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Abstract

Efficient and suitably preconditioned iterative solvers for elliptic partial differential equations (PDEs)
of the convection-diffusion type are used in all fields of science and engineering, including for example
computational fluid dynamics, nuclear reactor simulations and combustion models. To achieve opti-
mal performance, solvers have to exhibit high arithmetic intensity and need to exploit every form of
parallelism available in modern manycore CPUs. This includes both distributed- or shared memory
parallelisation between processors and vectorisation on individual cores.

The computationally most expensive components of the solver are the repeated applications of the
linear operator and the preconditioner. For discretisations based on higher-order Discontinuous Galerkin
methods, sum-factorisation results in a dramatic reduction of the computational complexity of the oper-
ator application while, at the same time, the matrix-free implementation can run at a significant fraction
of the theoretical peak floating point performance. Multigrid methods for high order methods often
rely on block-smoothers to reduce high-frequency error components within one grid cell. Traditionally,
this requires the assembly and expensive dense matrix solve in each grid cell, which counteracts any
improvements achieved in the fast matrix-free operator application. To overcome this issue, we present
a new matrix-free implementation of block-smoothers. Inverting the block matrices iteratively avoids
storage and factorisation of the matrix and makes it is possible to harness the full power of the CPU. We
implemented a hybrid multigrid algorithm with matrix-free block-smoothers in the high order Discon-
tinuous Galerkin (DG) space combined with a low order coarse grid correction using algebraic multigrid
where only low order components are explicitly assembled. The effectiveness of this approach is demon-
strated by solving a set of representative elliptic PDEs of increasing complexity, including a convection
dominated problem and the stationary SPE10 benchmark.

Keywords: multigrid, elliptic PDE, Discontinuous Galerkin, matrix-free methods, preconditioners,
DUNE

1. Introduction

Second order elliptic PDEs of the convection-diffusion-reaction form

−∇ · (K∇u) +∇ · (bu) + cu = f (1)

with spatially varying coefficients play an important role in many areas of science and engineering. The
Discontinuous Galerkin (DG) method [1, 2, 3, 4, 5, 6, 7, 8] is a popular discretisation scheme for various
reasons: it allows local mass conservation and (when used with an appropriate basis) leads to diagonal
mass matrices which avoid global solves in explicit time integrators. It also has several computational
advantages as will be discussed below. Problems of the form in (1) arise for example in the simulation
of subsurface flow phenomena [9, 10, 11, 12]. Another important application area is fluid dynamics.
When the incompressible Navier Stokes equations are solved with Chorin’s projection method [13, 14],
a Poisson equation has to be solved for the pressure correction and the momentum equation needs to
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be solved for the tentative velocity, see [15] for a DG-based version. Implicit DG solvers for the fully
compressible atmospheric equations of motion are described in [16, 17].

The fast numerical solution of equation (1) requires algorithmically optimal algorithms, such as
multigrid methods (see [18] for an overview), which have a numerical complexity that typically grows
linearly with the number of unknowns. Equally important is the efficient implementation of those
methods on modern computer hardware. While low order discretisation methods such as finite volume
approximations and linear conforming finite element methods are very popular, from a computational
point of view one of their main drawbacks is the fact that their performance is limited by main memory
bandwidth. Modern computer architectures such as the Intel Haswell/Broadwell CPUs, Xeon Phi co-
processors and graphics processing units (GPUs) may only achieve their peak performance floating
point performance if data loaded into the CPU is reused, i.e. the arithmetic intensity of the algorithm
(ratio of floating point operations executed per byte loaded, in short: flop-to-byte-ratio) is sufficiently
high. For example the 16 core Haswell chip used for the computations in this work has a theoretical
peak performance of 243.2 · 109 fused multiply-add (FMA) operations per second and a main memory
bandwidth (as measured with the STREAM benchmark [19]) of 40 − 50 GB/s. Hence about 40 FMA
operations can be carried out in the time it takes to read one double precision number from memory. Low
order discretisation methods require frequent sparse matrix-vector products. If the matrix is stored in
the standard compressed sparse row storage (CSR) format, this multiplication has a very low arithmetic
intensity of about 1 FMA operation per matrix entry loaded from memory (assuming perfect caching of
the vectors). Hence traditional solvers which first assemble the system matrix and then invert it with
sparse matrix-vector operations will only use a fraction of the system’s peak performance.

Matrix-free methods, on the other hand, recompute each matrix-element on-the-fly instead of storing
an assembled matrix. In addition to eliminating setup costs for the matrix assembly, this raises the com-
putational intensity and allows utilisation of the full performance of modern manycore chip architectures.
An additional advantage are the reduced storage requirements: since the matrix does not have to be
kept in memory, this allows the solution of much larger problems and has been quantified by estimating
the memory requirements for different implementations in this paper. While high arithmetic intensity
is a desirable property of a good implementation, the quantity which really needs to be minimised is
the total computation time. A naive matrix-free implementation can result in an increase in the run-
time since a large number of floating point operations (FLOPs) is executed for each unknown. Careful
matrix-free implementations of higher-order finite element discretisations avoid this problem. If p is the
polynomial degree of the basis function in each d-dimensional grid cell, a naive implementation requires
O(p2d) FLOPs per cell. Sum factorisation, which exploits the tensor-product structure of the local basis
functions, reduces this to O(d ·pd+1) [20, 21, 22, 23], making the matrix-free implementation particularly
competitive if the order p is sufficiently high. Numerical results indicate that sum factorisation reduces
the runtime even for low polynomial degrees p > 1 [23, 24]. Another advantage of the DG method
is that all data associated with one grid cell is stored contiguously in memory. This avoids additional
gather/scatter operations which are necessary if data is also held on other topological entities such as
vertices and edges as in conforming high order finite elements.

The efficient matrix-free implementation of higher-order DG methods was described by some of us
in a previous paper [24] which concentrates on the efficient application of the DG operator. Here we
extend this approach to iterative solvers for elliptic PDEs. While matrix-vector products are one key
ingredient in Krylov-subspace solvers, efficient preconditioners are equally important and often form
the computational bottleneck. Many preconditioners such as algebraic multigrid (AMG) [25, 26] or
incomplete factorisations (ILU) [27] require the assembly of the system matrix, which can offset the
advantage of the matrix-free sparse matrix-vector product.

In this work we describe the matrix-free implementation of block-smoothers, which are the key ingre-
dient of multigrid methods such as those described in [28, 12] . The idea behind the multigrid algorithm
in [28] is that the block-smoother eliminates high-frequency errors within one grid cell whereas an AMG
solver in a lower order subspace of the full DG space reduces long range error components. Due to the
much smaller size of the coarse level system, the cost for one AMG V-cycle on the low order subspace
(which uses a traditional matrix-based implementation) is negligible in comparison to the block smoother
on the high order system. In the simplest case the smoother is a block-Jacobi iteration applied to the
system Au = f which arises from high-order DG discretisation of (1). In each cell T of the grid this
requires the following operations:
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1: Calculate local defect dT = fT −
∑
T ′,∂T ′∩∂T 6=∅AT,T ′u

(k)
T ′

2: Calculate correction δuT = A−1
T,TdT

3: Update solution u
(k+1)
T = u

(k)
T + δuT

Here uT is the solution on cell T and the matrix AT,T ′ describes the coupling between cells T and T ′

which share at least one common face. In addition to dense matrix-vector products to calculate the local
defect dT , this requires the solution of a small dense system

AT,T δuT = dT (2)

with nT = (p + 1)d unknowns in the second step. Matrix based methods use an LU- or Cholesky-
factorisation of the matrix AT,T to solve (2) in each grid cell. The cost of the back-substitution step,
which has to be carried out for every block-Jacobi iteration, is O(n2

T ) = O(p2d). There is an additional
setup cost of O(n3

T ) = O(p3d) for the initial factorisation of AT,T , which may be relevant if the number
of preconditioner applications is small. In contrast, the matrix-free method which we present here uses
an iterative method to solve this equation and if the implementation uses sum-factorisation, this reduces
the complexity to O(d · niter(ε) · pd+1). An important factor in this expression is niter(ε), the number of
iterations which are required to solve the system in (2) to accuracy ε. Solving (2) exactly, i.e. iterating
until the error is reduced to machine precision, will result in a relatively large niter and might not lead to
a reduction of the total solution time for the full system. However, since the inverse is only required in the
preconditioner, an approximate inversion with a small number of iterations might be sufficient and can
increase the computational efficiency of the overall method. This is one of the key optimisations which
will be explored below. The overall efficiency of the implementation also depends on how computationally
expensive the evaluation of the functions K, b and c in (1) is. At first sight this might put a matrix-
free preconditioner at a disadvantage, since those functions have to be re-computed at every quadrature
point in each iteration. However, it is often sufficient to use a simpler functional dependency in the
preconditioner, for example by approximating K, b and c by their average value on each cell. To
demonstrate the efficiency of this approach we solve a set of linear problems of increasing complexity.
This includes advection dominated problems which require more advanced SOR-type smoothers and the
stationary SPE10 benchmark. The latter is a hard problem since the permeability field K(x) varies over
several magnitudes and has high-contrast jumps between grid cells.

A similar fully matrix-free approach for the solution of elliptic problems is described in [29]. The
results there are obtained with the deal.II [30] implementation discussed in [23]. As for our code,
the matrix-free operator application in [23] is highly optimised and utilises a significant fraction the
peak floating point performance. In contrast to our implementation, the authors of [29] use a (matrix-
free) Chebyshev-iteration as a smoother on the DG space (a Chebyshev smoother is also used for the
AMG solver on the lower order subspace). One drawback of this approach is that it requires estimates
of the largest eigenvalues, which will result in additional setup costs. While the authors of [29] solve
a Laplace equation on complex geometries, it is not clear how the same Chebyshev smoother can be
applied to non-trivial convection-dominated problems or problems with large, high contrast jumps of the
coefficients.

