, we assume that the
regularisers are such that the correct number of changepoints are estimated.

Assumption 3. Appropriate Regularisation
Let λ1 and λ2 be specified such the solution of the GFGL problem (2) results

in |K̂| = K changepoints. Furthermore, assume that T is large enough such that
β1 := (ηminγminT )λ−1

2 > 32, β2 := ηminλ
−1
1 (p(p − 1))−1/2 > 8, and β3 :=

(ηminTδT )λ−1
2 > 3.

Theorem 3.1. Changepoint Consistency (Standard-dimensional asymptotics)
Given Assumptions 1,2,3. For a finite, but large T such that 2 < p ≤ TδT and the

jump size is lower bounded according to ηmin > 20φmaxe
−1/2p1/2

√
log(TδT )/TδT ,

then the maximum changepoint error of GFGL (under sampling Eq. 1) is bounded
according to probability

P ( max
k∈[K]

|τk − τ̂k| ≤ TδT ) ≥ 1− CK2(TδT )−p/2 → 1 as T →∞ ,

where CK = K(K22K+1 + 4).

8



Theorem 3.2. Changepoint-consistency (High-dimensional asymptotics)
Given Assumptions 1,2,3. If ηmin > 5cσ25p

√
log(pβ/2)/TδT , where cσ = (1 +

4σ2) maxii,k{Σ(k)
0;ii} and ηmin ∈ (0, 24cσp), then

P ( max
k∈[K]

|τk − τ̂k| ≤ TδT ) ≥ 1− CK1/pβ−2 → 1 as (T, p)→∞ .

Proof. The proofs of the above follow a similar line of argument as used in Harchaoui
and Lévy-Leduc [2010], Kolar and Xing [2012]. However, several modifications are
required in order to allow analysis with the Gaussian likelihood and group-fused regu-
lariser. Additionally, for Theorem 3.2 we investigate the use of concentration bounds
that operate in the setting where p > TδT . Full details can be found in the Appendix
(ref).

The results demonstrate that asymptotically changepoint error can be constrained
to a decreasing fraction δT → 0 of the time-series. Indeed, this occurs with increasing
probability when estimation is performed with an increasing number of data-points.
In both results, the minimal jump size must be sufficient in order to consistently detect
changes. In the standard-dimensional setting we require ηmin = Ω(p1/2

√
log(TδT )/(TδT )),

and therefore asymptotically we can recover increasingly small changes. In the doubly
asymptotic setting of Theorem 3.2 we have ηmin = Ω(p

√
log(pβ/2)/(TδT )), thus we

still require ηmin to grow with p. One should note that the high-dimensional bound
is only guaranteed for ηmin ∈ (0, 24cσp) which stipulates a minimal sample size
TδT = Ω(log(pβ/2)).

3.2 Consistent Graph Recovery
One of the key properties of GFGL is that it simultaneously estimates both the change-
point and model structure. In this section we will turn our eye to the estimation of
model structure in the form of the precision matrices between changepoints. In par-
ticular, we consider that a set of K̂ = K changepoints have been identified as per
Assumption 3 and Theorem 3.2. In the previous section we developed theory for the
recovery of changepoints, for a given (large) number of data-points we demonstrated
that the changepoint error can be bounded within a region TδT → 0. We here as-
sume that such a bound holds, and develop the theory in the high-dimensional setting
analogous to Theorem 3.2.

Assumption 4. Changepoint error is small
Consider that the number of changepoints is estimated correctly, and the change-

point consistency event

Eτ :=

{
max
k∈[B]

|τ̂k − τk| ≤ TδT
}

holds with some increasing probability fτ (p, T )→ 1 as (p, T )→∞.

A key advantage of splitting the changepoint and model-estiamtion consistency
arguments as we do here, is that we can consider a simplified model structure such that
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the GFGL estimator may be parameterised in terms of a K + 1 block-diagonal matrix
ΘK ∈ R̃Bp×Bp. Conditional on segmentation, we do not need to deal with the fact
that the model may be arbritrarily mis-specified (this is bounded by Assumption 4). As
such, in this section the dimensionality of the model space is fixed with respect to an
increasing number of time-points. The following results demonstrate, that as expected,
gathering increasing amounts of data relating to a fixed number of blocks allows us to
identify the model with increasing precision.

To demonstrate model recovery, let us define a set of pairsMk which indicate the
support set of the true model in block k and its complimentM⊥k as

Mk = {(i, j) |Θ(k)
0;i,j 6= 0} and M⊥k = {(i, j) |Θ(k)

0;i,j = 0} .

The recovery of the precision matrix sparsity pattern in true block l from estimated
block k can be monitored by the sign-consistency event defined:

EM(Θ̂(k); Θ
(l)
0 ) := {sign(Θ̂

(k)
ij ) = sign(Θ

(l)
0;ij) ∀i, j ∈Ml} .

In order to derive bounds on model recovery, one must make assumptions on the
true structure of Θ0. Such conditions are often referred to as incoherence or irrepre-
sentability conditions. In the setting of graphical structure learning, these conditions
act to limit correlation between edges and restrict the second order curvature of the loss
function. In the case where we analyse GFGL under Gaussian sampling the Hessian
Γ0 ≡ ∇2

ΘL(Θ)|Θ0 relates to the Fisher information matrix such that Γ0;(j,k)(l,m) =
Cov(XjXk, XlXm). Written in this form we can understand the Fisher matrix as re-
lating to the covariance between edge variables defined as Z(i,j) = XiXj − E[XiXj ]
for i, j ∈ {1, . . . , p}.

Assumption 5. Incoherence Condition
LetM denote the set of components relating to true edges in the graph andM⊥

(for block k) its compliment. For example, Γ
(k)
0;MM refers to the sub matrix of the Fisher

matrix relating to edges in the true graph. Assume that for each k = 1, . . . ,K+1 there
exists some αk ∈ (0, 1] such that

max
e∈M⊥

‖Γ(k)
0;eM(Γ

(k)
0;MM)−1‖1 ≤ (1− αk) .

In the multivariate Gaussian case we have maxe∈M⊥ ‖E[ZeZ
>
M]E[ZMZ

>
M]−1‖1 ≤

(1 − αk) for each k, in the theory below we denote and track α = mink{αk}. One
can therefore interpret the incoherence condition as a statement on the correlation be-
tween edge variables which are outside the model subspace Z(i,j) such that (i, j) 6∈ E ,
with those contained in the true model (i, j) ∈ E . In practice, this sets bounds on the
types of graph and associated covariance structures which estimators such as graphical
lasso can recover (see the discussion Sec. 3.1.1 Ravikumar et al. [2011] and Mein-
shausen [2008]). The theory presented here can be seen as an extension of Ravikumar
et al. [2011] to non-stationary settings. Similarly to their original analysis we will
track the size of the operator norms

∣∣∣∣∣∣∣∣∣Σ(k)
0

∣∣∣∣∣∣∣∣∣
∞

:= maxi
∑p
j=1 |Σ

(k)
0;ij | and

∣∣∣∣∣∣∣∣∣Γ(k)
0

∣∣∣∣∣∣∣∣∣
∞

,
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we simplify our analysis by tracking the upper bound KΣ0
:= maxk

∣∣∣∣∣∣∣∣∣Σ(k)
0

∣∣∣∣∣∣∣∣∣
∞

and

KΓ0
:= maxk

∣∣∣∣∣∣∣∣∣Γ(k)
0

∣∣∣∣∣∣∣∣∣
∞

.
When using GFGL there will generally be an error associated with the identifi-

cation of changepoints and as such the estimated and ground-truth blocks do not di-
rectly align. With this in mind, the model consistency proof we present does not
necessarily compare the kth estimated block, to the kth ground-truth block. Instead,
the proof is constructed such that the structure in an estimated block k ∈ [B̂] is
compared to the ground-truth structure in block l such that the blocks k and l max-
imally overlap with respect to time. Notationally, let n̂k = τ̂k − τ̂k−1 and n̂lk =
|{τ̂k−1, . . . , τ̂k}∩{τl−1, . . . , τl}|. The maximally overlapping block is then defined as
kmax = arg maxl{n̂lk}.

Theorem 3.3. Bounds on the estimation error
Consider the GFGL estimator with Assumptions (4,5). Assume λ1 = 16α−1ε,

λ2 = ρλ1 for some finite ρ > 0 and ε > 24
√

2cσ∞
√

log(4pβ)/γminT where β > 2.
Let d be the maximum degree of each node in the true model, and define

vC = 6{1 + 16α−1(1 + 2n̂−1
k ρ)}dmax{KΣ0KΓ0 ,K

2
Γ0
K3

Σ0
} . (5)

Then for T ≥ 29γ−1
min max{1/8cσ∞ , vC}2c2σ∞ log(4pβ), we have

‖Θ̂(k) −Θ
(kmax)
0 ‖∞ ≤ 2KΓ0

{1 + 16α−1(1 + 2ρn̂−1
k )}ε , (6)

in probability greater than 1− (1/pβ−2 + fτ (p, T )).

Theorem 3.4. Model-selection consistency
In addition to the assumptions in Theorem 3.3. Let θ(k)

min := minij |Θ(k)
0;ij | for all

(i, j) ∈Mk and for each k = 1, . . . , B. Let

vθ = 2KΣ0
{1 + 16α−1(1 + 2ρn̂−1

k )}θ−1
min .

If T ≥ 29γ−1
min max{(8cσ∞)−1, vC , vθ}2c2σ∞ log(4pβ) then GFGL attains sign-consistency

P{EM(Θ̂(k); Θ
(kmax)
0 )} ≥ 1− {1/pβ−2 + fτ (p, T )} ,

with probability tending to one as (p, T )→∞.

Proof. Theorem 3.3 is obtained utilising a primal-dual-witness approach conditional
on the event Eτ . This follows a similar argument to that used in Ravikumar et al.
[2011], but requires modifications due to the smoothing regulariser in GFGL. Theorem
3.4, is a corollary of Theorem 3.3 on the condition that the true entries in the precision
matrix are sufficiently large. Full details of the proof are found in Appendix .

