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ABSTRACT

Identification of human movements is crucial for the design of intelligent devices capable to provide

assistance. In this work, a Bayesian formulation, together with a sequential analysis method, is pre-

sented for identification of sit-to-stand (SiSt) and stand-to-sit (StSi) activities. This method performs

autonomous iterative accumulation of sensor measurements and decision-making processes, while

dealing with noise and uncertainty present in sensors. First, the Bayesian formulation is able to iden-

tify sit, transition and stand activity states. Second, the transition state, divided into transition phases,

is used to identify the state of the human body during SiSt and StSi. These processes employ accel-

eration signals from an inertial measurement unit attached to the thigh of participants. Validation of

our method with experiments in offline, real-time and a simulated environment, shows its capability to

identify the human body during SiSt and StSi with an accuracy of 100% and mean response time of

50 ms (5 sensor measurements). In the simulated environment, our approach shows its potential to in-

teract with low-level methods required for robot control. Overall, this work offers a robust framework

for intelligent and autonomous systems, capable to recognise the human intent to rise from and sit on

a chair, which is essential to provide accurate and fast assistance.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Standing up and sitting down are essential functions in hu-

mans, which are prerequisites to be independent for performing

activities of daily living (ADLs) (Aggarwal and Ryoo, 2011;

Kralj et al., 1990). The ability to rise from and sit on a chair

is degraded as people approach to the old age, becoming a de-

manding and complex task that needs assistance from other hu-

mans (Ganea et al., 2011). Technology plays a key role to de-

ploy intelligent devices capable to recognise human movements

and provide reliable assistance (Patel et al., 2012).

Advances in sensor technology have permitted the rapid

development of small size and low cost wearable devices,

with sophisticated functions for monitoring human move-

ments (López-Nava and Muñoz-Meléndez, 2016). For instance,

wearable devices integrated with electromyography (EMG), in-

ertial measurement units (IMU) and barometric pressure sen-

sors, have been able to read physiological and biomechanical

data in real-time (Asbeck et al., 2014; Massé et al., 2014). Re-

cently, robotics has started to benefit from wearable devices in
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applications for search and rescue, assistive robotics, telema-

nipulation and telepresence (Martinez-Hernandez et al., 2017a;

Jiang et al., 2017; Powell et al., 2016). Despite this progress, the

design of fast and accurate machine learning methods, needed

to exploit the potential of wearable technologies for recognition

of human activities, are still under development.

In this work, an approach composed of a Bayesian formula-

tion and a sequential analysis method, is presented for identi-

fication of sit-to-stand (SiSt) and stand-to-sit (StSi) activities.

This is a temporal and probabilistic approach, which is a gener-

alisation of state-space models such as hidden Markov models

and Kalman filter (Russell et al., 1995; Murphy, 2002). The ro-

bustness of this type of probabilistic method has been shown in

works on multimodal sensing, perception, control and human-

robot interaction (Martinez-Hernandez et al., 2017b,c; Ferreira

et al., 2013). First, the proposed approach identifies three ac-

tivity states; sit, transition and stand. Second, the state of the

human body is identified during the transition state by the use

of three transition phases. This approach allows to have a bet-

ter understanding of the state of the human body, which is im-

portant to build reliable low-level controllers required for the

development of intelligent assistive devices.
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Acceleration measurements, from a wearable sensor attached

to the thigh of participants, are used for identification of activity

states and transition phases. Data collection and the probabilis-

tic approach are integrated in a hierarchical layered architec-

ture, composed of physical, cognitive and control layers. These

architectures are important not only for the implementation of

recognition and control methods, but also to allow intelligent

systems to perceive and learn from the interaction with the en-

vironment (De Santis et al., 2008; Brooks, 1986). Identifica-

tion of SiSt and StSi, using the probabilistic approach and one

wearable sensor, are validated with experiments in offline, real-

time and a simulated environment. In the offline and real-time

modes, sit, transition and stand activity states are identified with

high accuracy. Similarly, identification of the human body dur-

ing the transition state, based on the use of transition phases,

achieves high accuracy. The experiments show that only a small

number of sensor measurements is needed to make a decision,

making our approach both fast and accurate. The potential for

robot control is also validated with a low-level controller and a

robotic leg built in a simulated environment.

Overall, the results from all experiments demonstrate the

high accuracy and fast response that can be achieved by the

Bayesian formulation, but also, its capability to interact with

low-level methods for robot control. These aspects make our

approach suitable for the development of robotic devices that

recognise human movements and provide reliable assistance.

This paper is organised as follows: a description of the re-

lated work is presented in Section 2. The proposed probabilis-

tic method is detailed in Section 3. The experiments and results

are shown in Section 4. Section 5 presents the discussion of our

work. Finally, conclusions are provided in Section 6.

2. Related work

Intent recognition is a high-level process needed for the de-

velopment of systems capable to assist humans. Multiple ap-

proaches, based on heuristic methods and machine learning al-

gorithms, have been studied for recognition of SiSt and StSi

activities, which are described in the following paragraphs.