Another approach for preconditioning higher order finite element discretisations was originally devel-
oped for spectral methods in [20] and used for example in [31, 32]. In [32], a preconditioner is constructed
by approximating the higher-order finite element operator with a low-order discretisation on the finer
grid which is obtained by subdividing each grid cell into elements defined by the nodal points. The
resulting sparse system is then solved directly with an AMG preconditioner. A similar approach is used
in [31], where a two-level Schwarz preconditioner is constructed for a spectral element discretisation of
the pressure correction equation in the Navier Stokes system. Instead of using an AMG method for
the sparse low-order system, the author employs a two-level Schwarz preconditioner. As in our method,
the coarse level is obtained from the linear finite element discretisation on the original grid and this is
combined with an iterative solution of the low order system on the finer nodal grid. Finally, instead of
re-discretising the equation on a finer grid, the authors of [33] construct a sparse approximation with
algebraic methods, which requires additional setup costs. Compared to our approach, the drawback of all
those methods is that the fine grid problem is obtained from a lowest-order discretisation (or an algebraic
representation leading to a sparse matrix), and will therefore result in a memory-bound implementation
which can not use the full capacity of modern manycore processors.
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Structure. This paper is organised as follows: in Section 2 we describe the higher order DG discretisation
and our hybrid multigrid solver algorithm which is used throughout this work. We introduce the principles
of the matrix-free smoother implementation and analyse its computational complexity as a function of
the order of the DG discretisation. The implementation of those algorithms based on the DUNE software
framework [34, 35] is described in Section 3, where we also briefly review the principles of sum-factorised
operator application. Numerical results and comparisons between matrix-based and matrix-free solvers
are presented in Section 4, which also contains an in-depth discussion of the memory requirements of
different implementations. We conclude in Section 5. Some more technical details are relegated to the
appendices. In Appendix A we discuss the re-discretisation of the operator in the low-order subspace
which is used in the coarse level correction of the multigrid algorithm. A detailed breakdown of setup
costs for the multigrid algorithm can be found in Appendix B.

2. Methods

We consider linear second order elliptic problems of the form

∇ · (bu−K∇u) + cu = f in Ω (3)

with boundary conditions

u = g on ΓD ⊂ ∂Ω, (bu−K∇u) · ν = j on ΓN = ∂Ω\ΓD (4)

in the d-dimensional domain Ω. Here the unit outer normal vector on the boundary ∂Ω is denoted by
ν = ν(x). K = K(x) ∈ Rd×d is the diffusion tensor, b = b(x) ∈ Rd is the advection vector and c = c(x)
is a scalar reaction coefficient. All those terms can depend on the position x ∈ Ω; the fields K, b and
c are not necessarily smooth and can have large, high contrast jumps. A typical example for a problem
with discontinuous coefficients is the SPE10 benchmark [36]. The problem in (3) could also appear in
the linearisation of a non-linear problem such as the Navier Stokes equations [15]. In this case it needs
to be solved at every iteration of a Newton- or Picard- iteration. The reaction term often arises from
the implicit time discretisation of an instationary problem.

2.1. Higher-order DG discretisation

To discretise (3) and (4) we use the weighted symmetric interior penalty (WSIPG) method derived
in [28] based on [1, 2, 6, 37, 38, 39] together with an upwinding flux for the advective part. The full
method is described in [24] and the most important properties are recalled here. We work on a grid
Th consisting of a set of cuboid cells T with smallest size h = minT∈Th{diam(T )}. Each cell T is the

image of a diffeomorphic map µT : T̂ → T where T̂ is the reference cube in d dimensions. Given Th, the
Discontinuous Galerkin space V ph ⊂ L2(Ω) is the subspace of piecewise polynomials of degree p

V ph =
{
v ∈ L2(Ω) : ∀T ∈ Th, v|T = q ◦ µ−1

T with q ∈ Qdp
}
. (5)

Here Qdp = {P : P (x1, . . . , xd) =
∑

0≤α1,...,αd≤p cα1,...,αdx
α1
1 · · · · ·x

αd
d } is the set of polynomials of at most

degree p. It is worth stressing that, in contract to conforming discretisations, functions in V ph are not
necessarily continuous between cells. We also define the L2 inner product of two (possibly vector-valued)
functions on any domain Q as

(v, w)Q :=

∫
Q

v · w dx. (6)

For a function u ∈ V ph the discrete weak form of (3) and (4) is given by

ah(u, v) = `h(v) ∀v ∈ V ph (7)

with the bilinear form
ah(u, v) = av

h(u, v) + aif
h(u, v) + abf

h (u, v) (8)
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which has been split into a volume (v), interface (if) and boundary (b) term defined by

av
h(u, v) =

∑
T∈Th

[
(K∇u− bu,∇v)T + (cu, v)T

]
aif
h(u, v) =

∑
F∈Fih

[ (
Φ(u−, u+,νF · b), JvK

)
F
− (νF · {K∇u}ω, JvK)F − (νF · {K∇v}ω, JuK)F + γF (JuK, JvK)F

]
abf
h (u, v) =

∑
F∈FDh

[
(Φ(u, 0,νF · b), v)F − (νF · (K∇u), v)F − (νF ·K∇v, u)F + γF (u, v)F

]
.

(9)
The right hand side functional is

`h(v) =
∑
T∈Th

(f, v)T −
∑
F∈FNh

(j, v)F −
∑
F∈FDh

[
(Φ(0, g,νF · b), v)F + (νF · (K∇v), g)F − γF (g, v)F

]
.

(10)

In those expressions the set of interior faces is denoted as F ih. The sets of faces on the Neumann- and
Dirichlet boundary are FNh and FDh respectively. With each face F ∈ Fh = F ih ∪FNh ∪FDh we associate
an oriented unit normal vector νF . For any point x ∈ F ∈ F ih on an internal face we define the jump

JvK(x) = v−(x)− v+(x) (11)

and the weighted average

{v}ω(x) = ω−(x)v−(x) + ω+(x)v+(x) for weights ω−(x) + ω+(x) = 1, ω±(x) ≥ 0 (12)

where v± = limε↓0 v(x± ενF ) is the value of the field on one side of the facet. In the expressions `h(v)
and abf

h (u, v) we implicitly assume that u and v are evaluated on the interior side of the boundary facets.
To account for strongly varying diffusion fields, we choose the weights introduced in [39]:

ω±(x) =
δ∓Kν(x)

δ−Kν(x) + δ+
Kν(x)

, with δ±Kν(x) = νT (x)K±(x)ν(x). (13)

Defining the harmonic average of two numbers as 〈a, b〉 = 2ab/(a + b), the penalty factor γF is chosen
based on combination of choices in [37, 38, 39] as in [28]

γF = α · p(p+ d− 1) ·


〈δ−KνF ,δ

+
KνF
〉|F |

min(|T−(F )|,|T+(F )|) for F ∈ F ih
δ−KνF

|F |
|T−(F )| for F ∈ FDh .

(14)

In this expression α is a free parameter chosen to be α = 1.25 in all the computations reported below.
To discretise the advection terms, we use the upwind flux on the face F which is given by

Φ(u−, u+, bν) =

{
bνu
− if bν ≥ 0

bνu
+ otherwise

.

While the formulation in (8), (10) is valid on any grid, here we only consider grids based on hexahedral
elements. To use sum-factorisation techniques, we also assume that the basis functions on the reference
element as well as the quadrature rules have tensor-product structure. Similar techniques can be used
on simplicial elements [40, 41]. A basis Ψh = {ψp1 , . . . , ψ

p
Nh
} is chosen for V ph , i.e. every function u ∈ V ph

can be written as
u(x) =

∑
i∈I

uiψ
p
i (x), I = {1, . . . , Nh} ⊂ N. (15)

Here Nh is the total number of degrees of freedom and u = (u1, u2, . . . , uNh)T ∈ Rn is the vector of
unknowns. With this basis the weak formulation in (7) is equivalent to a matrix equation

Au = f with Aij = ah(ψpj , ψ
p
i ) and f ∈ Rn with fi := `h(ψpi ). (16)
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It is this equation which we will solve in the following. Since we consider a discontinuous function space,
the basis can be chosen such that the support of any basis function ψpi ∈ Ψh is restricted to a single
element T ∈ Th and this implies that the matrix A is block-structured. This property is important for
the algorithms developed in the following. Throughout this work we use a basis which is constructed
from the tensor-product of one-dimensional Gauss-Lobatto basis functions (i.e. Lagrange polynomials
with nodes at the Gauss-Lobatto points) on each grid cell. We also assume that the basis is nodal, i.e.
there is a set of points ζj , j ∈ I such that ψpi (ζj) = δij .

Block notation of linear systems. To efficiently deal with block-structured matrices we introduce the
following notation. For any finite index set I ⊂ N we define the vector space RI to be isomorphic to R|I|
with components indexed by i ∈ I. Thus any vector of unknowns u ∈ RI can be interpreted as a mapping
u : I → R and u(i) = ui. In the same way, for any two finite index sets I, J ⊂ N we write A ∈ RI×J
with the interpretation A : I × J → R and A(i, j) = Ai,j . Finally, for any subset I ′ ⊆ I we define the

restriction matrix RI,I′ : RI → RI′ as (RI,I′u)i = ui ∀i ∈ I ′. Now, let IT = {i ∈ N : supp ψpi ⊆ T}
denote the subset of indices which are associated with basis functions that are nonzero on element T .
Then ⋃

T∈Th

IT = I = {1, . . . , n} and IT ∩ IT ′ = ∅, ∀T 6= T ′, (17)

where the last property follows from the fact that we consider a discontinuous function space and therefore
{IT } forms a disjoint partitioning of the index set I. Using this partitioning and imposing an ordering
Th = {T1, . . . , Tm} on the mesh elements, the linear system in (16) can be written in block form AT1,T1

. . . AT1,Tm
...

. . .
...

ATm,T1
. . . ATm,Tm


 uT1

...
uTm

 =

 fT1

...
fTm

 (18)

where ATρ,Tσ = RI,ITρAR
T
I,ITσ

, uTρ = RI,ITρu and fTρ = RI,ITρf . For each cell T and function u ∈ V ph
we also define the function u∩T ∈ V ph as

u∩T (x) =

{
u(x) for x ∈ T
0 otherwise

⇔ u∩T =
∑
i∈IT

(uT )i ψ
p
i =

∑
i∈IT

uiψ
p
i . (19)

Our choice of Gauss-Lobatto basis functions with non-overlapping support leads to the so called minimal
stencil ; the matrices ATρ,Tσ are only nonzero if ρ = σ or if the elements Tρ and Tσ share a face, and
hence the matrix in (18) is block-sparse. In general and for the basis considered in this paper, the
(p+ 1)d × (p+ 1)d matrix ATρ,Tσ is dense.

This partitioning of A and the minimal stencil property form are key for the matrix-free preconditioner
implementation discussed below.