The above bounds suggest that indeed, if regularisation is appropriately set one
can obtain a consistent estimate of the precision matrices from GFGL. However, there
are several important insights we can take from the results. Firstly, we clearly see the
effect of the smoothing regulariser in Eq. 6. In particular, a larger ρ will result in
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a larger upper bound for the error. In the analagous results from the i.i.d. graphical
lasso case Ravikumar et al. [2011], the bound here is of a form 2KΓ0(1 + 8α−1)ε. In
fact, our results suggest that the additional error in the precision matrix is a function
of the ratio λ2(λ1n̂k)−1, if λ2/λ1 does not grow faster than n̂ then estimation con-
sistency can be achieved. If we assume, for example that λ1 = O(

√
log(pβ)/T ) and

n̂k = O(T ), then this gives λ2 the flexibility to grow with increasing T , but at a rate
λ2 = O(

√
T log pβ). We note that under such scaling it is possible to satisfy the con-

ditions of Assumption 3 thus both changepoint and structure estimation consistency is
achieved.

4 Discussion

4.1 A note on minimum detectable jumps
When compared to the neighbourhood based estimators, GFGL considers changepoints
at the full precision matrix scale as opposed to seperately for each node. One might
therefore expect that the minimum jump size required in our result (Theorem 1) is
greater than that utilised in neighbourhood selection case (c.f. Kolar and Xing [2012]).
For example, in the neighbourhood selection case, one may consider the analogous
quantity ηNS

min(a) := mink∈[K] ‖Σ
(k+1)
a,· − Σ

(k)
a,· ‖2, for nodes a = 1, . . . , p. Summing

over nodes, the neighbourhood selection jump size can now be related to the mixed
(group) norm ‖Σ(k+1)−Σ(k)‖2,1 =

∑
a ‖Σ

(k+1)
a,· −Σ

(k)
a,· ‖2. Furthermore, if the smallest

jump occurs at the same block for each neighbourhood, i.e. arg mink∈[K] ‖Σ
(k+1)
a,· −

Σ
(k)
a,· ‖2 = arg mink∈[K] ‖Σ

(k+1)
a′,· − Σ

(k)
a′,·‖2 for all a 6= a′ ∈ [p] , then

∑
a η

NS
min(a) =

mink ‖Σ(k+1)−Σ(k)‖2,1. Using the inequality (for x ∈ Rn) ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2,

the jumps as measured through the group-norm can be related to those measured in a
Frobenius sense, such that ηmin ≤

∑
a η

NS
min(a) ≤ √pηmin.

Thus, even though the minimum jump size in the GFGL case is greater, i.e. ηmin >
ηNS

min(a), it is not proportionally greater when one considers summing over nodes. In
our analysis it should be noted that consistent recovery of changepoints requires a trade-
off between the minimum jump-size ηmin and the amount of data T . For example, a
smaller minimum jump-size will generally require more data; as expected it is harder
to detect small jumps. The relation ηmin ≤

∑p
a=1 η

NS
min(a) suggests that the minimum

jump-size at a graph-wide (precision matrix wide) level is proportionally smaller when
measured in the Frobenius norm, than at a node-wise level. As a result, for equivalent
scaling of ηmin and ηNS

min the graph-wide GFGL method will be able to detect smaller
(graph-wide) jumps with an equivalent level of data. Conversely, if the jumps one is
interested in occur at the neighbourhood level the neighbourhood based method would
be more appropriate, although this is generally not the case with the block-constant
GGM model (1).
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4.2 Consistency with increasing dimensionality
The work of Kolar and Xing [2012] presents results in a standard asymptotic T → ∞
setting. As such, they do not assess how fast changepoint consistency is achieved in
relation to the number of data-streams p. In the case of GFGL, we give an upper bound
on P (Eτ ) (Theorem 3.1) that directly relates to the dimensionality of the problem. Of
particular note, is that the convergence rate increases with the number of data-streams
used. This aligns with what one may intuitively expect, i.e. if changepoints are shared
across most data-streams, then increasing the number of data-streams will increase the
"signal" associated with changepoints. We may thus improve changepoint detection
performance by performing joint inference for changepoints.

In our high-dimensional analysis (Theorems 3.2, 3.3,3.4) we consider what hap-
pens when p > TδT . Our upper bound for changepoint error has a requirement
that ηmin = Ω(p−1

√
log(pβ/2)/TδT ). We note that this lower bound allows for

the calculation of a minimal T for the bound to hold. However, one must also take
care that conditions in Assumption 3 are met. While λ1 can be seen somewhat as a
free parameter in the proof of changepoint consistency, it plays a key role in bound-
ing the estimation error of the block-wise precision matrices. Specifically, Theo-
rem 3.3 mandates λ1 = Ω(

√
log(pβ)/T ). We note, that this lower bound is gen-

erally sufficient to meet Assumption 3, for changepoint consistency, which requires
λ1 = O(ηmin/p) = O(

√
log(p(β/2))/TδT ) when ηmin is guided by the lower bound

in Theorem 3.2.

A Numerical Optimisation and optimality conditions

A.1 Multi-block ADMM algorithm for GFGL
Algorithm 2 provides extended detail relating to the pseudo-code presented in the main
paper. The particular steps for each of the proximity updates (minimisation steps in
the augmentd lagrangian) are given. An alternative ADMM algorithm for solving the
GFGL problem is described in Hallac et al. [2017] and Gibberd and Nelson [2017].

A.2 Proof of Proposition 1 (Optimality Conditions)
In GFGL we have a set of conditions for each time-point which must be met jointly.
Unlike non-fused estimators, we also have to consider the stationarity conditions due
to a differenced term. The GFGL objective can then be re-written in terms of this
difference, where one may equivalently minimise

T∑
t=1

(
−log det(

∑
s≤t

Γ(s))+tr(Ŝ(t)
∑
s≤t

Γ(s))

)
+λ1

T∑
t=1

‖
∑
s≤t

Γ
(s)
\ii‖1+λ2

T∑
t=2

‖Γ(t)‖F ,

for
∑
s≤t Γ(s) � 0 for t = 1, . . . , T . Setting the derivative to zero we obtain:

0 =

T∑
t=l

(
− (
∑
s≤t

Γ̂(s))−1 + Ŝ(t)

)
+ λ1

T∑
t=l

R̂
(t)
1 + λ2R̂

(l)
2 .
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Algorithm 2. ADMM algorithm for the minimisation of the GFGL cost function.
Input: Data and regulariser parameters: X, λ, ρ, convergence thresholds: tp, td
Output: Precision matrices: {Θ̂(t)}Tt=1 and changepoints: {τ̂1, . . . , τ̂K̂}
Init: U (t) = V (t) = W (t) = I ∈ Rp×p
while εp > tp, εd > td do

for t=1,. . . ,T do

P (t) =

{
V

(t)
1;n − V

(t)
1;n t = T

(V
(t)
1;n − V

(t)
1;n) + (V

(t)
2;n − V

(t)
2;n) otherwise

;

Perform eigen-decomposition: {η>n , L} = eig{(Ŝ(t) − P (t))} ;
Update eigenvalues, for each i = 1, . . . , p :
ηi;n+1 = −(ηi;n −

√
η2
i;n + 8)/4 ;

U
(t)
n+1 = Ldiag(ηn+1)L>;

Update Auxiliary Estimate:
V

(1)
1;n+1 = soft([U

(1)
n+1 + V(1)

1;n]\\ii; λ) ;
for t = 2, . . . , T do

P t = [(U
(t)
n+1 + V(t)

1;n) + (V
(t−1)
2 +W

(t−1)
n −W(t−1)

n )]/2;

V
(t)
1;n+1 = soft([P ]\\ii; λ) ;

V
(t−1)
2;n+1 = (1/2)[(U

(t−1)
n+1 + V(t−1)

n ) + (V
(t)
1;n −W

(t−1)
n +W(t−1)

n )];
Threshold for jumps:
Q(t) = V

(t)
1;n+1 − V

(t−1)
2;n+1 +W(t−1)

n ;
W t−1
n+1 = (Q(t)/‖Q(t)‖F ) max(‖Q(t)‖F − λρ, 0);

Update Dual variables:
V(t)

1;n+1 = V(t)
1;n + U tn+1 − V

(t)
1;n ;

V(t)
2;n+1 = V(t)

2;n + U tn+1 − V
(t−1)
2;n ;

W(t)
n+1 =W(t)

n + V
(t)
1;n+1 − V

(t−1)
2;n −W (t)

n+1 ;
return {Θ̂(t)}

The above derivative, is linked through the data via the function Ŝ(t) = X(t)(X(t))>.
Recalling thatX(t) ∼ Np(0,Σ(t)), we can then link Σ(t) to Γ(l) via Σ(t) = (

∑
s≤t Γ(s))−1.

We now have a way to relate the estimated precision matrices Γ̂(t) and the correspond-
ing ground-truth. Let us write the sampling error for the covariance matrix at time point
t as Ψ(t) := Ŝ(t) − Σ(t). Substituting Ψ(t) into the above stationarity conditions for
GFGL we obtain;

T∑
t=l

(
(
∑
s≤t

Γ(s))−1 − (
∑
s≤t

Γ̂(s))−1

)
−

T∑
t=l

Ψ(t) + λ1

T∑
t=l

R̂
(t)
1 + λ2R̂

(l)
2 ,

and thus equivalently obtaining the result in Proposition 1. �
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B Proof of changepoint consistency
We relate the proof bounding the maximum deviation between estimated and true
changepoints to the probability of an individual changepoint breaking the bound. Fol-
lowing Harchaoui and Lévy-Leduc [2010], we utilise the union bound

P [ max
k∈[K]

|τk − τ̂k| ≥ TδT ] ≤
∑
k∈[K]

P [|τk − τ̂k| ≥ TδT ] .

