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A NOVEL HYDROPHOBIC ZrO2-SiO2 BASED HETEROGENEOUS ACID 

CATALYST FOR THE ESTERIFICATION OF GLYCEROL WITH OLEIC 

ACID     

ABSTRACT 

The inevitably low value of glycerol has led to extensive investigations on glycerol 

conversion to value-added derivatives. This work focuses on industrially important 

catalytic esterification of glycerol with oleic acid due to its high commercial value. In 

this work, a novel heterogeneous acid catalyst featuring hydrophobic surface was 

developed on ZrO2-SiO2 support as water tolerant solid acid catalyst is vital for two 

phase esterification reactions producing water. The synthesized catalyst (ZrO2-SiO2-

Me&Et-PhSO3H) was prepared through silication and surface modification using 

trimethoxymethylsilane (TMMS) and 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane. 

The surface morphology, physiochemical and textural properties, acidity and 

hydrophobicity were characterized. The mechanism of the catalyst surface modification 

is thereof proposed according to comprehensive characterization results. A novel 

technique to control acidity and hydrophobicity level of the designed catalyst is 

disclosed in this work. The acidity and hydrophobicity of the catalyst were tuned by 

controlling the amount of surface modification agents. It was found that the 

hydrophobicity of the catalyst is decreased as its acidity increased. ZrO2-SiO2-Me&Et-

PhSO3H_70 catalyst with 70 mol% of TMMS and 0.62 mmol/g acidity is the optimal 

catalyst for glycerol esterification with oleic acid.  Furthermore, the role of 

hydrophobicity in catalytic reaction was investigated herein. It was found that at 

constant catalyst acidity, the more hydrophobic catalyst showed better yield. The 

conversion obtained with the designed catalyst (ZrO2-SiO2-Me&EtPhSO3H_70) is 

88.2% with 53.5% glycerol monooleate selectivity and 40.0% glycerol dioleate 

selectivity (combined 94% selectivity of glycerol monooleate and dioleate) at equimolar 
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oleic acid-to-glycerol ratio, 160 oC, reaction temperature, 5 wt% catalyst concentration 

with respect to weight of oleic acid, solvent-less reaction conditions and 8 h reaction 

time. This work reveals hydrophobicity and pore volume of the designed catalyst affect 

the selectivity of product significantly. In addition, the performance of the hydrophobic 

designed ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst was used to benchmark with catalytic 

activity of sulfated zirconia (SO4
2-/ZrO2) and commercial catalysts (Amberlyst 15 and 

Aquivion). The correlation results showed that pore volume (pore size) influenced the 

product selectivity when ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst was compared to 

three SO4
2-/ZrO2 catalysts that were developed from different zirconium precursors. 

Whereby, the higher pore volume catalyst is favourable to glycerol dioleate production 

at identical reaction conditions. It can be concluded pore volume and size can be used to 

control the selectivity of the products. In addition, this study also revealed 

hydrophobicity characteristic facilitated initial reaction rate effectively.  

Keywords: Silica-based catalyst, hydrophobic, esterification, glycerol, oleic acid 
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A NOVEL HYDROPHOBIC ZrO2-SiO2 BASED HETEROGENEOUS ACID 

CATALYST FOR THE ESTERIFICATION OF GLYCEROL WITH OLEIC ACID     

RÉSUMÉ 

Le fait que le glycérol est toujours à faible valeur a conduit aux études approfondies 

sur sa conversion en dérivés à valeur ajoutée. Ce projet met en avant la réaction 

d'estérification catalytique entre le glycérol et l'acide oléique dont le produit porte une 

grande valeur commerciale dans l'industrie. Dans ce travail, un catalyseur hétérogène 

possédant une surface hydrophobe est développé sur le support de ZrO2-SiO2 car 

l'estérification produisant de l'eau nécessitent un catalyseur solide qui tolère à l'eau. Le 

catalyseur (ZrO2-SiO2-Me&Et-PhSO3H) est synthétisé par la silication et la 

modification de surface en utilisant le triméthoxyméthylsilane (TMMS) et le 2-(4-

chlorosulfonylphényl)éthyltriméthoxysilane. La morphologie de surface, les propriétés 

physiochimiques et texturales, l'acidité et l'hydrophobicité du catalyseur ont été 

caractérisées. Le mécanisme de modification de la surface est proposé selon ces 

résultats. Une technique innovatrice pour contrôler l'acidité et l'hydrophobicité du 

catalyseur est décrite dans ce rapport. Ces dernières peuvent être réglées en manipulant 

la quantité d'agents de modification de surface. Il est constaté que l'hydrophobicité du 

catalyseur diminue quand son acidité augmente. Le catalyseur ZrO2-SiO2-Me&Et-

PhSO3H_70 avec 70% molaire de TMMS et 0,62 mmol/g d'acidité est trouvé optimal 

dans l'estérification du glycérol avec l'acide oléique. En outre, le rôle de 

l'hydrophobicité dans la réaction catalytique a été étudié ici. Il est observé que, à une 

acidité constante, un catalyseur avec une meilleure hydrophobicité génère un meilleur 

rendement. Le taux de conversion apporté par ce catalyseur (ZrO2-SiO2-

Me&EtPhSO3H_70) est à 88,2% avec une sélectivité en monooléate de glycérol de 

53,5% et une sélectivité en dioléate de glycérol de 40,0% (une sélectivité combinée de 

94% en monooléate et dioléate de glycérol) dans un mélange équimolaire d'acide 
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oléique et de glycérol, sous une température de réaction à 160 oC, avec une 

concentration en catalyseur à 5% massique par rapport à celle de l'acide oléique, dans 

un milieu réactionnel sans solvant et le temps de réaction fixé à 8 h. Cette étude montre 

que l'hydrophobicité et le volume poreux du catalyseur influent la sélectivité du produit 

de manière significative. De plus, la performance de ce catalyseur hydrophobe ZrO2-

SiO2-Me&Et-PhSO3H_70 est comparée avec l'activité catalytique de la zircone sulfatée 

(SO4
2-/ZrO2) et celle des catalyseurs commerciaux (Amberlyst 15 et Aquivion). Les 

résultats de corrélation ont prouvé que le volume poreux (la taille des pores) influe la 

sélectivité du produit lorsque le catalyseur ZrO2-SiO2-Me&Et-PhSO3H_70 est comparé 

à trois catalyseurs SO4
2-/ZrO2 développés avec différents précurseurs en zirconium. 

Ainsi, le catalyseur à un volume poreux plus élevé favorise la production en dioléate de 

glycérol sous des conditions de réaction identiques. En conclusion, le volume et la taille 

des pores sont les paramètres de contrôle de la sélectivité du produit. Cette étude a 

également mis en évidence que l'hydrophobicité du catalyseur améliore le taux initial de 

réaction.  

Mots-clés: Catalyseur à base de silice, hydrophobe, estérification, glycérol, acide 

oléique 
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CHAPTER 1: INTRODUCTION  

 

 Glycerol Characteristics and Production 1.1

Glycerol is a colorless, odorless, viscous, and hygroscopic liquid substance with a 

slightly sweet taste. It is the simplest trihydric alcohol that can be reacted as an alcohol 

but can remain stable under most conditions. Glycerol was first discovered by C. W. 

Scheele in 1779 through the saponification of olive oil with lead oxide. The name 

“glycerol” was first used by M. E. Chevreul in 1813; until the 1930s, glycerol was 

mainly produced via a fat-splitting process. Pasteur (1857) showed that glycerol, 

together with succinic acid, can be produced from sugars via a biochemical pathway 

called alcoholic fermentation. In World War I and II, glycerol was also produced 

through fermentation or carbohydrate hydrogenolysis (Anneken et al., 2000; Pagliaro & 

Rossi, 2010; The Soap and Detergent Association, 1990; USDA AMS Agricultural 

Analytics Division, 2013).  

Glycerol has also been synthetically produced from petrochemical feedstock since 

1943 (I. G. Farben); synthetically produced glycerol accounted for approximately 60% 

of the total market in 1965 (Pagliaro & Rossi, 2010). However, the use of synthetic 

glycerol has lost popularity over renewable-derived glycerol because of cost-ineffective 

production (Quispe, Coronado, & Carvalho Jr, 2013). Three common pathways have 

concurrently generated excess agriculture-based glycerol: hydrolysis, saponification, 

and biodiesel production (Brockmann et al., 1987; Kirk-Othmer, 2013). 

The quantity and quality of glycerol generated from three major commercial 

productions are elucidated comprehensively herein. It has been revealed that excess 

crude glycerol (CG) is attributed not only to biodiesel production but also to alternate 
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chemical routes employed in the oleochemical industry. Glycerol that has not undergone 

chemical treatment, purification, or separation is known as CG. The quality of CG 

strongly depends on processes and materials. Different impurities, such as 

monoglycerides, diglycerides, alkali metals, fatty acid esters (FAEs), soaps, salts, or 

diols are formed with their corresponding processing technologies. The common 

processes of glycerol production, operating conditions and the quality of CG produced 

through different routes are summarized in Table 1.1. Among the three processes, 

hydrolysis produces the least amount of impurities: 2.2%, 14.1%, and 16% of the total 

impurities consisting of ash, matter organic non glycerol (MONG), and polyol are 

obtained through hydrolysis, soap production, and biodiesel production, respectively. 

Despite the highest content of impurities obtained through biodiesel production, 

biodiesel-based CG is the major source of glycerol.  
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Table 1.1: Summary of commercially available glycerol production routes and their impurities  

 High pressure splitting (hydrolysis) Soap making process 
(saponification) 

Biodiesel production (transesterification) 

Mechanism     

Theoretical 
yield 

Theoretically 1 ton oil produces 100 kg glycerol, approximately 10 wt% concentration of glycerol obtainable for hydrolysis, 
saponification and transesterification 

Operating 
conditions 

 T= 250-260 oC 
 P= 70-80 bar 
 t= 2-3 h 
 Catalyst= absence 

 T= 125 oC 
 P= atmosphere 
 Extra chemical dosing= brine, 

electrolytes and lye solution 

 T= 60-80 oC 
 P= atmosphere 
 t= 1 h 
 Molar ratio of methanol to oil= 6:1  
 Base homogeneous catalyst= sodium 

methoxide, potassium hydroxide, sodium 
hydroxide, potassium methoxide 

 Base heterogeneous catalyst= alkaline metal 
oxide (MgO, CaO, SrO, BaO), supported 
metal oxide, binary metal oxide, 
hydrotalcite and others. 

 
Diluted 
glycerol  

Sweet water consists of 10 to 16% 
concentration of glycerol 

 

Spent soap lye contains 8-12% of 
glycerol 

± 50 wt% glycerol (vary according to 
biodiesel processes)  

Common 
impurities 

Large amount of water, inorganic salts, 
fats, low molecular weight organic 
compounds, glycerol oligomers and 
polymers 

Glycerol mixture with spent lye or neutral 
lye; around 6 to 8 % high salt content  

CG with abundance of impurities such as 
triglyceride, mono-,diglyceride, inorganic 
salts, polyols, soap, ash, methanol, moisture, 
MONG, FAEs, FFAs and FAMEs 

Triglycerides + 3water                fatty acids + glycerol Triglycerides + 3NaOH                 soaps + glycerol Triglycerides + 3.methanol             Methyl esters + glycerol 
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Table 1.1 continued 

Demethylated  
glycerol 
 
Components 

Glycerol 
Ash 
Water 
MONG 
Polyols 

 
 

 
 

88-90% 
0.7-1% 
8-9% 
0.7-1% 
0.2% 

 
 

 
 

83-84% 
8.5-9.5% 
6-7% 
3-4% 
0.1% 
 

 
 
 

 
65-80% 
4-6% 
10% 
5% 
1% 

Processing for 
technical/USP/Kosher 
grade glycerol 

 

Yes Rarely Yes 

 

Note: pH measurement for demethylated biodiesel-derived glycerol is possible only while using heterogeneous catalyst, or appears only after previous neutralization of homogeneous catalyst. 

The Table was summarized from (Ayoub & Abdullah, 2012; CIMBRIA SKET, 2008; International Process Plants, 2009; Kirk-Othmer, 2013; Ma & 
Hanna, 1999; Quispe et al., 2013; Thompson & He, 2006)) 
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 Production capacity and current market trend for glycerol 1.1.1

Market statistics has revealed that the highest glycerol production capacity is 

attributed to biodiesel manufacturing, followed by fatty acid splitting, and fatty alcohol 

separation (Oleoline, 2012). Glycerol comprises 10 wt% of the total biodiesel 

production. The global biodiesel market was expected to reach 37 billion gallons by 

2016, with an average growth of 42% per year, and is predicted to produce 

approximately 4 billion gallons of CG by 2016 (Quispe et al., 2013; Yang, Hanna, & 

Sun, 2012). The recent biodiesel market analysis report published on mid of 2017 

indicates that the world biodiesel production was approximately 82 million tonnes in 

2016 (BP, June 2017).  

Nevertheless, the sudden decline in petroleum oil prices has significantly reduced the 

prices of biodiesel during the second half of 2014. Figure 1.1 shows the biodiesel prices 

declined strongly from 112 USD/hL (2013) to less than 80 USD/hL (2014); the ten-year 

forecast for biodiesel prices are expected to recover in nominal terms close to those in 

2014 level (prices vary from 85-90 USD/hL). Figure 1.2 indicates that the global 

biodiesel production is expected to reach almost 39 billion liters by 2024. The projected 

production volume of biodiesel is stable and is mostly policy driven (Food and 

Agriculture Organization of the United Nations (OECD), 2015). The conventional 

glycerol commodity market is very narrow, and any increase in biodiesel production 

causes a sharp decrease by more than 50% of its current value (Babajide, 2013). As 

such, glycerol derivatives can potentially occupy a large segment in the current market. 