2.2. Hybrid multigrid preconditioner

To solve the linear system in (16) we use the hybrid multigrid preconditioner described in [28].
However, in contrast to [28], the computationally most expensive components, namely the operator- and
preconditioner application in the DG space V ph , are implemented in a matrix free way. As the numerical
results in Section 4 confirm, this leads to significant speedups at higher polynomial orders p and has
benefits even for relatively modest orders of p = 2, 3.

The key idea in [28] is to combine a block-smoother in the high-order DG space V ph with an AMG

correction in a low-order subspace V̂h ⊂ Vh. In this work we will consider low order subspaces V̂h spanned
by the piecewise constant P0 and conforming piecewise linear elements Q1. One V-cycle of the multigrid
algorithm is shown in Algorithm 1. At high polynomial orders p the computationally most expensive
steps are the operator application in the defect (or residual) calculation and the pre-/post-smoothing on
the DG level. Usually the multigrid algorithm is used as a preconditioner of a Krylov subspace method,
which requires additional operator applications. To solve the problem in the lower-order subspace we
use the aggregation based AMG solver described in [42, 43]. In the following we discuss the efficient
implementation of the individual components in Algorithm 1:
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Algorithm 1 Hybrid multigrid V-cycle. Input: Right hand side f , initial guess u0 (often set to zero);
Output: u, the approximate solution to Au = f

1: u←[ S(f,u0;npre, ω) {Presmooth with npre iterations in DG space}
2: r ← [ f −Au {Calculate residual}
3: r̂ ← [ R(r) {Restrict to subspace}
4: û←[ AMG(r̂) ≈ Â−1r̂ {AMG V-cycle on subspace fields}
5: u←[ u+ P (û) {Prolongate and add to DG solution}
6: u←[ S(f,u;npost, ω) {Postsmooth with npost iterations in DG space}

1. Matrix-free operator application in the DG space to calculate the residual (line 2)

2. Matrix-free pre-/post-smoothing in the DG space (lines 1 and 6)

3. Transfer of grid functions between between DG space and low order subspace (lines 3 and 5)

4. Assembly of the low order subspace matrix which is used in the AMG V-cycle (line 4)

The matrix-free operator application based on sum factorisation techniques has been previously described
in [24] (and is briefly reviewed in Section 3.1 below). Here we will concentrate on the other components.

2.2.1. Matrix-free smoothers

In the context of multigrid methods, iterative improvement of the solution with a stationary method is
referred to as smoothing since a small number of iterations with a simple method reduces high-frequency
error components. For a linear equation Au = f , this process can be summarised as follows: given a
matrix W ≈ A, calculate the defect d = f −Au(k−1) for some guess u(k−1) and solve for δu such that

Wδu = d. (20)

This correction δu can then be used to obtain an improved solution

u(k) = u(k−1) + δu = u(k−1) +W−1(f −Au(k−1)). (21)

Starting from some initial guess u(0), the iterates u(0),u(1), . . . ,u(k) form an increasingly better ap-
proximation to the exact solution u of Au = f for a convergent method. Choosing a block-smoother
guarantees that any high-frequency oscillations inside one cell are treated exactly, which is particularly
important for higher polynomial orders. Lower-frequency errors with variations between the grid cells
are reduced by the AMG preconditioner in the low-order subspace (line 4 in Alg. 1). Following the block
partitioning in (18), let A = D + L + U be decomposed into the strictly lower block triangular part L,
the block diagonal D and the strictly upper block triangular part U with

DTρ,Tσ =

{
DTρ = ATρ,Tρ for ρ = σ

0 otherwise,
LTρ,Tσ =

{
ATρ,Tσ for ρ > σ

0 otherwise,
UTρ,Tσ =

{
ATρ,Tσ for ρ < σ

0 otherwise.

(22)

In this work we consider the following choices for the block preconditioner W : (1) block-Jacobi W =
ω−1D, (2) successive block over-relaxation (block-SOR) W = ω−1D + L and (3) symmetric block-SOR
(block-SSOR) W = (ω(2−ω))−1(D+ωL)D−1(D+ωU). The over-relaxation parameter ω can be tuned to
accelerate convergence. The explicit form of the block-Jacobi and block-SOR algorithms are written down
in Algorithms 2 and 3. Note that for block-SOR, the field u(k) can be obtained by transforming u(k−1)

in-place, which reduces storage requirements. The corresponding backward-SOR sweep is obtained by
reversing the direction of the grid traversal. It can then be shown that one application of the block-SSOR
smoother is equivalent to a forward-block-SOR sweep following by a backward-block-SOR iteration.
Note that in all cases the computationally most expensive operations are the multiplication with the
dense (p+ 1)d × (p+ 1)d matrices ATρ,Tσ and the solution of the dense system DTρδuTρ = dTρ in each
cell. As will be described in Section 3, the defect can be calculated in a matrix-free way by using the
techniques from [24]. The standard approach to calculating the correction δuTρ is to assemble the local
matrices DTρ , factorise them with an LU-/Cholesky-approach and then use this to solve the linear system.
However, the costs for the factorisation- and back-substitution steps grow like (p + 1)3d and (p + 1)2d
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Algorithm 2 Block-Jacobi smoother. Input: Right hand side f , initial guess u(0), number of smoothing
steps nsmooth. Output: Approximate solution u(nsmooth)

1: for k = 1, . . . , nsmooth do
2: Calculate defect d = f −Au(k−1)

3: Solve DT δuT = dT for δuT on all grid elements T
4: Update solution u(k) = u(k−1) + ωδu
5: end for

Algorithm 3 Successive block-over-relaxation, forward Block-SOR smoother. Input: Right hand side
f , initial guess u(0), number of smoothing steps nsmooth. Output: Approximate solution u(nsmooth)

1: for k = 1, . . . , nsmooth do
2: for all grid elements Tρ with ρ = 1, . . . ,m do
3: Calculate local defect

dTρ = fTρ −
∑
σ<ρ

∂Tσ∩∂Tρ 6=∅

ATρ,Tσu
(k)
Tσ
−

∑
σ>ρ

∂Tσ∩∂Tρ 6=∅

ATρ,Tσu
(k−1)
Tσ

(23)

4: Solve DTρδuTρ = dTρ for δuTρ
5: Update solution u

(k)
Tρ

= (1− ω)u
(k−1)
Tρ

+ ωδuTρ
6: end for
7: end for

respectively, and hence this method becomes prohibitively expensive for high polynomial degrees p. To
avoid this, we solve the block-system

DTρδuTρ = dTρ (24)

with a Krylov-subspace method such as the Conjugate Gradient (CG) [44] or Generalised Minimal
Residual (GMRES) [45] iteration. This only requires operator applications which can be implemented
in a matrix-free way. If sum-factorisation techniques are used, the overall cost of this inversion is
O(niter(ε) · dpd+1) where niter(ε) is the number of iterations required to solve the block-system. An
important observation, which drastically effects the practical usage of the matrix-free smoothers, is that
it suffices to compute an inexact solution of (24) with the Krylov subspace method. For this we iterate
until the two-norm of the residual ||dTρ − DTρδuTρ ||2 has been reduced by a fixed factor ε � 1. The
resulting reduction in niter and preconditioner cost has to be balanced against the potential degradation
in the efficiency of the preconditioner. This dependence on ε on the overall solution time will be studied
below.

Using block smoothers, the method proposed here is not strictly robust with respect to the polyno-
mial degree p. This can be remedied by using overlapping block smoothers [42, 28] where the blocks
originate from an overlapping partitioning of the mesh. However, this also increases the computational
cost substantially. Since in practical applications we consider moderate polynomial degree anyway, we
concentrate on simple non-overlapping block smoothers here where the blocks originate from a single
element.

2.2.2. Intergrid operators

Since we use nested function spaces with V̂h ⊂ V ph , injection is the natural choice for the prolongation

P : V̂h → V ph . Given a function û ∈ V̂h, we define

P : û 7→ u ∈ V ph such that u(x) = û(x) for all x ∈ Ω. (25)

Expanding in basis functions on element T and using (19) this leads to

û∩T =
∑
i∈ÎT

ûiψ̂i =
∑
j∈IT

ujψ
p
j = u∩T . (26)
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Here ÎT is the set of indices i for which the coarse basis function ψ̂i(x) is non-zero on element T . For a
general basis, calculation of uj requires solution of a small system involving the local (p+ 1)d × (p+ 1)d

mass matrix
∫
T
ψpi (x)ψpj (x) dx in each cell T ; this is expensive for higher polynomial degrees p. However,

here we only consider the special case that V̂h is a subspace of V ph and the basis is nodal. In this case
the unknowns in the higher order space can be found much more efficiently by evaluating the low order
basis functions at the nodal points ζi of the higher order space,

ui =
∑
j∈ÎT

ûjψ̂j(ζi) for all i ∈ IT . (27)

In other words, the j-th column of the local prolongation matrix P |T can be calculated by evaluating ψ̂j
at all nodal points,

(P |T )ij = ψ̂j(ζi) for i ∈ IT and j ∈ ÎT . (28)

Since the DG basis functions form a partition of unity, for the P0 subspace this simplifies even further to

P |T = (1, . . . , 1)T . (29)

For the restriction operation R : V ph → V̂h we choose the transpose of the prolongation, i.e. R = PT .
In the absence of advection (b = 0) this choice preserves the symmetry of the system and the WSIPG
discretisation.

2.2.3. Low order subspace matrix

The low order subspace matrix Â is needed to solve the “coarse” grid correction with the AMG
preconditioner. In general this matrix is given by the Galerkin product

Â = RAP = PTAP. (30)

However, calculating Â according to this formula is expensive for several reasons: first of all it requires
two matrix-matrix multiplications of large matrices with different sparsity patterns. In addition, the
matrix A in the DG space has to be assembled, even though in a matrix-free implementation it is never
used in the DG smoother. Furthermore, for our choice of coarse function spaces, the matrix Â has lots of
entries which are formally zero. However, if it is calculated according to (30) in an actual implementation
those entries will not vanish exactly due to rounding errors. This leads to drastically increased storage
requirements and unnecessary calculations whenever Â is used in the AMG preconditioner. All those
issues can be avoided by directly assembling the coarse grid matrix Â as follows:

For the P0 subspace it is shown in Appendix A.1 that on an equidistant grid the matrix entries Âij
can be calculated directly by discretising (3) with a modified finite volume scheme in which (i) all flux
terms are multiplied by a factor αp(p+d−1) and (ii) the boundary flux is scaled by an additional factor 2.
For the conforming Q1 subspace, all contributions to Â which arise from jump terms in Aij = ah(ψpj , ψ

p
i )

vanish. In fact, up to an additional Dirichlet boundary term
∑
F∈FDh

γF

(
ψ̂i, ψ̂j

)
F

, the matrix Âij is

identical to the matrix obtained from a conforming Q1 discretisation of (3), and it is this matrix that
we use in our implementation. In both cases the sparsity pattern of Â is the same as that obtained by a
discretisation in the low-order subspace. In summary this re-discretisation in the coarse level subspace
instead of using the Galerkin product in (30) results in a significantly reduced sparsity pattern of the
matrix Â and avoids explicit assembly of the large DG matrix A.

