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Abstract

This paper introduces the Multi-Vehicle Probabilistic Covering Tour Problem (MVPCTP)

which extends the Covering Tour Problem (CTP) by incorporating multiple vehicles and prob-

abilistic coverage. As in the CTP, total demand of customers is attracted to the visited facility

vertices within the coverage range. The objective function is to maximize the expected cus-

tomer demand covered. The MVPCTP is first formulated as an integer non-linear program-

ming problem, and then a linearization is proposed, which is strengthened by several sets of

valid inequalities. An effective branch-and-cut algorithm is developed in addition to a local

search heuristic based on Variable Neighborhood Search to obtain upper bounds. Extensive

computational experiments are performed on new benchmark instances adapted from the lit-

erature.

Keywords: Vehicle routing; covering tour; linearization; integer programming; branch-and-cut.

1 Introduction
In this paper, we introduce the Multi-Vehicle Probabilistic Covering Tour Problem (MVPCTP), in

which a fleet of vehicles with a limited range leave the depot and visit a subset of the facility ver-

tices to service the set of customer vertices, and a vehicle visiting facility vertex i can successfully

serve customer vertex j with probability pij . The MVPCTP is a generalization of the well known

Covering Tour Problem (CTP) introduced by Gendreau et al. (1997), for which it is assumed that

when a customer vertex is within pre-specified distance of a visited facility vertex, it is covered.

The MVPCTP has been motivated by the recent advances in the remote sensing and Unmanned

Aerial Vehicle (UAV) technologies and the widespread applications of their joint use. Diverse
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types of sensors can be fitted on UAVs, ranging from thermal cameras to infrared spectroscopy

instruments and gas (or smoke) detectors. Beyond the obvious military and security applications,

UAVs with remote sensing capabilities can be used in a large number of applications including

but not limited to agriculture and forestry (crop health monitoring, fire detection), disaster man-

agement (monitoring ground displacement and floods), ecosystems management (mapping and

monitoring species), and map making (digital elevation models and 3D mapping). We refer the

interested reader to the comprehensive survey by Pajares (2015).

In addition, a wide variety of applications with a covering objective arise in healthcare and human-

itarian logistics, such as the modeling of emergency response for earthquake, flood and tsunami

(see Altay and Green, 2006; Caunhye et al., 2012; De La Torre et al., 2012). Most of the models that

incorporate a covering objective with a step function for coverage may be upgraded into proba-

bilistic coverage models using our approach. Before we proceed with our study, we briefly review

the related problems and their variants.

1.1 A brief review of the literature

The Vehicle Routing Problem (VRP) and its variants have been intensively studied in the literature.

Many algorithms, both exact and heuristics, have been developed for the VRP and its variations

over the past fifty years. We refer the interested reader to the surveys by Cordeau et al. (2007) and

Laporte (2009), and the books by Golden et al. (2008) and Toth and Vigo (2014). In recent years,

there has been an increase in the study of stochastic variants of the VRP, and the amount of data

enabling the understanding of various stochastic phenomena. For further details, we refer the

reader to the recent survey of Gendreau et al. (2016).

Gendreau et al. (1997) introduced the CTP, proposed a branch-and-cut algorithm and a construc-

tive heuristic algorithm. Jozefowiez et al. (2007) studied the bi-objective CTP where the objectives

are to minimize the tour length and the cover. The authors developed a multi-objective evolution-

ary algorithm and a branch-and-cut algorithm. Vargas et al. (2015) proposed an adaptive large

neighborhood search metaheuristic to solve the CTP, which is based on a selector operator that

allows to convert a giant tour into an optimal CTP solution.
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Hachicha et al. (2000) introduced the multi-vehicle covering tour problem (m-CTP) with a real-life

application which considers the routing of mobile health care delivery teams. A mathematical

formulation and three heuristic algorithms are proposed. For the same problem, a branch-and-

price algorithm is developed by Lopes et al. (2013). A variant of the m-CTP is studied by Hà et

al. (2013) where only the restriction on the number of vertices is considered, i.e., the constraint on

the route length is relaxed. The authors developed a branch-and-cut algorithm as well as several

metaheuristics. Jozefowiez (2014) presented a branch-and-price algorithm for the m-CTP and

provided computational results for randomly generated instances with up to 100 facility nodes

and 150 customer nodes. Another m-CTP variant, which considers multiple depots, is introduced

by Allahyari et al. (2015). The authors developed two integer programming formulations, flow-

based and node-based, and a hybrid metaheuristic which combines GRASP, iterated local search

and simulated annealing. Flores-Garza et al. (2017) introduced the cumulative m-CTP, which aims

to find a set of tours that must be followed by a fleet of vehicles in order to minimize the sum of

arrival times at each visited location. The authors proposed a mixed integer linear programming

formulation and a greedy randomized adaptive search procedure (GRASP). Recently, Pham et al.

(2017) have introduced a variant named Multi-Vehicle Multi-Covering Tour Problem (mm-CTP),

in which the customer vertices must be covered several times rather than once.