The compliment of the event on the LHS is equivalent to the target of proof; we wish
to demonstrate P [maxk∈[K] |τk − τ̂k| ≤ TδT ] → 1. In order to show this, we need to
show the LHS above goes to zero as T → ∞. It is sufficient, via the union bound, to
demonstrate that the probability of the "bad" events:

AT,k := {|τk − τ̂k| > TδT } , (7)

go to zero for all k ∈ [K]. The strategy presented here separates the probability of
AT,k occurring across complimentary events. In particular, let us construct what can
be thought of as a good event, where the estimated changepoints are within a region of
the true ones:

CT :=

{
max
k∈[K]

|τ̂k − τk| <
dmin

2

}
. (8)

The task is then to show that P [AT,k] → 0 by showing P [AT,k ∩ CT ] → 0 and
P [AT,k ∩ CcT ]→ 0 as T → 0.

B.1 Stationarity induced bounds
As a first step, let us introduce some bounds based on the optimality conditions which
occur in probability one. From here, a set of events can be constructed that occur when
the stationarity conditions are met. By intersecting these events with AT,k ∩ CT and
AT,k ∩ CcT , we can construct an upper bound on the probability for changepoint error
exceeding a level TδT .

Without loss of generality, consider the stationarity equations (Prop. 1) with change-
points l = τk and l = τ̂k such that τ̂k < τk. We note, that an argument for the reverse
situation τk > τ̂k follows through symmetry. Taking the differences between the equa-
tions we find

‖
τk−1∑
t=τ̂k

(Σ(t) − Σ̂(t))−
τk−1∑
t=τ̂k

Ψ(t) + λ1

τk−1∑
t=τ̂

R̂
(t)
1 ‖F ≤ 2λ2 . (9)

The gradient from the `1 term
∑τk−1
t=τ̂k

λR̂
(t)
1 can obtain a maximum value of±λ1(τk−

τ̂) for each entry in the precision matrix. Transferring this to the RHS and splitting the
LHS in terms of the stochastic and estimated terms we obtain

‖
τk−1∑
t=τ̂k

(Σ
(t)
0 − Σ̂(t))‖F − ‖

τk−1∑
t=τ̂k

Ψ(t)‖F ≤ 2λ2 + λ1

√
p(p− 1)(τk − τ̂k) . (10)
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The next step is to replace the time indexed inverse precision matrices Θ(t) with the
block-covariance matrices indexed Σ(k) and Σ(k+1). We can re-express the difference
in precision matrices as the sum of a difference between true values before τk , i.e.
Σ(k+1) − Σ(k), and the difference between the next (k + 1)st true block and estimated
block, i.e. Σ̂(k+1) − Σ(k+1) to obtain:

λ2 + λ1

√
p(p− 1)(τk − τ̂k) ≥ ‖

τk−1∑
t=τ̂k

Σ(k) − Σ(k+1)‖F︸ ︷︷ ︸
‖R1‖F

− ‖
τk−1∑
t=τ̂k

Σ̂(k+1) − Σ(k+1)‖F︸ ︷︷ ︸
‖R2‖F

−‖
τk−1∑
t=τ̂k

Ψ(t)‖F︸ ︷︷ ︸
‖R3‖F

, (11)

which holds with probability one. Define the events:

E1 :={λ2 + λ1

√
p(p− 1)(τk − τ̂k) ≥ 1

3
‖R1‖F }

E2 :={‖R2‖F ≥
1

3
‖R1‖F }

E3 :={‖R3‖F ≥
1

3
‖R1‖F }

Since we know that the bound (11) occurs with probability one, then the union of these
three events must also occur with probability one, i.e. P [E1 ∪ E2 ∪ E3] = 1.

B.2 Bounding the Good Cases
One of the three events above are required to happen, either together, or separately. We
can thus use this to bound the probability of both the good CT and bad AT,k events.
Similarly to Harchaoui and Lévy-Leduc [2010], Kolar and Xing [2012] we obtain

P [AT,k ∩ CT ] ≤ P [

AT,k,1︷ ︸︸ ︷
AT,k ∩ CT ∩ E1] + P [

AT,k,2︷ ︸︸ ︷
AT,k ∩ CT ∩ E2] + P [

AT,k,3︷ ︸︸ ︷
AT,k ∩ CT ∩ E3]

The following sub-sections describe how to separately bound these sub-events.
Unlike in the work of Kolar and Xing [2012], there is no stochastic element (related

to the dataXt) within the first eventAT,k,1. We can bound the probability of P [AT,k,1]

by considering the event { 1
3‖R1‖F ≤ λ2 + λ1

√
p(p− 1)(τk − τ̂k)}. Given ‖R1‖F =

‖
∑τk−1
t=τ̂k

Σ(k) − Σ(k+1)‖F ≥ (τk − τ̂k)ηmin we therefore obtain the bound

P [AT,k,1] ≤ P [(τk − τ̂k)ηmin/3 ≤ λ2 + λ1

√
p(p− 1)(τk − τ̂k)] .

When the events CT , AT,k occur we have TδT < τk− τ̂k ≤ dmin/2 to ensure the event
AT,k,1 does not occur, we need:

ηminTδT > 3λ2 ; ηmin > 3λ1

√
p(p− 1) . (12)
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These conditions are satisfied by Assumption 3. Thus, for a large enough T , we can
show that the probability P [AT,k,1] = 0, the size of this T depends on the quantities in
Eq. 12.

Now let us consider the eventAT,k,2. Consider the quantity τ̄k := b(τk+τk+1)/2c.
On the event Cn, we have τ̂k+1 > τ̄k so Σ̂(t) = Σ̂(k+1) for all t ∈ [τk, τ̄k]. Using the
optimality conditions (Prop 1) with changepoints at l = τ̄k and l = τk we obtain

2λ2 + λ1

√
p(p− 1)(τ̄k − τk) ≥ ‖

τ̄k−1∑
t=τk

Σ̂(k+1) − Σ(k+1)‖F − ‖
τ̄k−1∑
t=τk

Ψ(t)‖F ,

and thus

‖Σ̂(k+1) − Σ(k+1)‖F ≤
4λ2 + 2λ1

√
p(p− 1)(τ̄k − τk) + 2‖

∑τ̄k−1
t=τk

Ψ(t)‖F
τk+1 − τk

(13)

We now combine the bounds for events E1 and E2, via E2 := {‖R2‖F ≥ 1
3‖R1‖F }

and the bounds ‖R1‖F ≥ (τk − τ̂k)ηmin and ‖R2‖F ≤ (τk − τ̂k)‖Σ̂k+1 − Σk+1‖F .
Substituting in (13) we have

P [AT,k,2] ≤ P [E2] = P

[
ηmin ≤

12λ2 + 6λ1

√
p(p− 1)(τ̄k − τk) + 6‖

∑τ̄k−1
t=τk

Ψ(t)‖F
τk+1 − τk

]
.

(14)
Splitting the probability into three components, we obtain

P [AT,k,2] ≤ P [ηmindmin ≤ 12λ2]+P [ηmin ≤ 3λ1

√
p(p− 1)]+P

[
ηmin ≤

6‖
∑τ̄k−1
t=τk

Ψ(t)‖F
τk+1 − τk

]
.

(15)
Convergence of the first two terms follows as in AT,k,1, the second is exactly covered
in AT,k,1; however, the third term ηmin ≤ 3‖

∑τ̄k−1
t=τk

Ψ(t)‖F /(τ̄k − τk) requires some
extra treatment. As τ̄k < τk+1, we can relate the covariance matrix of the ground-truth
(time-indexed) and block (indexed by k) such that Σ(t) = Σ(k) for all t ∈ [τk, τk+1].
One can now write the sampling error across time into one which relates to blocks k as

‖
τ̄k−1∑
t=τk

Ψ(t)‖F ≡ (τ̄k − τk)‖Wk;τ̄k−τk‖F ,

where Wk;n = [n−1
∑n
t=1X

(t)(X(t))>]−Σ
(k)
0 . A control on this quantity is given in

the following lemma:

Lemma 1. Sample Error Bound in High-Dimensions
Let Ŵ (n)

k = [n−1
∑n
t=1X

(t)(X(t))>] − Σ
(k)
0 , then for any ε ∈ (0, 23cσp), with

sub-Gaussian noise {X(t)}Tt=1, the error is bounded according to

P (‖Ŵk;n‖F > ε) ≤ 4p2 exp

(
− nε2

27c2σp
2

)
,
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where cσ = (1+4σ2) maxii{Σ(k)
0;ii}. Furthermore, if ε > εαconv := cσ24

√
2p
√

log(pβ/2)/n

and β > 2 then P (‖Ŵk;n‖F > ε) ≤ p(2−β) → 0 as p→∞.

Proof. See section B.5.

In the specific setting ofAT,k,2 the probability we desire to bound isP [‖Wk,τ̄k−τk‖F >
ηmin/3], applying Lemma 1 gives convergence if ηmin > 15 × 25p

√
log(pβ/2)/dmin,

where we note τ̄k − τk > dmin/2 and for Gaussian sampling cσ = 5. Finally, to en-
sure that the bound in Lemma 1 holds, we must ensure that ηmin/3 ∈ (0, 23cσ/p). If
dmin = γminT and ηmin follows the form cp

√
log(pβ/2/γminT ) for some constant c,

then we require T > γ−1
min(c/cσ)22−6 log(pβ/2).

Alternatively, we may study the sampling error in the standard asymptotic setting
where τ̄k − τk > p.

Lemma 2. Sample Error Bound in Standard Dimensions
Let p ≤ n and X(t) ∼ N (0,Σ

(k)
0 ) for t = 1, . . . , n. If the covariance matrix Σ

(k)
0

has maximum eigenvalues φmax < +∞, then for all t > 0 and p > 2 we have

P
(
‖Ŵk;n‖F ≥ 4φmaxe

−1/2
√
p log n/n

)
< 2n−p/2 . (16)

Proof. The result is a corollary of bounds derived in [Wainwright, 2009], see B.6.

In the context of AT,k,2, Lemma 2 holds with ηmin ≥ 12φmaxe
−1/2

√
p log n/n

and n = γminT . While the probability bound in the Lemma is not sharp, it does relate
the convergence rate to the dimensionality p, which in this context is fixed as T →∞.