3. Implementation in EXADUNE

The crucial ingredient for the development of the matrix-free block smoothers described in Section
2.2.1 is the efficient on-the-fly operator application of the full operator A and multiplication with the
block-diagonal DT for each element T ∈ Th. While the operator application is required in the calculation
of the local defect, the frequent multiplication with DT is necessary in the iterative inversion of the
diagonal blocks. Our code is implemented in the EXADUNE [35] fork of the DUNE framework [46, 34].
EXADUNE contains several optimisations for adapting DUNE to modern computer architectures.
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3.1. Matrix-free operator application

The matrix-free application of the operator A itself has been implemented and heavily optimised in
[24], and here we only summarise the most important ideas. Recall that the weak form ah(u, v) in (8) is
split into volume-, interface- and boundary terms defined in (9). The local contributions to the system
matrix A are evaluated in a LocalOperator class in DUNE. More specifically, let T+, T− be a pair
of adjacent cells which share a in internal face F i = ∂T+(F i) ∩ ∂T−(F i) and let F b ∈ ∂T̃ (F b) ∩ Fbh
be the face of a cell T adjacent to the boundary of the domain. For each cell T , internal interface
F i and boundary face F b the LocalOperator class provides methods for evaluating the local operator
application (

Av
T,TuT

)
iT

:= av
h(u∩T , ψ

p
iT

) with iT ∈ IT (volume)(
Aif
F i;T ′,T ′′uT ′′

)
iT ′

:= aif
h(u∩T ′′ , ψ

p
iT ′

) with iT ′ ∈ IT ′ (interface)(
Ab
F b;T̃

uT

)
iT̃

:= abh(u∩T , ψ
p
iT̃

) with iT̃ ∈ IT̃ (boundary).

(31)

For the interface term we calculate four contributions, one for each of the combinations (T ′, T ′′) =
(T−, T−), (T−, T+), (T+, T−) and (T+, T+). By iterating over all elements and faces of the grid and
calling the corresponding local operator evaluations, the full operator can be applied to any field u ∈ V ph .
This iteration over the grid is carried out by an instance of a GridOperator class, which takes the
LocalOperator as template parameter.

In the following we briefly recapitulate the key ideas used to optimise the matrix-free operator appli-
cation with sum-factorisation techniques and concentrate on application of the operator Av

T,T . In each
cell T this proceeds in three stages (see Algorithm 1 in [24] for details)

1. Given the coefficient vector u, calculate the values of the field u and its gradient at the quadrature
points on the reference element T̂ .

2. At each quadrature point, evaluate the coefficients K, b and c as well a geometric factors from the
mapping between T and T̂ . Using this and the function values from Stage 1, evaluate the weak
form ah(·, ·) at each quadrature point.

3. Multiply by test functions (and their derivatives) to recover the entries of the coefficient vector
v = Au.

We now discuss the computational complexity of the individual stages.

Stage 1. We assume that the basis functions in the reference element T̂ have a tensor-product structure

φ̂j(x̂) = φ̂(j1,...,jd)(x̂1, . . . , x̂d) =

d∏
k=1

θ̂
(k)
jk

(x̂k). (32)

Those basis functions are enumerated by d-tuples j = (j1, . . . , jd) ∈ J = J (1) × · · · × J (d), J (k) =
{1, . . . , nk}. For each cell T we have an index map g(T, ·) → I which assigns a global index to each
d-tuple j in the cell; this implies that in a particular cell T any function u ∈ V ph can be written as

u(x) = û(x̂) =
∑
j∈J

ug(T,j)φ̂j(x̂) for x = µT (x̂) ∈ T . (33)

We use a tensor-product quadrature rule with points

ξi =
(
ξ

(1)
i1
, . . . , ξ

(d)
id

)
(34)

enumerated by d-tuples i = (i1, . . . , id) ∈ I(1) × · · · × I(d), I(k) = {1, . . . ,mk}. In the following we only
consider n1 = · · · = nd =: n and m1 = · · · = md =: m, in this case that there are md quadrature
points and nd basis functions per cell. Following Eq. (13) in [24], the evaluation of the function u at the
quadrature point ξi can be written as

û(ξi) =
∑
j∈J

ug(T,j)φ̂j(ξi) =

n∑
j1=1

· · ·
n∑

jd=1

A
(1)
i1,j1
· · · · ·A(d)

id,jd
ug(T,(j1,...,jd)). (35)
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The entries of the m × n matrices A(q) are given by the one-dimensional shape functions evaluated at

the quadrature points, A
(k)
α,β = θ

(k)
β (ξ

(k)
α ), α ∈ I(k), β ∈ J (k). (35) describes the multiplication of a

vector of length nd by a md × nd matrix Φ̂ with Φ̂i,j := φ̂j(ξi) = A
(1)
i1,j1
· · · · ·A(d)

id,jd
. Assuming that the

ratio ρ = n/m ≤ 1 is constant, the naive cost of this operation is O((d + 1)m2d) FLOPs. A significant
reduction in computational complexity is achieved by applying the small m×n matrices A(k) recursively
in d stages as

u
(0)
(j1,...,jd) = ug(T,(j1,...,jd))

u
(s)
(i1,...,is,js+1,...,jd) =

n∑
js=1

A
(s)
is,js

u
(s−1)
(i1,...,is−1,js,...,jd) for s = 1, . . . , d

û(ξi) = u
(d)
(i1,...,id).

(36)

Each step in (36) requires the multiplication with an m×n matrix A
(s)
is,js

for ms−1nd−s ≤ md−1 vectors.
Multiplication by an m × n matrix requires 2n ×m operations and hence the total cost is reduced to
O(d ·md+1). Since m grows with the polynomial degree (typically m = n = p + 1), for high polyno-
mial degrees p this sum-factorised approach is much faster than the naive algorithm with complexity
O((d+ 1)m2d). Gradients of u can be evaluated in the same way with slightly different matrices A(s).

The face integrals in the bilinear form require the evaluation on points of a quadrature rule of
lower dimension d − 1. Although this is complicated by the different embeddings of a face into the
neighbouring cells, the same sum factorisation techniques can be applied. While for those terms the cost
is only O(d ·md), for low polynomial degrees the absolute cost can still be larger than the cost of the
volume terms (see Fig. 1 in [24]). We conclude that - using sum factorisation - the cost of the first stage
in the matrix-free operator application is O(d ·md+1).

Stage 2. Since the operations can be carried out independently at the md quadrature points, the cost of
this stage is O(md).

Stage 3. Given the values z(i1,...,id) := û(ξi) at the quadrature points from Stage 2, the entries of the
coefficient vector v = Au can be calculated as

vg(T,(j1,...,jd)) =

m∑
i1=1

· · ·
m∑
id=1

A
(1)
j1,i1

. . . A
(d)
jd,id

z(i1,...,id) + . . . . (37)

Here “. . . ” stands for terms of a similar structure which arise due to multiplication with the derivative
of a test function in the bilinear form. For simplicity those terms are not written down here; an example
can be found in Eq. (10) of [24]. Note that (37) is the same as (35), but we now multiply by the transpose
of the m × n matrices A(k). Sum factorisation can be applied in exactly the same way, resulting in a
computational complexity of O(d ·md+1).

Combining the total cost of all stages we find that the overall complexity of the sum-factorised
operator application is O(d ·md+1) = O(d ·pd+1). Finally, observe that the operator application requires
reading the local dof-vector which has nd entries. A vector of the same size has to be written back at the
end of the calculation. Overall, the total amount of memory moved is O(nd). The resulting arithmetic
intensity is O(d ·m) = O(d · p) and the operation is clearly FLOP-bound for large p.

In EXADUNE [35] several optimisations are applied to speed up the operator application and exploit
modern FLOP-bound architectures. The C++ vector class library [47] is used for the multiplication with
the small dense matrices A(k). The code is vectorised by grouping the value of the function and its three
spatial derivatives and evaluating the four values [∂x1

û(ξ), ∂x2
û(ξ), ∂x3

û(ξ), û(ξ)] simultaneously in (35).
Efficient transfer of data from memory is important. In the standard DUNE implementation, a copy
of the local dof-vector uT is created on each element. While this approach is necessary for conforming
finite element methods, for the DG method used here the local dofs of neighbouring cells do not overlap
and it is therefore possible to directly operate on the global dof-vector, thus avoiding expensive and
unnecessary memory copies. As reported in [24], the operator application runs at close to 60% of the
peak floating point performance of an Intel Haswell CPU in some cases.
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degree #dofs grid size #dofs matrix matrix vs.
per cell nx × ny × nz size vector size

1 8 128× 128× 256 33.6 · 106 14.0 GB 56×
2 27 56× 56× 112 9.5 · 106 13.4 GB 189×
3 64 32× 32× 64 4.2 · 106 14.0 GB 448×
4 125 20× 20× 40 2.0 · 106 13.0 GB 875×
5 216 14× 14× 28 1.2 · 106 13.4 GB 1512×
6 343 10× 10× 20 0.7 · 106 12.3 GB 2401×
7 512 8× 8× 16 0.5 · 106 14.0 GB 3584×
8 729 6× 6× 12 0.3 · 106 12.0 GB 5103×
9 1000 5× 5× 10 0.2 · 106 13.0 GB 7000×
10 1331 4× 4× 8 0.2 · 106 11.8 GB 9317×

Table 1: Problem sizes for different polynomial degrees. The last column lists the relative size of the matrix and a dof-vector.
See Tabs. 4, 5 and 6 below for estimates of the memory requirements in the full implementation.

3.2. Matrix-free application and inversion of block-diagonal

Since in our smoothers the block system (24) is solved iteratively, we need to be able to apply the
block-diagonal part DT = AT,T of the operator A in each cell T in an efficient way. For this, note that

DTuT = Av
T,TuT +

∑
F i∈∂T∩Fih

Aif
F i;T,TuT +

∑
F b∈∂T∩Fbh

Ab
F b;TuT . (38)

Based on the decomposition in (38), in each cell T we first evaluate the contribution Av
T,TuT . We then

loop over all faces F ∈ ∂T of T and – depending on whether the face is interior or on the boundary –
add Aif

F i;T,TuT or Ab
F b;TuT .