As an application of m-CTP in humanitarian logistics, Nolz et al. (2010) introduced the multi-

objective m-CTP for water distribution in an area affected by a disaster. The goals are to minimize

total traveled distance by the covered customers to reach their nearest visited vertex, the number

of unreached customers within a prespecified maximum distance, the total tour length, and the

latest arrival time at a population center point. A generalized version of the m-CTP is studied by

Naji-Azimi et al. (2012) in which the humanitarian aid to the affected people is supplied by several

satellite distribution centers located within a predefined distance from their domiciles.

As a final note, we would like to emphasize that deterministic and probabilistic coverage have

been widely studied within the facility location literature, based on the seminal works of Church

and ReVelle (1974) and Daskin (1983). We refer the interested reader to the recent survey by

Ahmadi-Javid et al. (2017).

3



1.2 Scientific contributions and structure of the paper

To the best of our knowledge, the MVPCTP has not been studied in the literature. The main con-

tributions of this paper are as follows. We first introduce the MVPCTP as a new CTP variant.

We develop a mathematical formulation, devise a linearization scheme, and adapt a set of valid

inequalities to strengthen the linear programming relaxation of the formulation. We then develop

a branch-and-cut algorithm which is able to solve realistic size instances of the MVPCTP to opti-

mality within limited computing times. We finally propose a variable neighborhood search (VNS)

heuristic to improve the initial solution and lower bounds found during the search process of the

solution approach.

The rest of this paper is organized as follows. Section 2 presents the problem definition, for-

mulations, linearization scheme, and valid inequalities. Section 3 describes the branch-and-cut

algorithm. Section 4 provides detailed results of our computational experiments. Finally, the con-

clusions are presented in Section 5.

2 Problem Definition, Formulation, Linearization and Valid Inequali-

ties
We are given a directed graph G = (V ∪W,A) where V is the set of facility vertices and W is the

set of customer vertices. We define qj > 0 as the demand associated with vertex j ∈W . The arc set

A consists of all possible connections between the facility vertices. Furthermore, associated with

each arc (i, j) ∈ A, there is a distance dij . A fleet of vehicles, denoted K, will leave the depot (with

index 0), visit a subset of V and return to the depot, each traveling a maximum distance of L.

Each facility vertex in V can be visited at most once. If a vehicle visits i ∈ V , then it serves j ∈ W

with probability 0 ≤ pij < 1. Let us define yi as a binary variable that assumes the value of 1 if

facility vertex i is visited by a vehicle. Given the tours performed by the vehicles, the probability

that customer vertex j has been served is then 1 −
∏
i∈V

(1 − pij)yi . Let us also define variable xij

that assumes the value of 1 if arc (i, j) ∈ A is traversed, and 0 otherwise. Finally, let ti be the

cumulative distance traversed by a vehicle when it arrives at vertex i ∈ V .

Given a homogeneous fleet of vehicles, the MVPCTP aims to determine a set of distance-constrained
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routes to visit a subset of facilities to maximize the expected demand covered, where a vehicle vis-

iting facility vertex i covers the demand qj of customer vertex j with probability pij ∈ [0, 1). It is

straightforward to show that MVPCTP is NP-Hard by a reduction from the TSP. Given an instance

of the TSP, construct an instance of the MVPCTP with the same vertex set as the facility vertices, a

single customer with a demand of 1, and a single vehicle. Set any facility vertex as the depot, and

define the coverage probability pij = p∗ ∈ [0, 1) for all facility-customer pairs. The TSP instance

has a feasible solution with the objective value z∗ if and only if the MVPCTP instance has a feasible

solution for the distance limit z∗ for the vehicle, and an objective function value of 1−(1−p∗)|V |−1.

2.1 Formulation

The MVPCTP can be formulated as (MVPCTP1):

Maximize
∑
j∈W

qj

(
1−

∏
i∈V

(1− pij)yi
)

(1)

Subject to

∑
i∈V

xij = yj j ∈ V \{0} (2)

∑
j:(i,j)∈A

xij =
∑

j:(j,i)∈A

xji i ∈ V (3)

∑
j:(0,j)∈A

x0j = |K| (4)

ti − tj + (L− di0 + dij − d0j)xij+

(L− di0 + dji − d0j)xji ≤ (L− di0)yi − d0jyj i, j ∈ V \{0}, i 6= j (5)

ti ≤ (L− di0)yi − (L− di0 − d0i)x0i i ∈ V \{0} (6)

ti ≥ d0iyi i ∈ V \{0} (7)

xij ∈ {0, 1} (i, j) ∈ A (8)

yi ∈ {0, 1} i ∈ V \{0} (9)

ti ≥ 0 i ∈ V \{0}. (10)
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The objective function (1) maximizes the expected customer demand served. Constraints (2) and

(3) are degree and assignment constraints, respectively. Constraints (4) ensure that exactly |K|

vehicles depart from the depot. Constraints (5)–(7) impose the subtour elimination and distance

constraints, which are the adapted and strengthened version of Miller-Tucker-Zemlin constraints

(Miller et al., 1960). Constraints (8)–(9) and (10) are the integrality and nonnegativity constraints,

respectively.