Finally, let us turn toAT,k,3. Recall P (AT,k,3) := P (AT,k∩CT∩E3) := P (AT,k∩
CT ∩ {‖

∑τk−1
t=τ̂k

Ψ(t)‖F ≥ ‖R1‖F /3}). Given that ‖R1‖F ≥ (τk − τ̂k)ηmin with
probability 1, an upper bound on P [AT,k,3] can be found using the same concentration
bounds (Lemmas 1, 2) as for AT,k,2. The only difference is that we need to replace
the integration interval n with TδT . Noting that TδT < τk − τ̂k ≤ dmin/2, the overall
bound will be dominated by the concentration results requiring n > TδT .

B.3 Bounding the Bad Cases
In order to complete the proof, we need to demonstrate that P [AT,k ∩ CcT ] → 0. The
argument below follows that of Harchaoui and Lévy-Leduc [2010], whereby the bad
case is split into several events:

D
(l)
T : = {∃k ∈ [K], τ̂k ≤ τk−1} ∩ CcT ,

D
(m)
T : = {∀k ∈ [K], τk−1 < τ̂k < τk+1} ∩ CcT ,

D
(r)
T : = {∃k ∈ [K], τ̂k ≥ τk+1} ∩ CcT ,

where CcT = {maxk∈[K] |τ̂k − τk| ≥ dmin/2} is the compliment of the good event.
The events above correspond to estimating a changepoint; a) before the previous true
changepoint (D(l)

T ); b) between the previous and next true changepoint (D(m)
T ), and

c) after the next true changepoint (D(r)
T ). The events D(l)

T and D
(r)
T appear to be
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particularly bad as the estimated changepoint is very far from the truth, due to sym-
metry we can bound these events in a similar manner. Focussing on the middle term
P [AT,k ∩D(m)

T ], let us again assume τ̂k < τk , the reverse arguments hold by symme-
try.

Lemma 3. Upper bound for P [AT,k ∩D(m)
T ]

The probability of the intersection of AT,k and D(m)
T can be bounded from above

by considering the events

E
′

k := {(τ̂k+1 − τk) ≥ dmin/2} , (17)

E
′′

k := {(τk − τ̂k) ≥ dmin/2} . (18)

In particular, one can demonstrate that:

P [AT,k ∩D(m)
T ] ≤ P [AT,k ∩ E

′

k ∩D
(m)
T ] +

K∑
j=k+1

P [E
′′

j ∩ E
′

j ∩D
(m)
T ] . (19)

Proof. The result follows from expanding events based on neighbouring changepoints
(see Appendix B.7 for detail).

Let us first assess P (AT,k ∩D(m)
T ∩ E′k), and consider the stationarity conditions

(10) with start and end points set as l = τ̂ , l = τk and l = τ̂k, l = τk+1 . We
respectively obtain:

|τk − τ̂k|‖Σ(k) − Σ̂(k+1)‖F ≤ 2λ2 + λ1

√
p(p− 1)(τk − τ̂k) + ‖

τk−1∑
t=τ̂k

Ψ(t)‖F (20)

and

|τk− τ̂k+1|‖Σ(k+1)−Σ̂(k+1)‖F ≤ 2λ2 +λ1

√
p(p− 1)(τ̂k+1−τk)+‖

τ̂k+1−1∑
t=τk

Ψ(t)‖F .

(21)
The next step is to define an event that can bound P (AT,k ∩ E

′

k ∩ D
(m)
T ). Using the

triangle inequality we bound ‖Σ(k+1)−Σ(k)‖F conditional on E
′

k := {(τ̂k+1− τk) ≥
dmin/2} and AT,k := {|τk − τ̂k| > TδT }. Specifically, we construct the event

HΣ
T := {‖Σk+1 − Σk‖F ≤ 2λ1

√
p(p− 1) + 2λ2((TδT )−1 + 2/dmin)

+‖Wk;τk−τ̂k‖F + ‖Wk+1;τ̂k+1−τk‖F } , (22)

which bounds the first term of (19) such that P (AT,k ∩E
′

k ∩D
(m)
T ) ≤ P (HΣ

T ∩ {τk −
τ̂k ≥ TδT } ∩ E

′

k). Splitting the intersection of events we now have five terms to
consider

P (AT,k ∩ E
′

k ∩D
(m)
T )

≤ P (λ1

√
p(p− 1) ≥ ηmin/10) + P (λ2/TδT ≥ ηmin/10) + P (λ2/dmin ≥ ηmin/20)

+P (‖Wk;τk−τ̂k‖F ≥ ηmin/5} ∩ {τk − τ̂k ≥ TδT })
+P ({‖Wk+1;τ̂k+1−τk‖F ≥ ηmin/5} ∩ {τ̂k+1 − τk ≥ dmin/2}) .
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The stochastic error terms (containing Wk;τk− ˆtauk
) can then be shown to converge

similarly to P (AT,k ∩ CT ) c.f. Eq. (14). Again, it is worth noting that the term
involving TδT will be slowest to converge, as dmin = γminT > δTT for large T .
The first three terms are bounded through the assumptions on dmin, λ1, λ2, and δT as
required by the theorem (and enforce a similar requirement to those used to bound
P (AT,k,1) in Eq. 12). The other terms in (19), i.e.

∑K
j=k+1 P [E

′′

j ∩ E
′

j ∩D
(m)
T ] can

be similarly bounded. Instead of using exactly the event HΣ
T one simply replaces the

term 1/TδT in (22) with 2/dmin.
Now let us consider the events D(l)

T := {∃k ∈ [K], τ̂k ≤ τk−1} ∩ CcT . The final
step of the proof is to show that the bound on AT,k ∩D(l)

T , and similarly AT,k ∩D(r)
T

tends to zero:

Lemma 4. The probability of D(l)
T is bounded by

P (D
(l)
T ) ≤ 2K

K−1∑
k=1

K−1∑
l≥k

P (E
′′

l ∩ E
′

l ) + 2KP (E
′

K) .

Proof. This is based on a combinatorial argument for the events that can be considered
on addition of each estimated changepoint. For details see Appendix B.8.

In order to bound the above probabilities we relate the events E
′′

l and E
′

l to the
stationarity conditions as before (via Eqs. 20, 21). Setting k = l and invoking the
triangle inequality gives us

{‖Σl+1 − Σl‖F ≤ 2λ1

√
p(p− 1) +

A︷ ︸︸ ︷
2λ2(|τl − τ̂l|−1 + |τ̂l+1 − τl|−1)

+‖Wl;τl−τ̂l‖F + ‖Wl+1;τ̂l+1−τl‖F } .

Conditioning on the event E
′′

l ∩ E
′

l implies that A = 8λ2/dmin. We can thus write

P (E
′′

l ∩ E
′

l ) ≤ P (ηmin ≤ 8λ1

√
p(p− 1)) + P (ηmin ≤ 32λ2/dmin)

+P ({‖Wl;τl−τ̂l‖F ≥ ηmin/4} ∩ {τl − τ̂l ≥ dmin/2})
+P ({‖Wl+1;τ̂l+1−τl‖F ≥ ηmin/4} ∩ {τ̂l+1 − τl ≥ dmin/2}) .

Finally, the term corresponding to the last changepoint can be bounded by noting that
when k = K we have A = 6λ2/dmin.

P (E
′′

K) ≤ P (ηmin ≤ 8λ1

√
p(p− 1)) + P (ηmin ≤ 24λ2/dmin)

+ P ({‖WK;τK−τ̂K‖F ≥ ηmin/4} ∩ {τK − τ̂K ≥ dmin/2})
P (‖WK+1;T+1−τK‖F ≥ ηmin/4) . (23)
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B.4 Summary
The bounds derived above demonstrate that P (AT,k) → 0 since P (AT,k ∩ CT ) → 0
and P (AT,k∩CcT )→ 0. However, to achieve these bounds, the regularisers must be set
appropriately. The event E

′′

l ∩E
′

l establishes a minimal condition on T in conjunction
with ηmin and the regularisers, such that ηmindmin/λ2 > 32 and ηmin/λ1

√
p(p− 1) >

8. A final condition for AT,k,1 requires ηminTδT /λ2 > 3. Once T is large enough
to satisfy these conditions, the probabilistic bound is determined either by the smallest
block size dmin = γminT or by the minimum error TδT . Let k∞ = arg maxk{maxii Σ

(k)
ii }

select the block which results in the largest expected covariance error. Summing the
probabilities, one obtains the upper bound:

P [|τk − τ̂k| ≥ TδT ] ≤2× 2K
(
(K − 1)2 + 1

)
P (‖Wk∞;dmin/2‖F ≥ ηmin/4)

+ 2P (‖Wk∞;TδT ‖F ≥ ηmin/5)

+ 2P (‖Wk∞;TδT ‖F ≥ ηmin/3) ,

where the different rows correspond to events; top) D(l)
T and D

(r)
T ; middle) D(m)

T ;
bottom) AT,k,2 and AT,k,3. Since δTT < γminT the above bounds will be dominated
by errorsWk∞;TδT integrated over the relatively small distance TδT . A suitable overall
bound on the probability is

P ( max
k∈[K]

|τk − τ̂k| ≥ TδT ) ≤ K32K+1P (‖W∞;dmin/2‖F ≥ ηmin/4)

+ 4KP (‖W∞;TδT ‖F ≥ ηmin/5)

≤ CKP (‖W∞;TδT ‖F ≥ ηmin/5) ,

where CK = K(K22K+1 + 4). We thus arrive at the result of Theorem 3.1.
�

B.5 Lemma 1. High-Dimensional Bound on Empirical Covariance
Error

Lemma. Let W (n)
k = [n−1

∑n
t=1X

(t)(X(t))>]− Σ
(k)
0 , then for any ε ∈ (0, 23cσ/p),

with Gaussian noise X(t) ∼ N (0,Σ(k)), the error is bounded according to

P (‖Ŵk;n‖F > ε) ≤ 4p2 exp

(
− nε2

27c2σp
2

)
,

where cσ = (1+4σ2) maxii{Σ(k)
0;ii}. Furthermore, if ε > εαconv := cσ24

√
2p
√

log(pα/2)/n
and α > 2 then

P (‖Ŵk;n‖F > ε) ≤ p(2−α) → 0 .