To (approximately) solve the system DT δuT = dT in line 3 of Algorithm 2 and line 4 of Algorithm
3 we use a Krylov subspace method. This in turn frequently applies the block-diagonal DT as described
above. To obtain the fastest possible element-local matrix-free solver, additionally a preconditioner for
DT in the Krylov method is required. For diffusion dominated problems we find that dividing by the
diagonal of DT is efficient. For strongly convection-dominated problems which have large off-diagonal
entries, however, we use a tridiagonal preconditioner based on the Thomas-algorithm [48]. While this
requires explicit assembly of the matrix DT at the beginning of the solve, we find that the overhead of this
is small. Since only the (tri-) diagonal of DT is retained, it also does not increase memory requirements.
In the future the overhead could be reduced further by only assembling the (tri-) diagonal entries of DT .

Since ultimately the applications of the operators DT and D−1
T call the methods Av

T,T , Aif
F i;T,T and

Ab
F b;T of the heavily optimised LocalOperator class for A (see Section 3.1) those operations will run at

a similar high performance as the matrix-free application of A itself.

4. Results

Unless stated otherwise, we work in a domain of size Ω = [0, Lx]× [0, Ly]× [0, Lz] with Lx = Ly = 1
and Lz = 2. The problem sizes for different polynomial degrees are shown in Tab. 1. For each degree,
the number of grid cells is chosen such that all cells have the same size (i.e. the grid is isotropic)
and the resulting matrix has a size of 11 − 14 GB (see Section 4.4 for a detailed discussion of memory
requirements). All runs are carried out on 16 cores of an Intel Xeon E5-2698v3 (Haswell, 2.30GHz)
node of the “donkey” cluster at Heidelberg University. For the problems in subsections 4.2 and 4.3 the
processor layout is chosen as 2 × 2 × 4, i.e. each core works on a domain of the same size and there
are no load-imbalances. For the anisotropic SPE10 benchmark in subsection 4.5 the processor layout is
changed to 4 × 4 × 1 to avoid parallel partitioning in the strongly coupled vertical direction. The code
was compiled with version 6.1 of the Gnu C++ compiler.

4.1. Solver Implementations

To quantify gains in performance from the techniques described above we use the following three
implementations of the hybrid multigrid algorithm in Section 2.2:
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1. Matrix-free (MF). Both the DG operator and the DG smoother are applied in an entirely matrix-
free way exploiting the sum-factorisation techniques discussed in Section 3. In the smoother the
diagonal matrices DT in each cell are inverted iteratively to tolerance ε with a matrix-free iterative
solver as described in Section 2.2.1. In contrast to the following two implementations, storage
requirement are drastically reduced in this matrix-free version of the code since it is not necessary
to store the assembled DG matrix at all. The matrix Â in the lower-order subspace is assembled
directly as described in Section 2.2.3, leading to further performance improvements in the setup
phase (see results in Appendix B).

2. Matrix-explicit (MX). As a reference implementation we follow the standard approach of assem-
bling the DG matrix A explicitly and storing the Cholesky-/LU- factors of the diagonal blocks. This
matrix and the Cholesky-/LU-factors are then used for the application of operator and smoother
in the DG space. To allow for a fair comparison we speed up the assembly process with sum-
factorisation. In the setup phase we calculate the coarse grid matrix Â in the lower order subspace
via a Galerkin product Â = PTAP .

3. Partially matrix-free (PMF). To quantify any gains from the matrix-free inversion of the diag-
onal blocks, we also store the Cholesky-/LU- factorisation of those blocks in the assembled matrix
but apply the DG operator itself in a matrix-free way as described in Section 3.1. In the smoother
the blocks are inverted directly by using the pre-factorised block-matrices in each cell. As in the
matrix-free implementation the matrix Â is assembled directly. While the storage requirements are
reduced by a factor 2d + 1 compared to the matrix-explicit code, it is still necessary to store the
(factorised) diagonal blocks in each grid cell.

4.2. Diffusion equation

We first solve two purely diffusive problems on a regular grid in d = 3 dimensions. For the Poisson
equation −∆u = f the diffusion tensor is the identity matrix and both the advection vector and the zero
order reaction term vanish. Homogeneous Dirichlet boundary conditions are chosen on ∂Ω.

While the Poisson equation is an important model problem, the fact that the diffusion tensor is con-
stant and diagonal simplifies the on-the-fly operator evaluation and might give an unrealistic advantage
to the matrix-free implementation; in particular it is not necessary to calculate an 3× 3 diffusion tensor
at every quadrature point. To avoid this we also include a computationally more challenging test case
of the form −∇ · (K(x)∇u)) + c(x)u = f with a spatially varying positive definite diffusion tensor and
(small) zero order term given by

K(x) =

d∑
k=1

P (k)(xk)nkn
T
k , c(x) = γ

d∑
k=1

x2
k with γ = 10−8. (39)

In this expression the vectors nk with nk ·n` = δk` form an orthonormal basis of Rd and the polynomials
P (k)(ζ) are positive in the entire domain. More specifically, we choose quadratic expressions

P (k)(ζ) = p
(k)
0 + p

(k)
2 ζ2 with p

(k)
0 , p

(k)
2 > 0. (40)

In contrast to the Poisson problem, the boundary conditions are also more complex. On the face x0 = 1

Neumann conditions with j(x) = exp(−(x−x(N)
0 )2/(2σ2

N )) are applied, whereas on all other faces we use

Dirichlet boundary conditions with g(x) = exp(−(x−x(D)
0 )2/(2σ2

D)). The Gaussians in those expressions

are centred around x
(N)
0 = (1, 0.5, 0.5) and x

(D)
0 = (0, 0.5, 0.5) and have a width of σN = σD = 0.1.

In both cases the right hand side is set to a Gaussian f(x) = exp
(
−(x− x0)2/(2σ2)

)
with x0 =

(0.75, 0.5, 0.3) and σ = 0.1. The resulting operator is symmetric positive definite and we use a Conjugate
Gradient (CG) iteration to solve the problem to a relative tolerance ||r||/||r0|| = 10−8 in the L2(Ω)
norm. Since most of the solution time is spent in the preconditioner, we achieved a significant speedup
by only evaluating K(x) and c(x) in the centre of each cell in the preconditioner (but the full spatially
varying expressions are used in the operator application of the Krylov-solver).

The block-Jacobi smoother is used in the DG space and the low order subspace is spanned by
conforming lowest order Q1 elements. An important parameter is the tolerance ε to which the diagonal
blocks are inverted: a relatively loose tolerance will require less iterations of the block-solver, but might
increase the total iteration count of the outer Krylov-iteration. In Fig. 1 we show the number of CG
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Figure 1: Number of outer CG iterations for different implementations. Results are shown both for a constant-coefficient
Poisson problem (left) and for the diffusion problem with varying coefficients (right). For the matrix-free implementation
the block-solver tolerance ε is varied between 10−12 and 10−2.
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Figure 2: Average number of block-solver iterations to solve to a tolerance of ε = 10−2 for the Poisson problem (left) and
the diffusion problem with spatially varying coefficients (right). The standard deviation and maximal number of solves is
also shown (dark blue), the total range of iterations is indicated by the light blue bars in the background.

iterations for different tolerances ε. As can be seen from both figures, increasing the block-solver tolerance
to ε = 10−2 has virtually no impact on the number of outer CG iterations. The average number of inner
block-solver iterations which is required to reduce the residual by two orders of magnitude is shown in
Fig. 2. In both cases the average number of block-solver iterations is less than four for all polynomial
degrees and the maximal number of iterations never exceeds 15 (for the Poisson problem) and 25 (for the
problem with spatially varying coefficients). The total solution time for a range of polynomial degrees
is shown in Fig. 3 and (for the lowest polynomial degrees p) in Tab. 2. For both problems the partially
matrix-free solver is superior to the matrix-based version for all polynomial degrees. As expected from
the ε-independence of the number of iterations shown in Fig. 1, the matrix-free solver achieves the best
performance if the block-solver tolerance is chosen to be very loose at ε = 10−2. For higher polynomial
degrees (p ≥ 5) the matrix-free solver gives the best overall performance and it always beats the matrix-
explicit solver except for the lowest degree (p = 1). Although the partially matrix-free solver is fastest
overall for low polynomial degrees (p ≤ 3), Tab. 2 demonstrates that even in this case the fully matrix-
free solver is only around 2×−3× slower. It should also be kept in mind that using the matrix-free solver
also results in dramatically reduced memory requirements, as will be discussed in Section 4.4 below.

Finally, a breakdown of the time per iteration is shown in Fig. 4. Except for very low orders where
the AMG solve takes up a sizeable proportion of the runtime, this confirms that the total solution time
is completely dominated by the application of the smoother and the calculation of the residual in the
DG space. A breakdown of setup costs can be found in Appendix B.
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Figure 3: Total solution time for different implementations and a range of block-solver tolerances ε for the Poisson problem
(left) and the diffusion problem with spatially varying coefficients (right).

Poisson Inhomogeneous
degree p 1 2 3 1 2 3

Matrix-explicit 3.91 3.50 8.16 3.60 3.34 7.37

Matrix-free

ε = 10−12 7.52 5.59 6.89 12.49 9.99 8.72
ε = 10−8 7.59 5.10 5.33 12.35 7.86 6.45
ε = 10−4 6.80 3.84 3.21 9.50 5.09 3.74
ε = 10−2 5.79 2.73 2.31 6.47 3.45 2.60

Partially matrix-free 2.66 1.33 1.75 2.56 1.46 1.80

Table 2: Total solution time per unknown for the two diffusion problems and low polynomial degrees p. All times are given
in µs.
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Figure 4: Breakdown of the time per iteration for different implementations and a range of block-solver tolerances ε for
the Poisson problem (left) and the diffusion problem with spatially varying coefficients (right).
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Figure 5: Block-diagonal 64× 64 matrix at degree p = 3 for the convection dominated problem with b = (1, 0, 0) (left) and
b = (1.0, 0.5, 0.3) (right). The Peclet number 2000 in both cases.