Heuristics-based methods, with predefined set of rules and

conditions, have been used for recognition of activities of

daily living (ADLs). An angle recognition threshold-crossing

method was embedded in the robot suit HAL to assist hu-

mans (Tsukahara et al., 2010). This rule-based approach pro-

vided 55.6% of support during SiSt and 43.7% during SiSt, lim-

iting the capabilities offered by the robot HAL (Suzuki et al.,

2007). A wearable motion system and a rule-based method

for real-time detection of activities achieved recognition accu-

racies of 92.2% and 95.6% for SiSt and StSi, respectively (Yang

and Hsu, 2009). The single feature threshold-crossing algo-

rithm, implemented in portable activity recognition systems,

was highly susceptible to signal noise obtaining accuracies of

70.8% and 90.3% for recognition of sit and stand (Capela et al.,

2015; Haché et al., 2011). These heuristic methods showed to

be accurate, however, their nature makes them highly suscep-

tible to failure in the presence of even slight changes in sensor

measurements not observed during the training phase.

Machine learning offers sophisticated perception and learn-

ing algorithms for high-level recognition systems (De Marsico

et al., 2016). Fuzzy Logic (FL) techniques have been studied

with different sensing modalities for identification of ADLs and

control of robot platforms (Kiguchi et al., 2004). Fuzzy clus-

tering methods and vision sensing were capable to detect SiSt

and StSi with accuracies of 94.6%, 84.2% and 69.8%, using

Gustafson Kessel, Fuzzy C Means and the Gath and Geva algo-

rithms respectively (Banerjee et al., 2010). The need of a vision

system and large preprocessing steps, made this work unrealis-

tic for real-time assistance. A combination of Principal Com-

ponent Analysis (PCA) and Support Vector Machines (SVM)

recognised SiSt transitions with an accuracy of 92.94%. This

method was limited by the fixed sampling window and large

number of sensors, e.g., IMUs, force sensors and potentiome-

ters (Doulah et al., 2016). Visual input was employed to train

a SVM multi-class method, together with a binary tree archi-

tecture, for activity recognition (Qian et al., 2010). This multi-

class approach was able to achieve a recognition accuracy of

94.6% for SiSt. A vision system with 33 reflective markers,

placed over the full body, were used to detect SiSt and StSi.

This method required 56 ms and 48 ms to recognise SiSt and

StSi respectively, however, the proposed set up is not suitable

for real applications, apart from the lack of the analysis of ac-

curacy for activity recognition (Bannwart et al., 2017).

Probabilistic approaches provide well-defined models to de-

velop reliable and intelligent systems (Thrun et al., 2005;

Martinez-Hernandez et al., 2016a). Bayesian methods, which

are a generalisation of state-space models e.g., HMM and

Kalman filter, have been successfully used for perception,

decision-making and robot control (Bishop, 2006; Martinez-

Hernandez et al., 2016b, 2013). Bayesian networks, trained

with multiple information sources, e.g., IMUs and EMG sig-

nals, were capable to recognise locomotion activities with dif-

ferent terrain conditions (Farrell, 2013; Young et al., 2014;

Martinez-Hernandez et al., 2018; Martinez-Hernandez and

Dehghani-Sanij, 2018). Recognition of activity and spatial

location was investigated with a dynamic Bayesian network

(DBN) (Subramanya et al., 2012). This work was based

on measurements from a portable global positioning system

achieving an accuracy of 95%. An HMM and accelerometer

sensors, attached to upper and lower limbs, were employed for

the sequential classification of ADLs with a mean accuracy of

99.1% (Mannini and Sabatini, 2010). Six ADLs were recog-

nised with an accuracy of 84% using a Switching HMM and

vision input (Duong et al., 2005). A mean accuracy of 96.41%

was obtained for multi-user activity recognition, using a cou-

pled HMM, wearable sensors and wireless networks in a smart

home (Wang et al., 2011). Human gait phases were detected us-

ing a Kalman filter method and wearable ultrasonic sensors (Qi

et al., 2016). This wearable system achieved detection errors

of 0.02 and 0.04 for stance and swing phases compared to

the reference system. Human fall detection has been studied

using Kalman filter approaches, with a diversity of wearable

sensors, performing an early detection with accuracies ranging

from 95% to 99.4% (Anania et al., 2008; He et al., 2017). A

combination of an Extended Kalman filter (EKF) and HMMs
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permitted to classify and track multiple ADLs with an accuracy

of 93% using angle data from a wearable sensor (Wu et al.,

2007). Features from sitting, standing and walking were char-

acterised and recognised with high accuracy using Gaussian

mixture models (GMM) (Varol et al., 2010). The benefits of-

fered by probabilistic approaches have inspired the investiga-

tion presented in this work, where a Bayesian formulation with

a sequential analysis method is proposed for identification of

SiSt and StSi. This work overcomes various limitations found

in previous related works and offers the following advantages:

high recognition accuracy and fast decision-making process,

small number of sensors and the capability to deal with uncer-

tainty present in sensor measurements. A detailed description

of the proposed method is presented in the next sections.

3. Methods

3.1. Data collection

Twelve subjects from the School of Mechanical Engineer-

ing, at the University of Leeds, participated in this investiga-

tion. The subjects were healthy and free from gait abnormal-

ities and neurological pathologies. Subjects’ ages ranged be-

tween 24 and 34 years old, heights were between 1.74 m and

1.79 m, and weights ranged between 77.6 kg and 85 kg.

