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FOR THE MAGNETIC PROPERTIES OF THE SKYRMION
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University of Kent at Canterbury, Canterbury, Kent CT2 7NF, UK

Received 13 February 1989

A relation is derived between the densities of isovector charge and magnetic dipole moment of the pionic skyrmion, which is
largely independent of the properties of the lagrangian, and this is used to obtain relations for the mean-squared radii. The results

apply to both linear and non-linear o-models.

1. Introduction

There has been much interest recently in the
Skyrme model [1], in which baryons are seen as top-
ological solitons (“skyrmions”) in the pion field, sta-
bilised by a term quartic in first derivatives of the
field, the so-called “Skyrme term”. In their seminal
papers on the semi-classically quantised skyrmion
[2,3], Adkins, Nappi and Witten (ANW) noticed
that certain relations held independently of the pa-
rameters of this model, and this letter sets out to de-
rive such relations for a general pionic SU, X SU, la-
grangian, subject to reasonable requirements of
symmetry. Two relations (eqs. (37) and (49) be-
low) for the charge and magnetic mean-squared radii
of a skyrmion, are derived in the general case, and
the three relations of ANW are recovered only if the
total lagrangian can be written in the form

L=—M+2)42 (1)

where & describes the rate of rotation of the skyrmion.
In the following arguments, isotopic indices {«, 5,
v} are taken to range over {1, ..., 3}, the index x ranges
over the axes of Minkowski space, and isotopic in-
dices {p, 0, 7} range over {0, ..., 3} in E,.
We assume that the field ¢, is given by

¢a=s(r)Raj)eja (2)

! Supported by a grant from the Science and Engineering Re-
search Council.

where

Raj=apT§‘GT§;,a,-saT°‘T"a, (3)
a,=a,(1) (4)
and

at=1, (5)
and that

Po=Po(r) . (6)

The quantities 7% and 7" are given by

Tga = —€apo + é‘pO 500{ - 600 apa >
Tga = —€qpo— 5p0 5(704 + 600 51)01 B

€apo = 0>

and their algebra is given by Skyrme [1].

Relations (2) and (6) are obeyed by the spherical
hedgehog ansatz, commonly taken to approximate to
the skyrmion [2,1], but do not require the usual re-
lation for the non-linear o-model

¢3=1’ . (7)

and the reasoning to be presented here can easily be
extended to an n-component field.

0370-2693/89/% 03.50 © Elsevier Science Publishers B.V. 349

(North-Holland Physics Publishing Division )



Volume 221, number 3,4

2. Charges

In terms of the four-component field ¢,, the den-
sity of angular momentum can be written

07
J?=ezjk@aj¢pxka (8)
and in view of egs. (2) and (6), thisis

97 .
J? =€k g5 5(r)RoyX. (9)

Now consider the quantity p,, which may be termed
the density of conjugate momentum, defined by

9%

Dp= 7> (10)

£ da,
so that m,, the conjugate momentum of @, is
np=‘[ppd3x. (11)
Egs. (2) and (6) give

9¥ ~
pp=26—¢.7s(r)(T"‘Tfa),,xj, (12)
o

so that

- 9¥ .
aT’p:—ZWs(r)eiijajxk (13)
or
J9=—1aT'p, (14)
and the total angular momentum is
Jy=—14aT'm, (15)
which gives the standard relation
Jo= tig, 71, L (16)

i 214y, L po aaa 5

when the model is semi-classically quantized.
Turning to the isovector current, we can write

0%

VZ=—6apym¢y, (17)

which is normalised so that its charge I, is the con-
ventional hadronic isospin,

[Iaalﬂ]=ieaﬂy1y~ ) (18)
(This V4 differs from that used by ANW by a factor
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of 4.) Similar reasoning to that used for the angular
momentum then yields

Vo=—1aT% (19)
and
Ia=J V9 d3x=—ial*n. (20)

For simplicity, the classical quantities —a7 “m and
—aT 'z will be written as 7, and ;.
3. The density of the magnetic moment

In terms of V%, we can define an isovector mag-
netic moment

o= | s, (21)
where
Pai = €jicX; v (22)
0¥
=€ R —_— L X 23

Eljkelmn amRﬁn a(aj¢ﬁ) rs(r)xkxla ( )
since
éaByRyl = 6lmchucm-Rﬂn . (24)

The component u;; is the conventional isovector
magnetic moment.

It will prove convenient to argue in terms of scalar
quantities, so let us contract this with t,:

0. ~ A
TaPai = €ikc€imn m Ry, (aT"m)rs(r) %% (25)
J

We must now assume that the lagrangian density is
Lorentz-invariant at each point, so that under an in-
finitesimal Lorentz transformation with origin at any
given point, we can write

0¥
BL=0= 75— 8(0uy) (26)
or
0L 0Z
=— =3, 27
a(aj¢p) ¢p a¢p j¢p ( )

at that point. Multiplying by €%, and substituting
in from egs. (2) and (6), we obtain
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0¥ S oo o
L R XX
eUka(aj¢a)S(r) 1 Xk X1
9L s(r) .