4.3. Convection dominated flow problem

While the block-Jacobi smoother is efficient for solving the diffusion equations described in the pre-
vious section, it results in poor convergence for larger values of the convection term. Here block-SOR-
type smoothers are particularly efficient and a suitable preconditioner has to be chosen in the iterative
inversion of the block-matrices DT . As a further non-trivial problem we therefore consider a convection-
dominated problem with constant coefficients which can be written as −κ∆u+∇· (bu) = f . The source
term f is adjusted such that the exact solution is u(x) = x

Lx
(1− x

Lx
) y
Ly

(1− y
Ly

) z
Lz

(1− z
Lz

). We choose

both an axis-parallel advection vector b = (1, 0, 0) and a more general vector b = (1.0, 0.5, 0.3). The
strength of the diffusion term κ is adjusted such that the grid Peclet-number Pe = maxi{bi}h/κ is fixed
at Pe = 2000. This large grid-Peclet number makes the problem heavily convection dominated and we
precondition the outer Krylov-solver with two iterations of a block-SSOR smoother instead of the hybrid
multigrid algorithm described in Section 2.2. In the limit Pe→∞ and for a suitable ordering of the grid
cells, one block-SOR sweep over the grid would solve the equation exactly. For the grid-Peclet number
used here around 10-25 iterations of the flexible GMRES [49] solver are required to reduce the residual
by eight orders of magnitude, see Fig. 7. A standard GMRES iteration (with restart 100) is used for
inverting the block-diagonal matrices DT in the matrix-free method.

The fast iterative inversion of the block-diagonal matrices DT requires a suitable preconditioner. A
typical 64 × 64 block-matrix for degree n = 3 is shown in Fig. 5. This matrix is clearly not diagonally
dominant, in fact is has very large off-diagonal entries. The simple diagonal preconditioner, which was
successfully used for all previous experiments on the diffusion problem, will therefore not be very efficient;
in fact we find that the block-iteration will not converge at all. For the particular choice of an x-axis
aligned advection vector b = (1, 0, 0) and a suitable ordering of the degrees of freedom, the first sub- and
super-diagonal are particularly large. To account for the structure of the matrix we replaced the diagonal
preconditioner by a tridiagonal solve with the Thomas-algorithm [48]. While this is more expensive, the
cost of one preconditioner application is still proportional to number of unknowns per cell.

The structure of the matrix can be explained heuristically as follows: consider the weak form of the
one-dimensional advection term

Aij = a(ψ̃pi , ψ̃
p
j ) ∝

∫
ψ̃pi (x)∂xψ̃

p
j (x) dx. (41)

For high polynomial degree and the nodal Gauss-Lobatto basis chosen here, each of the basis functions
ψ̃pi (x) can be approximated by a Gaussian centred at the i-th Gauss-Lobatto point and width which
half the distance to the neighbouring nodal points. Simple symmetry arguments then imply that the
diagonal entry Aii is zero and the off-diagonal elements Ai,i+1 and Ai,i−1 are large and of approximately
opposite size. Qualitatively this explains the structure seen in Fig. 5. For the non-axis-aligned cases
additional off-diagonal bands appear at a distance of p+ 1 and (p+ 1)2 from the main diagonal.

The number of block-solver iterations for the convection dominated problem is shown in Fig. 6
which should be compared to Fig. 2. On average around four iterations are required to reduce the
residual by two orders of magnitude for the axis-aligned advection vector b = (1, 0, 0) and there is no
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Figure 6: Number of GMRES iterations for the block solver with tri-diagonal preconditioner and tolerance ε = 10−2. The
convection-dominated problem is solved with b = (1, 0, 0) (left) and b = (1.0, 0.5, 0.3) (right).
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Figure 7: Number of outer flexible GMRES iterations. The convection-dominated problem is solved with b = (1, 0, 0) (left)
and b = (1.0, 0.5, 0.3) (right).

strong dependence on the polynomial degree. For the more general advection vector b = (1.0, 0.5, 0.3)
the number of iterations grows since the tridiagonal preconditioner becomes less efficient as expected
due to the additional sub-diagonals in the matrix. The number of outer flexible GMRES iterations to
solve the full system to a tolerance of 10−8 is shown in Fig. 7. For a given polynomial degree the
number of iterations is virtually identical for all solvers and tolerances ε for the block-diagonal solver.
The only exception is the matrix-free solver with tolerance ε = 10−2 which leads to a ≈ 20% increase
in the iteration count. Finally, the total solution time is shown in Fig. 8 and Tab. 3. In all cases the
partially matrix-free solver clearly beats the matrix-based implementation. As expected from Fig. 7
the performance of the matrix-free code mainly depends on the block-solver tolerance ε. For the loosest
tolerance ε = 10−2 it is faster than the matrix-explicit solver for moderately high polynomial degrees
(p ≥ 3 for b = (1, 0, 0) and p ≥ 4 for b = (1.0, 0.5, 0.3)). For high polynomial degree, the matrix-free
solve time is in the same ballpark as the partially matrix-free time for the axis aligned advection vector
b = (1, 0, 0). For b = (1.0, 0.5, 0.3) however, the matrix-free solver is substantially less efficient than the
partially matrix-free version. This is can be traced back to the growth in the number of iterations in the
matrix-free inversion of DT shown in Fig. 6 (right). Again it should be kept in mind that the reduced
memory requirements of the matrix-free solver allow the solution of larger problems.

4.4. Memory savings in matrix-free implementation

As argued above, a key advantage of the completely matrix-free solver is its significantly lower demand
on storage space. To estimate the memory requirements for all implementations carefully, first observe

17



1 2 3 4 5 6 7
polynomial degree p

0

20

40

60

80

100
to

ta
l s

ol
ut

io
n 

tim
e 

pe
r u

nk
no

w
n 

[µ
s] Matrix-explicit

Matrix-free
Partially matrix-free
ε=10−12

ε=10−8

ε=10−4

ε=10−2

1 2 3 4 5 6 7
polynomial degree p

0

20

40

60

80

100

to
ta

l s
ol

ut
io

n 
tim

e 
pe

r u
nk

no
w

n 
[µ
s] Matrix-explicit

Matrix-free
Partially matrix-free
ε=10−12

ε=10−8

ε=10−4

ε=10−2

Figure 8: Total solution time per unknown. The convection-dominated problem is solved with b = (1, 0, 0) (left) and
b = (1.0, 0.5, 0.3) (right).

b = (1, 0, 0) b = (1.0, 0.5, 0.3)
degree p 2 3 4 2 3 4

Matrix-explicit 2.06 5.92 14.97 1.88 4.77 11.04

Matrix-free

ε = 10−12 13.27 14.97 17.59 13.07 16.73 24.89
ε = 10−8 10.68 11.53 13.51 12.68 13.57 18.39
ε = 10−4 7.99 7.07 7.91 8.86 8.60 11.08
ε = 10−2 6.82 5.45 5.27 8.66 7.36 8.42

Partially matrix-free 0.71 1.00 2.14 0.64 0.84 1.50

Table 3: Total solution time per unknown for convection dominated problem. All times are given in µs.

that on a d-dimensional grid withNcell cells an entire vector in DG space with polynomial degree p consists
of Mvector = Ncell(p+ 1)d double precision numbers. The corresponding sizes for the full DG matrix and
its blockdiagonal (used in the partially matrix-free implementation) are Mmatrix = 7Ncell(p + 1)2d and
Mblockdiag = Ncell(p+ 1)2d. In the following estimates we will take into account vectors and matrices on
the first coarse multigrid level (i.e. in the Q1 and P0 subspace); we can safely neglect all data stored
on the next-coarser levels. Since all grids used in the numerical experiments above contain at least 100
cells, we also ignore temporary storage for cell-local vectors.

First consider the setup for the diffusion problem in Section 4.2. The solution and right hand side,
both of which are of size Mvector, have to be stored in every implementation. The outer CG iteration
requires two additional temporaries of size Mvector each. Likewise, the hybrid multigrid stores three
temporaries of size Mvector (two in the completely matrix-based implementation) and the corresponding
vector storage in the Q1 subspace is 3Ncell (three vectors with one unknown per cell). While the DG
system matrix of size Mmatrix is only stored in the matrix-based implementation, the coarse level matrix
of size 27Ncell, which describes the Q1 discretisation of the problem, is required by the AMG solver in
all cases. In the partially matrix-free case we store the entries of the local block-diagonal of total size
Mblockdiag; in the matrix-free case we store the diagonal only (for preconditioning the cell-local iterative
solver), which is equivalent to storing another vector of size Mvector. Overall, this results in the following
storage requirements for the matrix-explicit (MF), partially matrix-free (PMF) and fully matrix-free
(MF) cases:

M
(diffusion)
total =


Mmatrix + 6Mvector + 30Ncell

Mblockdiag + 7Mvector + 30Ncell

8Mvector + 30Ncell

=


(
7(p+ 1)2d + 6(p+ 1)d + 30

)
Ncell [MX](

(p+ 1)2d + 7(p+ 1)d + 30
)
Ncell [PMF](

8(p+ 1)d + 30
)
Ncell [MF]

(42)
Numerical values for all considered problem sizes (see Tab. 1) in d = 3 dimensions are shown in Tab. 4.
The table shows that even for moderate polynomial degrees the relative saving of the partially matrix-free
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degree p # dofs memory requirements M
(diffusion)
total

MX PMF MF

1 33.6 · 106 17.6 GB 5.0 GB [3.5×] 3.154 GB [5.6×]
2 9.5 · 106 14.9 GB 2.7 GB [5.6×] 0.691 GB [21.5×]
3 4.2 · 106 15.2 GB 2.4 GB [6.4×] 0.284 GB [53.7×]
4 2.0 · 106 14.1 GB 2.1 GB [6.7×] 0.132 GB [106.9×]
5 1.2 · 106 14.4 GB 2.1 GB [6.8×] 0.077 GB [186.5×]
6 0.7 · 106 13.2 GB 1.9 GB [6.9×] 0.044 GB [297.6×]
7 0.5 · 106 15.1 GB 2.2 GB [6.9×] 0.034 GB [445.5×]
8 0.3 · 106 12.9 GB 1.9 GB [6.9×] 0.020 GB [635.4×]
9 0.2 · 106 14.0 GB 2.0 GB [7.0×] 0.016 GB [872.5×]

10 0.2 · 106 12.7 GB 1.8 GB [7.0×] 0.011 GB [1162.1×]

Table 4: Estimated memory requirements as defined in Eq. (42) for different implementations for the solution of the
diffusion problem in Section 4.2. The savings relative to the matrix-explicit implementation are shown in square brackets.