A 9-axis inertial measurement unit (IMU), from Shimmer

Inc., was attached to the thigh of participants for data collec-

tion. Acceleration measurements from the IMU were collected

at a sampling frequency of 100 HZ, which has been success-

fully employed in previous works (Maqbool et al., 2017). The

participants were asked to perform 10 repetitions of SiSt and

StSi activities, at their self-selected speed. Acceleration mea-

surements were sent to a workstation, through wireless com-

munication, for their subsequent processing and analysis. The

data collected were grouped in multiple datasets for training

and testing the method proposed in this work. Figure 1 depicts

the setup for data collection using a wearable sensor.

The raw and filtered acceleration signals for SiSt and StSi,

measured from the wearable sensor attached to the thigh of par-

ticipants, are shown in Figure 2A and Figure 2B, respectively.

These annotated plots show the sit and stand states (activity

states), which are two main parts of acceleration signals. Red

colour dashed-lines show the signal parts commonly used to

identify the intention to move from sit to stand and vice versa.

In this work, an in-depth analysis of the acceleration signals

is presented for a better understanding of decision-making and

control processes. For this purpose, and in addition to the iden-

tification of sit and stand states, the recognition of the transition

state and three transition phases is included in our work. This

approach identifies whether the subject is in sitting, standing or

in transition states, but also identifies what is happening during

the transition state for a better understanding of the movement

of the human body. Figures 2A and 2B show the transition state

and phases for SiSt and StSi activities.

The histograms for activity states and transition phases from

acceleration signals are shown in Figure 2C and 2D, respec-

tively. These signals are employed, as described in Section 3.2,

to build the nonparametric measurement model of the proposed

method for detection of SiSt and StSi activities.

Fig. 1. Data collection from SiSt and StSi activities using one IMU sen-

sor attached to the thigh of participants. Acceleration measurements are

sent to a computer, through wireless communication, to form datasets for

training and testing the proposed probabilistic method.

3.2. Probabilistic identification method

Identification of SiSt and StSi is performed using an ap-

proach composed of a Bayesian formulation and a sequen-

tial analysis method. This approach offers a belief net-

work to model probability distributions for temporal reason-

ing. Bayesian methods are a generalised representation of

traditional state-space models such as hidden Markov mod-

els (HMM) and Kalman filter, with interesting applications in

bioinformatics, speech recognition and robotics (Bishop, 2006;

Thrun et al., 2005; Bunke and Caelli, 2001).

Bayesian update: the Bayesian formulation iteratively up-

dates the posterior probability from the product of the prior and

likelihood distributions. Measurements from wearable sensors

are represented by z. Activity state classes (sit, stand and transi-

tion) and transition phase classes (phase 1, phase 2 and phase 3)

are represented by cn ∈ C. Each class cn is defined by a (uk, vl)

pair, where uk with k = 1, 2, . . . ,K and vl with l = 1, 2, . . . , L are

activity state and transition phase respectively. The Bayesian

update is performed as follows:

P(cn|zt) =
P(zt|cn)P(cn)

P(zt|zt−1)
(1)

where P(cn|zt) and P(zt|cn) are the posterior probability and

likelihood at time t. The prior probability, P(cn), takes an ini-

tial uniform distribution, and then is updated over time with the

posterior obtained from the previous time t − 1. The marginal

probabilities P(zt|zt−1) are used to ensure probabilities between

0 and 1. These processes are described in the following para-

graphs. Here, the variable uk with K = 3 is the activity state

(sit, stand and transition), and the variable vl with L = 3 is the

transition phase (phase 1, phase 2, phase 3). The measurements

z represent the acceleration signals from the wearable sensor

attached to the thigh of the participants.

Prior: a uniform or flat distribution is assumed for the prior

probability at time t = 0. Then, all activity states and transi-

tion classes are equally likely at the beginning of each decision

process. This is defined as follows:

P(cn) = P(cn|z0) =
1

N
(2)



4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time (sec)

0

2

4

6

8

10

12

14

ac
ce

le
ra

ti
o
n
 (

m
/s

2
)

Sit-to-stand signal

filtered signal

raw signal

sit state

stand statetransition

state

transition

phase 3

transition

phase 2

transition

phase 1

(A)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time (sec)

0

2

4

6

8

10

12

14

ac
ce

le
ra

ti
o
n
 (

m
/s

2
)

Stand-to-sit signal

filtered signal

raw signal

sit state

stand state
transition

state

transition

phase 3

transition

phase 2

transition

phase 1

(B)

(C) (D)

Fig. 2. Acceleration measurements collected from SiSt and StSi activities. (A), (B) Sit, transition and stand activity states for identification during SiSt and

StSi. Raw and filtered signals are represented by brown and black colours, respectively. The transition state is divided into 3 phases, which permits to

have a better understanding of the human movement during the transition state. (C) Histograms employed for training and testing our proposed method

for identification of sit, transition and stand activity states. (D) Histograms for recognition of the human movement during the transition state.

where P(cn) is the prior, cn is the class to be estimated, z0 are

the sensor measurements at time t = 0 and N is the number of

(uk, vl) pairs. Thus, in Equation (1), the prior P(cn) = P(cn|z0) =
1
N

at time t = 0. For time t > 0 the prior probability is updated

with the posterior probability obtained at t − 1 as follows:

P(cn) = P(cn|zt−1) (3)

where P(cn) is the prior in Equation (1), cn is the class to be

estimated, and P(cn|zt−1) is the posterior probability obtained

from the Bayesian update process at previous time t − 1.