Proof. From Ravikumar et al. [2011] Lemma 1, for X(t) with sub-Gaussian tails (pa-
rameter σ) we have
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P (|Ŵk;n;i,j | > δ) ≤ 4 exp

(
− nδ

2

27c2

)
,

where c = (1 + 4σ2) maxii{Σ0;ii} for all δ ∈ (0, 23c). Take the union bound to obtain
max norm

P (‖Ŵk;n‖∞ > δ) ≤ 4p2 exp

(
− nδ

2

27c2

)
.

Now use the fact that p2‖X‖∞ ≥ p‖X‖F to control the event relating to Frobenius
norm. Note that if P (‖X‖∞ > δ/p) = A and P (‖X‖F > δ) = B, then A ≥ B and
hence we can use the larger probability A to bound the Frobenius event

P (‖Ŵk;n‖F ) > δ) ≤ 4p2 exp

(
− nδ2

p227c2

)
The bound converges to zero for all ε > εconv where

ε2conv =
p22227c2

n
log(4p2)

giving εconv := c24
√

2p
√

log(p)/n .

B.6 Proof of Lemma . Standard-dimensional Bounds for Empiri-
cal Covariance Error

Lemma. Concentration of spectral and Frobenius norm
Let p ≤ n and X(t) ∼ N (0,Σ

(k)
0 ) for t = 1, . . . , n. If the covariance matrix Σ has

maximum eigenvalues φmax < +∞, then for all a > 0

P (
∣∣∣∣∣∣∣∣∣Ŵk;n

∣∣∣∣∣∣∣∣∣
2
≥ φmaxδ(n, p, a)) ≤ 2 exp(−na2/2) , (24)

where δ(n, p, a) := 2((p/n)1/2+a)+((p/n)1/2+a)2. Furthermore, with δ(n, p,
√
p log(n)/n)

and p > 2 we have

P

(
‖Ŵk;n‖F ≥

4φmax√
e

√
p log n

n

)
< 2n−p/2 . (25)

Proof. The proof of Eq. 24 is given in Lemma 9 [Wainwright, 2009] and is based on
a result for Gaussian ensembles from Davidson and Szarek [2001]. For the specific
bound in (25) set a =

√
p log(n)/n such that

δ(n, p,
√
p log(n)/n) =

(√
p

n
+

√
p log(n)

n

)(
2 +

√
p

n
+

√
p log(n)

n

)

<

√
p log(n)

n
(2 + 2

√
p log(n)

n
) .
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Noting that
√
p log(n)/n is maximised for n = e, we obtain

δ(n, p,
√
p log(n)/n) <

√
p log n

n
(2(1 +

√
p

e
))

<
4p√
e

√
log n

n
,

where the last inequality holds for p > 2. Note that ‖X‖F ≤
√

rank(X)|||X|||2. Given
we are in the setting p < n so the matrix is full rank, we thus obtain the stated result
(24)

P (‖Ŵk;n‖F ≥ φmaxδ(n, p,
√
p log n/n)/

√
p) ≤ 2n−p/2 .

B.7 Proof of Lemma 3
Lemma. The probability of the intersection of AT,k and D(m)

T can be bounded from
above by considering the events

E
′

k := {(τ̂k+1 − τk) ≥ dmin/2} ,
E
′′

k := {(τk − τ̂k) ≥ dmin/2} .

In particular, one can demonstrate that:

P [AT,k ∩D(m)
T ] ≤ P [AT,k ∩ E

′

k ∩D
(m)
T ] +

K∑
j=k+1

P [E
′′

j ∩ E
′

j ∩D
(m)
T ] . (26)

Proof. The strategy is to expand the probability in terms of exhaustive events (relating
to the estimated changepoint positions), under a symmetry argument, we assume τ̂k <
τk. Noting P [E

′

k ∪ E
′′

k+1] = 1, then expanding the original event, we find

P [AT,k ∩D(m)
T ] ≤ P [AT,k ∩D(m)

T ∩ E
′

k] + P [AT,k ∩D(m)
T ∩ E

′′

k+1]

≤ P [AT,k ∩D(m)
T ∩ E

′

k] + P [D
(m)
T ∩ E

′′

k+1] .

Now consider the event D(m)
T ∩E′′k+1 corresponding to the second term. One can then

expand the probability of this intersection over the events E
′

k+1 and E
′′

k+2 relating to
the next changepoint, i.e

P [D
(m)
T ∩ E

′′

k ] ≤ P [D
(m)
T ∩ E

′′

k+1 ∩ E
′

k+1] + P [D
(m)
T ∩ E

′′

k+1 ∩ E
′′

k+2] .

Again, P [D
(m)
T ∩ E′′k ∩ E

′′

k+2] may be upper bounded by P [D
(m)
T ∩ E′′k+2] such that

P [D
(m)
T ∩ E′′k ∩ E

′′

k+2] ≤ P [D
(m)
T ∩ E′′k+2]. Cascading this over all changepoints

j = k + 1, . . . ,K we have

P [D
(m)
T ∩ E

′′

k ] ≤
K∑

j=k+1

P [D
(m)
T ∩ E

′′

j ∩ E
′

j+1] .
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B.8 Proof of Lemma 4
Lemma. The probability of D(l)

T is bounded by

P [D
(l)
T ] ≤ 2K

K−1∑
k=1

K−1∑
l≥k

P [E
′′

l ∩ E
′

l ] + 2KP [E
′

K ] .

Proof. We present here an expanded version of the proof given in Harchaoui and Lévy-
Leduc [2010]. Recall the definitions of the different events:

E
′

k := {(τ̂k+1 − τk) ≥ dmin

2
} and E

′′

k := {(τk − τ̂k) ≥ dmin

2
} .

For each new changepoint in the model, there is an extra option for this (latest change-
point) to trigger the event

{∃k ∈ [K], τ̂k ≤ τk−1} . (27)

In particular, the total number of combinations (of changepoints) which could trigger
this event doubles on the addition of an extra changepoint. Lemma 4 considers the
probability of each of the changepoints being estimated to the left of τk−1. To start, we
remark that the probability of D(l)

T is bounded by

P [D
(l)
T ] ≤

K∑
k=1

2k−1P [max{l ∈ [K] | τ̂l ≤ τl−1} = k] . (28)

The term P [max{l ∈ [K] | τ̂l ≤ τl−1} = k] describes the probability that the last
changepoint (such that τ̂l is to the left, i.e. before τl−1) is k. On increasing k by one (for
k ≥ 2), the number of combinations of left/right estimates for previous changepoints
doubles. For example, consider the case for k = 3 such that the event S3 := {τ̂3 ≤ τ2}
is triggered, see Fig. 2. The possible results for previous changepoints are then S2 :=
{τ̂2 ≤ τ1}, it’s compliment Sc2, and the event S1 := {τ̂1 ≤ 1} or Sc1. In total, there are
22 ways that the event S3 can occur1. In general for the changepoint k there are 2k−1

combinations of events that allow Sk to be triggered. However, since these events are
not mutually exclusive, this only provides an upper bound.

Harchaoui and Lévy-Leduc [2010] and Kolar and Xing [2012] remark that an event
where the kth changepoint is the largest to satisfy {τ̂l ≤ τl−1}, is a subset of events
relating to later changepoints l ≥ k. Correspondingly, we have

{max{l ∈ [K] | τ̂l ≤ τl−1} = k} ⊆ ∪Kl=k{τl− τ̂l ≥ dmin/2}∩{τ̂l+1−τl ≥ dmin/2} .
(29)

The union bound applied to (29) provides us with the bound:

P [max{l ∈ [K] | τ̂l ≤ τl−1} = k] ≤
∑
l≥k

P [{τl− τ̂l ≥
dmin

2
}∩{τ̂l+1− τl ≥

dmin

2
}] ,

1Arguably, there are actually 3 combinations of changepoint event that can cause S3 as τ̂1 > τ̂0 = 1 by
definition. However, this does not effect the upper bound.
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Figure 2: The gold changepoint estimates indicate examples of allowable positions for
the changepoints l < k = 3 which satisfy {τ̂l ≤ τl−1}. Note: for the case displayed
K = 3 and k = 3 thus there are 4 combinations of changepoints (in gold) that permit
the purple event max{l ∈ [4] | τ̂l ≤ τl−1} = 3.

and thus

P [D
(l)
T ] ≤

K∑
k=1

2k−1
K∑
l≥k

P [{τl − τ̂l ≥
dmin

2
} ∩ {τ̂l+1 − τl ≥

dmin

2
}] .

Since we want an upper bound, the largest factor (2K) can be taken out the summation.
The term k = K contains the event {τ̂K+1 − τK ≥ dmin/2}, this occurs with proba-
bility one as the last changepoint τ̂K+1 = T + 1. We can thus truncate the final term
and obtain the bound:

P [D
(l)
T ] ≤ 2K

K−1∑
k=1

K−1∑
l≥k

P [{τl − τ̂l ≥
dmin

2
} ∩ {τ̂l+1 − τl ≥

dmin

2
}]

+2KP [{τK − τ̂K ≥
dmin

2
}] .

The above can be written in a shortened form by relating it to the eventsE
′

k, E
′′

k defined
in (18), such that

P [D
(l)
T ] ≤ 2K

K−1∑
k=1

K−1∑
l≥k

P [E
′′

l ∩ E
′

l ] + 2KP[E
′′

K ] .

C Proof of Model-Selection Consistency

C.1 Proof Overview
Let us define a set of pairsMk = {(i, j) | Θ(k)

0;ij 6= 0} to be the support set of the true

model in block k and letM⊥k = {(i, j) |Θ(k)
ij = 0} be its compliment.