implementation approaches a constant factor of ≈ 7×, since only the block-diagonal has to be stored.
The relative saving for the fully matrix-free method is significantly larger, and of two- to three orders
of magnitiude, even for moderately large degrees. Note that asymptotically the savings grow with the
third power of p+ 1 as ≈ 7

8 (p+ 1)d.
The convection-dominated problem in Section 4.3 uses a slightly different setup. The number of

temporary vectors in the flexible GMRES solver with a restart value of n
(outer)
restart = 100 is 2n

(outer)
restart + 2

for the outer solve. In contrast to the diffusion problem in Section 4.2, a block-SSOR smoother is
used instead of the hybrid multigrid algorithm. This reduces the storage requirements since the SSOR
smoother operates directly on the solution vector, and does not need the temporary storage for additional
vectors and coarse level matrices/vectors which are required in the multigrid algorithm. However, since

the local blocks are inverted iteratively with a GMRES method which uses n
(block)
restart + 1 temporary local

vectors of size Mlocal vector = (p+ 1)d and the restart value n
(block)
restart = 100 in our numerical experiments

is (unnecessarily) large, we choose to count those vectors in the fully matrix-free method. Furthermore,
since the iterative block-diagonal solvers are preconditioned with the tridiagonal Thomas algorithm, we
need two additional global vectors to store the bands of off-diagonal entries in the matrix-free algorithm.
Overall, this results in the following storage requirements:

M
(convection)
total =


Mmatrix + (2n

(outer)
restart + 4)Mvector [MX]

Mblockdiag + (2n
(outer)
restart + 4)Mvector [PMF]

(2n
(outer)
restart + 7)Mvector + (n

(block)
restart + 1)Mlocal vector [MF]

=


(

7(p+ 1)2d + (2n
(outer)
restart + 4)(p+ 1)d

)
Ncell [MX](

(p+ 1)2d + (2n
(outer)
restart + 4)(p+ 1)d

)
Ncell [PMF]

(2n
(outer)
restart + 7)(p+ 1)dNcell + (n

(block)
restart + 1)(p+ 1)d [MF]

(43)

The memory requirements and savings in the (partially-) matrix-free method for our setup (see Tab. 1)
in d = 3 dimensions are shown in Tab. 5. As in Tab. 4, the relative saving in memory consumption of
the partially matrix-free method is asymptotically ≈ 7×. Due to the large number of temporary vectors
in the GMRES method, the saving of the fully matrix-free method is less pronounced, but still nearly
two orders of magnitude for the highest polynomial degrees. In hindsight and looking at Figs. 7 and
6, the chosen restart values were probably too conservative and memory consumption could have been
reduced without impact on results (except for the b = (1.0, 0.5, 0.3) case, where the matrix-free method

is less efficient) by choosing smaller values of n
(outer)
restart = 15 and n

(block)
restart = 12. The corresponding numbers

in this case are shown in Tab. 6 and show potential savings for the matrix-free method which are only
a factor of 4× smaller than those observed for the diffusion problem in Tab. 4.
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degree p # dofs memory requirements M
(convection)
total

MX PMF MF

1 33.6 · 106 65.0 GB 53.0 GB [1.2×] 51.750 GB [1.3×]
2 9.5 · 106 27.8 GB 16.3 GB [1.7×] 14.626 GB [1.9×]
3 4.2 · 106 20.4 GB 8.4 GB [2.4×] 6.469 GB [3.1×]
4 2.0 · 106 16.1 GB 4.9 GB [3.3×] 3.085 GB [5.2×]
5 1.2 · 106 15.2 GB 3.7 GB [4.1×] 1.828 GB [8.3×]
6 0.7 · 106 13.3 GB 2.8 GB [4.8×] 1.058 GB [12.6×]
7 0.5 · 106 14.8 GB 2.8 GB [5.3×] 0.809 GB [18.3×]
8 0.3 · 106 12.5 GB 2.2 GB [5.7×] 0.486 GB [25.6×]
9 0.2 · 106 13.4 GB 2.2 GB [6.0×] 0.386 GB [34.7×]

10 0.2 · 106 12.1 GB 1.9 GB [6.2×] 0.264 GB [45.8×]

Table 5: Estimated memory requirements as defined in Eq. (43) for different implementations for the solution of the

convection dominated problem in Section 4.3 with n
(outer)
restart = n

(block)
restart = 100. The savings relative to the matrix-explicit

implementation are shown in square brackets.

degree p # dofs memory requirements M
(convection)
total

MX PMF MF

1 33.6 · 106 22.5 GB 10.5 GB [2.1×] 9.250 GB [2.4×]
2 9.5 · 106 15.8 GB 4.3 GB [3.7×] 2.614 GB [6.0×]
3 4.2 · 106 15.1 GB 3.1 GB [4.9×] 1.156 GB [13.0×]
4 2.0 · 106 13.5 GB 2.4 GB [5.7×] 0.551 GB [24.6×]
5 1.2 · 106 13.7 GB 2.2 GB [6.2×] 0.327 GB [41.8×]
6 0.7 · 106 12.4 GB 1.9 GB [6.5×] 0.189 GB [65.8×]
7 0.5 · 106 14.1 GB 2.1 GB [6.6×] 0.145 GB [97.8×]
8 0.3 · 106 12.1 GB 1.8 GB [6.7×] 0.087 GB [138.7×]
9 0.2 · 106 13.1 GB 1.9 GB [6.8×] 0.069 GB [189.8×]

10 0.2 · 106 11.9 GB 1.7 GB [6.9×] 0.047 GB [252.0×]

Table 6: Estimated potential memory requirements as defined in Eq. (43) for different implementations for the solution

of the convection dominated problem in Section 4.3 with n
(outer)
restart = 15, n

(block)
restart = 12. The savings relative to the matrix-

explicit implementation are shown in square brackets.
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Figure 9: Permeability fields Kx and Kz from the SPE10 testcase

Field minimum mean maximum

Kx 6.65 · 10−4 3.55 · 102 2.0 · 104

Ky 6.65 · 10−4 3.55 · 102 2.0 · 104

Kz 6.65 · 10−8 5.84 · 101 6.0 · 103

Table 7: minimum, mean and maximum value of the three diagonal entries of permeability field for the SPE10 testcase

4.5. SPE10 test case

We finally consider a challenging problem from a real-world application. The SPE10 test case was
used to compare different reservoir modelling packages [36]. Due to the large jumps in the permeability
field the solution of the SPE10 problem is not smooth. At first sight, using a high-order method seems
to be questionable in this case since it it will not lead to the best performance for a given error in the
solution. However, in most applications the solution is smooth almost everywhere in the domain and any
irregularities are confined to small, lower-dimensional subdomains. A typical example are sharp drops in
pressure across fronts in atmospheric weather prediction. The main purpose of the following numerical
experiments on the SPE10 benchmark is therefore to demonstrate the efficiency of our methods even for
very challenging setups (in particular large, high contrast jumps in the coefficients).

The second SPE10 dataset describes the permeability tensor K = diag(Kx,Ky,Kz) of a three dimen-
sional reservoir of size Lx × Ly × Lz = 1, 200 ft×2, 200 ft×170 ft which is divided into 60 × 220 × 85 =
1.122 · 106 cells of size 20 ft×10 ft×2 ft. Permeability is assumed to be constant in each cell, but can
vary strongly over the domain (see Fig. 9 and Tab. 7). Transport of a fluid with viscosity µ through
the reservoir is described by Darcy’s law which relates pressure u and flux q according to

K∇u = −µq. (44)

For an incompressible fluid the stationary continuity equation in the absence of source terms is given by
∇ · q = 0. Inserting this into (44) and assuming constant viscosity results in the elliptic problem

−∇ · (K∇u) = 0. (45)

This diffusion equation is solved with homogeneous Neumann boundary conditions ν · ∇u = 0 at z = 0
and z = Lz and Dirichlet boundary conditions u = −y on all other surfaces. The problem is challenging
both due to the rapid variations in the diffusion tensor K and the strong anisotropy introduced by the
large aspect ratio of the cells.

As for the diffusion equations in Section 4.2, the hybrid multigrid algorithm described in Section 2.2
is used as a preconditioner. However, in contrast to the conforming Q1 space used there, for the SPE10
problem the low-order subspace is the piecewise constant P0 space. The relative norm of the residual is
not guaranteed to decrease monotonically in the CG iteration, and (particularly for the ill-conditioned
matrix in this problem) this norm can be a poor indicator of convergence. We therefore use the estimator

for the energy norm ||e||A =
√
eTAe of the error e = u − uexact given in [50, Section 3.1]. This does

not add any significant overhead since only a small number of additional scalar products are required
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degree # iterations time per unknown [µs]
smoother MX MF PMF MX MF PMF

jacobi
1 52 53 52 5.67 38.00 8.58
2 75 78 74 23.80 24.15 6.99
3 — 102 — — 22.25 —

ssor
1 37 37 37 7.44 57.67 15.84
2 55 57 55 34.00 36.09 11.56
3 — 77 — — 34.14 —

Table 8: SPE10 benchmark on one node of “donkey”. The number of iterations and total solution time per unknown is
shown for different polynomial degrees. For the highest polynomial degree only matrix-free solver results are reported due
to memory limitations.
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Figure 10: Convergence history for SPE10 benchmark. Both the relative energy norm (left) and the relative residual norm
(right) are shown for polynomial degrees 1 (red squares), 2 (blue upward triangles) and 3 (green downward triangles).
Results for the block-SSOR smoother are marked by filled symbols and results for the block-Jacobi smoother by empty
symbols.

in every iteration. The quality of this estimate depends on the “error-bandwidth”, i.e. the number of
terms that are used in the sum (3.5) in [50]. For all results obtained here we used an error-bandwidth of
4; increasing this further to 8 does not have any discernible impact on the results.

The SPE10 problem is solved to a relative tolerance of 10−6 in the energy norm. As Fig. 10
demonstrates, the error is reduced monotonically (left), whereas there are significant jumps in the relative
residual (right). Solving to tighter tolerances is not of practical interest since other sources of error
dominate the physical problem. The number of iterations and solution times for different polynomial
degrees on one node of the “donkey” cluster are shown in Tab. 8 (run-ahead iterations for the initial
estimate of the error in the energy norm are not counted but included in the reported runtimes). In
the matrix-free solver the diagonal blocks were inverted to a relative tolerance of ε = 10−2. We find
that in all cases a block-Jacobi smoother is more efficient than block-SSOR. For the lowest polynomial
degree (p = 1) the matrix-explicit solver results in the shortest solution time, although it is only around
1.5× faster than the partially matrix-free solver. However, for p = 2 the partially matrix-free solver
is 3× faster than the matrix-explicit version which has about the same performance as the matrix-free
implementation. For the highest polynomial degree (p = 3) neither the full matrix nor the block-diagonal
fit into memory and only results for the matrix-free solver are reported.