To date, the reported CG and refined glycerol price are $0.24/kg and $0.8/kg, 

respectively in the mid of 2017 (Oleoline, 2017). 
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Figure 1.1: Evolution of biodiesel world price  

(OECD 2015 market report) 

 

 

 

Figure 1.2: Development of the world biodiesel market  

(OECD 2015 market report) 
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 Transformation of glycerol to value-added derivatives 1.1.2

A fundamental understanding of different industrial processes, such as 

hydrogenation, hydrolysis, oxidation, chlorination, etherification, esterification, 

transesterification, and reforming, is necessary to investigate the transformation of 

glycerol into different derivatives (Soares, Lachter, Rodrigues Jr, Batista, & 

Nascimento, 2011). Figure 1.3 shows examples of possible glycerol derivatives via 

different pathways. Potential glycerol derivatives, such as propylene glycol, acrolein, 

dihydroxyacetone, glyceric acid, tartronic acid, epichlorohydrin, glycerol tertiary butyl 

ether, polyglycerols, glycerol esters, hydrogen gas, fuel additives, lubricant additives 

and glycerol carbonate, have been widely considered in global market for the 

transformation of glycerol into value-added chemicals (Gu, Azzouzi, Pouilloux, Jérôme, 

& Barrault, 2008; Kong, Aroua, & Daud, 2016; Leoneti, Aragão-Leoneti, & de 

Oliveira, 2012).  

The rise in demand toward renewable sources, combined with the surplus of 

biodiesel production, has provided an attractive platform to all the industry players and 

researchers to work on glycerol transformation. The excess of glycerol produced from 

biodiesel production, together with society’s concerns on biodegradable resources, has 

renewed the interest of researchers in catalytic esterification of glycerol. Consequently, 

direct-catalytic esterification of glycerol with oleic acid (OA) to produce glycerol 

monooleate (GMO), glycerol dioleate (GDO) and glycerol trioleate (GTO) will be 

described in Chapter 2 (Literature review). 
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Figure 1.3: Possible glycerol derivatives via different pathways 

(Kong, Aroua, & Daud, 2016) 
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 Problem statement  1.2

The inevitably low value of glycerol has led to extensive investigations on glycerol 

conversion to value-added chemicals. This work focuses on the development of water 

tolerant solid acid catalyst for industrially important catalytic esterification of glycerol 

with OA.  The use of glycerol as a starting material to produce glycerol-derivatives is 

challenging. The high viscosity of glycerol could encounter diffusion problem in 

reaction media. Moreover, it has been reported that the reaction, involving reactants in 

two different phases, is complicated as poor interaction of OA and glycerol leads to low 

reactivity (Jérôme, Pouilloux, & Barrault, 2008). Secondly, the presence of water by-

product in typical esterification reaction can easily deactivate the acid sites of solid acid 

catalyst and negatively affect the equilibrium of reaction.  

To date, heterogeneous acid catalysts such as ion exchange resins (Åkerman, Gaber, 

Ghani, Lämsä, & Hatti-Kaul, 2011), zeolites (Singh, Patidar, Ganesh, & Mahajani, 

2013), double-metal cyanide complexes (Kotwal, Deshpande, & Srinivas, 2011), 

heteropolyacids-supported catalysts (L. H. Wee et al., 2013), hydrotalcite (Hamerski & 

Corazza, 2014; Hamerski, Prado, da Silva, Voll, & Corazza, 2016) and sulfated metal 

oxides catalysts (Kong, Aroua, & Daud, 2015) have been studied for catalytic glycerol 

esterification with OA. It was reported that Sn-beta zeolite-catalyzed esterification was 

inefficient with only 4 % of OA conversion after 20 h reaction at equimolar ratio, 150 

oC and solvent-added condition, even below the conversion without adding any catalyst 

(20 %) at identical reaction parameters. Thus, design of a reliable heterogeneous acid 

catalyst featuring with hydrophobic surface for water sensitive esterification of glycerol 

with fatty acid is essential in current research stage.  

It was reported that hydrophobicity surface of a heterogeneous acid catalyst enhances 

miscibility phase between glycerol and OA. Some of the researchers elucidate that 
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hydrophobicity-enhanced acid catalysts can improve reactivity as well as selectivity, 

especially when one of the reactants is highly hydrophilic (Estevez et al., 2016; Gaudin, 

Jacquot, Marion, Pouilloux, & Jérôme, 2011; Konwar et al., 2016). In this work, a novel 

and environment benign heterogeneous acid catalyst that developed from SiO2-ZrO2 

support featuring with hydrophobic surface characteristic is designed. The catalyst 

synthesis, characterization and catalytic activity of the process will be studied insight. 

Process optimization to maximize GMO and GDO yield is evaluated using suitable 

molar ratio of reactants. Further, the comparative study of designed catalyst with 

commercial and sulfated zirconia is evaluated in this work.  

 Objectives of the study 1.3

The aim of this work is to study the catalytic esterification of glycerol with OA for 

the formation of GMO and GDO. The main objectives of this study are as follows: 

i. To synthesize and characterize a novel hydrophobic ZrO2-SiO2 based acid 

catalyst for the catalytic esterification of glycerol with OA.     

ii. To evaluate the catalyst performance under various operating conditions such 

as reactants molar ratio, catalyst concentration, reaction temperature and 

reaction time.  

iii. To benchmark the performance of the novel catalyst to that of conventional 

sulfated zirconia (SO4
2-/ZrO2) and commercial catalysts (Amberlyst 15; 

Aquivion).  
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 Scope of the study 1.4

This work focuses on design and synthesis of hydrophobic-enhanced heterogeneous 

acid catalyst for glycerol oleate synthesis. The catalyst is synthesized by coating SiO2 

on zirconia support, followed by adding hydrophobic agent trimethoxymethylsilane 

(TMMS) and atom transfer radical polymerization initiator, 2-(4-

chlorosulfonylphenyl)ethyltrimethoxysilane (CSPETS) and sulfonation process. The 

important catalyst properties such as morphology, physiochemical, textural, surface 

composition, and hydrophobicity level are examined for synthesized catalyst. The effect 

of TMMS and CSPETS loading amount used in catalyst synthesis towards 

hydrophobicity and acidity is insight studied. In addition, the mechanism for surface 

functionalization on SiO2-ZrO2 support is proposed based on the analytical and 

characterization results. 

 Process optimization under various operating conditions such as reactants molar 

ratio, catalyst concentration, reaction temperature and reaction time are included. In 

addition, the performance of the novel designed catalyst is compared with three 

conventional sulfated zirconia catalysts (SO4
2-/ZrO2) that developed from different 

zirconium precursors and commercial catalysts (Amberlyst 15; Aquivion). 
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 Thesis outlines  1.5

This thesis consists of five chapters dealing with different aspects relevant to the 

topic of the study as follows: 

i. Chapter 1: Introduction 

This chapter gives a general introduction of current glycerol production capacity, 

market value and commercially available process routes for glycerol; as well as 

potential value-added derivatives transformed from glycerol. The problem statement, 

main objectives and scope of this study are described in this chapter. 

ii. Chapter 2: Literature Review 

Chapter 2 describes the common production routes of GMO and GDO and the 

reasons why heterogeneous acid catalyst is favorable in the production of GMO and 

GDO. The different type of heterogeneous acid catalysts and their important 

characteristics (such as textural properties, acidity, surface wettability, and catalyst 

sites) toward catalytic esterification of glycerol with OA are critically reviewed in this 

chapter. In addition, this chapter also reviews the impacts of operating parameters 

(molar ratio of glycerol to OA, reaction temperature, reaction time and catalyst 

concentration) on conversion and products selectivity. 

iii. Chapter 3: Methodology 

The chemical and materials, different catalyst preparation methods, different catalyst 

characterizations analysis instruments, product analysis techniques and catalytic activity 

testing method are elucidated in Chapter three. 
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iv. Chapter 4:  Results and Discussion 

This chapter is divided into three parts: the first part is to investigate the preparation 

method of highly hydrophobic ZrO2-SiO2 based acid catalyst and the novel technique to 

control hydrophobicity and acidity of designed catalyst. The second part deals with the 

optimization of process parameters over the designed hydrophobic ZrO2-SiO2 based 

catalyst. The third part investigates the preparation methods and properties of SO4
2-

/ZrO2 catalysts that were developed from three different precursors (zirconium (IV) 

propoxide, zirconium oxychloride and zirconium(IV) hydroxide). Subsequently, the 

catalytic activities of commercial available Amberlyst 15, Aquivion, SO4
2-/ZrO2 

catalysts are benchmarked with the designed hydrophobicity-enhanced acid catalyst. All 

catalysts are subjected to an extensive characterization. Moreover, the relationships 

between conversion/selectivity and catalyst properties are insight studied in this work.  

v. Chapter 5: Conclusion and Recommendation 

This chapter summarizes and concludes the findings of this research. The 

recommendation for future studies is suggested in this chapter. 
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CHAPTER 2: LITERATURE REVIEW 

 

 Catalytic-esterification of glycerol with oleic acid 2.1

The application of heterogeneous acid catalysts in conversion of glycerol into 

valuable derivatives includes dehydration to acrolein, acetylation to triacetin, 

esterification to glycerol esters, etherification to polyglycerols or glycerol ether as well 

as condensation to 1,3-dioxolanes and 1,3-dioxanes (Kong, Aroua, Daud, Lee, et al., 

2016; Suprun, Lutecki, Haber, & Papp, 2009; Vol’eva et al., 2012). One promising 

option is the catalytic esterification of glycerol with fatty acids to obtain mono-, and di-

esters. Typically, esterification reaction of glycerol with oleic acid (a common 

unsaturated fatty acid with C18:1 carbon chain, OA) is a feasible and economic method 

to change the fatty acid profile of a triglyceride. Mixture of glycerol monooleate 

(GMO), glycerol dioleate (GDO) and glycerol trioleate (GTO) can be produced over 

heterogeneously acid-catalyzed esterification reaction with acid, multi-valent metal salt 

type heterogeneous catalyst as well as biocatalysts (Bagheri, Julkapli, & Yehye, 2015). 

Figure 2.1 shows the possible derivatives produced from glycerol esterification with OA 

produces mixtures of GMO, GDO and GTO.  
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Figure 2.1: Reaction scheme for esterification of glycerol with OA in GMO, 
GDO and GTO production  
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It has been known that the fatty acid profile of a naturally occurring triglyceride 

contains various ratio of fatty acids. Triglycerides are generally composed of different 

alkyl chain lengths and saturation degrees from short, medium, long, saturated to 

eventually polyunsaturated alkyl groups (Refaat, 2009). For instance, the composition 

of palm oil comprises approximately 50% saturated fatty acids, with 44% palmitic acid 

(C16:0), 5% stearic acid (C18:0), and trace amounts of myristic acid (C14:0). The 

unsaturated fatty acids are approximately 40% OA (C18:1) and 10% polyunsaturated 

linoleic acid (C18:2) and linolenic acid (C18:3) (Montoya et al., 2014). From industry 

point of view, esterification of glycerol with fatty acid C18:1 is an alternative feasible 

way to transform fatty acid profile of a triglyceride. Glycerol esterification with longer 

molecular chain C18:1 requires longer reaction time than those medium or short chain 

fatty acids.  

The common pathways to produce GMO, GDO are: (i) alkali MgO catalyst 

glycerolysis of GTO with glycerol at elevated temperature of 250 oC (A. Corma, Iborra, 

Miquel, & Primo, 1998); (ii) alkali glycerolysis of methyl oleate (Avelino Corma, 

Hamid, Iborra, & Velty, 2005; C. A. Ferretti et al., 2012; Cristián A. Ferretti, Soldano, 

Apesteguía, & Di Cosimo, 2010); (iii) biocatalyst glycerolysis of oil (Novozym 435) in 

a low-temperature reaction(40-70 oC) (Krüger et al., 2010; Voll et al., 2011); (iv) direct 

catalytic-esterification (Dı́az, Mohino, Blasco, Sastre, & Pérez-Pariente, 2005; Hermida, 

Abdullah, & Mohamed, 2011; L. Wee et al., 2013). Table 2.1 summarizes the 

production efficiency of GMO and GDO in different production routes.  

 The advantages of catalytic-esterification of glycerol are that it is operated under 

milder reaction conditions (less than 180 oC) and processes directly without prerequisite 

of transesterification/esterification reactions at elevated temperature of 250 oC. In this 
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review, esterification route is being studied in-depth as this route is expected to be more 

selective and cost-effective compared to the other options (Singh et al., 2013).  