Measurement model and likelihood estimation: acceleration

measurements are obtained, at each time step t, from the iner-

tial measurement unit (IMU) attached to the thigh of the partic-

ipants. The measurements from this wearable sensor are used

to construct the measurement model with a nonparametric ap-

proach based on histograms (see Figures 2C and 2D). These

histograms are employed to evaluate a sensor measurement zt

at time t, and estimate its likelihood given a perceptual class cn.

This process is performed as follows:

Ps(b|cn) =
hs,n(b)

∑Nbins

b=1
hs,n(b)

(4)

where hs,n(b) is the sample count in bin b for sensor s over all

training data in class cn. The histograms are uniformly con-

structed by binning acceleration measurements into Nbins = 100

intervals. The values are normalised by
∑Nbins

b=1
hs,n(b) to have

proper probabilities that sum to 1. The log likelihood of mea-

surement zt, at time t is obtained as follows:

log P(zt|cn) = log Ps(b|cn) (5)

where P(zt|cn) is the log likelihood of the observation zt given a

perceptual class cn. Normalised values in Equation (1) are en-

sured with the marginal probabilities conditioned from previous

sensor measurements as follows:

P(zt|zt−1) =

N∑

n=1

P(zt|cn)P(cn|zt−1) (6)
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a robotic leg. In this work, the low-level control is implemented in a simulated environment.

where P(zt|zt−1) are the marginal probabilities. Note that the

distribution P(cn|zt−1) is the prior, which as previously de-

scribed, for iteration time t = 0 takes a uniform distribution

P(cn) = 1
N

, and for time t > 0 the prior takes the estimated

posterior distribution from the previous iteration t − 1.

Marginal posteriors for activity state and transition phase:

posterior probabilities for the perceptual class cn, that corre-

sponds to a (uk, vl) pair, are the joint distributions over the activ-

ity states uk and transition phases vl for SiSt and StSi activities.

The beliefs over individual activity states and transition phases

are given by the marginal posteriors as follows:

P(uk|zt) =

L∑

l=1

P(uk, vl|zt) (7)

P(vl|zt) =

K∑

k=1

P(uk, vl|zt) (8)

where activity state classes P(uk|zt) are obtained by summing

the joint distribution P(uk, vl|zt) over all transition phase classes.

Similarly, transition phase classes P(vl|zt) are obtained by sum-

ming P(uk, vl|zt) over all activity state classes.

Stop rule and decision making: the accumulation of evidence

or sensor measurements, performed by the Bayesian formula-

tion, stops once a belief threshold βthreshold is exceeded. This

event triggers the decision making process, to estimate a per-

ceptual class for the current activity state and transition phase

using the maximum a posteriori (MAP) estimate as follows:

if any P(uk|zt) > βthreshold then

ûk = arg max
uk

P(uk|zt)
(9)

if any P(vl|zt) > βthreshold then

v̂l = arg max
vl

P(vl|zt)
(10)

ĉn = (ûk, v̂l) (11)

where ĉn = (ûk, v̂l) is the estimated class composed of the esti-

mated activity state ûk and transition phase v̂l. The belief thresh-

old βthreshold = [0.0, 0.5, . . . , 0.99] adjusts the confidence of the

recognition method to achieve a desired decision-making and

recognition accuracy. In addition, the parameter βthreshold allows

to control the trade-off between accuracy and reaction time or

speed for recognition, which are important aspects for the de-

velopment of intelligent recognition system.

The processes involved in the identification of SiSt activity

are shown by the flowchart in Figure 3. The processes are

grouped in physical, cognitive and control layers. The physi-

cal layer receives sensor measurements to perform data prepro-

cessing. The cognitive layer implements the Bayesian method

combining prior knowledge and current sensor measurements.

This layer performs the decision-making process to recognise

the current activity state and transition phase. The control layer

takes the output from the decision-making process to control

a robot device. The sensation, perception and decision pro-

cesses are tested in offline and real-time modes, while the con-

trol process is tested with a robotic leg in a simulated environ-

ment (see Section 4). Furthermore, Figure 3 shows the com-

munication between high- and low-level controllers, required

to develop systems capable to make decisions and perform ac-

tions. The SiSt recogniser repository, containing the high-level

method for SiSt recognition, is available in GitHub (https:

//github.com/urielmtz/SiSt_recogniser).
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Fig. 5. Identification accuracy of activity states and transition phases, where white and black colours represent low and high accuracy, respectively. (A)

Identification of individual sit, transition and stand states, where 100% accuracy was achieved for all activity states. (B-F) Recognition results for individual

transition phases during the transition state. This analysis was performed using 2, 3, 4, 5 and 6 transition phases. (B-D) The recognition accuracy of 100%

was achieved with 2, 3, and 4 transition phases. Smaller accuracies were observed using (E) 5 and (F) 6 transition phases.

4. Results

Multiple experiments were performed to validate the pro-

posed method for identification of SiSt and StSi activities. For

validation, training and testing datasets from a wearable sensor

attached to the thigh of participants were employed (see Sec-

tion 3.1). The experiments were performed randomly selecting

sensor samples from the testing datasets composed of measure-

ments from all participants. This process was repeated 10,000

times for the belief threshold βthreshold = [0.0, 0.05, . . . , 0.99],

where each value was automatically set, one at a time, to anal-

yse the performance of the proposed method. The experiments

performed in the offline and real-time modes, for identification

of SiSt and StSi, are described in the following sections.