5. Conclusion

We described the efficient implementation of matrix-free multigrid block smoothers for higher order
DG discretisations of the convection-diffusion equation. Since the implementation is FLOP-bound, this
leads to significantly better utilisation of modern manycore CPUs. Sum-factorisation techniques reduce
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the computational complexity from O(p2d) to O(d ·pd+1) and make the method particularly competitive
for high polynomial degrees p. Our numerical experiments confirm that this leads to a significant reduc-
tion of the solution time even for relatively low polynomial degrees. Since the matrix does not have to be
assembled and stored explicitly, our approach also leads to significantly reduced storage requirements.
For moderately high polynomial degrees the totally matrix-free implementation typically gives the best
overall performance. For low polynomial degrees we find that a partially matrix-free implementation, in
which only the operator application is matrix-free, can reduce the runtime even further. The construc-
tion of a suitable preconditioner for the matrix-free block-inversion in convection-dominated problems is
challenging if the advection field is not axis aligned, and therefore in this setup the partially matrix-free
implementation (which avoids this problem) is particularly efficient.

With the SPE10 benchmark we have included a challenging, real world application. To quantify the
performance for other realistic setups we will also apply the matrix-free solvers to the pressure correction
equation in atmospheric models in the future.

Since the local blocks are only inverted in the preconditioner, additional approximations could improve
performance further. For example, the use of lower-order Gauss-Lobatto quadrature rules for calculation
of the volume integral can reduce the number of function evaluations since the quadrature points coincide
with those of the surface integral.

The implementation of the highly-optimised matrix-free operators described in this work required a
significant amount of low-level optimisation, leading to sophisticated code which is hard to maintain. In
the future, we will explore the use of automatic code generation techniques which are currently integrated
into the DUNE framework [51] and have been shown to give promising results.

Acknowledgments

We would like to thank Lawrence Mitchell (Imperial College London) for useful discussions about
alternative preconditioning methods based on low-order discretisation on a nodal subgrid. Similarly, we
are grateful to Rob Scheichl (Bath) for helpful comments throughout the project. The authors acknowl-
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Appendix A. Discretisation in the lower- order subspaces

In this appendix we show how the coarse grid matrix Â = PTAP can be calculated efficiently by
re-discretisation in the subspace V̂h. As discussed in Section 2.2.3 this avoids the expensive calculation
via the explicit Galerkin product.

Appendix A.1. Piecewise constant subspace P0

The P0 basis functions have a vanishing gradient on each element. This simplifies the evaluation of
ah(ψ̂j , ψ̂i) since the diffusion and convection term do not contribute to the volume integral av

h(ψ̂j , ψ̂j)

and the consistency and symmetrisation term vanish in the face integral aif
h(ψ̂j , ψ̂j). The entries of the

Galerkin product with P0 as a subspace are(
PTAP

)
ij

=
∑
T∈Th

∫
T

cψ̂jψ̂i dx+
∑
F∈Fih

∫
F

Φ(ψ̂−j , ψ̂
+
i ,νF · b)Jψ̂iK ds+

∑
F∈FDh

∫
F

Φ(ψ̂j , 0,νF · b)Jψ̂iK ds

+ αp(p+ d− 1)

 ∑
F∈Fih

∫
F

〈δ−KνF , δ
+
KνF
〉|F |

min(|T−(F )|, |T+(F )|)
Jψ̂jKJψ̂iK ds+

∑
F∈FDh

∫
F

δ−KνF |F |
|T−(F )|

ψ̂jψ̂i ds

 .

(A.1)

This should be compared to the finite volume discretisation of (3) and (4) which can be obtained as
follows: let x(T ) be the center of cell T , x(F ) the center of face F and x−(F ) the center of inside cell,
x+(F ) the center of outside cell with respect to F . The evaluation of the convection and reaction term
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at x(F ) and x(T ), respectively, is denoted in shorthand by b̂ = b(x(F )), ĉ = c(x(T )). We approximate
the diffusive normal flux with a central difference approximation and use the harmonic average of the
diffusion tensor on F ∈ F ih. On boundary faces F ∈ Fbh the diffusive normal flux is approximated by a
one-sided difference quotient. This results in the finite volume operator

ÂFV
ij =

∑
T∈Th

ĉ ψ̂jψ̂i|T |+
∑
F∈Fih

Φ(ψ̂−j , ψ̂
+
i ,νF · b̂)Jψ̂iK|F |+

∑
F∈FDh

Φ(ψ̂j , 0,νF · b̂)Jψ̂iK|F |

+
∑
F∈Fih

〈δ−KνF , δ
+
KνF
〉

‖x−(F )− x+(F )‖2
Jψ̂jKJψ̂iK|F |+

∑
F∈FDh

δKνF
‖x−(F )− x(F )‖2

ψ̂jψ̂i|F |.
(A.2)

If in PTAP the upwind flux and
∫
T
c ds are approximated by the box-rule (or c and b are piecewise

constant on the grid cells), the first three terms in (A.1) and (A.2) are identical. This is an admissible
approximation since it is used in a subspace correction. To relate the remaining two integrals over
interior- and boundary-faces, observe that on an equidistant mesh |T−(F )| = |T+(F )| ∀F ∈ F ih. If the
grid is also axi-parallel, the inverse distances in (A.2) can be written as

1

‖x−(F )− x+(F )‖2
=

|F |
min(|T−(F )|, |T+(F )|)

∀F ∈ F ih (A.3)

on the interior faces and as

1

‖x−(F )− x(F )‖2
=

|F |
2|T−(F )|

∀F ∈ Fbh (A.4)

on the boundary faces. Provided the diffusivity K is also piecewise constant on the grid cells (or, on each
face is approximated by its mean value), the final two terms in (A.1) and (A.2) differ by multiplicative
factors of αp(p+d−1) and 2αp(p+d−1) respectively. Hence, instead of constructing Â via the Galerkin
product Â = PTAP , it can be obtained from a modified finite-volume discretisation, if the last two terms
in (A.2) are scaled appropriately.

Appendix A.2. Conforming piecewise linear subspace Q1

The Q1 conforming piecewise linear basis functions are continuous over the interior edges. Exploiting
this fact for ah(ψ̂j , ψ̂i) implies that all terms containing the jump operator J·K that are summed over F ih
vanish. The entries of the Galerkin product with Q1 as a subspace read(

PTAP
)
ij

=
∑
T∈Th

∫
T

(
(K∇ψ̂j − bψ̂j) · ∇ψ̂i + ψ̂jψ̂i

)
dx

+
∑
F∈FDh

∫
F

(
Φ(ψ̂j , 0,νF · b)ψ̂i − νF · (ω−K∇ψ̂j) ψ̂i − ψ̂jνF · (ω−K∇ψ̂i) + γF ψ̂jψ̂i

)
ds.

(A.5)

This is identical to the conforming piecewise linear Finite Element operator for the model problem (1).
The only differences are the integrals over the Dirichlet boundary which is a remainder from the DG
bilinear form. In contrast to the P0 subspace PTAP is rediscretised by calculating ah(ψ̂j , ψ̂i)∀i, j with

the optimisation that the integral for all F ∈ F ih is skipped. Note that although Âij is calculated by

assembling the DG operator ah(ψ̂i, ψ̂j) on a low-dimensional subspace, the polynomial degree which is
used in the calculation of γF is the degree p of the DG space V ph , and not the degree of Q1.

Appendix B. Setup costs

The setup costs for the diffusion problems described in Section 4.2 are shown for a selection of
polynomial degrees in in Tables B.9 and B.10. Note that the (partially) matrix-free implementation has
a significantly lower setup cost since it does not require assembly of the DG matrix and construction of
the coarse grid matrix Â via the Galerkin product.
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p = 2 p = 3 p = 6
MX MF PMF MX MF PMF MX MF PMF

Assemble prolongation 0.09 0.07 0.07 0.05 0.04 0.04 0.02 0.01 0.01
DG Matrix setup+assembly 2.36 — — 2.50 — — 3.85 — —
DG smoother setup (block-factor) 0.25 — 1.10 0.26 — 1.09 0.43 — 1.64
Diagonal matrix assembly — 0.91 — — 0.91 — — 1.43 —

Galerkin product Â = PTAP 2.01 — — 0.99 — — 2.89 — —
Coarse matrix assembly — 0.18 0.18 — 0.04 0.04 — 0.00 0.00
AMG setup 1.03 0.37 0.37 0.22 0.10 0.10 0.02 0.01 0.01
total setup 5.73 1.54 1.73 4.03 1.09 1.27 7.21 1.46 1.67
total solve time 33.13 25.85 12.64 34.25 9.71 7.35 69.61 4.71 6.41

Table B.9: Breakdown of setup time for the Poisson problem for different polynomial degrees p. To put the setup costs
into perspective, the total solve time (which includes the setup time) is also given

p = 2 p = 3 p = 6
MX MF PMF MX MF PMF MX MF PMF

Assemble prolongation 0.09 0.07 0.07 0.05 0.04 0.04 0.02 0.01 0.01
DG Matrix setup+assembly 3.24 — — 3.25 — — 4.52 — —
DG smoother setup (block-factor) 0.25 — 1.28 0.26 — 1.23 0.43 — 1.84
Diagonal matrix assembly — 1.07 — — 1.03 — — 1.67 —

Galerkin product Â = PTAP 1.97 — — 0.98 — — 2.86 — —
Coarse matrix assembly — 0.20 0.19 — 0.04 0.04 — 0.00 0.00
AMG setup 1.05 0.39 0.39 0.22 0.10 0.10 0.02 0.01 0.01
total setup 6.60 1.73 1.93 4.77 1.21 1.42 7.85 1.70 1.87
total solve time 31.70 32.74 13.82 30.95 10.89 7.51 62.58 5.52 6.37

Table B.10: Breakdown of setup time for the inhomogeneous diffusion problem for different polynomial degrees p. To put
the setup costs into perspective, the total solve time (which includes the setup time) is also given
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