Table 2.1: Comparative performance of GMO and GDO produced via different 
routes 

Starting 
materials 

Production 
Routes 

Catalysts Operating 
conditions 

Performance References 

GTO; 
glycerol 

Esterification  
and 
glycerolysis 

MgO T= 240 oC 
Gly/GTO= 12 
t= 5 h 
Cat.= 4 wt% 

C= 97% 
SGMO= 75% 
SGDO=  24% 

(A. Corma 
et al., 
1998) 

Methyl 
oleate; 
glycerol  

Trans-
esterification 
and 
glycerolysis 

MgO T= 220-250 oC 
Gly/methyloleate= 
2-6 
t= 2 h 
Cat.=4 wt% 

C= 70% 
SGMO= 77% 
SGDO=  24% 

(Cristián 
A. Ferretti 
et al., 
2010) 

Olive oil Glycerolysis Novozym 
435 

T= 55 oC 
Oil/gly.= 6 
t= 12 h 
Cat.=10 wt% 

 
Tert-butanol as 
solvent 

SGMO= >60 
% 
SGDO= >50 % 

(Voll et al., 
2011) 

OA; 
glycerol 

Esterification STA-IL 
ionic liquid 
grafted 
acid 
catalyst 
 

T= 100 oC 
t= 9 h 
Cat= 7 wt% 
OA/gly= 6 

C= 96% 
SGMO= 90% 

(Wan N. R. 
W. Isahak, 
Ramli, 
Ismail, & 
Yarmo, 
2014) 

 

Heterogeneous acid catalytic system is environmental sustainable compared to 

homogeneous catalyst due to lesser waste production, easier operation and possible 

recycling. However, catalytic activity of heterogeneous catalyst is generally lower than 

that of homogeneous catalyst due to the poor accessibility of the embedded catalytic 

sites. The highly desirable selectivity of product can be obtained using heterogeneous 

catalyst system as the textural property of catalyst such as porosity might influence 

product selectivity. In fact, the use of glycerol as a starting material to produce glycerol-
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derivatives is challenging. The high viscosity of glycerol could lead to diffusion 

problem in reaction media. Moreover, it has been reported that the reaction involving 

two immiscible phase reactants is complicated as poor interaction of OA and glycerol 

has led to low reactivity (Jérôme et al., 2008).  

Some of the researchers elucidate that hydrophobicity-enhanced acid catalysts can 

improve reactivity as well as selectivity; especially when one of the reactants is highly 

hydrophilic such as glycerol (Estevez et al., 2016; Gaudin et al., 2011; Konwar et al., 

2016). Moreover, the presence of water by-product in typical esterification reaction can 

easily deactivate the acid sites of solid acid catalyst and negatively affect the 

equilibrium of reaction (Kong, Aroua, Daud, Cognet, & Pérès, 2016). Consequently, 

water tolerable solid acid catalyst featuring hydrophobic surface characteristic is vital 

for esterification of glycerol with fatty acid (Chen, Chen, Zhang, Gao, & Yang, 2016). 

The recent published literatures for catalytic-esterification of glycerol with OA and their 

affecting parameters are discussed in this chapter. In addition, the limitation and 

unfavourable features of homogenous acid catalysts are addressed. 

 Applications, market and demand for glycerol oleate  2.2

GMO and GDO are lipids with amphiphilic, non-ionic and excellent emulsifying 

properties. They are widely applied in food, cosmetic and pharmaceutical industries, 

and aqueous fiber finishing (Macierzanka & Szela̧g, 2004; Thengumpillil, Penumarthy, 

& Ayyagari, 2002). GMO featuring a polar head group and a non-polar hydrocarbon 

chain (significant amphiphilic properties). This allows GMO self-assemble into 

different liquid crystalline structures under varying conditions of temperature and 

solvent composition (Kulkarni, Wachter, Iglesias-Salto, Engelskirchen, & Ahualli, 

2011). It is also introduced in specific fields such as in oil well drilling operations, 

lipophilic emulsifier for water-in-oil applications and anti-friction agent of lubricant and 
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fine mechanical oils (Wan N. R. W. Isahak et al., 2014; Organic Materials Review 

Institute, 2001).  

In terms of market demand, the gradual slowdown in the food and plastics sectors 

have inhibited the growing rate of GMO, conversely, actively growing industries such 

as personal care, pharmaceuticals and lubricants have provided alternate outlets for 

GMO (Frost & Sullivan Research Service, 2014). Henceforward, the demand of GMO 

is correlated to personal care or lubricant market due to the saturated demand in food 

and plastic industries.    

Whereby, GTO is one of the common biolubricants with symmetrical structure with 

that of triglyceride. Monounsaturated OA was selected in biolubricant synthesis because 

the conjugated bond of OA exhibits lower pour point, cloud point and low-temperature 

stability lubricant (Gryglewicz, Piechocki, & Gryglewicz, 2003). GTO is widely applied 

in two-stroke engines, rolling metal, casting aluminium, tire tread and as a stabilizing 

oil component (Labauze & Vasseur, 2007; Yoneda, 2009). In addition, the fields that 

use machinery for food processing, medicine and textile have almost declined the use of 

white mineral oils due to their toxicity. Subsequently, the combination of lubricity, 

biodegradability, renewability and non-toxicity of GTO lubricants has the potential to 

lead towards the growth in this market. Table 2.2 demonstrates the general industrial 

applications for GMO, GDO and GTO.   
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Table 2.2: The industrial applications for GMO, GDO and GTO 

Products Industrial applications References 

GMO 

 

Defoamer in food processing, lipophilic emulsifier for 
water-in-oil applications or personal care, as 
antifriction agent in engine, lubrication additive; 
monoolein-based nano-particulate liquid dispersions 
for drug delivery; surfactant 

(Wan N. R. W. 
Isahak et al., 
2014; Organic 
Materials Review 
Institute, 2001) 

GDO Used in drug delivery applications; as safe plasticizers 
for the polymer industry 

(Barauskas, 
Misiunas, 
Gunnarsson, 
Tiberg, & 
Johnsson, 2006; 
Zhang et al., 
2017) 

GTO Metal working and textile lubricant in two-cycle 
engines, rolling metal, casting aluminum, tire tread; as 
a stabilizing oil component 

(Labauze & 
Vasseur, 2007; 
Yoneda, 2009) 

 

The industrial price of GMO, GDO and GTO was traded approximately at, 3.46 $/kg 

4.46-6 $/kg and 2.80 $/kg, respectively in 2017 (Zauba, 2016). While the global 

lubricant market experiences dramatic changes for the past 10 years. It can be observed 

worldwide that there is a relatively stable and constant lubricant demand since 1991 

(about 35 million tons per year) (Mobaraki, Movassagh, & Karimi, 2014; 

Nagendramma & Kaul, 2012). To date, the world’s lubricant demand is estimated to 

increase to 2.4 % per annum, with approximately 43.6 million metric tons in demand by 

2017. It is reported that lubricants market worth over $74 billion by 2022 

(GlobeNewswire, 2017). Figure 2.2 demonstrates the forecasted lubricant demand 

growth by region from 2005 to 2015. The diagram suggests Asia Pacific as having the 

highest prospect by examining their 3.5 % growing rate. 
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Figure 2.2: Forecast lubricants demand growth by region, 2005-2015 

 

 Mechanism of Brønsted and Lewis acid-catalysed esterification 2.3

 General mechanism for glycerol esterification 2.3.1

Glycerol esterification using OA to produce GMO, GDO, and GTO can be 

extensively explained by the presence of three hydroxyl groups (–OH) that are attached 

to the glycerol backbone. OA is a long chain fatty acid and categorized as nonpolar 

lipid. In catalytic esterification of glycerol with OA, OA will selectively attach to any –

OH of glycerol or any –OH from partially reacted glycerides; this phenomenon is 

related to the steric hindrance effect. Thus, the produced GMO and GDO normally 

present isomer forms depending on the position of esterification in the glycerol 

molecule. It has been reported the selectivity of GMO, GDO and GTO depends mostly 

on the catalyst features (surface acidity, pore structure, and catalyst stability) (Zięba, 

Drelinkiewicz, Chmielarz, Matachowski, & Stejskal, 2010) and reaction parameters 

(glycerol to OA molar ratio, temperature, catalyst amount, and reaction time) (L. Zhou, 

Al-Zaini, & Adesina, 2013). Generally, the acid-catalyzed glycerol esterification 
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involves two plausible reaction mechanisms based on the types of acid catalyst used: (i) 

Brønsted acid-catalyzed esterification and (ii) Lewis acid-catalyzed esterification. 

 Brønsted acid-catalysed esterification 2.3.2

The Brønsted acid-catalysed esterification is also named as Fischer esterification. 

Figure 2.3 illustrates a conventional reaction mechanism of the esterification reaction. 

Whereby, side chain R represents OA. This reaction mechanism involves addition of 

nucleophile (the glycerol) into OA followed by an elimination step, as follows 

(Troncea, Wuttke, Kemnitz, Coman, & Parvulescu, 2011): 

i. The OA is initially protonated by the Brønsted-type acid catalyst. 

ii. In the second step, the oxygen atom (two lone pairs) from the –OH of glycerol 

acts as a nucleophile and attaches to the sp2 carbon, leading to the loss of proton 

from the –OH. 

iii. A series of fast equilibrium proton exchanges occurs in either of the –OH of 

acetic acid. In this step, a new ester bond forms between the carboxyl group 

carbon and the oxygen in glycerol. 

iv. Water is then eliminated in either site. 

v. In the final step, the excess proton leaves, regenerating a Brønsted acid catalyst. 

vi. This process continues until all three strands of the glycerol backbone are 

converted into esters.  
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Figure 2.3: Brønsted-acid catalysed esterification mechanism 

 

 Lewis acid-catalysed esterification 2.3.3

Theoretically, Lewis acid-based esterification involves a reaction mechanism similar 

to that in Brønsted acid-based reaction. Nevertheless, Lewis acid-based esterification 

involves the attack of glycerol in a nucleophilic addition reaction. A slight difference 

between these two processes is that the Brønsted-catalysed reaction uses a proton 

generated from the acid catalyst. By contrast, the Lewis-based reaction involves a metal 

cation (Mn+) as an electrophile to facilitate the interaction between the carbonyl oxygen 

from OA and the Lewis acidic site (L+) of the catalyst to form carbocation. The 

nucleophile from glycerol attacks the carbon cation and produces tetrahedral 



 

 

24 

intermediates (Figure 2.4). During esterification, the tetrahedral intermediate eliminates 

water molecule to form an ester product (Yan, Salley, & Ng, 2009). 
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Figure 2.4: Lewis acid catalysed esterification mechanism 
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 Homogeneous acid catalysts: limitation and drawbacks 2.4

The common homogeneous catalysts used in esterification production are sulfuric 

acid (H2SO4), hydrochloric acid (HCl), p-toluene sulfonic acid (pTSA) and methane 

sulfonic acid (MSA). Although H2SO4 is relatively cheap and recognised as an 

extremely acidic homogeneous catalyst, nonetheless, the corrosiveness of H2SO4 causes 

difficulty in storage, handling and operation. The double bond of unsaturated carboxylic 

acid can also react with H2SO4 to produce the undesirable ether side-product. On top of 

that, the dark colour appearance induced by H2SO4 cannot be eradicated by simple 

bleaching techniques.  

Similar to H2SO4, HCl is also a chemical that is corrosive and difficult to handle.  

Meanwhile, for pTSA and MSA, both have similar acidity but differ in their physical 

appearance at ambient temperature (MSA is in liquid state at ambient temperature, 

while the closely related pTSA is in solid state). pTSA and MSA have lower reaction 

activity, subsequently making it easier for handling. Unlike H2SO4, their mild acidity 

does not attack the double bond of unsaturated carboxylic acid (Bondioli, 2004).  

MSA or pTSA are considered the most suitable homogeneous acid catalysts for short 

chain ester production that requires lower operation temperature. However, they are 

undesirable to be applied in complex ester synthesis as complex esters usually require 

elevated reaction temperatures, which range from 180 to 250 oC. Although pTSA and 

MSA are low in acidity, they have slight effect on product colour. The complexity to 

obtain low colour product in pTSA-catalysed process was highlighted by (Sivaiah, 

Robles-Manuel, Valange, & Barrault, 2012). Table 2.3 shows examples of 

homogeneous acid-catalysed esterification reactions. 
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Table 2.3: Homogenous acid catalysed reaction studies  

Homogeneous 
Catalysts 

Raw materials Reaction 
conditions 

Conversion References 

 
H2SO4 MCPA acid; 2-

ethyl hexanol 
T= 120 oC 
t=2-3 h 
Catalyst= 0.1 M 
MR 
ethylhexanol:acid= 
1.5 

 

C= 98% (Kong PS, 
Aroua MK, & 
Raman AA, 
2011) 

HCl Fatty acid; 
methanol 

T= 70 oC 
t=5 h  
Catalyst= 1 M 
MR methanol:fatty 
acid= 20:1 

 

C= 98.44% (Su, 2013) 

MSA Fatty acids; 
methanol 

T= 130 oC 
t= 1 h 
Catalyst= 0.1 % 
w/w 
MR methanol/fatty 
acid= 3  

 

C= >90% (Aranda, 
Santos, 
Tapanes, 
Ramos, & 
Antunes, 
2008) 

pTSA Myristic acid; 
isopropanol and 
n-propanol 

T= 130 oC 
t= 3 h 
Catalyst= 0.03 M 
MR myristic 
acid/alcohol= 0.5 

 

C= 80-90% (de Jong, 
Feijt, 
Zondervan, 
Nijhuis, & de 
Haan, 2009) 

Titanate Diisononyl 
phthalate;pthalic 
anlydride 

T= 200 oC 
t= 2 h 
Catalyst= 1.0 M 

 

C=  99.9 % (Johnson 
Matthey 
Catalysts 
VERTEC™, 
2003) 

 

Based on the above premises, homogeneous organic titanate catalyst was developed. 

The operation temperatures for titanate range from 180 to 220 °C. The recommended 

operating temperature shall not be lower than 160 °C to avoid premature hydrolysis of 

titanate (Johnson Matthey Catalysts VERTEC™, 2003). One of the major drawbacks of 
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the implementation of titanate is that the product is overloaded with titanium (Ti) 

content. Extra refining procedures such as steam stripping or hot water neutralisation 

are required to decrease Ti, but these procedures concurrently reduce the overall 

production yield. Moreover, the low Ti content requirement in product specifications 

resulted in business runners to turn to heterogeneous acid catalyst. Therefore, the 

development of applicable heterogeneous catalysts is vital to overcome the problems 

associated with homogeneous catalysts. 