4.1. Offline identification of sit-to-stand

The first experiment was to perform the recognition of SiSt

activity in the offline mode. This process permitted to observe

the accuracy and speed for recognition of activity states and

transition phases. The accuracy results against belief thresh-

old for recognition of sit, transition and stand states are pre-
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Table 1. State-of-the-art methods for identification of SiSt and StSi.
Identification Identification in transition state

Method # Sensors accuracy

(%)

response

time (ms)

accuracy

(%)

response time

(ms)

Rule-

based (Yang

and Hsu,

2009)

1
92.2 -

95.6
- - -

Angle

threshold-

crossing (Capela

et al., 2015)

1
70.8 -

90.3
- - -

Fuzzy cluster-

ing (Banerjee

et al., 2010)

1 94.6 - - -

PCA +

SVM (Doulah

et al., 2016)

14 92.94 43 - -

SVM multi-

class (Qian

et al., 2010)

1 94.6 - - -

Our

probablistic

method

1 100 50 100 50

sented in Figure 4A. This plot shows that all activity states were

recognised with an accuracy of 100% for all belief thresholds

βthreshold = [0.0, 0.05, . . . , 0.99]. This suggests that the recogni-

tion method identifies, with high accuracy, whether the subject

is in sit, transition or stand state, using a small number of sen-

sor measurements. Transition phases are important for a better

understanding of the state of the human body during the transi-

tion state. Then, this state was divided into 1, 2, 3, 4, 5 and 6

phases to observe their recognition accuracies and speeds. Fig-

ure 4B shows the results for all transition phases against be-

lief threshold. An accuracy of 100% (recognition error of 0%)

was achieved for recognition of 1 to 4 transition phases, while

the accuracies for 5 and 6 transition phases were 81.2% and

75.58%. Recognition of 1 transition phase does not provide

new information, given that it is the same as the recognition

of the transition state. Even though recognition of 4 transi-

tion phases achieves an accuracy of 100%, a belief threshold

βthreshold = 1 is required, which reduces the reaction time or

speed to make a decision. Then, the optimal number of transi-

tion phases is 3, which achieves a recognition accuracy of 100%

with a small belief threshold βthreshold = 0.5. The number of sen-

sor measurements required for recognition with different transi-

tion phases is shown in Figure 4C, where the larger the number

of transition phases the larger the response time for recognition.

The recognition results of individual activity states and tran-

sition phases are shown by the confusion matrices in Figure 5.

High and low recognition accuracies are presented using black

and white colours respectively. First, 100% accuracy was

achieved for recognition of each activity state (Figure 5A). The

accuracy results for recognition of individual phases, from 2 to

6 transition phases, are shown in Figures 5B-F. Recognition of 2

to 4 phases achieved an accuracy of 100% for each phase, while

these results were affected when 5 and 6 phases were employed

during the transition phase. Overall, these results demonstrate

that dividing the transition state into 3 phases provides a better

trade-off, between accuracy and speed, for recognition of activ-

ity states and transition phases during SiSt.

The results obtained from our probabilistic approach for

identification of SiSt and StSi are compared to state-of-the-art

Recognition of SiSt and StSi in a sequence of activities
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Fig. 6. Recognition of sequential activities. Validation of the proposed

method for recognition of SiSt and StSi within the following sequence of

activities: walking, sit down, stand up, walking, ramp ascent, walking,

ramp descent, walking, sit down, stand up and walking. Recognition of

SiSt and StSi achieved a mean accuracy of 99.42%. The lowest 95.30%

(4.7% error) and highest 99.80% (0.2% error) accuracies were obtained

with the recognition of ramp descent and walking activities, respectively.

methods in Table 1. Most of the methods, including our pro-

posed approach, employed 1 sensor –for instance, motion or

vision sensor, except for the method combining PCA and SVM

which used 14 sensors (force, pressure and motion). The meth-

ods in Table 1 achieved a recognition accuracy between 70.8%

and 95.6%, which were overcome by our probabilistic approach

with an accuracy of 100%. Interestingly, apart from our work,

none of the previous studies showed an analysis and recognition

process of the human body during the transition state.

The robustness of the proposed method has been previ-

ously validated with the recognition of three locomotion activi-

ties; level-ground walking, ramp ascent and descent (Martinez-

Hernandez et al., 2018). Here, the probabilistic approach is

also validated with the recognition of SiSt and StSi, imple-

mented within the following sequence of activities: walking,

sit down, stand up, ramp ascent, walking, ramp descent, walk-

ing, sit down, stand up and walking. This sequence of activities

and their recognition accuracies are shown in Figure 6. Results

from this experiment shows that recognition of SiSt and StSi

achieved a mean accuracy of 99.42%. The lowest accuracy of

95.30% (4.7% error) was obtained with the ramp descent ac-

tivity, while the highest accuracy of 99.80% (0.2% error) was

for the recognition of level-ground walking. Overall, the prob-

abilistic method showed to be able to accurately recognise mul-

tiple activities using measurements from wearable sensors.