Theorem. Bounds on the estimation error
Consider the GFGL estimator with Assumptions (4,5). Assume λ1 = 16α−1δ,

λ2 = ρλ1 for some finite ρ > 0 and δ > 24
√

2cσ∞
√

log(4pβ)/γminT where β > 2.
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Let d be the maximum degree of each node in the true model, and define

vC = 6{1 + 16α−1(1 + 2ρ)}dmax{KΣ0
KΓ0

,K2
Γ0
K3

Σ0
} .

Then for T ≥ 29γ−1
min max{1/8cσ∞ , vC}2c2σ∞ log(4pβ), we have

‖Θ̂(k) −Θ
(kmax)
0 ‖∞ ≤ 2KΓ0

{1 + 16α−1(1 + 2ρn̂−1
k )}δ ,

in probability greater than 1− 1/pβ−2.

Proof. A popular and fairly general approach to demonstrating such consistency is
known as the primal-dual witness method [Wainwright, 2009]. Principally, this method
works by deconstructing the KKT conditions of an M-estimator into two blocks. Let
us label these conditions KKT(M, ∂r(ΘM)) and KKT(M⊥, ∂r(ΘM⊥)), such that
they respectively concern components of the the true model Θ0;M and the compliment
Θ0;M⊥ . The primal-dual witness approach consists of the following steps:

1. Solve a restricted problem; Θ̄ := arg minΘ l(Θ;X)+λT r(Θ), such that ΘM⊥ =
0. This constitutes a restricted estimation problem, whereby the estimate is only
supported on the true model-subspace. It verifies that the KKT(M, ∂r(ΘM)) is
satisfied under the block corresponding to the true support.

2. Select R̄ as the sub-differential of the regulariser r(·) evaluated at Θ̄. Find the
subgradient over the components outside the model-subspaceM⊥ via KKT(Θ̄, R̄)

3. Check that the sub-gradient in step (2) is sufficiently small to demonstrate the
solution is dual feasible.

In what follows we wll dissect the GFGL estimator according to the above steps, a
similar approach in the stationary i.i.d setting is discussed in Ravikumar et al. [2011].
In our case, we will require some care to take account of the smoothing regulariser.

Let Ŝk;n̂k
:= n̂−1

k

∑n̂k

t=1X
(t)(X(t))> represent the empirical covariance matrix

calculated by taking n̂k samples fromX(t) with covariance matrix Σ
(k)
0 . Since {Θ̂(k)}Bk=1

is an optimal solution for GFGL, for each estimated block k, l = 1, . . . , B̂ = K + 1 it
needs to satisfy∑
l 6=k∈[B̂]

n̂lk(Wl;n̂lk
)+n̂kkWk;n̂kk

−n̂kΣ̂(k)+λ1n̂kR̂
(τ̂k−1)
1 +λ2(R̂

(τ̂k−1)
2 −R̂(τ̂k)

2 ) = 0 ,

(30)
where n̂lk describes the proportion of overlap between the lth true block and the kth
estimated block, andWk;n := Σ

(k)
0 − Ŝk;n represents the error accrued in the empirical

covariance estimate. The term
∑
l 6=k∈[B̂] n̂lk(Wl;n̂lk

) can be though of as providing a
sampling bias due to estimation error in the changepoints, wheras the term n̂kkWk;n̂kk

compares samples and the ground-truth of the same underlying covariance matrix.
We will now proceed to construct an oracle estimator Θ̄ ∈ R̃B̂p×B̂p. The oracle is
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constructed through solving the restricted problem

Θ̄ := Argmin
{U(k)�0| U(k)

M⊥
=0}B̂k=1

[ B̂∑
k=1

{ B̂∑
l=1

n̂lktr(Ŝ(l)U (k))− n̂k log det(U (k))
}

+ λ1

B̂∑
k=1

n̂k‖U (k)‖1 + λ2

B̂∑
k=2

‖U (k) − U (k−1)‖F
]
.

The construction above does not utilise oracle knowledge to enforce changepoint posi-
tions, only the sparsity structure of the block-wise precision matrices. Again, for each
estimate block, we obtain a set of optimality conditions like (30). Let us denote the sub-
gradient of the restricted problem evaluated at the oracle solution as R̄(k)

1 ≡ R̄
(τ̂k−1)
1

for the `1 penalty, and R̄(τ̂k−1)
2 , R̄

(τ̂k)
2 for the smoothing components. By definition the

matrices R̄(τ̂k−1)
2 , R̄

(τ̂k)
2 are members of the sub-differential and hence dual feasible.

To show that Θ̄ is also a minimiser of the unrestricted GFGL problem (2), we will
show that ‖R̄(k)

1;M⊥‖∞ ≤ 1 and is hence dual-feasible.
Ravikumar et al. [2011] Lemma 4 demonstrates that for the standard graphical lasso

problem strict dual-feasibiility can be obtained by bounding the max of the sampling
and estimation error. The estimation error (on the precision matrices) is tracked through
the difference (remainder) between the gradient of the log-det loss function and its first-
order Taylor expansion. In our case we will track the precision matrices at each block
k via the remainder function defined as

E(∆) = Θ̄−1 −Θ−1
0 + Θ−1

0 ∆Θ−1
0 ,

where ∆ = Θ̄−Θ0 ∈ Rp×p.

Lemma 5. The out-of-subspace parameters are dual feasible such that ‖R̄(k)

1;M⊥‖∞ <
1 if

max

{
‖ave(W (k))‖∞, ‖E(∆)‖∞,

λ2

n̂k
‖R̄(τ̂k−1)

2 ‖∞,
λ2

n̂k
‖R̄(τ̂k)

2 ‖∞
}
≤ αλ1/16 ,

(31)
where ave(W (k)) := n̂−1

k (
∑B̂
l 6=k n̂lkWl;n̂lk

+ n̂kkWk;n̂kk
).

We note at this point, that the condition (31) in the setting where T → ∞ con-
verges to that of the standard graphical lasso [Ravikumar et al., 2011]. Specifically,
if changepoint error is bounded according to the event Eτ := {maxk |τ̂k − τk| ≤
TδT }, the mis-specification error averaged across the block converges to the exact
case ave(W (k))→W

(k)
exact. To make this argument more specific, we construct a loose

bound on the sampling error accumulated over an estimated block.

Lemma 6. The sampling error over a block is almost surely bounded according to∑
l∈B̂(k)

n̂lk‖Wl;n̂lk
‖∞ ≤ max{n̂k, dmin}‖Wl∞;dmin/2‖∞ ,
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and thus the average sampling error is bounded according to

‖ave(W (k))‖∞ ≤ max{1, dmin/n̂k}‖W∞;dmin/2‖∞ .

If changepoint estimation is consistent (according to Assumption 4) then P (Eτ ) =
fτ (T, p), and thus have dmin/n̂k < dmin/(dmin − δTT ) → 1, as T → ∞. As a
result, we bound ‖ave(W (k))‖∞ ≤ ‖W∞;dmin/2‖∞ from above and then analyse the
conditions (31) on condition of the intersection Eτ ∩ C where

C := {‖Ŵk∞;dmin/2‖∞ ≤ δ} .

Through choice of regulariser λ = 16α−1δ, the condition ‖ave(W )‖∞ ≤ αλ1/16
is automatically satisfied. We now turn our attention to the size of the remainder
‖E(∆)‖∞. In the first step, we directly invoke a result from Ravikumar et al. [2011]:

Lemma 7. If the bound ‖∆‖∞ ≤ (3KΣ0d)−1 holds and d is the maxmimum node
degree, then

‖E(∆)‖∞ ≤
3

2
d‖∆‖2∞K3

Σ0
.

While we can use the same relation as Ravikumar to map ‖∆‖∞ to ‖E(∆)‖∞ we
need to modify our argument for the actual control on ‖∆‖∞.

Lemma 8. The elementwise `∞ norm of the error is bounded such that ‖∆̄‖∞ =
‖Θ̄−Θ0‖∞ ≤ r if

r := 2KΓ0
{‖ave(Wk)‖∞ + λ1 + λ2n̂

−1
k (‖R̄(τ̂k−1)

2 ‖∞ + ‖R̄(τ̂k)
2 ‖∞)} , (32)

and r ≤ min{(3KΣ0
d)−1, (3K3

Σ0
KΓ0

d)−1}.

We now propogate the results of Lemma 8 through Lemma 7, while conditioning on
event {C ∩Eτ}. First, let us note the contribution of the fused sub-gradient is bounded
λ2n̂

−1
k (‖R̄(τ̂k−1)

2 ‖∞+‖R̄(τ̂k)
2 ‖∞) ≤ 2λ2n̂

−1
k . Let us further assume that λ2 = λ1ρ for

ρ > 0, we now upper bound (32) with the stated form of λ1 such that

r ≤ rC := 2KΓ0
{δ + λ1(1 + 2ρn̂−1

k )} = 2KΓ0
{1 + 16α−1(1 + 2ρn̂−1

k )}δ .

The condition in Lemma 8 is now met, if δ ∈ (0, 1/max{1/8cσ∞ , vC}) where

vC = 6{1 + 16α−1(1 + 2ρn̂−1
k )}dmax{KΣ0KΓ0 ,K

2
Γ0
K3

Σ0
} .

Using Lemma B.5 we have the probabilistic bound on Cc given asP (‖Wk∞;dmin/2‖∞ >

δ) ≤ 1/p(β−2), where we need δ > 24
√

2cσ∞
√

log(4pβ)/γminT . Remember cσ∞ =
maxk{cσk

}, i.e. we assume the slowest concentration possible over all blocks k =
1, . . . , B. This results in a lower bound for the sample size of

T ≥ 29γ−1
min max{1/8cσ∞ , vC}2c2σ∞ log(4pβ) ; β > 2 . (33)

The restricted solution is hence dual-feasible under the conditions of the proof such
that Θ̄ = Θ̂. The true edges are included in the estimate with probability at least
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1 − 1/pβ−2. The final step of the proof is to demonstrate that all possible solutions
to GFGL maintain this relation. In the case of GFGL, the following lemma states that
the objective function is strictly convex on the positive-definite cone. Hence, if we find
a minima it is the global minima, and the dual-feasibility condition ensures that the
suggested bounds are achieved.