 Heterogeneous acid catalysts for glycerol esterification 2.5

Heterogeneous acid catalysts play a crucial role in esterification reaction during 

esters production. In particular, solid acids have largely replaced the traditional 

homogeneous acid catalyst because of environmental, technological, and economic 

reasons. Generally, solid catalysts need to be stayed in a packed bed reactor for 

consecutive operations, exhibit longer catalyst lifetime than single-use homogeneous 

catalyst. A well-designed catalytic process system can overcome the drawbacks of 

homogeneous catalyst reaction by minimizing sludge and waste generation (Kiss, 

Dimian, & Rothenberg, 2008; Sivaiah et al., 2012).  

A variety of solid acid catalysts have been studied for glycerol esterification. Their 

catalytic efficiency are also categorized into different groups (Table 2.4) (Gürbüz, 

Bond, Dumesic, & Román-Leshkov, 2013). It was reported that the key role of 

heterogeneous acid catalyst to attain high glycerol conversion rate and favorable 

selective glycerol oleate formation include: (i) acidity of catalyst (especially the 

Brønsted acid sites), (ii) texture properties, and (iii) surface morphology.  
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Table 2.4: Different groups of solid acid catalysts for glycerol esterification 

Solid Acid Catalysts Properties 
Ion exchange resin  Ion exchange resins are synthesized from polymers that are 

capable of exchanging particular ions. The drawback of the 
ion exchange resin catalyst is its low temperature stability. 

 
Zeolites  Crystalline solids composed of silicon and aluminum oxides 

arranged in a three-dimensional network of uniformly 
shaped micropores (< 2 nm) of tuneable topology and 
composition.  

 Brønsted acid sites in zeolites are commonly generated 
when protons balance the negatively charged framework 
induced by the presence of tetrahedrally coordinated 
aluminum (Al) atoms.  

 
Heteropolyacids  A class of metal salts wherein the oxo-anions are balanced 

by a wide range of cations with varying acid strength. 
 

Metal oxides  The Brønsted acid sites in metal oxides originate from 
highly polarized hydroxyl groups, acting as proton donors  

 The Lewis acid sites generated from coordinatively 
unsaturated cationic sites, which leave M+ exposed to 
interact with guest molecules as an acceptor of pairs of 
electrons. 

 
Mesoporous silica  Mesoporous silica is a mesoporous form of silicate that 

consists of unique features: high surface area, chemical, 
thermal, and mechanical stability, highly uniform pore 
distribution and tunable pore size, high adsorption capacity, 
and an ordered porous network.  

 This material is potentially used as solid supported catalyst 
due to its recyclability, enhanced catalytic reactivity, and 
selectivity. 
 

Carbon   Porous carbon is an attractive catalytic material as it can be 
prepared from various low-cost waste carbon materials. 

 Carbon consists of suitable characteristics that can be used 
as a catalyst support, such as heat resistance, stability in 
both acidic and basic media, the possibility of easy 
recovery of precious metals supported on it and the 
possibility of tailoring both its textural and surface 
chemical properties.   
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Although many studies have demonstrated the high reactivity of glycerol 

esterification, most catalysts exhibit low thermal stability and unsatisfactory selectivity 

(Zięba et al., 2010). Furthermore, the hydrophilic character of catalyst surface is a 

challenge in active site deactivation resulting from the inevitable water formation 

during esterification, leading to leaching of active components into the reaction 

medium. The water-tolerant property of solid acid catalyst exhibiting a hydrophobic-

enhanced surface is thus necessary to excellently perform glycerol esterification. 

Another reason of catalyst deactivation is the partial blockage of the catalyst's active 

sites by the reaction medium, such as glycerol and/or partial glycerides blocked within 

the pore structure of catalysts, thereby reducing the number of acid sites for continuous 

esterification until the desirable end-products are achieved (Khayoon, Triwahyono, 

Hameed, & Jalil, 2014).  

 Ion exchange resins 2.5.1

Ion exchange resins are effective catalysts for esterification, owing to their swelling 

capacity. Synthesis of monoglyceride through the esterification of glycerol with OA 

over ion exchange resins (Amberlyst 31 and Amberlyst 16) were studied by (Pouilloux, 

Abro, Vanhove, & Barrault, 1999). The conversion performance of Amberlyst 31 (68 

%) is higher than Amberlyst 16 (37 %) under identical reaction condition due to the 

structure of resin; such that Amberlyst 16 is a macroporous resin while Amberlyst 31 is 

a gel-type resin. The gel type material of Amberlyst 31 demonstrates a 4 % low cross-

linked structure. The Amberlyst 31 showed relatively low initial reaction rate but its 

reaction activity increased rapidly after 9 h of reaction due to the matrix swelling by 

OA. This study has shown the potential of sol-gel catalyst in glycerol GMO synthesis. 

 The effect of different operating temperatures towards reaction activity of using 

Amberlyst 31 catalyst was studied. A 68 % conversion at reaction temperature of 90 oC 
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was recorded but experienced a decrease to 14 % conversion when the reaction 

temperature was increased to 140 oC. This showed the loss of functional groups by the 

exposure to temperatures above the polymer thermal stability limit, whereby leading to 

the deactivation of cation exchange catalyst.  Nevertheless, low surface areas and weak 

thermal stability are the major drawbacks of ion exchange resins  (Frusteri et al., 2009).  

 Metal oxides 2.5.2

The use of metal oxide-based catalysts for esterification reaction has attracted 

attention of researchers owing to their strong surface acidity and high activity at low 

operating temperatures. The presence of Lewis acid (cations) and Brønsted acid (OH− 

group)/Brønsted base (O2− group) (anions) of metal oxides provided the required 

catalytic sites for esterification. Figure 2.5 illustrates the existence of Lewis and 

Brønsted sites in the metal oxide catalyst (Gürbüz et al., 2013).  Moreover, 

functionalization of metal oxide via sulfonation (sulfated metal oxides such as sulfated-

zirconia or tin oxide (SnO2)) is a convenient means of enhancing the surface area and 

acidity of a catalyst.  

Mn+
O2- Mn+ Mn+O2-

Lewis acid

Brønsted base  

Figure 2.5: Lewis and Brønsted sites of metal oxide catalyst 

 

The effectiveness of three metal oxides (zinc oxide (ZnO), ferrous oxide (FeO) and 

stannous oxide (SnO)) was compared by Bombos et al. in esterification of glycerol with 

OA (Dorin Bombos, Mihaela Bombos, Ion Bolocan, Gabriel Vasilievici, & Zaharia, 

2010). It is revealed that ZnO was the outperforming catalyst when compared to FeO 
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and SnO due to the presence of large distribution acid center. Approximately 83.8 % 

conversion was obtained at equal molar ratio of OA to glycerol, 0.8 wt. % catalyst, 170 

oC and 6 h reaction time.  

Since water is the by-product throughout the esterification reactions, therefore the 

reaction activity can be suppressed by formation of water due to the competition 

between reactants and water in adsorption (Varhadi et al., 2013). Therefore, metal oxide 

catalysts can be easily deactivated by water albeit these catalysts showing high 

temperature stability. In addition, it was reported that tin oxide and metallic zinc have 

the tendency to form fatty acid metallic soaps in ester production. The formed metallic 

soaps require additional refining procedures such as a combination of hot water washing 

and bleaching earth filtration (Bondioli, 2004).   

2.5.2.1 Sulfated zirconia 

Zirconia is one valuable metal oxide, owing to its cost-effectiveness and commercial 

availability. It can be modified by sulfate ions to form a superacidic catalyst (Kiss, 

Dimian, & Rothenberg, 2007). (Oh et al., 2013a) investigated the esterification of 

polyols with OA in the presence of sulfated zirconia catalyst, SO4
2-/ZrO2 which was 

prepared through one-step sol-gel method. The effect of different zirconium precursors 

on catalytic performance was evaluated, and it was discovered that the catalyst which 

was prepared by zirconium propoxide precursor had the utmost physical property and 

catalytic activity. Zirconium precursors altered the tetragonal zirconia phase, pore 

texture, surface area and acidity of the catalyst. Therefore, 83.5 % conversion was 

obtained when reaction was performed at 140 °C, 5.6 wt% of catalyst, for 4 h reaction 

time and 1.2 molar ratio of trimethylpropane to OA. Despite high leaching possibility of 

SO4/ZrO2 by losing the sulfate ions, the elemental analysis of the catalysts indicated that 
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the sulfur content of catalyst is stable and no sulfur leaching was detected after five 

repeated reactions.  

(a) Acid supported on zirconia  

An efficient catalyst support can reduce the mass transfer limitation in liquid-solid 

phase reaction by providing higher surface area from the existence of pores (Zabeti, 

Wan Daud, & Aroua, 2009). The catalytic activity of zirconium phenyl phosphonate 

phosphite catalyst (ZrPP) was investigated in esterification of glycerol with OA 

(Varhadi, Kotwal, & Srinivas, 2013). This work compared the performance of ZrPP 

catalyst by evaluating different molar ratio of phosphorous acid/phenol phosphonic acid 

loaded on zirconium. They found a correlation between molar ratio of acid loaded on 

zirconium and hydrophobicity surface of the catalyst. Higher molar ratio of 

phosphorous acid-to-phenol phosphonic acid increases the hydrophobicity of ZrPP 

catalyst, whereas, hydrophobicity surface of the catalyst is the critical key in 

minimizing catalyst deactivation problem by water. In this study, ZrPP catalyst showed 

high di- and tri-ester selectivity (92.3 %) with conversion of 48.9 % at 180 oC, 5 wt% 

catalyst, 4 molar ratio of OA to glycerol within 1 h reaction time. Operating reaction 

temperature of 180 oC indicated that high thermal stability of ZrPP catalyst.  

 Zeolites 2.5.3

Zeolites are generally categorized as aluminosilicate minerals, which are applied as 

catalyst support for active species owing to their unique pore system, high surface area, 

and high stability. The example of zeolite systems include of ZSM-5, Zeolite-Beta, and 

USY. The catalytic esterification reaction over zeolite-based catalysts depends on their 

different crystal structure, Si/Al ratio, and proton exchange level; these properties allow 

the catalytic properties, such as pore size, hydrophobicity/hydrophilicity, 

Brønsted/Lewis acidity, and acid strength distribution, to be designed. The acidity of 
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zeolite can be tuned by altering their chemical composition (Si/Al ratio) and ion-

exchange abilities. Theoretically, protonic zeolite consisting of bridging –OH groups 

(Al–(OH)–Si) is an active acid site that favors Brønsted acid-catalyzed esterification 

reactions (refer to Figure 2.6) (Shaikhutdinov & Freund, 2013). Zeolites exhibiting low 

Al framework are the most hydrophobic types.  

 

 

Figure 2.6: Existence of Si/Al in the structure zeolite catalyst  

(redrawn from source of (Shaikhutdinov & Freund, 2013)) 

Nevertheless, small pore size of zeolite encounters poor reactivity as it hinders bulky 

molecules reaction. In this case, zeolite is not a good pore controlling catalyst as the 

external surface of zeolite produced undesirable di- and tri-ester (Márquez-Alvarez, 

Sastre, & Pérez-Pariente, 2004; C.-H. C. Zhou, Beltramini, Fan, & Lu, 2008). Despite 

of that, zeolite is known as a potential catalyst’s support. Zinc oxide supported on β-

zeolite with high silica content was studied in esterification of glycerol with OA by 

group Singh et al. (Singh et al., 2013). The intention was to utilize zeolite as a support 

to solve the leaching problem of conventionally used ZnO. Remarkably, a substantial 

reduction in leaching was observed when zeolite was used as catalyst support. The 

leaching value of ZnO/zeolite (663.05 ppm) was reduced when comparing to pure ZnO 



 

 

34 

(2986.86 ppm) under identical reaction environment. It was found that 25 % ZnO 

supported on zeolite demonstrated the highest catalytic activity, with approximately 85 

% conversion and 70 % selectivity were achieved at 150 oC, 4:1 glycerol to OA ratio, 2 

wt% catalyst for 6 h reaction time. Moreover, addition of zeolite support increased the 

hydrophobicity nature of a catalyst. The promising yield and selectivity have shown that 

hydrophobic ZnO/zeolite catalyst is favorable in the immiscible OA-glycerol phase 

esterification reaction.  

 Heteropolyacids (HPAs) 2.5.4

HPAs, such as silicotungstic acid (HSiW), phosphotungstic acid (HPW), and 

phosphomolybdic acid (HPMo), are typical Brønsted acids containing a super-acid 

region that displays outstanding catalytic esterification activity both in homogeneous 

and heterogeneous phases. HPAs are complex proton acids that incorporate the Keggin-

type polyoxometalate anions (heteropolyanions) containing metal–oxygen octahedra 

with a formula XM12O40
x-8, where X is the central atom (Si4+/ P5+), x is its oxidation 

state, and M is the metal ion (Mo6+or W6+) (Okuhara, 2002).  