4.2. Real-time detection of sit-to-stand

The second experiment was the recognition of SiSt activity

in real-time. For this experiment, a wearable sensor attached to

the thigh of participants was employed for collection of sensor

measurements. The proposed probabilistic method, described

in Section 3.2, was prepared according to the results from the

analysis performed in the offline mode (see Section 4.1). This

means that 3 activity states (sit, transition and stand) and 3 tran-

sition phases (phase 1, phase 2 and phase 3) were used for

recognition during SiSt activity in real-time mode.

In this experiment, participants were asked to perform the

SiSt activity multiple times at their self-selected speed, while

performing a natural activity. The results for recognition in real-

time are shown in Figure 7. The top row shows the sequence
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Fig. 7. Identification of SiSt and StSi in real-time mode. (top row) Subject performing SiSt and StSi activities wearing one IMU attached to her/his thigh.

(middle row) Bar plots with the identification of sit and stand states (red colour bar) and transition state (gray colour bar). (bottom row) Recognition of

the human movement during the transition state (blue colour bars). Note that the recognition of transition phases is active during the transition state only.

of movements performed by a participant during the SiSt ac-

tivity, where the subject is observed at sit, transition and stand

states. The output for recognition of activity states is shown

by the bar plots in the middle row. Red colour bars represent

the sit and stand phases, while gray colour bars represent the

transition state recognised by the probabilistic method. These

results demonstrate the high accuracy achieved for recognition

of activity states. The bottom row shows, in blue colour bars,

the recognition of transition phases during SiSt. These plots

show different and gradually updated beliefs during the transi-

tion state, where a successful recognition process was achieved

for all transition phases. These results in real-time, together

with the analysis obtained in offline mode, validate the potential

of our proposed approach for recognition of SiSt, but also the

capability for a better understanding of the human body move-

ment during the transition state. These aspects are important

for a better design and control of robotic devices, in order to

provide reliable assistance to humans in SiSt activities.

4.3. Control of a robotic leg in a simulated environment

The third experiment is to show the potential of the recogni-

tion method (high-level controller) to communicate with a low-

level controller to provide the actual control of a robotic device

(see Figure 3). This experiment, which employs the Robot Sim-

ulator V-REP from Coppelia Robotics and MATLAB 2016b

from MathWorks, was performed using real data from an IMU

(see Section 2) to simulate SiSt human movements, recognise

the activity and control a robotic leg.

This experiment in a simulated environment is depicted in

Figure 8, where measurements from the IMU attached to the

thigh of the human are sent to the probabilistic recognition

method (high-level controller). The resulting high-level recog-

nition is sent to a low-level controller to control a simulated

robotic leg. The low-level controller receives information from

the perceived activity state, perceived transition phase and po-

sition feedback from the robot. All this information is required

for a better control, given that it is important to know the move-

ment performed by the human, but also to know the current state

of the robotic device. The control of the robot leg was imple-

mented with a Proportional-Integral-Derivative (PID) controller

using the Control System Toolbox and tuning tools from MAT-

LAB, which permitted to automatically tune the proportional,

integrative and derivate parameters for control. Figure 3 shows

the low-level control loop, integrated in the layered architec-

ture, to control the robotic leg based on the activity state and

transition phase recognition from the probabilistic approach.

These multi-layer processes and hierarchical architectures

are crucial for wearable robotic devices capable to sense, learn

and safely interact with the environment, respond appropri-

ately and provide reliable assistance to humans (Brooks, 1986;

Tucker et al., 2015). The results for robot control in the simu-

lated environment are shown in Figure 9, which is segmented

into sit, transition and stand states. When the sit state is recog-

Probabilistic recognition

of Sit-to-Stand activity

Low-level control

of robotic device

Fig. 8. Control of a robotic leg based on the interaction of our Bayesian

formulation (high-level control) with a low-level controller in a simulated

environment. This experiment involves a simulated person performing

SiSt and StSi activities, using real sensor data previously collected from an

IMU. This analysis shows the capability of our approach for robot control.
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sit state

no assistance

transition state

activate assistance

stand state

no assistance

Fig. 9. Simulated robotic leg controlled by a virtual person using real sensor data. The sequence of SiSt and StSi activities performed by the person is

divided into no assistance (sit and stand states) and active assistance (transition state). For visualisation purposes, the trousers of the virtual human change

to red colour to show the application of the assistance to stand up. The trousers are in brown colour when there is no need for assistance. The robot leg is

controlled or activated to provide assistance when the transition state is identified. The assistance is deactivated when the sit or stand states are identified.

nised by the probabilistic method, this information, together

with the position feedback, is sent to the low-level control. In

this case, the hierarchical architecture recognises that the hu-

man does not need to be assisted, and thus, the robotic leg fol-

lows the natural movements of the human while sitting, but an

actual assistance is not provided. Similarly, recognition of the

stand state makes the robotic leg to follow the natural move-

ments of the human without applying any assistance. Con-

versely, when the high-level method recognises the start of the

transition state, information about the transition state, phase and

position feedback is sent to the robotic leg, which in this case is

activated to provide assistance to move from sitting to standing

position. For visualisation purposes, the trousers of the virtual

human in Figure 9 change from brown to red colour to show the

active assistance provided by the robotic leg during the transi-

tion state. It is important mentioning that both, the probabilis-

tic recognition approach and low-level control method, have

the potential to be integrated in small, lightweight and wear-

able robots, making them capable to not only interact and assist

humans, but also to learn and adapt from daily recorded data,

and provide remote access to assess the progress of the human.