Lemma 9. For matrices ΘT ∈ ST++ := {{A(t)}Tt=1 | A(t) � 0 , A(t) = A(t)>} the
GFGL cost function is strictly convex.

Theorem. Model-selection consistency
In addition to the assumptions in Theorem 3.3. Let θ(k)

min := minij |Θ(k)
0;ij | for all

(i, j) ∈Mk and for each k = 1, . . . , B. Let

vθ = 2KΣ0{1 + 16α−1(1 + 2ρn̂−1
k )}θ−1

min .

If T ≥ 29γ−1
min max{(8cσ∞)−1, vC , vθ}2c2σ∞ log(4pβ) then GFGL attains sign-consistency

with probability tending to one:

P{EM(Θ̂(k); Θ
(kmax)
0 )} ≥ 1− 1/pβ−2 → 1 ; as (p, T )→∞ .

Proof. This result is a simple corollary of Theorem 3.3 with the additional condition
on a known and appropriately sized θmin. The proof follows from Lemma 8 where we
require r = rθ ≥ θmin/2. The element-wise error incurred by the estimate |Θ̂(k)

ij −
Θ

(k)
0 | is not enough to change the sign of the estimate and the result follows. An exact

analogy is given (in the static case) by Lemma 7 Ravikumar et al. [2011].

C.2 Dual-feasibility with sampling and mis-specification error (Proof
of Lemma 5)

Lemma. Dual Feasibility
The out-of-subspace parameters are dual feasible such that ‖R̄(k)

1;M⊥‖∞ < 1 if

max

{
‖ave(W )‖∞, ‖E(∆)‖∞,

λ2

n̂k
‖R̄(τ̂k−1)

2 ‖∞,
λ2

n̂k
‖R̄(τ̂k)

2 ‖∞
}
≤ αλ1/16 .

Proof. We can write the block-wise optimality conditions (30) for the restricted esti-
mator as

(Θ
(k)
0 )−1∆(k)(Θ

(k)
0 )−1 − E(∆(k)) +

1

n̂k

 B̂∑
l 6=k

n̂lkWl;n̂lk
+ n̂kkWk;n̂kk


+ λ1R̄

(k)
1 +

λ2

n̂k
(R̄

(τ̂k−1)
2 − R̄(τ̂k)

2 ) = 0 .

As pointed out in Ravikumar et al. [2011], this equation may be written as an ordi-
nary linear equation by vectorising the matrices, for instance vec{(Θ(k)

0 )−1∆(k)(Θ
(k)
0 )−1} =
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{(Θ(k)
0 )−1 ⊗ (Θ

(k)
0 )−1}vec(∆(k)) ≡ Γ0vec(∆). Utilising the fact ∆M⊥ = 0 we can

split the optimality conditions into two blocks of linear equations

Γ
(k)
0;MMvec(∆

(k)
M ) + vec(G

(k)
n̂k

(X;λ1, λ2)M) = 0 (34)

Γ
(k)

0;M⊥Mvec(∆
(k)
M ) + vec(G

(k)
n̂k

(X;λ1, λ2)M⊥) = 0 , (35)

where

G(X;λ1, λ2) := ave(W (k))− E(∆(k)) + λ1R̄
(k)
1 + n̂−1

k λ2(R̄
(τ̂k−1)
2 − R̄(τ̂k)

2 ) ,

and the average empirical covariance error over the block is given by

ave(W (k)) := n̂−1
k (

B̂∑
l 6=k

n̂lkWl;n̂lk
+ n̂kkWk;n̂kk

) .

Solving (34) for vec(∆
(k)
M ) we find

vec(∆
(k)
M ) = −(Γ

(k)
0;MM)−1vec{G(X;λ1, λ2)M} .

Substituting this into (35) and re-arranging for R̄1;M⊥ gives

vec(G
(k)
n̂k

(X;λ1, λ2)M⊥) = Γ
(k)

0;M⊥M(Γ
(k)
0;MM)−1vec{G(X;λ1, λ2)M} ,

and thus

R̄
(k)

1;M⊥ =
1

λ1
Hvec{ave(WM)− EM(∆)}+

λ2

n̂kλ1
Hvec{(R̄(τ̂k−1)

2 − R̄(τ̂k)
2 )M}+Hvec(R̄

(k)
1;M)

− 1

λ1
vec{ave(WM⊥)− EM⊥(∆(k))} − λ2

n̂kλ1
vec{(R̄(τ̂k−1)

2 − R̄(τ̂k)
2 )M⊥} ,

where H(k) = Γ
(k)

0;M⊥M(Γ
(k)
0;MM)−1. Taking the `∞ norm of both sides gives

‖R̄(k)

1;M⊥‖∞ ≤
1

λ1

∣∣∣∣∣∣∣∣∣H(k)
∣∣∣∣∣∣∣∣∣
∞

(‖ave(WM)‖∞ + ‖EM(∆)‖∞) + ‖H(k)vec(R̄
(k)
1;M)‖∞

+
1

λ1
(‖ave(WM⊥)‖∞ + ‖EM⊥(∆)‖∞)

+
λ2

n̂kλ1

{∣∣∣∣∣∣∣∣∣H(k)
∣∣∣∣∣∣∣∣∣
∞

(‖R̄(τ̂k−1)
2;M ‖∞ + ‖R̄(τ̂k)

2;M‖∞) + ‖R̄(τ̂k−1)

2;M⊥ ‖∞ + ‖R̄(τ̂k)

2;M⊥‖∞
}
.

Lemma 10. The error in the model-space dominates that outside such that

‖ave(WM⊥)‖∞ ≤ ‖ave(WM)‖∞ , (36)
‖EM⊥(∆)‖∞ ≤ ‖EM(∆)‖∞ . (37)

Furthermore, the maximum size of the sub-gradient in the model subspace is bounded
‖R̄(k)

1;M‖∞ ≤ 1 .
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Via the results above, we obtain ‖H(k)vec(R̄
(k)
1;M)‖∞ ≤ 1− α and

‖R̄(k)

1;M⊥‖∞ ≤ λ
−1
1 (2− α){‖ave(WM)‖∞ + ‖EM(∆)‖∞

+ λ2n̂
−1
k (‖R̄(τ̂k−1)

2;M ‖∞ + ‖R̄(τ̂k)
2;M‖∞)}+ ‖H(k)vec(R̄

(k)
1;M)‖∞ .

The condition stated in the lemma now ensures ‖R̄(k)

1;M⊥‖∞ < 1.

C.3 Control on the remainder term ‖E(∆)‖∞ (Proof of Lemmas
7,8)

Lemma. Lemma 5 Ravikumar et al. [2011]
If the bound ‖∆‖∞ ≤ (3KΣ0

d)−1 holds and d is the maxmimum node degree, then

‖E(∆)‖∞ ≤
3

2
d‖∆‖2∞K3

Σ0
.

Proof. The reader is directed to Ravikumar et al. [2011] for full details. The proof
relies on representing the remainder term of the log-det function as

E(∆) = Θ−1
0 ∆Θ−1

0 ∆JΘ−1
0 , (38)

for matrix

J :=

∞∑
m=0

(−1)m(Θ−1
0 ∆)m .

Given the stated control on ‖∆‖∞ the norm of this matrix can be bounded such that∣∣∣∣∣∣J>∣∣∣∣∣∣∞ ≤ 3/2, the result follows by working through (38) with a maximum degree
size d.

Lemma. Control of Estimation error
The elementwise `∞ norm of the error is bounded such that ‖∆̄‖∞ = ‖Θ̄ −

Θ0‖∞ ≤ r if

r := 2KΓ0
{‖ave(Wk)‖∞ + λ1 + λ2n̂

−1
k (‖R̄(τ̂k−1)

2 ‖∞ + ‖R̄(τ̂k)
2 ‖∞)} ,

and

r ≤ min

{
1

3KΣ0d
,

1

3K3
Σ0
KΓ0d

}
.

Proof. Note that Θ̄M⊥ = Θ0;M⊥ = 0 and thus ‖∆‖∞ = ‖∆M‖∞. We follow
Ravikumar et al. [2011] (Lemma 6) in the spirit of our proof. The first step is to
characterise the solution Θ̄M in terms of its zero-gradient condition (of the restricted
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oracle problem). Define a function to represent the block-wise optimality conditions
(akin to Eq. 75 Ravikumar et al. [2011])

Q(Θ
(k)
M ) = −(Θ

(k)
M )−1 +

 1

n̂k

τ̂k−1∑
t=τ̂k−1

Ŝ
(t)
M

+ λ1R̄
(k)
1 +

λ2

n̂k
(R̄

(τ̂k−1)
2 − R̄(τ̂k)

2 ) = 0 .

Now construct a map F : ∆M 7→ F (∆M) such that its fixed points are equivalent to
the zeros of the gradient expression in terms of ∆M. To simplify the analysis, let us
work with the vectorised form and define the map

F (vec(∆M)) := −(Γ0;MM)−1vec{Q(Θ
(k)
M )}+ vec(∆M) ,

such that F{vec(∆M)} = vec(∆M) iff Q(Θ
(k)
0;M + ∆M) = Q(Θ

(k)
M ) = 0.

Now, to ensure all solutions that satisfy the zero gradient expression may have
their error bounded within the ball we demonstrate that F maps a `∞ ball B(r) :=
{ΘM| ‖ΘM‖∞ ≤ r} onto itself. Expanding F (vec(∆M)), we find

F (vec(∆M)) = −(Γ0;MM)−1vec{Q(Θ
(k)
0;M + ∆M)}+ vec(∆M)

= (Γ0;MM)−1vec
[
{(Θ(k)

0 + ∆)−1 − (Θ
(k)
0 )−1}M − ave(Wk;M)− λ1R̄

(k)
1;M

− λ2n̂
−1
k (R̄

(τ̂k−1)
2;M − R̄(τ̂k)

2;M)
]

+ vec(∆M)

= T1 − T2 ,

where

T1 := (Γ0;MM)−1vec
[
{(Θ(k)

0 )−1∆}2J(Θ
(k)
0 )−1

]
M ,

T2 := (Γ0;MM)−1vec
[
ave(Wk;M) + λ1R̄

(k)
1;M + λ2n̂

−1
k (R̄

(τ̂k−1)
2;M − R̄(τ̂k)

2;M)
]
.