The acid strength of crystalline HPAs generally decreases in the following order: PW 

> SiW ≥ PMo > SiMo, which is identical to the dissociation constants presented in 

Table 2.5. Moreover, HPAs in solution are stronger than the usual mineral acids, such 

as H2SO4, HCl, and nitric acid (HNO3) (Kozhevnikov, 1998). However, bulk HPAs 

exhibit low thermal stability, low surface area (1–10 m2/g), and are highly soluble in 

polar media (water, short-chain alcohols, ketones, ethers or esters), which restricts their 

application as solid acid catalyst in esterification reaction. Thus, HPAs are often 

immobilized on strong supports such as metals and metal oxides to solve the problem of 

instability (Balaraju et al., 2010; Zhu et al., 2013).   
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Table 2.5: Dissociation constants of HPAs in Acetone at 25 oC 

HPAs pK1 pK2 pK3 

H3PW12O40 1.6 3.0 4.0 

H4PW11VO40 1.8 3.2 4.4 

H4SiW12O40 2.0 3.6 5.3 

H3PMo12O40 2.0 3.6 5.3 

H4SiMo12O40 2.1 3.9 5.9 

H2SO4 6.6 - - 

HCl 4.3 - - 

HNO3 9.4 - - 

 

The comparative study on catalytic-esterification of glycerol with OA between 

phosphotungstic acid supported on organic-tin catalyst (HPW/Cu3(BTC))2 and Sn-beta 

zeolite catalyst was performed by (L. Wee et al., 2013). It was found that Sn-beta 

zeolite suffers from poor performance (4 % conversion) and black product appearance. 

Quite the reverse, HPW/Cu3(BTC)2 showed better catalytic activity in the production of 

glycerol monooleate. Regrettably, HPW/Cu3(BTC)2 can be degraded by OA. Therefore, 

tert-butanol solvent was introduced for better process efficiency. This solvent 

esterification system produced 98 % of product selectivity, with total 40 % glycerol 

conversion at 150 oC and 20 h operating conditions. This work revealed that 

microporous pore size of zeolite affects the reaction activity negatively in esterification 

of glycerol and OA. 
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 Mesoporous silica 2.5.5

Mesoporous silica materials, such as MCM-41 and SBA-15, have attracted much 

attention as a catalyst support in heterogeneous catalysis owing to their high specific 

surface area (≥1000 m²/g), well-ordered mesoporous structure, and large pore sizes (2 

nm ≤ size ≤ 20 nm) (Sánchez, Hernández, Moreno, Mondragón, & Fernández, 2011). 

Mesoporous ordered materials seem to be the most promising catalyst in chemical 

processes that involve bulky molecules. Figure 2.7 shows one of the  possible 

preparation step of sulfonated silica, which was proposed by (Hasan, Yoon, & Jhung, 

2014). The silica was prepared using tetraethyl orthosilicate (TEOS) precursor. 
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Figure 2.7: Preparation of sulfonated silica  

(redrawn from the source of  (Hasan et al., 2014)) 
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2.5.5.1 Mobil Composition of Matter No. 41 (MCM-41) 

The pore aperture of Mobil Composition of Matter No. 41 (MCM-41) is lying in the 

range of mesopores and exhibits hexagonal unidirectional channels along the c direction 

structure arrangement (Pérez-Pariente, Dı́az, Mohino, & Sastre, 2003). MCM-41 

anchored with different sulfonic acid groups was studied for esterification of glycerol 

with OA (Dı́az et al., 2005). Chloromethyl, vinyl and methyl groups were incorporated 

with MCM-41 and it was revealed that incorporated methyl groups catalyst (HSO3-

methyl-MCM-41) had the highest catalytic activity due to the hydrophobic nature of 

pores surface. Moreover, the strength, nature and accessibility of MCM-41 were 

improved after the incorporation with methyl group. The conversion and selectivity of 

monoester for catalytic esterification of glycerol with OA was 90 % and 60 %, 

respectively, at reaction conditions of 120 oC, 5 wt% catalyst, equimolar OA-to-glycerol 

ratio and 24 h reaction time.  

2.5.5.2  Santa Barbara Amorphous (SBA) 

The MCM-41 preparation work is complicated than SBA-15 as unstable 

nanoemulsions were formed during swelling agents dosing step (Galarneau et al., 2002). 

Therefore, SBA-12, SBA-15 and SBA-16 have been popularly investigated in the recent 

studies. The catalyst synthesis method for those silicates was relatively complicated. 

Table 2.6 demonstrates the textural properties of different blank silica catalyst support 

prepared by different structure directing, whereby TEOS was used as a precursor of 

silica.  
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Table 2.6: Textural properties of different mesoporous silica support 

Catalyst 
support 

Structure 
directing 

agent 

Total 
surface 

area 
(m2/g) 

Average 
pore 

diameter 
(nm) 

Total 
pore 

volume 
(cm3/g) 

References 

SBA-12 Brij-76 672 5.4 0.64 (Kotwal, Kumar, 
& Darbha, 2013) 

SBA-15 Pluronic P123 640 6.1 0.65 (Hoo & Abdullah, 
2014) 

SBA-16 Pluronic F127 800 3.6 0.67 (Kotwal et al., 
2013) 

  

Ti-SBA-12 and Ti-SBA-16 were compared towards esterification of glycerol with 

OA by (Kotwal et al., 2013). Brij-76 was used as a structure directing agent in the 

synthesis of Ti-SBA-12, whereas Ti-SBA-16 was prepared by Pluronic F127 block-

copolymer. The results revealed that the conversion performance of Ti-SBA-16 was 

higher compared to Ti-SBA-12 due to the surface hydrophobicity of Ti-SBA-16. 

Surface hydrophobicity is important when glycerol is employed as starting material 

during esterification reaction. The polar nature glycerol can adhere on hydrophilic 

surfaces of catalyst which resulted in low activity.  A similar statement was also 

prescribed by (Stephane Pariente, Tanchoux, & Fajula, 2009). The study concluded that 

hydrophobicity surface of the Ti-SBA-16 catalyst, Lewis acid Ti sites and mesoporosity 

structure of catalyst were ascribed to reaction activity. Consequently, 80.3 % conversion 

was obtained at catalyst content of 3 wt%, OA/glycerol molar ratio of 3, reaction 

temperature of 180 °C and 10 h reaction time.  

(Hoo & Abdullah, 2014) studied the effect of loading amount of 12-

tungstophosphorus acid (HPW) immobilized on SBA-15 material in esterification of 
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glycerol with short chain fatty acid, lauric acid. The ordered mesoporosity was observed 

in the pore system when 20 wt% of HPW was immobilized on SBA-15. Whereas, high 

HPW loading amount (30-40 wt%) resulted in the surface defects and encountered 

external deposition by HPW. Therefore, the study found that 20 wt% of HPW was the 

optimum immobilization amount. In this work, 70 % conversion and 50 % selectivity of 

mono-ester were obtained at 160 °C, 6 h, 2.5 wt% of catalyst and lauric acid to glycerol 

molar ratio of 1:4. 

Aside from that, H2SO4 supported on silica was also studied by (Åkerman et al., 

2011) in esterification of OA with polyols. 90 % conversion was achieved at reaction 

time of 24 h, 70 oC, 5 wt% SO4
2-/silica catalyst and 3 OA/polyol molar ratio. The 

activity of Amberlyst 15 was compared under identical reaction conditions and slight 

increase of conversion (96 %) was observed. The activity of the Amberlyst 15 was 

correlated to its larger pore diameter (28.8 nm) although the acidity and specific surface 

area of SO4
2-/silica catalyst (5.4 mequiv/g, 480 m2/g) was much higher than Amberlyst 

15 (4.7 mequiv/g, 42.5 m2/g).  

2.5.5.3 Silica-supported ionic liquid catalyst 

A recent study on esterification of OA with glycerol over ionic liquid-silicotungstic 

acid-silica (STA-IL) catalyst was reported by (Wan N. R. W. Isahak et al., 2014). This 

STA-IL catalyst prepared by sol-gel method exhibits a reasonable surface area (88.36 

m2/g) and high acidity (63.5 mmol/g) due to the existence of nanoporous silica and 

silicotungstic acid. Ionic liquid of 1,2-dimethyl imidazolium tetrafluoroborate 

(DMIM·BF4), was chosen in catalyst preparation due to its good behavior as reaction 

medium and phase transfer catalyst.   
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This study has shown the potential of ionic liquid as a promising medium in 

enhancing catalytic activity of esterification reaction. The insolubility of STA-IL in the 

product phase leads to an increase in reaction activity. The conversion of 96 % and 

selectivity of 90 % were attained at mild reaction conditions (100 oC, molar ratio 1:6 of 

glycerol-to-OA, 7 wt% STA-IL for 9 h reaction). The temperature of reaction was 

operated  at 100 oC because higher temperature would shift the reaction equilibrium to 

more side products, prescribed by earlier work of (W. N. R. W. Isahak, Ismail, Nordin, 

Jahim, & Yarmo, 2011).  

In brief, mesoporous ordered silica type catalysts have been popularly investigated 

by researchers as this material support offers an option to control pore size and pore 

diameter, which resulted in considerable activity and selectivity without facing pore-

size limitation. (Stawicka, Trejda, & Ziolek, 2013) believed that mesoporous ordered 

silicate is a potential material for bulky reactant reaction process. 

 Double metal cyanide complexes (metal complex) 2.5.6

Double metal cyanide (DMC) is a low molecular weight complexing agent. The 

synthesis method for DMC catalyst is easy, where DMC precipitation is formed via 

mixing of metal salts and metal cyanide solution (Le-Khac, 1996). The formula for 

DMC catalyst is M1 a[M2(CN)b(A)c]d. fM1 gXn.h(H2O).eL, where M1 and M2 can be 

different or identical (Grosch, Larbig, Lorenz, Junge, & Kammel, 2002). DMC exhibits 

micro-mesoporous structure which enables diffusion of molecules at interior pore 

(Sebastian & Srinivas, 2013).    

The esterification of OA and glycerol over acidic solid Fe-Zn DMC complex was 

investigated by (Kotwal et al., 2011). The effect of catalyst preparation temperatures 

was studied which revealed that high-temperature prepared catalyst exhibits larger 



 

 

41 

surface area (50 °C, 165 m2/g) than those prepared at room temperature (25 °C, 60 

m2/g). Moreover, the catalyst prepared at 50 °C demonstrated highest catalytic activity, 

with total conversion of 63.4 % and 67.3 % of GMO selectivity at 180 °C, 7 wt% of 

catalyst, 1:1 molar ratio of OA to glycerol and 8 h reaction time. They discovered that 

catalytic activity of Fe-Zn DMC relied heavily on acidity and surface area. In addition, 

Fe-Zn DMC was found to be very effective in the reaction although high polar glycerol 

was used due to the hydrophobic surface of DMC.  

 Hydrotalcite 2.5.7

Hydrotalcite is known as layered double hydroxide (LDH) and symbolized by 

[M1−x
2+Mx

3+(OH)2]x+Xx/m
m−·nH2O. LDH is a complex layered material with ion-

exchange capability and excellent biocompatibility. Therefore, LDHs have been widely 

employed in medicine, cosmetics and food industry (Choi, Oh, & Choy, 2008). 

Calcination of hydrotalcite material at 600 oC can transform the hydrotalcite into mixed 

Mg–Al oxides that consisted of Brønsted and Lewis acid and base sites. The thermal-

treated hydrotalcite possesses acid-base property. For example, a sulphate modified 

Mg–Al hydrotalcite gave 0.0419 mmol/g acidity and 0.0018 mmol/g basicity. 

Therefore, calcined hydrotalcite is considered an acid-base catalyst with mild acidity 

(Kuśtrowski, Chmielarz, Bożek, Sawalha, & Roessner, 2004). 

Complex Mg-Al-CO3 LDH catalyst was selected by (Hamerski & Corazza, 2014) in 

esterification of lauric acid and glycerol and it was the first hydrotalcite material 

reported in esterification reaction. The intention of researchers for choosing Mg-Al-CO3 

LDH as catalyst was owing to its non-hazardous nature, as the produced mono- and di-

ester are the emulsifiers that have been widely applied in food and cosmetic industries. 

Narrow pore size (11 nm) and larger surface area (106 m2/g) of Mg-Al-CO3 LDH was 

facilitated in the interaction between reagents and surface area during esterification. 99 
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% conversion and 90 % of mono- and dilaurine selectivity were obtained at operating 

temperature of 180 oC, glycerol-to-lauric acid molar ratio (3:1) and 2 wt% of catalyst 

within 1 h reaction time.  

 

 Carbon-based acid catalyst 2.5.8

Mesoporous carbon has been actively studied as a catalyst support and/or acid-

functionalized carbon for esterification reaction. The presence of surface oxide group in 

mesoporous carbon enables it to provide anchoring sites for active metals, which can 

tune the properties of carbon as a catalyst support material. Furthermore, the existence 

of unique properties, such as high thermal–mechanical stability with low metal 

leaching, as well as controllable textural and surface chemical properties, makes carbon 

a suitable catalyst support. Compared with mesoporous silica, mesoporous carbon is 

more resistant to structural changes caused by hydrolytic effects in aqueous 

environments. Acid-functionalized carbon, such as sulfonated-carbon via sulfonation by 

concentrated H2SO4 (formation of high density sulfonic acid group (–SO3H)), has been 

extensively studied in esterification. Figure 2.8 shows the preparation of sulfonated 

carbon, (redrawn from the source (Konwar, Boro, & Deka, 2014; Okamura et al., 

2006)). 
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Figure 2.8: Preparation of SO3H-carbon carbon  

(redrawn from the source (Konwar et al., 2014; Okamura et al., 2006)) 

Esterification of glycerol with OA was recently investigated by (Konwar et al., 2016) 

in the presence of sulfonated mesoporous carbon catalyst (AC–SO3H) at equimolar ratio 

of OA-to-glycerol, 5wt% catalyst concentration, temperature range from 100-150 oC, 

and 7-24 h reaction time. The finding showed that the pore structure of catalyst (shape 

selectivity) and surface hydrophilicity affect product selectivity.  The study concluded 

that conversion of 90 % and approximately 70 % of GMO selectivity (T= 150 oC, 8 h 

reaction time and 5 wt% catalyst concentration, and equimolar ratio of glycerol and 

OA), were mainly influenced by acidic properties, pore structure of catalyst, and 

reaction temperature. Table 2.7 summarizes all the discussed acid heterogeneous 

catalysts for direct catalytic-esterification of glycerol with fatty acids (OA). 