2.2 Linearization

In this section, we provide a linearization scheme for the nonlinear model MVPCTP1. This is par-

ticularly important for a larger computational reach, since the state-of-the-art nonlinear solvers

can handle a significantly smaller number of variables and constraints with respect to linear

solvers, and do not allow dynamic addition of valid inequalities. To this end, we first analyze

the objective function.

Proposition 1: Objective function (1) is concave.

Proof. It suffices to show that every member of the summation is a concave function. For a given

j ∈ W , let us denote the probability that customer j is covered as fj(y) = 1−
∏
i∈V

(1− pij)yi . Then

the derivative of fj(y) with respect to yk is:

δf

δyk
= − ln(1− pkj)

∏
i∈V

(1− pij)yi . (11)

As a result, the Hessian H of fj(y) is given by the elements:

δf

δykδyl
= − ln(1− pkj) ln(1− plj)

∏
i∈V

(1− pij)yi . (12)

Finally, we compute

aTHa = −
∏
i∈V

(1− pij)yi
∑
k,l

ln(1− pkj) ln(1− plj)akal = −
∏
i∈V

(1− pij)yi
(∑

k

ln(1− pkj)ak

)2

≤ 0.

(13)
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The inequality follows from −
∏
i∈V

(1 − pij)
yi < 0 and (

∑
k ln(1 − pkj)ak)2 ≥ 0, proves that the

Hessian is negative semidefinite and fj(y) is concave. �

Based on this result, we can use the tangents of fj(y) to linearize the objective function (1). Let us

define wj as the auxiliary variable to linearize fj(y). Then, the linearized model is (MVPCTP2):

Maximize
∑
j∈W

qjwj (14)

Subject to

(2)− (10),

wj ≤
∑
k∈V
− ln(1− pkj)

∏
i∈V

(1− pij)y
∗
i yk + 1−

∏
i∈V

(1− pij)y
∗
i

+
∑
k∈V

ln(1− pkj)
∏
i∈V

(1− pij)y
∗
i y∗k y∗ ∈ [0, 1]|V |−1 (15)

0 ≤ wj ≤ 1 j ∈W. (16)

We emphasize that there are an infinite number of elements in the constraint set (15), each of

which is stated based on a fixed solution y∗i ∈ [0, 1]∀i ∈ V \ {0}. The upper bound imposed on wj

is strictly equal to the value of fj(y∗) for this particular realization of y∗, and is valid for all other

realizations of y∗ due to the concavity of fj(y). Violated members of (15) for a given solution can

be identified in O(|V | × |W |) time by simply plugging in the values of w, y, and y∗ = y.

2.3 Valid Inequalities

We make use of several valid inequalities which are proposed and used in the literature. It can be

shown that these inequalities are also valid for the MVPCTP.

The first inequality is used for the generalized subtour elimination constraints by Dang et al.

(2013):

∑
u,v∈S

xuv ≤
∑
i∈S

yi − yj S ⊂ V \{0}, j ∈ S. (17)

which ensure that each customer is connected to the depot.

7



The second valid inequality, which was used by Letchford and Salazar-González (2006) for the

distance-constrained VRP is as follows:

L
∑

i∈S,j∈(V \S)

xij ≥
∑

i∈S,j∈(V \S)

(d0j + dji)(xij + xji) +
∑
i,j∈S

dijxij S ⊂ V \{0}. (18)

The next valid inequality is the strong 2-matching, also used for the Attractive TSP by Erdoğan et

al. (2010). Note that these inequalities are originally proposed for undirected route variables, and

the valid inequality stated below has been adapted to accommodate directed route variables.

∑
i,j∈S

xij +
∑

(i,j)∈A′
xij ≤

∑
i∈S

yi +
1

2
(|A′| − 1) S ⊂ V \{0}, A′ ⊂ A (19)

in which the following conditions must be hold

(i) |{i, j} ∩ S| = 1 (i, j) ∈ A′

(ii) (i, j) ∩ (k, l) = ∅ (i, j) 6= (k, l) ∈ A′

(iii) |A′| ≥ 6 and even.

The next valid inequality is based on the generalized large multistar inequalities originally pro-

posed for the VRP by Gouveia (1995), used by Letchford and Salazar-González (2006), and recently

used by Koç and Karaoglan (2016) as follows:

∑
i∈S

∑
j∈V \S

xij ≥
1

L

(∑
i∈S

∑
j∈V \S

(−→
dijxij +

←−
djixji

))
S ⊂ V \ {0}, S 6= ∅ (20)

where

−→
dij =


di0 if j is depot

dij + dj0 otherwise;
i, j ∈ V \ {0}
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←−
dji =


d0i if j is depot

d0j + dji otherwise;
i, j ∈ V \ {0}.

For the separation algorithms of the four sets of valid inequalities we have stated above, we refer

the interested reader to the papers cited for each set of valid inequality. The penultimate set of

valid inequality we have utilized is

∑
i,j∈S

xij ≤ |S| − r(S) S ⊂ V \{0}, |S| > 2 (21)

where r(S) is a lower bound on number of vehicles required to visit the set of facilities S. Although

r(S) can easily be evaluated for routing problems having customer load and vehicle capacity (i.e.,

rCV RP (S) =
∑

j∈W
qj
Q

where Q is the vehicle capacity), it is not as easy for routing problems

without load restrictions. In this paper, we use the following property of any feasible route to

obtain r(S).