These capabilities and functionalities provided by a wearable

robot contribute to the development of cyber-physical systems

for healthcare (Schirner et al., 2013; Haque et al., 2014).

All the results from the experiments, in offline, real-time

and simulated environment, show that the probabilistic method,

composed of a Bayesian approach and sequential analysis

method, is capable to recognise, fast and with high accuracy,

activity states and transition phases. Furthermore, the results

demonstrate that the proposed high-level recognition method

can communicate to low-level controllers, integrated in a hier-

archical architecture, which offers the potential for the develop-

ment of intelligent and reliable wearable assistive devices.

5. Discussion

In this work, a Bayesian formulation for identification of

SiSt and StSi activities was presented. First, this probabilis-

tic method successfully identified sit, transition and stand ac-

tivity states. Second, the state of the human body was accu-

rately recognised, during the transition state, using transition

phases. Third, experiments in offline, real-time and a simulated

environment showed the ability of the proposed formulation to

make decisions both fast and accurate.

Probabilistic Bayesian approaches, that take inspiration from

human sensing, perception and decision-making (Körding and

Wolpert, 2006), offer benefits such as measurement of uncer-

tainty, robustness to sensor noise and natural integration of cur-

rent and prior information. These benefits are particularly use-

ful for analysis of noisy data from the human body. For ex-

ample, smooth curves in Figures 2A and 2B are the result of

preprocessed data for presentation purposes, however, they are

formed by noisy data, difficult to analyse using heuristic or pre-

defined rule-based methods given their high susceptibility to

noise, unobserved measurements during the training phase and

lack of uncertainty measurement (Yang and Hsu, 2009; Capela

et al., 2015; Kiguchi et al., 2004). Here is where probabilistic

methods, like the one proposed in this work, play a key role for

data analysis and decision-making. These capabilities are sup-

ported by the recognition accuracy of 100% and fast decision-

making process (50 ms) achieved by our method.

In the analysis of SiSt and StSi identification, the proposed

method was able to recognise sit, transition and stand ac-

tivity states with higher accuracy than state-of-the-art meth-

ods (Doulah et al., 2016; Qian et al., 2010; Banerjee et al.,

2010). The second experiment provided a thorough analysis

for recognition and a better understanding of the state of human

body during the transition state. For this process, the transi-

tion state was divided into multiple phases, from 2 to 6 phases,

analysing their performance in accuracy and response time. The

results showed that using 2, 3 or 4 transition phases, during

the transition state, the Bayesian formulation was able to suc-

cessfully recognise the human movement with an accuracy of

100%. With 2 transition phases the recognition process was

highly accurate (100%) and fast (30 ms), but the information

or knowledge of the state of human body was limited. With 4

transition phases, high accuracy was achieved (100%) but the

response time was increased to 80 ms. This analysis suggests

that 3 transition phases provide a trade-off between accuracy

(100%), speed (50 ms) and the knowledge of the state of the

human body during the transition state. All these findings are

supported with SiSt and StSi experiments, in offline and real-

time modes, performed by participants wearing one IMU. The
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capability of this work for recognition of level-ground walk-

ing, ramp ascent, ramp decent and gait phases with multiple

wearable sensors and angular velocity signals has been vali-

dated in (Martinez-Hernandez et al., 2018). We consider that

the robustness of activity recognition methods, can benefit from

the use of barometric pressure sensors, which have shown their

potential for discrimination of sitting and standing transitions

with an accuracy of 99.5% (Massé et al., 2014).

It is worth mentioning that our method offers a set of advan-

tages over previous works: 1) our Bayesian formulation works

with the iterative accumulation of acceleration measurements,

and does not rely on angle information, which is highly sus-

ceptible to noise or even small changes in the set up, 2) one

wearable sensor is sufficient to identify SiSt and StSi, making

our method suitable for realistic outdoor applications, 3) nor-

mally, probabilistic methods offer robust frameworks to deal

with noise present in sensor measurements and 4) our method

provides a better understanding of the human body motion dur-

ing the transition state, which has not been studied in detail in

previous works. The use of phases for the study of SiSt was

presented by (Schenkman et al., 1990), where the following 4

phases were reported: flexion momentum, momentum transfer,

extension and stabilisation. These phases were not composed of

segments of the same size, unlike the approach presented in our

work. However, we consider that our probabilistic method has

the capability to process data segments of different widths or

sizes, and then, matching the observations from SiSt obtained

by (Schenkman et al., 1990). It is important to note that there is

not an exact segmentation of the sensor signal, which is related

to various aspects such as sensor capabilities and limitations,

sensor noise and duration of the SiSt activity. Here is where

probabilistic methods play a key role, dealing with uncertainty

and noise from the sensor and environment.

The proposed method for identification is a type of high-level

method or high-level control, which normally interacts with

low-level controllers to develop robust and intelligent systems.