= — Eljk _(')éa P R(xjxkv (28)

and applying this to eq. (9),

J?= —fgkagija_) rS(V)Ral)ekaI
=26,-jke,mn——a:({—R,;n(aT’"d)rs(r)fcqu, (29)
9(9;04)
since
Roy=—2€mnRan(aT™a). (30)

If we now assume that the lagrangian density is in-
variant under real and isovector rotations, it can be
shown that the total lagrangian can be written as a
function of d3:

L=L(a;), (31)
so that a4, is parallel to 7, and we can write
a,=f(n})m,. (32)

(It is not strictly necessary for f(7}) to be single-val-
ued, but we shall assume that it is.)

Eq. (25) can now be compared with eq. (29) to
obtain

JO
=2T4pui- 33
I P (33)
Using egs. (14), (15), (19) and (20), we can write
aij?=7:oc ng:%nppp’ (34)
whence we derive
T, Vo= %—s(r) (aT*T'n)%;, (35)

which can be used to obtain the isovector mean-
squared charge radius for a given lagrangian, and

VS
A=3)
which is the desired relation between the densities of

isovector charge and isovector magnetic moment, and
from which the relation

r21=3<r" >y (37)

21‘-& lpoa) (36)
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between the isovector mean-squared charge radius
and magnetic radius, is derived [4]. Experiment in-
dicates that eq. (37) is about 15% in error [3].

4. Gyromagnetic ratios

Integrating eq. (36), we find

72 ;

f(73) f(np

We must now assume that the classical relation (38)
applies to the expectation of the observables over nu-
cleonic states |N . Taking the definition of the iso-
vector gyromagnetic ratio g ‘

=47, 0,lkq;. (38)

(N iy Ny = 2 N, (39)

for a nucleon with mass My, as an isovector equation

N tos Ny = 75 5/ IN>, (40)
we find
(N | a0itts N

=% (N0, X)X s N, (41)

where the sum is over all spin and isospin states | X,

N[ T Ot N = g: (N1 700; IN"H (N | st IN

4MN 3 (N[220 IN" ) (N [ 7.0 [N

9g1
= W, (N"|N>. (42)

Thus eq. (38) gives

9g1 2
4
<N N> =<(N lf( IND, (43)
SO
My
=375 (44)

The expression for the baryonic or isoscalar mag-
netic moment is well known to be [2]

ﬂBi"_‘_%<r2>BaTid7 (45)
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where (r?*)p is the baryonic (isoscalar) mean-
squared charge radius, so that

o =3<(r*)poif(n;), (46)

and from

(Nt Ny = 252 (N || N (47)
4My

we find

g5 =My (r2 s f(3). (48)

Multiplying eq. (44) by (48), we finally obtain

98188
2

<r >B 8M2N s ( 9)
which is the product of the two “mass relations” of

ANW,

gB=%<r2>BMN(MA_MN)y (50)
2Mx
gI_MA_MNz (51)

and gives (r?>¥?=0.91 fm, some 25% greater than
the experimental value of 0.72 fm.

5. Conclusion

Two relations, (37) and (49), have been found for
the charge and magnetic mean-squared radii of a
skyrmion, valid for a large class of pionic lagrangi-
ans. Let us itemise the assumptions used in their
derivation:

(1) The lagrangian density must be invariant un-
der (a) rotational, (b) isovector and (c) Lorentz
transformations;

(2) The three components ¢,, of the field must have
the form given by eq. (2), satisfied by the spherical
hedgehog; :

(3) All other components of the field must be con-
stant with respect to time, and invariant under
rotations; .

(4) The field is scalar or pseudoscalar, and the three
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components ¢, are an isovector; all other compo-
nents are isoscalar or zero;

(5) The classical equations which are derived can
be taken directly as holding for the corresponding
quantum-mechanical operators.

It is not assumed that the lagrangian is in any sense
chirally symmetric, that the model is a non-linear o-
model (and in particular no constraint apart from
items (3) and (5) above is placed on other compo-
nents of the field ), and it is not assumed that the field
is an extremum of the action.

It should also be noted that if we assume that

= —M+2)4? (52)

is a good approximation to the total lagrangian, as in
the Skyrme model considered by ANW, then

1
42’

7)) =1 (53)

and ANW’s original “mass relations” eqs. (50) and
(51) are recovered from eqs. (44) and (48).

Egs. (35) and (36) may be of use in calculating
the pionic contribution to the charge and magnetic
moment in models which include other mesonic
fields.
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