Let us consider a feasible route P = {v0, v1, v2, . . . , vs−1, vs, vs+1} with s arbitrary facilities (as

illustrated in Figure 1) where v0 and vs+1 represent the depot vertex. The total route length of P ,

denoted as dP , is evaluated as

dp = dv0,v1 + dv1,v2 + . . .+ dvs−1,vs + dvs,vs+1 (22)

or equivalently

dp =
dv0,v1

2
+
dv0,v1 + dv1,v2

2
+
dv1,v2 + dv2,v3

2
+ . . .+

dvs−1,vs + dvs,vs+1

2
+
dvs,vs+1

2
(23)

which can be rewritten as:

dp =
dv0,v1

2
+

s∑
i=1

dvi−1,vi + dvi,vi+1

2
+
dvs,vs+1

2
. (24)

In the best case, the previous vi−1 and the next vertex vi+1 of each facility vi on any route are
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the first and the second nearest vertex to vi in P , respectively. Therefore, the total route length

evaluation without sequence information in P using first nearest and second nearest vertices,

called d̂P , gives a lower bound on dP . Based on this property, a polynomial time algorithm to

obtain r(S) is given in Algorithm 1 where d̂s is the total route length and Ω is the set of linked

customer vertices.
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Figure 1: The total route length evaluation for any feasible solution.

The final valid inequality which bounds above the number of facilities that can be served in a

feasible solution is:

∑
j∈V \{0}

yj ≤ F (25)

where F is the maximum number of facilities that can be served. This value is obtained as follows:

for each facility i ∈ V \{0} the nearest distance d̄i =
dji + dik

2
is evaluated where j, k ∈ V are the

first and the second nearest vertex to i. Then facility vertices are sorted in increasing order of d̄i

and F is calculated as the largest number of facilities satisfying
∑F

i=1 d̄i ≤ |K| × L.

10



Algorithm 1 Procedure to obtain the minimum number of vehicles for a set of vertices
1: Procedure: Evaluation of r(S)
2: Input: Node set S not including the depot vertex
3: Output: r(S)
4: Step 1. Initialize parameters
5: d̂S ← 0, Ω← 0
6: //Route length evaluation without depot vertex
7: Step 2. Perform the following steps to all vertices (v) in S
8: Step 2.1. Find the first (v̄) and second (¯̄v) nearest vertex to (v)
9: (v̄)← arg mini∈S{di,v}

10: (¯̄v)← arg mini∈S:i 6=v̄{dv,i}
11: Step 2.2. Evaluate the effect of v to d̄S

12: d̂S ← d̂S +
dv̄,v + dv,¯̄v

2
13: //Route length evaluation considering depot vertex
14: Step 3. Find the best unlinked customer vertex (i∗) in S causing least route length increment

to return to the depot

15: i∗ ← arg mini∈S\Ω{d0i −
di, ¯̄vi

2
}

16: Step 4. Evaluate the effect of i to d̄s

17: d̂S ← d̂S + d0i∗ −
di∗ ,̄̄vi∗

2
18: r(S)← dd̂s/Le
19: Ω← Ω ∪ {i∗}
20: Step 5.
21: if |Ω| < 2× r(S) then
22: go to Step 3
23: else
24: return r(S)
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3 A Branch-and-Cut Algorithm
We developed a branch-and-cut algorithm which implements a combination of valid inequalities

and implicit enumeration to solve the MVPCTP. The algorithm identifies the violated members of

the valid inequalities presented in Section 2.2 by solving the associated separation problems. At

each node of the branch-and-cut tree, violated inequalities are added to the formulation and the

corresponding linear program is re-optimized. Branch-and-cut algorithms have been used with

impressive results on several variants of the routing and covering problems (see Erdoğan et al.,

2010; Karaoglan et al., 2011; Erdoğan and Laporte, 2013; Battarra et al., 2014).

3.1 An overview of the branch-and-cut algorithm

The general structure of the branch-and-cut algorithm is provided in Algorithm 2. LP (P ) is the

LP relaxation of model P . S∗t is the optimal solution of LP (P ) at the particular node t. Sinit and

f(Sinit) are the initial solution and its objective function value, respectively. Similarly, Sbest and

f(Sbest) are the best solution and its objective function value, respectively. Finally, Φ is the set of

unexplored nodes of branch-and-cut tree.

To improve the upper bound, we construct and solve the LP relaxation of the formulation MVPCTP2

(i.e., LP (P )) including constraints (2–10), (16) and (25). At each iteration, we check the violations

of constraints (15) and (17–21). If any of these constraints are violated, we add it to the model,

solve and run the previous steps until all constraints are satisfied. If the solution is integral, then

it is declared the new incumbent, else we branch on one of the fractional decision variables. To

improve the performance of the branch-and-cut algorithm, we obtain an initial solution using our

VNS heuristic, and use it as the starting lower bound. We also obtain solutions based on fractional

solutions encountered at the nodes of the branch-and-cut tree, by applying the VNS algorithm on

the partial solutions. The new solution replaces the best known solution if it has a higher objective

function value, otherwise the algorithm continues.