The rest of the proof follows from Ravikumar et al. [2011], where one can show

‖T1‖∞ ≤
3

2
dK3

Σ0
KΓ0
‖∆‖2∞ ≤

3

2
dK3

Σ0
KΓ0

r2 ,

under the assumptions of the lemma we obtain ‖T1‖ ≤ r/2. Combined with the stated
form of r, we also find ‖T2‖∞ ≤ r/2 and thus ‖F (vec(∆M))‖∞ ≤ r. Through
the construction of F , we have ‖∆M‖∞ ≤ r iff Q(Θ

(k)
0;M + ∆M) = Q(Θ

(k)
M ) = 0

and since Q(Θ̄
(k)
M ) = 0 for any Θ̄

(k)
M we obtain ‖∆̄M‖∞ ≤ r where ∆̄M := Θ̄ −

Θ0. Finally, the existence of a solution Θ̄
(k)
M corresponding to vec(∆̄M) ∈ B(r) is

guranteed by Brouwer’s fixed point theorem (cite).

C.4 Strict Convexity of GFGL (Proof of Lemma 9)
Lemma. The GFGL cost function is strictly convex

For matrices ΘT ∈ ST++ := {{A(t)}Tt=1 |A(t) � 0 , A(t) = A(t)>} the GFGL cost
function is strictly convex.
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Proof. The neagtive log-det barrier − log det(Θ(t)) is strictly convex on Θ(t) ∈ S1
++.

While the frobenius norm is stictly convex on a given matrix ‖A‖F for A ∈ S1
++ it

is not striclty convex when considering the mixed norm
∑T
t=2 ‖Θ(t) − Θ(t−1)‖F for

Θ(t) ∈ S(T )
++ . However, due to Lagrangian duality, we can re-write the GFGL problem

as an explicitly constrained problem

min
ΘT∈S(T )

++

{ T∑
t=1

[
〈Θ(t), Ŝ(t)〉 − log det(Θ(t))

]}
such that

T∑
t=1

‖Θ(t)
−ii‖1 +

λ2

λ1

T∑
t=2

‖Θ(t) −Θ(t−1)‖F ≤ C(λ1) .

We can alternatively write

min
ΘT∈S(T )

++

{ T∑
t=1

[
〈Θ(t), Ŝ(t)〉 − log det(Θ(t))

]}
such that

T∑
t=1

‖Θ(t)
−ii‖1 ≤ Csparse(λ1, λ2)

T∑
t=2

‖Θ(t) −Θ(t−1)‖F ≤ Csmooth(λ1, λ2) .

A similar argument to that used in Ravikumar et al. [2011] now holds. Specifically,
we note that even the rank one estimate Ŝ(t) will have positive diagonal entries Ŝ(t)

ii > 0
for all i = 1, . . . , p. The off-diagonal entries in the precision matrix are restricted
through the `1 term. Unlike in the standard static case, the size of this norm is not
related to just a single precision matrix, rather it counts the size of the off-diagonals
over the whole set {Θ(t)}Tt=1. Thus, to obtain strict convexity, one also needs to include
appropriate smoothing. To borrow the same argument as used in Ravikumar et al.
[2011], we need to demonstrate that for any time-point t we can construct a problem
of the form

min
Θ(t)∈S(1)

++

{
〈Θ(t), Ŝ(t)〉 − log det(Θ(t))

}
such that ‖Θ(t)

−ii‖1 ≤ Ct(λ1, λ2) .

The constraint due to smoothing allows exactly this, for instance, one may obtain a
bound

‖Θ(t)
−ii‖1 ≤ Csparse(λ1, λ2)−

∑
s6=t

‖Θ(s)
−ii‖1 .

Writing Θ(s) = Θ(1) +
∑s
q=2(Θ(q) −Θ(q−1)) for s ≥ 2 we obtain∑

s6=t

‖Θ(s)‖1 ≤ ‖Θ(1)‖1 +
∑
s6=t

s∑
q=1

‖Θ(q) −Θ(q−1)‖1

≤ pCsmooth(λ1, λ2) + ‖Θ(1)‖1 ,
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where we note ‖ · ‖1 ≤ p‖ · ‖F . Converting to the bound for the `1 norm at time t we
find

‖Θ(t)
−ii‖1 ≤ Csparse(λ1, λ2)− pCsmooth(λ1, λ2)− ‖Θ(1)‖1 ≡ Ct(λ1, λ2) ,

and thus an effective bound on the time-specific `1 norm can be obtained.

C.5 Bounding the block-wise sampling error (Proof of Lemma 6)
Let B̂(k) be a set containing all true block indexes l which overlap with the estimated
block of interest k and let n̂lk = min{min{τ̂k, τl+1}−max{τ̂k−1, τl}, 0} be the over-
lap of the lth true block and kth estimate block. The average sampling error over block
k can then be written as

ave(W (k)) :=
1

n̂k

∑
l∈B̂(k)

n̂lk(Ŝl;n̂lk
− Σ(l)) .

Given a lower bound on the true size of blocks dmin = mink{τk−τk−1} we can bound
the average sampling error (even in the case where δTT > dmin).

Lemma. Let n̂k := τ̂k − τ̂k−1. The sampling error over a block is almost surely
bounded according to∑

l∈B̂(k)

n̂lk‖Wl;n̂lk
‖∞ ≤ max{n̂k, dmin}‖Wl∞;dmin/2‖∞ ,

Proof. We consider to bound cases where τ̂k − τ̂k−1 < dmin differently according to∑
l∈B(k)

n̂lk‖W (n̂lk)
l ‖∞ ≤

{
(τ̂k − τ̂k−1)‖W (dmin/2)

∞ ‖∞ if τ̂k − τ̂k−1 ≥ dmin (A)

dmin‖W (dmin/2)
∞ ‖∞ if τ̂k − τ̂k−1 < dmin (B)

Case A

To show the first bound where τ̂k − τ̂k−1 ≥ dmin, consider the simple case where we
have two true blocks that overlap the estimated block k, namely l and l + 1. Note that
W

(n1)
l is independent of W (n2)

l+1 , thus we can write

P [n1‖W (n1)
l ‖∞+n2‖W (n2)

l ‖∞ > ε] = P [‖W (n1)
l ‖∞ > ε/2n1]+P [‖W (n2)

l+1 ‖∞ > ε/2n2] .

If we further assume that the structure in the blocks is the same, i.e. Σ
(l)
0 = Σ

(l+1)
0 then

we can use the bound of Ravikumar et al. (c.f. Lemma 1) to state

P [n1‖W (n1)
l ‖∞+n2‖W (n2)

l ‖∞ > ε] ∝ p2
(

exp(−c−1
l ε2n−1

1 ) + exp(−c−1
l ε2n−1

2 )
)
.

(39)
Letting n2 = |τ̂k − τ̂k−1| − n1 and differentiating with respect to n1 we find that the
probability of exceeding ε is maximised at n1 = n2 = |τ̂k − τ̂k−1|/2. To arrive at
the result (in the two block setting), we simply note that the block Σ

(l)
0 that we sample

from should be taken to be the one with the largest cσ .

34



Case B

In this case τ̂k − τ̂k−1 < dmin, the interval over which the sampling error occurs is
relatively small. We desire to find a multiplier in terms of dmin such that we can still
maintain ∑

l∈B(k)

n̂lk‖Wl;n̂lk
‖∞ ≤ neff‖Wl∞;dmin/2‖∞ . (40)

In the extreme case where n̂lk = 1 and τ̂k − τ̂k−1 = 1. From Ravikumar, we obtain

P [‖Wl;1‖∞ > εdmin] ≤ p2 exp(−c−1
l ε2d2

min) ,

and
P [‖Wl;dmin/2‖∞ > ε] ≤ p2 exp(−2c−1

l ε2d−1
min) , (41)

thus in high-probability neff = dmin maintains the bound (40). From the bound on the
first part (A) we noted that the worst case error was obtained at n1 = n2 = τ̂k−τ̂k−1/2.
This result still holds in the case where τ̂k − τ̂k−1 < dmin. For all 2n1 = 1, . . . , dmin,
we find

P [‖Wl;n1‖∞ > εdminn
−1
1 ] ≤ p2 exp(−c−1

l ε2d2
minn

−1
1 ) .

The probability (41) is obtained at the limit n1 = dmin/2 and therefore the bound holds
for all n1, n2 < dmin/2.

Multiple Blocks

For cases with more blocks the result still holds by noting that dmax > minl∈K∗{nlk},
thus the error from any blocks fully contained in the interval {τ̂k−1, . . . , τ̂k} will be
dominated by the blocks at either end. However, we do need to reassess the size of
the boundary blocks n1, n2. Rather than combining over an interval |τ̂k − τ̂k−1| this
interval is reduced according to

n1 = n2 =
1

2

(
|τ̂k − τ̂k−1| −

∑
l∈B̃(k)

|τl − τl−1|
)
,

where B̃(k) is the set B(k) without the first and last elements (which represent lengths
n1 and n2 respectively). From assuption we have a lower bound on the changepoint
distance dmin, we can thus upper bound the size of the boundary regions according to

n1 + n2 ≤ |τ̂k − τ̂k−1| − (|B(k)| − 2)dmin .

Setting n1 = n2 = {|τ̂k − τ̂k−1| − (|B(k)| − 2)d}/2, substituting into (39) and then
maximising with respect to d, suggests that the probability of exceeding level ε is max-
imised when d = dmin. We can thus use this setting of n1, n2 to upper bound the
error. The residual interval length n1 + n2 either satisfies the two block analysis for
n1 + n2 < dmin or otherwise. The stated result therefore follows in generality.
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