 

Carbon material 
Biomass, bagasse, 

polysaccharide 

Carbonized 
material Pyrolysis (-H2O) 

) 

Carbonization 
 

Sulfonation 

SO3H 

COOH 

COOH 

SO3H 

OH 

SO3H-
Carbon 
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Table 2.7: Different heterogeneous acid catalysts for direct catalytic-esterification of glycerol with fatty acids (OA) 

 
Catalysts Feedstocks Catalyst preparation method Catalyst 

characterizations 
Operating 
conditions 

Performance References 

2.5.1 Ion-exchange resins 
Amberlyst 31 Glycerol; 

OA 
Commercial available Acidity= 4.8 mmeq/g 

Structure= gel 
Crosslinking degree=  4 
% 

 
 

T= 90 °C 
t= 24 h 
Gly:OA= 1:6 
Catalyst= 7.4 wt% 

 
 

C= 68% 
SGMO= 17%  
SGDO= 33%  

 

(Pouilloux et 
al., 1999) 

 

Amberlyst 16 Glycerol; 
OA 

Commercial available Acidity= 5.0 mmeq/g 
Structure= macroporous 
Crosslinking degree=  
12% 
PD= 20 nm 
 

C= 37% 
SGMO= 83%  
SGDO= 12%  
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Table 2.7 continued 

2.5.2  Metal oxides 
i. ZnO 
zinc oxide  

 
ii. FeO 
ferrous oxide  

 
iii. SnO 
stannous 
oxide 
 

Glycerol; 
OA 

The commercial available metal 
oxides were calcined at 550 °C for 
5 h prior to use. 

NA T= 170 °C 
t= 6 h 
Gly:OA = 1:1 
Catalyst= 0.8 wt% 

 

C= 83.8% 
 

(Dorin 
Bombos et al., 
2010) 

2.5.2.1 Sulfated zirconia 
SO4

2-/ZrO2 
sulfated 
zirconia  

Polyols; 
OA 

 
 

Sol-gel method preparation 
Sulfated zirconia was prepared 
from zirconium propoxide 
(Zr(OCH2CH2CH3)4) via one-step 
sol-gel method. 0.5 M H2SO4 was 
added dropwise to  
Zr(OCH2CH2CH3)4 for mixing of 
6 h. 

 
Drying 
Solid was filtered, dried (100 °C) 
and calcined at 625 °C for 4 h. 

Acidity = 0.614 mmol/g 
SSA= 80.4 m2/g 
PV= 0.13 cm3/g 
Sulfur content= 2.61 wt% 

 
 

T= 140 °C 
t= 4 h 
Polyols/acid=1.2  
Catalyst= 5.6 wt% 
Speed= 300 rpm 

 

C= 83.5% 
  
 
 

(Oh et al., 
2013a) 
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Table 2.7 continued 

2.5.2.1(a) Acid supported on zirconia  
PP/Zr 
zirconium 
phenyl 
phosphonate 
phosphite  

Glycerol; 
OA 

Impregnation method 
Phosphorous acid and phenyl 
phosphonic acid (3 molar ratio) 
were dissolved distilled water. 
Zirconium oxychloride 
(ZrOCl2·8H2O) was added later 
and stirred until dryness at 90 °C.  

 
Drying 
The solid was recovering by water 
washing and dried overnight at 90 
oC. 

Acidity= 0.36 mmol/g 
SSA= 268 m2/g 

 

T= 180 °C 
t= 1 h 
Gly:OA = 1:4  
Catalyst= 5 wt% of 
OA 

 

C= 48.9% 
SGDO+GTO= 
92.3%  

(Varhadi et 
al., 2013) 

2.5.3 Zeolite 
Sn-beta 
zeolite 

Glycerol; 
OA 

NA NA T= 150 °C 
t= 20 h 
Gly:OA = 1:1 
Catalyst=1 wt% 

 

C= 4% 
 

(L. Wee et al., 
2013) 
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Table 2.7 continued 

ZnO/zeolite 
 

Zinc oxide 
supported on 
zeolite 

Glycerol; 
OA 

Hydrothermal impregnation 
precipitation 1M solution of zinc 
nitrate was mixed with zeolite in a 
weight ratio of 1:3 (ZnO/zeolite). 
Urea (precipitating agent) was 
added to the mixture later. The 
mixture was stirred at 85 °C for 10 
h in a autoclave.  

 
Drying 
The solid was filtered, dried (110 
°C) for 14 h; it was calcined from 
110 to 500 °C at a rate of 10 °C 
min−1 and was maintained at 500 
°C for 3 h. 

 

SSA= 327.71 m2/g 
 

T= 150 °C 
t= 6 h 
Gly:OA= 4:1 
Catalyst= 2 wt% 

 

C= 85% 
SGMO= 70%  

(Singh et al., 
2013) 

2.5.4 Heteropolyacids doped on tin framework 
HPW/Cu3(B
TC)2 

 
Tin-Organic 
Framework 
Catalyst 

Glycerol; 
OA 

Hydrothermal preparation 
Cu3(BTC)2 was encapsulated by 
Keggin phosphotungstic acid 
(HPW) and then  mixed for 5 min. 
It was later heated to 110 °C under 
reflux condition for 24 h.. Solids 
were washed and dried at 60 °C in 
oven. 

NA 
 

T= 150 °C 
t= 20 h 
Gly:OA= 1:1 
Catalyst= 1 wt% 

 
Reaction with tert-
butanol solvent  

C= 40 % 
SGMO= 98% 

(L. Wee et al., 
2013) 
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Table 2.7 continued 

2.5.5  Mesoporous silica 
MCM-41 Glycerol; 

OA 
NA Acidity= 0.89 mmeq/g T= 150 °C 

Gly:OA= 1:1 
t= 6 h 

 

C= 88 %; 
SGMO= 45%  

(Dı́az, 
Márquez-
Alvarez, 
Mohino, 
Pérez-
Pariente, & 
Sastre, 2000) 

HSO3-
methyl-
MCM-41  

Glycerol; 
OA  

One-step hydrothermal synthesis 
Mixture of organo-silane (VTES, 
ClTES or MTES) and TEOS was 
added to CTAB solution under 
continuous stirring. The produced 
gel is poured in autoclaves and 
heated at 95 °C for 24 h. 

 
Drying 
The solid was filtered, washed and 
dried at 65 oC for 24 h. 

Tstability= 150 oC T= 120 °C 
t= 24 h 
Gly:OA= 1:1 
Catalyst= 5 wt% 

 

C= 90 % 
SGMO=  60%  

(Dı́az et al., 
2005) 
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Table 2.7 continued 

(i)  
silica-
sulphuric 
acid 

 
 
 
 
 

(ii) 
Amberlyst 15 

Polyols; 
OA 

One-step hydrothermal synthesis 
Chlorosulfonic acid was added to 
silica gel (through constant flow 
dropping at room temperature and 
30 min).  

(i) 
Acidity= 5.4 mequiv./g 
SSA= 480 m2/g 
PD= 6 nm 
PSD= 43-63 µm 

 
(ii) 
Acidity= 4.7 mequiv./g 
SSA= 42.5 m2/g 
PD= 28.8 nm 
PSD= 300 µm 

 

T= 70 °C 
t= 25 h 
OA: polyol= 3:1 
Catalyst = 5 wt% 
Speed= 300 rpm 

(i) C= 90% 
 
 
 
 
 
 

(ii) C= 96% 

(Åkerman et 
al., 2011) 

Ti-SBA-16 
 
mesoporous 
titanosilicates 
 
(more 
hydrophobic) 
 
 
 
 
 

 

Glycerol; 
OA 

 
 

Hydrothermal synthesis 
Structure directing agent was 
dissolved in 2 M HCl solution 
stirred at 40 °C for 2 h. TEOS was 
then added drop-wise over 30 min 
and stirred for 4 h. The dissolved 
titanium iso-propoxide in 
isopropanol solution was added 
into mixture and stirred for 20 h. 
The material was treated thermally 
at 80 °C for 48 h. The solid was 
dried overnight at 100 °C and 
calcined in air at 550 °C for 8 h. 

Acidity= 0.09 mmol/g 
SSA= 910 m2/g 
PD= 3.8 nm 
PV= 0.86 cm3/g 
PVmeso= 0.75 cm3/g 
Si/Ti ratio= 50  

 
 

T= 180 °C 
t=  3 h 
Gly:OA= 1:1 
Catalyst= 3 wt% of 
OA 

 

C= 72.8% 
SGMO= 32.8% 
SGDO= 57.9% 
SGTO= 9.2% 
 

(Kotwal et al., 
2013) 
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Table 2.7 continued 

Ti-SBA-12 
 

mesoporous 
titanosilicates 

 

Glycerol; 
OA 

 

As above Acidity= 0.12 mmol/g 
SSA=  460 m2/g 
PD= 5.5 nm 
PV= 0.64 cm3/g 
PVmeso= 0.62 cm3/g 
Si/Ti ratio= 40 

 

Same as above 
 (Ti-SBA-16) 

C= 68% 
SGMO= 52.9% 
SGDO= 43.2% 
SGTO= 3.9% 

 

(Kotwal et al., 
2013) 
 

Ti-SBA-16 
 

Same as above 
 (Ti-SBA-16) 

T= 180 °C 
t= 10 h 
Gly:OA = 1:3 
Catalyst= 3 wt% of 
OA 

C= 81.3 % 
SGMO= 4.4% 
SGDO= 51.3% 
SGTO= 44.3%  

 
20 wt% 
HPW/SBA-
15 

 

Glycerol; 
Lauric acid 

Hydrothermal synthesis 
Pluronic P123 was dissolved in 
HCl solution. HPW solution was 
then added into the polymer 
mixture drop-wise and kept under 
stirring at 60 °C for another 24 h. 
TEOS was added into the mixture 
under rapid stirring for 30 min 
then subjected to an aging at 80 °C 
under static condition (24 h).The 
solid was washed, dried and 
calcined in air at ramping 
temperature. 

SSA= 368 m2/g 
PD= 4.5 nm 
PV= 0.2 cm3/g 

 

T= 160 °C 
t=  6 h 
Gly:Lauric acid= 4:1 
Catalyst=  2.5 wt%  

 

C= 70 % 
SGML= 50 %  

(Hoo & 
Abdullah, 
2014) 
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Table 2.7 continued 

STA-SG  
silicotungstic 
acid -silica 
sol-gel  

Glycerol; 
OA 

Sol-gel method 
Water, 1-butanol, silicotungstic 
acid were added to tetraethyl 
orthosilicate (TEOS) 80 °C for 3 h. 

 
Drying 
The hydrogel was dehydrated at 80 
°C for 1.5 h. It was extracted by 
Soxhlet method (methanol as a 
solvent) for 72 h and dried 
overnight at 100 °C. 
 

SSA= 460 m2/g 
 

T= 100 °C 
t=  8 h 
Gly:OA = 1:6 
Catalyst =  7 wt%  

 

C= 94 % 
SGMO= 95 %  

(W. N. R. W. 
Isahak et al., 
2011) 

STA-IL 
 

silicotungstic 
acid-silica 
sol−gel ionic 
liquid 
template  

 

Glycerol; 
OA 

Sol-gel method 
Water, 1-butanol, silicotungstic 
acid, ionic liquid (DMIM·BF4) 
were added to TEOS and stirred at 
80 °C for 3 h. 

 
Drying 
The hydrogel was dehydrated at 80 
°C for 1.5 h. It was extracted by 
Soxhlet method (methanol as a 
solvent) for 72 h and dried 
overnight at 100 °C. 

 

Acidity= 63.5 mmol/g 
SSA= 88.36 m2/g 
Tstability= 320 oC 

T= 100 °C 
t=  9 h 
Gly:OA = 1:6 
Catalyst =  7 wt%  

 

C= 96 % 
SGMO= 90 %  

(Wan N. R. 
W. Isahak et 
al., 2014) 
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Table 2.7 continued 

2.5.6  Double-metal cyanide (DMC) 
Fe–Zn DMC  

 
Fe–Zn double-
metal cyanide 
(DMC) 
complex 

Glycerol; 
OA 

Precipitation method 
K4Fe(CN)6·3H2O and ZnCl2 were 
used as precursors while t-butanol 
was used as the complexing agent 
to prepare Fe-Zn DMC.  

 
The solids were filtered, washed 
with water and dried at 25 °C for 
several hours. 

 

Acidity= 1.056 mmol/g 
SSA= 165 m2/g 
PSD= 36.9 nm 

T= 180 °C 
t= 8 h 
Gly:OA = 1:1 
Catalyst= 7 wt% of 
OA 

 

C= 63.4% 
SGMO= 67.3%  
SGDO= 31.7%  

(Kotwal et al., 
2011) 

2.5.7 Hydrotalcite 
Mg–Al–CO3 
LDH 

 
layered double 
hydroxide 

Glycerol; 
Lauric acid  

Precipitation  and hydrothermal 
synthesis  
Mixture DI water solution 
(contains Mg(NO3)2·6H2O and 
Al(NO3)3·9H2O) was added 
dropwise into dissolved sodium 
carbonate solution. The 
precipitates were treated 
hydrothermally at 80 °C for 24 h. 
The solids were  washed, filtered 
and dried at 80 °C for 48 h. 