Violated members of the constraint set (15) can be identified inO(|V ||W |) time simply by plugging

in the solution values for each j ∈ W . We use a greedy constructive heuristic to separate the

valid inequalities (17–21). In each iteration of the heuristic, the node set (S) is initialized with a

randomly selected node from the set of customer nodes, and then S is expanded by a new node
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that minimizing the slack of the corresponding inequality. The violation is checked and if the

inequality is violated, then it is stored into S and the inequality is added to the model. These steps

are repeated until current set S not expanded by a new node.

Algorithm 2 The branch-and-cut algorithm
1: Step 1.
2: Initialization
3: Generate Sinit
4: Sbest ← Sinit
5: Add the root node to Φ and set the root node as current node t
6: Step 2.
7: Solve LP (P ) including constraints (2–10), (16) and (25)
8: Step 3.
9: if S∗t is infeasible or f(S∗t ) ≤ f(Sbest) then

10: Φ← Φ\{t}
11: Go to Step 8

12: Step 4.
13: if S∗t is integer and f(S∗t ) > f(Sbest) then
14: Sbest ← S∗t , Φ← Φ\{t}
15: Go to Step 8

16: Step 5.
17: if S∗t is not integer then
18: Generate a feasible solution (Sfeas

t ) for the particular node t.
19: if f(Sfeas

t ) > f(Sbest) then
20: Sbest ← Sfeas

t

21: Step 6.
22: Identify violated constraints (15) and (17–21) sequentially
23: if there are any violated constraints then
24: Add violated constraints to the formulation LP (P ), reoptimize LP (P ) and go to Step 3

25: Step 7.
26: Select a non-integer decision variable according to branching rule, generate two nodes and

add them to Φ
27: Step 8.
28: if Φ 6= ∅ then
29: select a node t, reoptimize LP (P ) and go to Step 3
30: else
31: Return Sbest

3.2 Heuristic algorithm

In order to obtain an initial feasible solution (Sinit), we select the nearest facility node (i ∈ V \{0})

to the depot as the first node of a route and the partial route length is computed (d′ = d0i). The

nearest feasible unvisited facility vertex (i.e., j ∈ V \{0} : d′ + dij + dj0 ≤ L) to the node i is then
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selected and inserted at the end of the current route, and the partial route length is updated as

d′ = d′ + dij . If there are no feasible unvisited facility vertices, the current route is then closed.

This procedure is iteratively applied for all vehicle routes.

We develop a VNS algorithm to improve this solution. The VNS, introduced by (Mladenović

and Hansen, 1997), is based on systematically changing the neighborhood structure in order to

improve the current solution and aims to further explore the solution space. The VNS algorithm

have been implemented for many routing problems (see Hemmelmayr et al., 2009; Stenger et al.,

2013; Polat et al., 2015). The algorithmic steps of the VNS are presented in Algorithm 3.

Algorithm 3 The variable neighborhood search algorithm
1: Step 1.
2: Set Simp ← S, k = 1.
3: Step 2.
4: if k = 1 then
5: Apply ADD procedure to Simp for randomly selected |V | pairs of unvisited facility and

route pairs and select the best one (S′ ).
6: else if k = 2 then
7: Apply MOVE procedure to Simp for randomly selected |V | pairs of visited facility and

route pairs and select the best one (S′).
8: else if k = 3 then
9: Apply FLIP procedure to Simp for randomly selected |V | pairs of unvisited and visited

facility pairs and select the best one (S′ ).
10: else
11: return Simp

12: Step 3.
13: if S′ better than Simp then
14: Simp ← S′, k = 1 and go to Step 2.
15: else
16: k = k + 1 and go to Step 2.

A feasible MVPCTP solution consists of a set of routes (R) and each route r ∈ R is represented

by an ordered list of NFr facilities and two copies of the depot. The ith facility in route r is

denoted as ri, and the position of facility j is denoted as tj . The total length of each route r is

calculated as the sum of the distances between successive facilities on a route, i.e. Dr = d0,r1 +∑NFr−1
i=1 (dri,ri+1)+drNFr ,0. The objective functionZ =

∑
j∈W qj(1−Πi∈V (1−pij)yi) can be rewritten

as Z = Z1 +Z2 with Z1 =
∑

j∈W qj and Z2 =
∑

j∈W (qjΠi∈V (1−pij)yi). For a given solution vector

y ∈ [0, 1]|V |−1, we define the objective function contribution of each customer vertex j ∈ W as

kj = qjΠi∈V (1− pij)yi and therefore Z2 =
∑

j∈W kj .
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The procedure to obtain the initial feasible solution (Sinit) is called once at the beginning of the

branch-and-cut algorithm. Additionally, in order to improve the best feasible solution throughout

the algorithm, the following procedure is invoked to obtain a feasible solution from a fractional

solution at any node of enumeration tree. Let x∗ be optimal fractional solution of any node on the

branch-and-cut tree. An empty route (r) is opened and a customer i with maximum x∗0i is added

to r as the first facility and the partial route length is evaluated (d′ = d0i). Next, a new feasible

unvisited facility j (i. e. j ∈ V \{0} : d′+dij +dj0 ≤ L) having maximum x∗ij is selected and added

to the end of r, where i is the last facility on r. If there is no feasible facility vertex to add, then r is

closed and these steps are reiterated for a new route. Finally, VNS procedure is applied in order to

improve this solution. If it provides a better solution than the current lower bound it is updated,

otherwise the algorithm continues.