In this study, a hierarchical layered architecture was developed

for the implementation and interaction of high- and low-level

controllers. A simulated environment, based on the robot sim-

ulator V-REP, was used to show the potential of the high-level

probabilistic method for controlling a robotic leg while inter-

acting with a low-level controller. Even though this experiment

was performed in a simulated environment, real data collected

from an IMU were employed for identification of SiSt, StSi and

control of the robotic leg. Definitely, controlling a real robot leg

requires to consider other aspects at low-level, but in this study

the focus was on high-level methods, e.g., identification of hu-

man activities. There are various aspects that we plan to inves-

tigate in detail in future works: 1) activity identification from

participants with a wider range of ages, heights and weights,

2) extend this method for recognition of ADLs performed with

upper and lower limbs, 3) design of low-level controllers, con-

nected to the probabilistic recognition method, for control of

real robots, 4) implementation of recognition and control meth-

ods in a portable and lightweight assistive device and 5) match-

ing of transition phases with those reported in the literature for

the analysis of SiSt activity.

Intelligent systems, capable to recognise human motion and

provide reliable assistance, involve complex processes at dif-

ferent levels of control. In this work, a high-level method for

identification of SiSt and StSi activities was presented. This

method has the potential to execute cognitive functions such as

perception and decision making, but also to perform fast and

accurate decision and actions. All these aspects are essential

for the development of safe and intelligent systems to provide

reliable assistance to humans in activities of daily living.

6. Conclusion

In this work, a Bayesian formulation, together with a sequen-

tial analysis method, was proposed for identification of sit-to-

stand (SiSt) and stand-to-sit (StSi). This approach was capable

to accumulate acceleration measurements, from a wearable sen-

sor attached to the thigh of participants, and make autonomous

decisions. First, the probabilistic method was designed to iden-

tify three activity states (sit, transition and stand) from acceler-

ation measurements. Second, the transition state was divided

into three transition phases (phase 1, phase 2 and phase 3)

to observe the state of the human body during the transition

state. Validation of the Bayesian formulation was performed

with SiSt and StSi experiments in offline, real-time and a simu-

lated environment using real data from a wearable sensor. The

results in the offline mode achieved a recognition accuracy of

100%, with a mean response time of 50 ms, for all activity states

and phases. In the real-time mode, all activity states and transi-

tion phases were successfully recognised. The potential of the

probabilistic approach to interact with low-level controllers, for

the control of assistive devices, was successfully demonstrated

in a simulated environment. This multi-layer interaction was

implemented in a hierarchical architecture, using the Bayesian

formulation (high-level method), a PID controller (low-level

method) and real data from an IMU sensor. Overall, the re-

sults show the capability of our work to make fast and accurate

decisions, which are key aspects in the development and control

of reliable and intelligent wearable devices to assist humans.
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López-Nava, I.H., Muñoz-Meléndez, A., 2016. Wearable inertial sensors for

human motion analysis: A review. IEEE Sensors Journal 16, 7821–7834.

Mannini, A., Sabatini, A.M., 2010. Machine learning methods for classifying

human physical activity from on-body accelerometers. Sensors 10, 1154–

1175.

Maqbool, H.F., Husman, M.A.B., Awad, M.I., Abouhossein, A., Iqbal, N.,

Dehghani-Sanij, A.A., 2017. A real-time gait event detection for lower limb

prosthesis control and evaluation. IEEE transactions on neural systems and

rehabilitation engineering 25, 1500–1509.

Martinez-Hernandez, U., Boorman, L.W., Prescott, T.J., 2017a. Multisensory

wearable interface for immersion and telepresence in robotics. IEEE Sensors

Journal 17, 2534–2541.

Martinez-Hernandez, U., Damianou, A., Camilleri, D., Boorman, L.W.,

Lawrence, N., Prescott, T.J., 2016a. An integrated probabilistic framework

for robot perception, learning and memory, in: Robotics and Biomimetics

(ROBIO), 2016 IEEE International Conference on, IEEE. pp. 1796–1801.

Martinez-Hernandez, U., Dehghani-Sanij, A.A., 2018. Adaptive bayesian

inference system for recognition of walking activities and prediction of

gait events using wearable sensors. Neural Networks 102, 107 – 119.

doi:https://doi.org/10.1016/j.neunet.2018.02.017.

Martinez-Hernandez, U., Dodd, T., Prescott, T.J., Lepora, N.F., 2013. Active

bayesian perception for angle and position discrimination with a biomimetic

fingertip, in: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Inter-

national Conference on, IEEE. pp. 5968–5973.

Martinez-Hernandez, U., Dodd, T.J., Evans, M.H., Prescott, T.J., Lepora, N.F.,

2017b. Active sensorimotor control for tactile exploration. Robotics and

Autonomous Systems 87, 15–27.

Martinez-Hernandez, U., Dodd, T.J., Prescott, T.J., 2017c. Feeling the shape:

Active exploration behaviors for object recognition with a robotic hand.

IEEE Transactions on Systems, Man, and Cybernetics: Systems PP, 1–10.

doi:10.1109/TSMC.2017.2732952.

Martinez-Hernandez, U., Mahmood, I., Dehghani-Sanij, A.A., 2018. Simul-

taneous bayesian recognition of locomotion and gait phases with wearable

sensors. IEEE Sensors Journal 18, 1282–1290.

Martinez-Hernandez, U., Rubio-Solis, A., Prescott, T.J., 2016b. Bayesian per-

ception of touch for control of robot emotion, in: Neural Networks (IJCNN),

2016 International Joint Conference on, IEEE. pp. 4927–4933.
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