SSA= 106 m2/g 
PV= 0.29 cm3/g 
PD= 11 nm 
PSD= 1 to 50 µm 

 
Mesopores material 

T= 180 °C 
t=  2 h 
Gly:Lauric acid= 1:3 
Catalyst= 2 wt% 
Speed= 500 rpm 

C= 99% 
SGML+GDL=  
90%  

(Hamerski & 
Corazza, 
2014) 
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Table 2.7 continued 

2.5.8  Carbon-based acid catalyst 
AC–SO3H Glycerol; 

OA 
Sulfonation of activated carbon 
(AC) 
 
Mesoporous AC was sulfonated 
with 4-benzenediazoniumsulfonate 
at 3-5 °C, in the presence of 120 
mL aqueous H3PO2 (30–32%) 
solution as the reducing agent. 
 

Acidity= 3.21 mmol/g 
SSA= 465 m2/g 
PV= 0.41 cm3/g 
PD= 4.7 nm 
PVmicropore= 0.22 cm3/g 
 

T= 150 °C 
t= 8 h 
Gly:OA = 1:1 
Catalyst= 5 wt% 
 

C= 90% 
SGMO= 70%  
 

(Konwar et 
al., 2016) 
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 Summary and proposition 2.6

The excess of glycerol produced from biodiesel production together with society’s 

concerns on biodegradable resources have renewed the interests of researchers in 

catalytic esterification of glycerol. To date, direct-catalytic esterification of glycerol 

with OA to produce GMO, GDO and GTO is considered the more selective and cost-

effective route compared to alkaline-glycerolysis of methyl oleate or GTO, as well as 

enzymatic glycerolysis process. Recent literature studies have indicated that 

mesoporous silica type catalysts are primarily investigated due to their ability in 

controlling pore size and diameter. This review revealed that catalyst surface structure 

and operating parameters play an important role in controlling the selectivity of 

products.  

In terms of process parameters, the selectivity towards glycerol GMO and GDO is 

enhanced when using higher glycerol concentration, shorter reaction time and lower 

reaction temperature (1:4 molar ratio of oleic acid-to-glycerol; 3-6 h reaction time ; 

temperature < 180 °C). On the contrary, the formation of GTO can be achieved by 

increasing reaction time and operating temperature at higher oleic acid environment 

(3:1 molar ratio of OA-to-glycerol; reaction time > 10 h; temperature > 180 °C). 

Overall, the hydrophobicity of the catalyst surface is one of the important criteria for 

developing reliable solid acid catalyst for water-sensitive esterification reaction. Aside 

from overcoming catalyst deactivation problem, hydrophobic catalyst could aid to 

minimize adhering of hydrophilic glycerol on catalyst surface. It has been shown that 

AC–SO3H catalyst enabled highest conversion (90%) and GMO selectivity (70%) at 

mild operating conditions (T= 150 °C; t= 8 h; using equimolar glycerol-OA. 

Meanwhile, sulfated zirconia (SO4
2-/ZrO2) is found to be the most efficient catalyst in 
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GTO production (C= 83.5 %), mainly due to its tetragonal structural characteristic of 

zirconia phase, pore diameter and pore volume. Therefore, development of water-

tolerant solid acid catalysts is investigated in this research in order to enhance water-

sensitive esterification reaction rate and performance.  
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CHAPTER 3: METHODOLOGY 

 

 Catalyst preparations 3.1

Figure 3.1 shows the overall flow of the research activities for catalyst preparations, 

characterizations, and comparative catalytic activity studies. In this research, novel 

hydrophobic-enhanced catalyst (ZrO2-SiO2-Me&Et-PhSO3H) preparation method was 

disclosed. In addition, three conventional SO4
2-/ZrO2 catalysts that synthesized from 

three different zirconium precursors were produced for catalyst structural correlation 

effect study.  

All synthesized catalysts were characterized in order to study the relation between 

catalyst properties and conversion, esters yields and product selectivities. ZrO2-SiO2-

Me&Et-PhSO3H catalysts with different hydrophobicity and acidity levels were first 

screened and then the most optimal designed catalyst was used to study the effects of 

process operating conditions. The last part of the experiments were devoted to the 

comparison of the performance of the best catalyst with three types of SO4
2-/ZrO2, 

Amberlyst 15 and Aquivion catalysts at the optimum conditions. The analytical 

methods to measure selectivities and yields of product are included herein. 
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Figure 3.1: Schematic diagram of the catalyst preparations, characterizations and comparative catalytic activity studies 



 

 

58 

 Preparation of hydrophobic-enhanced ZrO2-SiO2 catalyst 3.1.1

The coating of SiO2 on ZrO2 support was conducted using hydrolysis and co-

condensation method. The commercial available zirconium hydroxide powder 

(Zr(OH)4, 97% purity, Sigma-Aldrich) was first calcined at 625 oC for 4 h without any 

treatment, as it is a vital step to increase pore volume of ZrO2 (Hongxia Zhao, Jiangang 

Chen, & Sun, 2003). 2 g of ZrO2 powder was added into 100 ml of ethanol (99%, 

Sigma-Aldrich) under vigorous mixing condition at ambient temperature for 30 min. 12 

ml of ammonia solution (NH4OH, 25%, Sigma-Aldrich) and 4 ml of tetraethyl 

orthosilicate (TEOS, 98%, Sigma-Aldrich) were successively added slowly into the 

mixture. It can be observed that the clear solution gradually transformed to opaque 

because the addition of TEOS has generated white silica suspension environment. The 

resulted solution was continuously stirred for 24 h. The generated ZrO2-SiO2 powder 

was then filtered, rinsed with ethanol and dried overnight under vacuum at room 

temperature.  

Modification of ZrO2-SiO2 surface to higher hydrophobicity level as well as 

functionalization of sulfonic acid group into ZrO2-SiO2 support was carried out using 

hydrophobic and surface initiating agents, known as trimethoxymethylsilane (TMMS, 

98 %, Sigma-Aldrich) and 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane (CSPETS, 

50% in dichloromethane, Fisher Scientific), respectively (Mobaraki et al., 2014). 0.2 g 

of CSPETS and 0.2 g of TMMS were added into 35 mL of dry toluene (99%, Sigma-

Aldrich) that contained 1 g of SiO2-ZrO2. The mixture solution was continuously stirred 

for 24 h. The functionalized catalyst (ZrO2-SiO2-Me&Et-PhSO2Cl) was then washed 

with toluene (2× 15 mL) and distilled water. Lastly, the modified solids were suspended 

in H2SO4 solution for 2 h (0.5 M, 5 ml). It was washed several times with water and 

dried overnight under vacuum at room temperature. The solid catalysts designed with 
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different TMMS amounts, ZrO2-SiO2-Me&Et-PhSO3H_50, ZrO2-SiO2-Me&Et-

PhSO3H_70 and Me&Et-ZrO2-SiO2-Me&Et-PhSO3H_80 were produced and used for 

catalytic esterification reaction. The value of 80, 70 and 50 at the end of catalyst’s 

symbol indicates the mol% of TMMS utilized in adjusting hydrophobicity level of the 

catalysts. 

 SO4
2-/ZrO2 catalyst prepared by using zirconium (IV) propoxide precursor 3.1.2

5 ml of zirconium (IV) propoxide, Zr(OCH2CH2CH3)4 (70 % in 1-propanol, Sigma-

Aldrich) was first mixed with 6.6 ml of 1-propanol (99.7%, Sigma-Aldrich). 

Subsequently, 9.7 ml of 0.5 M aqueous H2SO4 was added dropwise into prepared mixed 

solution and stirred vigorously at ambient temperature for 6 h. The formed gels were 

filtered, dried (100 oC, overnight) and then calcined at temperature of 625 oC for 4 h. 

 SO4
2-/ZrO2 prepared by using zirconium oxychloride precursor 3.1.3

Zirconium oxychloride, ZrOCl2.8H2O (99.5 %, Sigma-Aldrich) precursor was used 

to prepare SO4
2-/ZrO2 through precipitation method.  At first, 21 ml of 1 M sodium 

hydroxide (NaOH) solution was added slowly into 5 ml of ZrOCl2.8H2O under mild 

stirring at ambient temperature until the pH reached 8. The formed precipitates were 

washed thoroughly with distilled water, followed by filtration, and drying process at 

100 oC (12 h). The Zr(OH)4 (5.2 g) that had been prepared was mixed with 4.6 ml of 0.5 

M H2SO4 at room temperature and stirred overnight. The final form SO4
-/ZrO2 was 

filtered, dried at 100 oC, and calcined at 625 oC for 4 h (Oh et al., 2013b). 

 SO4
2-/ZrO2 prepared by using commercial zirconia 3.1.4

The commercial available Zr(OH)4 (5.2 g) from Sigma-Aldrich was mixed with 4.6 

ml of 0.5 M H2SO4 at room temperature and stirred for overnight. Consequently, the 

SO4
-/ZrO2 catalyst was filtered, dried at 100 oC, and calcined at 625 oC for 4 h. 
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 Catalyst characterizations  3.2

 Brunauer, Emmett and Teller (BET) 3.2.1

N2 physisorption measurement was performed using BELSORP-max analyzer 

(Japan) after the catalyst powders were outgassed under vacuum at 473 K for 5 h. The 

surface area of catalyst was calculated using Brunauer-Emmett-Teller (BET) method 

from the adsorption curve range at 0.04 to 0.2 relative pressures (P/Po). While the pore 

size distribution curve was plotted using Barrett-Joyner-Halenda (BJH) desorption 

branch of isotherms, the average pore diameters were calculated according to the BJH 

method at 0.99 P/P0. 

 Particle size distribution (PSD) 3.2.2

The particle size distribution of solid samples was measured by Malvern MS3000 

particle sizer (dry) at pressure of 2 bars. The particle distribution size of the samples at 

each preparation step was measured. 

 Field Emission Scanning Electron Microscope (FESEM) 3.2.3

Field Emission Scanning Electron Microscope (FESEM) was performed on JSM-

7100F to collect catalyst surface morphology at 1-30 kV acceleration voltage. The 

catalyst samples were degassed and coated with gold (Au) using Edwards Dirani S01 

prior to EDX measurement.  

 Contact angle analysis  3.2.4

Hydrophobicity of the catalyst was measured by water contact angle method using 

KRUSS DSA100 instrument. The catalyst, in its powder form, was pressed in a pallet 

form using tablet press at 8 MPa prior to water angle measurement. Water was used as a 

solvent in the water contact angle measurement. 
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 Acid-base titration 3.2.5

The acids exchange capacity of solid acid catalyst was determined by acid-base 

titration with 8.38 x 10-3 M NaOH solution (Chen et al., 2016). 40-50 mg of solid 

sample was degassed at 120 oC for 3 h. It was then suspended in 25 ml of NaCl (2 M) 

and stirred for 24 h at room temperature to reach equilibrium. The resulting suspension 

was titrated with NaOH solution and the acidity of acid solid catalyst was measured in 

mmol/g.  

 Fourier-transform infrared (FTIR) 3.2.6

Fourier-transform infrared (FTIR) spectra were obtained using Perkin Elmer, 

Spectrum BXII spectrometer in the range of 200-4000 cm-1.  

 Thermogravimetric analysis (TGA) 3.2.7

Thermogravimetric analysis (TGA) techniques were performed to ascertain the 

thermal stability of the catalysts using Mettler Toledo system at a 10 oC/min rate to the 

maximum temperature of 900 oC. 

 X-ray photoelectron spectra (XPS) 3.2.8

X-ray photoelectron spectra (XPS) were performed using a Thermoscientific Kalpha 

device. The photoelectron emission spectra were recorded using Al–Kα radiation (hν = 

1486.6 eV) from a monochromatized source. The X spot size was 400 µm. The pass 

energy was fixed at 30 eV for narrow scans (and 160 eV for the survey). Flood Gun was 

used for the charge effects measurement. The spectrometer energy was calibrated using 

Au 4f7/2 (83.9 ± 0.1 eV) and Cu 2p3/2 (932.8 ± 0.1 eV) photoelectron lines. XPS spectra 

were recorded in direct N(Ec). The background signal was removed using the Shirley 

method. The atomic concentrations were determined with an accuracy of 10% from 

photoelectron peak areas using the atomic sensitivity factors reported by Scofield, 
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taking into account the transmission function of the analyser. This function was 

calculated at different pass energies from Ag 3d and Ag MNN peaks collected for a 

silver reference sample, inside the system. The binding energy scale was established by 

referencing the C 1s value of adventitious carbon (284.7 ± 0.1 eV). The photoelectron 

peaks were analysed by Lorentzian/Gaussian (L/G = 30) peak fitting. The samples were 

analysed at about 5x10-9 Pa. 

 Powder X-ray diffraction (XRD) 3.2.9

The spectra were referenced with respect to the C 1s line at 284.5 eV. Powder X-ray 

diffraction (XRD) patterns were recorded using a Rigaku RINT 2000 X-ray 

diffractometer with Cu Kλ radiation (λ = 1.54056 Å) over the 2Ɵ range from 10o to 80o. 

 Catalytic reaction and analysis of samples 3.3

The catalytic esterification reaction of glycerol (≥ 99.5%, Sigma-Aldrich) with OA 

(90% technical grade, Sigma-Aldrich) was performed in a 250 ml batch reactor 

equipped with a thermometer to measure the temperature of the mixture; the reactor was 

connected to a condenser and a vacuum system to remove water during the reaction. 

The reaction was performed at 100 °C for 8 h using three catalysts designed with 

different hydrophobicity levels, ZrO2-SiO2-Me&Et-PhSO3H_50, ZrO2-SiO2-Me&Et-

PhSO3H_70 and ZrO2-SiO2-Me&Et-PhSO3H_80. During the running test, samples of 

500 µL volume were withdrawn periodically and the samples were analysed by high 

performance liquid chromatography coupled to refractive index detection (HPLC-RI). 