We use three neighborhood search procedures, ADD, MOVE, and FLIP, in the VNS. The feasibility

of a move within a neighborhood can easily be evaluated by considering the statistics of the cur-

rent solution, such as the length of routes. However, we have utilized an additional data structure

and a special evaluation scheme for the MVPCTP to speed up the objective function evaluation of

the new solution. Therefore, we used following notations and definitions in the remainder. The

neighborhood search procedures are as follows.

3.2.1 ADD procedure:

One unvisited facility (i) is selected randomly and inserted into the best position (b) of a randomly

selected route (r). This procedure is feasible under the following condition.

Dr + ∆b ≤ L (26)

where ∆b = drb−1,i + di,rb − drb−1,rb is the deviation on tour length when the facility i is added to

the position b.

The difference (∆obj) between the objective function value of the new (Znew) and the current

(Zcur) solution can be calculated as

∆obj = Znew − Zcur = (Znew
1 − Znew

2 )− (Zcur
1 − Zcur

2 ). (27)
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Since the first part of the objective function is constant (i.e., Znew
1 = Zcur

1 ), the difference can be

rewritten as

∆obj = Zcur
2 − Znew

2 =
∑
j∈W

kj −
∑
j∈W

kj(1− pij) =
∑
j∈W

kjpij . (28)

As it can be observed from (28), ∆obj is independent of the position where the new facility is in-

serted. Therefore, the best position for locating the new facility is selected as b = arg mink=1,...,NFr{∆k}.

3.2.2 MOVE procedure:

One visited facility (i) is selected randomly, removed from its current route (r) and moved to the

best position (b) of a randomly selected route (s). This procedure is feasible under the following

conditions.

• If r = s, which means that the selected customer is moved to another position in the same

route, then the feasibility condition is as

Dr + ∆−b −∆+ ≤ L (29)

where ∆−b = drb−1,i+di,rb−drb−1,rb is the increment on the tour length by inserting the facility

i to the position b and ∆+ = drti−1,i + di,rti+1 − drti−1,rti+1 is the saving on the tour length

obtained by removing facility i from its current position.

• if r 6= s, which means that the selected customer is moved to a position in a different route.

In this situation, it is sufficient to check the feasibility for the new route since the total route

length of r will always decrease and the maximum tour length restriction is always satisfied.

Therefore the feasibility condition is

Ds + ∆−b ≤ L (30)

where ∆−b = dsb−1,i + di,sb − dsb−1,sb .

In this operator, no new facility is added to the solution. Therefore, the objective function value
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does not change. However, moving a customer to another position may decrease the route length

and give a new chance to add a new facility to the solution by using ADD operator. This situation

also effects the selection of the best position (b): since there is no change in objective function we

use the route length deviations to choose the best position as given below

if r = s b = arg min
m=1,...,NFr

{∆−m −∆+}

if r 6= s b = arg min
m=1,...,NFs

{∆−m} (31)

3.2.3 FLIP procedure:

One unvisited facility (i) is selected randomly and set in place of a visited facility (f) of a randomly

selected route (r). This move is feasible subject to the following condition

Dr + ∆−f −∆+
f ≤ L (32)

where ∆−f = drtf−1,i + di,rtf+1 is the increment on the tour length by inserting the facility i to the

position of facility f and ∆+
f = drtf−1,f + df,rtf+1 is the saving on the tour length obtained by

removing facility f from its current position.

Similar to the evaluation scheme in (28), the difference ∆obj between the objective function values

can be calculated as

∆f
obj =

∑
j∈W

kj −
∑
j∈W

kj
1− pij
1− pfj

=
∑
j∈W

kj

(
1− 1− pij

1− pfj

)
=
∑
j∈W

kj
pij − pfj
1− pfj

(33)

where ∆f
obj is dependent on the removed facility. Therefore, the removed facility is selected as

f∗ = arg maxf=1,...,NFr{∆
f
obj}which maximizes the objective function value of the new solution.

In the VNS, we sequentially use these three neighborhood search procedures. At each iteration,

new solutions are obtained randomly and the best one is selected as the new solution for the corre-

sponding neighborhood search procedure. If a new solution is worse than the current one, the next

neighborhood search procedure is then applied, and algorithm stopped after unsuccessful oper-

ation of the FLIP procedure. Otherwise, the new solution is accepted and the algorithm restarts

17



with the ADD procedure. Acceptance criterion is another important factor for our algorithm. For

ADD and FLIP procedures, the difference between objective function values are used for both de-

termining the best solution amongst |V | neighbors and deciding if the best neighbor solution is

better or not than the current one. However, for MOVE procedure the objective function value

does not change. Therefore, we use the difference between total route lengths (i.e.,
∑

r∈RDr) for

acceptance of the new solution.

4 Computational Experiments
In this section, we present the results of computational experiments performed in order to assess

the performance of the branch-and-cut algorithm. All experiments were conducted on a server

with Intel Xeon 3.16 GHz processor. The branch-and-cut algorithm was implemented in C++ and

with CPLEX 12.6. A CPU time limit of one hour was imposed on the solution time for all instances.

We first provide a description about the benchmark instances and their generation procedure in

Section 4.1. We then evaluate the performance of the branch-and-cut algorithm in Section 4.2.

4.1 Benchmark instances

Since there are no benchmark instances in the literature for the MVPCTP, we have generated the

data sets by adapting the instances for the Capacitated VRP (Augerat et al., 1995; Christofides

and Eilon, 1969; Fisher, 1994) and for the Symmetric Capacitated VRP (VRPLIB, 1998). There

are six main sets in our benchmark instances: Set A (107 instances) (Augerat et al., 1995), Set B

(92 instances) (Augerat et al., 1995), Set E (264 instances) (VRPLIB, 1998), Set E-n (44 instances)

(Christofides and Eilon, 1969), Set F (12 instances) (Fisher, 1994), and Set P (68 instances) (Augerat

et al., 1995).

We have used the first one-third of vertices as facilities, and the remaining two-third as customers.

The number of available vehicles is fixed as two and three. Although the fleet size is smaller and

the distance limit is shorter than the traditional values used in the VRP literature, this reflects the

ability of the vehicles to serve customers remotely, requiring a smaller fleet and shorter routes as

a result. The maximum distance is equal to two or three times of the average distance between

facilities and depot. In total, we have generated 587 benchmark instances, ranging between 5 to
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161 facilities, and 10 to 322 customers.

We have generated the coverage probabilities as follows. We first compute the probability p̂ij =

min(0.95, 1
d2ij

) for all i, j : i ∈ V, j ∈ W . The quadratic service decay based on the distance is

characteristic to optic and magnetic sensing devices. We then determine the minimum proba-

bility pmin = mini∈V,j∈W (p̂ij) and the maximum probability pmax = maxi∈V,j∈W (p̂ij). Finally,

we normalize the probability values between pmin and 0.95 for all (i, j : i ∈ V, j ∈ W ) as pij =

pmin + (0.95− pmin)
p̂ij−pmin

pmax−pmin
. The normalization process results in a full range of coverage prob-

ability values, and ensures a robust computational test.

4.2 Results for the branch-and-cut algorithm

This section presents the results of our experiments on benchmark instances. Table 1 shows the

average results of all instance sets. For detailed results of all instances, the reader is referred to

the supplementary material of this article. In the tables, the columns show: instance set, range of

total number of customer and facility vertices (|V | + |W |), range of total number of facility ver-

tices (|V |), percentage deviation (Dev(%)), total computation time in seconds (CPU ), and finally

total number of optimal solutions (#Opt) over total number of instances of each set indicated in

parenthesis. The percentage deviation between the linear relaxation bound (UB) produced by a

particular formulation and lower bound (LB) obtained by the branch-and-cut algorithm is calcu-

lated as ((UB − LB)/UB)× 100.

Table 1 shows that our branch-and-cut algorithm obtains optimal solutions for all 107 in Set A, 91

out of 92 instances in Set B, 217 out of 264 instances in Set E, all 44 instances in Set E-n, 11 optimal

solutions out of 12 instances for Set F, and all 68 instances in Set P. In total, our branch-and-cut

algorithm finds 538 optimal solutions out 587 instances. Average deviations are 0.00%, 0.17%,

2.59%, 0.00%, 0.07%, 0.00% and 0.47% for Sets A, B, E, E-n, F and P, respectively. The average time

required by the branch-and-cut algorithm to solve Sets A, B, E, E-n, F and P are 1.17, 45.46, 743.55,

6.60, 370.10, 2.63 and 194.92 seconds, respectively.

Table 2 shows the average results of instance sets in an incremental order of number of customer

and facilities for Sets A, B, E, E-n, F, and P. The number in parentheses represents the total number

of instances. Our results clearly show that for Sets A, E-n and P instances, the branch-and-cut
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Table 1: Average results of all instance sets.
Instance set Range of |V |+ |W | Range of |V | Dev (%) CPU #Opt

Set A [31-79] [10-26] 0.00 1.17 107 (107)
Set B [30-77] [10-26] 0.17 45.46 91 (92)
Set E [15-483] [5-161] 2.59 743.55 217 (264)
Set E-n [29-100] [10-33] 0.00 4.04 44 (44)
Set F [44-134] [15-45] 0.00 64.98 11 (12)
Set P [39-100] [13-33] 0.00 1.76 68 (68)
Average 0.46 143.49
Total 538 (587)

algorithm is able to obtain optimal solutions for all number of facility ranges. For both Sets B

and F, the algorithm is not able to find optimal solution for only one instance. For Set E, until

33 facilities the algorithm obtains optimal solutions. As it can be seen clearly, computation time

generally increases when the number of customer and facility vertices increases.

In Table 3, we report the average numbers of generated valid inequalities for each instance set. We

interpret these values as a measure of comparative effectiveness of the valid inequalities. It can

be observed that the inequality (21) is added more frequently with respect to the rest. The second

and third most added inequalities are (18) and (20), respectively. The inequalities (17) and (19) are

the least frequently added inequalities.

To show the impact of the VNS heuristic, we present an analysis in Table 4, where we report the

average number of times VNS is applied throughout the branch-and-cut tree (Times applied), the

average number of times it resulted in an improvement of solution quality (Times improved), and

the frequency of improvement which is calculated as (Times improved / Times applied)×100. The

average frequency of improvement is calculated as 0.67 %, with 9.28%, 0.25%, 0.62%, 2.60%, 0.11%,

and 5.47% for Sets A, B, E, E-n, F, and P, respectively. Note that a low frequency implies that the

optimal (or best known) solution was found early in the search, and further applications of the

VNS did not provide improvements.

As a final comment, we state that the average percentage of facility vertices visited by the vehicles

are 55.11%, 60.93%, 43.96%, 44.22%, 49.84%, and 41.59% for Sets A, B, E, F, and P, respectively. We

therefore conclude that any direct enumeration scheme is very unlikely to achieve a satisfactory

performance.
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Table 2: Average results on Sets A, B, E, E-n, F, and P.
Instance set Range of |V |+ |W | Range of |V | Dev (%) CPU
Set A (18) [31-35] [10-12] 0.00 0.06
Set A (18) [35-38] [12-13] 0.00 0.05
Set A (18) [38-45] [13-15] 0.00 0.20
Set A (18) [45-54] [15-18] 0.00 0.43
Set A (18) [59-62] [20-21] 0.00 0.43
Set A (17) [62-79] [21-26] 0.00 6.14

Set B (16) [30-37] [10-12] 0.00 0.06
Set B (16) [38-43] [13-14] 0.00 0.18
Set B (16) [44-49] [15-16] 0.00 2.24
Set B (15) [50-56] [17-19] 0.00 0.41
Set B (15) [56-65] [19-22] 0.00 25.00
Set B (14) [65-77] [22-26] 1.11 268.71

Set E (44) [15-29] [5-10] 0.00 0.03
Set E (44) [30-75] [10-25] 0.00 11.86
Set E (44) [75-100] [25-33] 0.00 5.01
Set E (44) [100-150] [33-50] 0.02 129.68
Set E (44) [150-255] [50-85] 0.71 1259.76
Set E (44) [261-483] [87-161] 14.84 3054.98

Set E-n (8) [29-29] [10-10] 0.00 0.04
Set E-n (8) [32-50] [11-17] 0.00 0.36
Set E-n (8) [75-75] [25-25] 0.00 7.08
Set E-n (7) [75-75] [25-25] 0.00 5.41
Set E-n (7) [75-100] [25-33] 0.00 9.00
Set E-n (6) [100-100] [33-33] 0.00 21.59

Set F (2) [44-44] [15-15] 0.00 0.10
Set F (2) [44-44] [15-15] 0.00 0.05
Set F (2) [71-71] [24-24] 0.00 15.36
Set F (2) [71-71] [24-24] 0.00 244.42
Set F (2) [134-134] [45-45] 0.00 44.10
Set F (2) [134-134] [45-45] 0.41 1916.56

Set P (12) [39-49] [13-16] 0.00 0.37
Set P (12) [49-50] [16-17] 0.00 0.44
Set P (11) [54-54] [18-18] 0.00 0.48
Set P (11) [54-59] [18-20] 0.00 0.98
Set P (11) [59-75] [20-25] 0.00 2.99
Set P (11) [75-100] [25-33] 0.00 10.95
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Table 3: Average number of valid inequalities added.
Instance set Valid inequality set

(17) (18) (19) (20) (21)
Set A 5.61 23.09 1.26 7.54 13.68
Set B 11.92 16.86 14.66 17.86 21.50
Set E 65.50 284.41 38.52 93.16 1112.70
Set E-n 38.45 54.91 4.52 12.00 53.55
Set F 81.17 94.17 107.08 25.25 137.50
Set P 22.09 41.81 1.81 9.84 35.26
Average 39.45 145.65 22.59 48.63 517.20

Table 4: The effect of the VNS algorithm.
Instance set Times applied Times improved Improvement (%)
Set A 17.93 1.66 9.28
Set B 611.14 1.55 0.25
Set E 543.07 3.39 0.62
Set E-n 115.57 3.00 2.60
Set F 2225.92 2.50 0.11
Set P 57.81 3.16 5.47
Average 404.16 2.71 0.67

5 Conclusions
We have introduced the MVPCTP which is a multi-vehicle and probabilistic coverage general-

ization of the CTP. We have provided a nonlinear integer programming model and have devised

a linearization scheme for the objective function that we have proved to be concave. We have

adapted a set of valid inequalities from the VRP literature, to strengthen the linear programming

relaxation of the formulation. We have developed a branch-and-cut algorithm, and have proposed

a VNS algorithm to improve the initial solution and lower bounds found during the search process

of the solution approach.

We have performed extensive computational experiments on 587 benchmark instances adapted

from the literature, with the instance size ranging from 5 to 161 facilities, and from 10 to 322

customers. Results show that our algorithm is highly effective on the MVPCTP by yielding 538

optimal solutions out 587 instances within one hour of CPU time.
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