The reliability of the procedure was confirmed by repeating the experiments at least 

twice. ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst was chosen as optimal catalyst for 

process variables study at temperature ranging from 100, 120, 140 to 160 °C, glycerol 
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to OA molar ratios (1:1, 2:1, 3:1, and 1:3), catalyst concentration with respect to mass 

of OA (3, 5 and 8 wt%) and different interval reaction times. 

The separation and quantitative determination of the samples were conducted using 

HPLC-RI through an isocratic method, equipped with Gemini C18 11OA column (100 

mm × 2 mm × 3 µm). All the analytical standard reagents such as GMO (≥ 99%), GDO 

(≥ 99%) and GTO (≥ 99%) were purchased from Sigma-Aldrich for qualitative and 

quantitative purpose.  The analytical grade solvents such as acetonitrile (ACN), 

methanol (MeOH) and tetrahydrofuran (THF) which were purchased from Sigma-

Aldrich were utilized as mobile phase while trifluoroacetic acid (TFA) was used as 

mobile phase additive due to its high resolving power. The OA and GMO groups of the 

sample were separated using a mobile phase consisted of ACN/water (80:20 v/v) with 

0.1% TFA (v/v of total mobile phase). Meanwhile, GDO and GTO groups  were 

separated using ACN/MeOH/THF (40:40:20 v/v/v) (Kathy Wai Yu, Christopher J. H., 

& Ben J., 2013).  The injection volume was 10 μL and the diluted samples were eluted 

at a 220 µL/min flow rate. The column and RI detector temperatures were set at 40 °C.  

The conversion, yield and selectivity of the products were calculated according to, 

Equation 3.1, 3.2 and 3.3, respectively using HPLC analysis. The conversion of OA was 

verified by using acid value determination according to ASTM D4662-03 method. The 

product mixtures were titrated by Metrohm auto-titrator with KOH-ethanol-solution 

(0.1 mol/L).   

The conversion and yield were calculated according to the initial mole of OA instead 

of initial mole of glycerol is due to glycerol cannot be detected in the above-mentioned 

HPLC-RI analysis method. In addition, OA is the limiting reactant in optimization 

study. Therefore, initial mole of OA was used for conversion and yield calculation in 
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this study. The obtained chromatogram peaks for groups (OA and GMO) and (GDO and 

GTO) are presented in Appendix B. 

Conversion =  
𝑚𝑜𝑙𝑂𝐴𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚𝑜𝑙𝑂𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 ×  100 % 

 

(3.1) 

Yield𝑡𝑜𝑡𝑎𝑙 𝐺𝑀𝑂,𝐺𝐷𝑂,𝐺𝑇𝑂 =  
𝑚𝑜𝑙𝑡𝑜𝑡𝑎𝑙 𝑒𝑠𝑡𝑒𝑟𝑠 

𝑚𝑜𝑙𝑂𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 ×  100 % 

 

(3.2) 

Selectivity𝐺𝑀𝑂  =  
𝑚𝑜𝑙𝐺𝑀𝑂

𝑚𝑜𝑙𝑡𝑜𝑡𝑎𝑙 𝐺𝑀𝑂+𝐺𝐷𝑂+𝐺𝑇𝑂 
×  100 % 

 

(3.3) 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 PART 1: Preparation and characterization of hydrophobic catalyst  

In this part, the physicochemical and textural properties of the prepared hydrophobic 

ZrO2–SiO2 catalyst through four modification steps (ZrO2, ZrO2–SiO2, ZrO2–SiO2–

Me&Et–PhSO2Cl and ZrO2–SiO2–Me&Et–PhSO3H) are presented and discussed. The 

novel technique used to control the acidity and hydrophobicity levels of the designed 

catalyst is described in this work. In addition, the effects of the loading amount of 

hydrophobic agent (TMMS) on the hydrophobicity level of the catalyst were 

investigated. Subsequently, the mechanism of catalyst formation was proposed on the 

basis of the comprehensive catalyst characterization results.  

 Physicochemical and textural properties of catalysts 4.1.1

N2 physisorption was utilised to measure surface area, pore size distribution and 

porosity of the catalysts. Figure 4.1(a) shows the N2 adsorption–desorption isotherm 

plots for ZrO2 support. ZrO2 showed a superposition of type IV isotherm with hysteresis 

loop at relative pressure range of 0.5–1.0. This result indicated that the pore size 

distributions are given by nonrigid aggregates of plate-like particles and mainly 

composed of mesoporous and minority of macroporous (Matthias et al., 2015). Results 

also confirmed that the ZrO2 used in this study possessed meso–macropore pore sizes, 

with pore size ranging from 10.57 nm to 120 nm. The sintering process occurred at high 

calcination temperature, which resulted in the removal of OH− from ZiO2 and formation 

of large pore size for ZrO2. The obtained result is similar to that reported by (Hongxia 

Zhao et al., 2003); they indicated that the surface area of a solid material decreases, and 

its average pore diameter increases with increased calcination temperature.  
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Figure 4.1(b) displays a sharp increase in the loading of the ZrO2–SiO2 catalyst at 

low values of P/Po, which suggested a high surface. The presence of hysteresis type IV 

isotherm in this plot showed that the obtained pore size distribution was consistent, with 

small pore size within the mesoporous range. SiO2 was mainly adsorbed on the inner 

wall and fitted inside the ZrO2 support, which significantly reduced the average pore 

diameter of ZrO2–SiO2 from 120 nm to 3.71 nm. Therefore, the SiO2 active species were 

well-deposited on the support, which was evidenced by its pore size distribution curve. 

The increased surface area of ZrO2–SiO2 can be explained by the adherence of new 

SiO2 phase on the ZrO2 support, which led to the formation of rough, heterogeneous and 

well-deposited small particles on the catalyst support.  

The N2 adsorption isotherms of the catalyst functionalised with TMMS and 

CSPETS, that is, ZrO2–SiO2–Me&Et–PhSO2Cl, are presented in Figure 4.1(c). The 

obtained hysteresis plot of the ZrO2–SiO2–Me&Et–PhSO2Cl catalyst indicated a low-

porosity adsorbent because the adsorbent–adsorbate interactions were relatively weak. 

Unlike the ZrO2 support or ZrO2–SiO2, the average pore diameter for the ZrO2–SiO2–

Me&Et–PhSO2Cl catalyst was determined using the NLDFT/GCMC method due to its 

incompatibility to the BJH model. Notably, the average pore diameter of the prepared 

catalyst in the 3rd step (ZrO2–SiO2–Me&Et–PhSO2Cl, 2.24 nm) was slightly smaller 

than that of ZrO2–SiO2 (3.77 nm), which suggested the grafting of agents on the surface 

of ZrO2–SiO2. The TMMS–CSPETS hypothesis was proposed, and the functionalised 

ZrO2–SiO2 support was proven in this characterization analysis. 

The acidification of functionalised catalyst (ZrO2–SiO2–Me&Et–PhSO3H) exhibited 

hysteresis loop at a relative pressure range of 0.3–0.8, as shown in Figure 4.1(d). The 

hysteresis loop of the ZrO2–SiO2–Me&Et–PhSO3H catalyst ranged between those of 
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ZrO2–SiO2–Me&Et–PhSO2Cl and ZrO2–SiO2. This result indicated that sulphonation 

removed some of the agents of ZrO2–SiO2–Me&Et–PhSO2Cl. Comparison of the 

hysteresis curve and pore diameter plot of ZrO2–SiO2–Me&Et–PhSO3H to ZrO2–SiO2 

hysteresis loop (Figure 4.1(b)) confirmed that ZrO2–SiO2–Me&Et–PhSO3H is a 

mesoporous catalyst.  

 
 
(a) 

 
 

(b) 

 
(c) 

 
(d) 

 

Figure 4.1: N2 adsorption–desorption isotherms and BJH plots for ZrO2 (a), 
ZrO2–SiO2 (b), ZrO2–SiO2–Me&Et–PhSO2Cl (c) and ZrO2–SiO2–Me&Et–PhSO3H 

(d) 
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4.1.1.1 Particle size distribution  

The particle size distribution curves of the catalysts prepared at four different 

modification steps are shown in Figure 4.2. Results revealed that coating the ZrO2 

support with SiO2 altered the particle size distribution range from a broad wide range to 

a narrow range and bell shaped distribution. This result may be attributed to the 

incorporation of Si atom into the Zr support. Nevertheless, this work indicated that 

functionalization of hydrophobic agent and sulphonation process exerted no effect on 

the particle size distribution of the catalysts. Moreover, the particle size distributions of 

ZrO2–SiO2, ZrO2–SiO2–Me&Et-PhSO2Cl and ZrO2–SiO2–Me&Et–PhSO3H were 

identical. 

 

 

Figure 4.2: Particle size distribution curves for ZrO2, ZrO2–SiO2, ZrO2–SiO2–
Me&Et–PhSO2Cl and ZrO2–SiO2–Me&Et–PhSO3H 
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4.1.1.2 Acidity  

The catalyst acidity at four different modification steps was measured. Table 4.1 

summarises the physicochemical and textural properties of the functionalised catalyst in 

each modification step. The original ZrO2 showed low acidity value (0.18 mmol/g) 

because ZrO2 is naturally a Brønsted base. Notably, the silication step reduced the ZrO2 

acidity from 0.18 mmol/g to 0.00 mmol/g. This effect can be explained by the fact that 

the NH4OH used to catalyse the hydrolysis and condensation reaction in the silication 

step changed the surface acidity of original ZrO2 due to neutralization and silicate 

coating. The zero acidity of SiO2–ZrO2 indicates that SiO2 was well-coated on the ZrO2 

support. The acidity of the 3rd step-prepared SiO2–Me&Et–PhSO2Cl catalyst was 0.16 

mmol/g. The acidity of the ZrO2–SiO2–Me&Et–PhSO3H catalyst was increased to 0.62 

mmol/g after the acidification step.  

Table 4.1: Physicochemical property of functionalised catalysts in each 
modification step 

Catalysts Specific 
surface 
area a 

(m2/g) 

Pore volume 
b (cm3/g) 

Average pore 
diameter b 

(nm) 

Average 
particle 

diameter 
c (µm) 

Acidity 
(mmol/g) 

ZrO2 18.77 0.126 10.70-120 100 0.18 

ZrO2-SiO2 73.05 0.0296 3.77 5.87 0.00 

ZrO2-SiO2-
Me&Et-PhSO2Cl d 

- 0.0316 

 

2.24 5.39 0.16 

ZrO2-SiO2-
Me&Et-PhSO3H 

79.75 0.0247 3.77 5.01 0.62 

a Total surface area was determined using BET equation; b pore volume and average pore diameter were determined using BJH 
method; c particle diameter was measured by mastersizer; d pore volume and average pore diameter were determined using 
NLDFT/GCMC method. 
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 Surface morphology characterization 4.1.2

4.1.2.1 Field emission scanning electron microscope (FESEM) 

Images of the different development stages of the catalyst captured by using high-

resolution FESEM are displayed in Figure 4.3. ZrO2 presented typical rough, meso–

macropore space and irregular surface morphology (Figure 4.3(a)). The uneven ZrO2 

surface can be associated with material sintering during drying and calcination 

processes. Nevertheless, the presence of silica-like-substance on ZrO2 support was 

supported by the latter modified ZrO2–SiO2 (Figure 4.3(b)). The hydrolysis and 

condensation processes used in the silica coating in this work were according to the 

modified Stöber method. The base-catalysed hydrolysis and successive condensation of 

TEOS result in the formation of monodispersed spherical silica particle (Rahman & 

Padavettan, 2012). The spherical shape particles evolve when the chemical bond and 

Van der Waals forces generate elastic and plastic deformations between two oligomers; 

eventually, two oligomers engulf each other to maintain the spherical shape (X.-D. 

Wang et al., 2010). 

The addition of both TMMS and CSPETS agents resulted in no modification on the 

surface morphology of ZrO2–SiO2–Me&Et–PhSO2Cl. However, smearing of the silica-

like-substance was observed (Figure 4.3(c)). ZrO2–SiO2–Me&Et–PhSO3H catalyst 

(Figure 4.3(d)) significantly displayed uniform and smooth spherical particles with 

consistent sizes. The pore diameter of a single silica sphere was approximately 400 nm. 

The overnight aging in the silication process and washing of ZrO2–SiO2 using 

excessively ethanol hence produce porosity-type particles; as the hydrolysis of alkoxy 

groups, condensation and re-esterification of silanol groups upon re-immersion in 

ethanol result in the formation of micro–mesoporous silica (Bazuła et al., 2014). Thus, 

the morphology images are correlated with the aforementioned BET results.  
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(a) 

 

 

(b) 

 

(c) 

 

(d) 

 

 

Figure 4.3: FESEM morphologies of ZrO2 (a), ZrO2–SiO2 (b), ZrO2–SiO2–
Me&Et–PhSO2Cl (c) and ZrO2–SiO2–Me&Et–PhSO3H (d) 

 

 Hydrophobicity measurement 4.1.3

4.1.3.1 Contact angle analysis 

The hydrophobicity of the developed catalyst should be measured when developing 

highly hydrophobic and heterogeneous acid catalyst. The hydrophobicity level of each 

developed catalyst was determined by contact angle measurements. The results are 

presented in Figure 4.4. The water contact angle of the catalysts was increased in the 

order of ZrO2–SiO2–Me&Et–PhSO3H > ZrO2–SiO2–Me&Et–PhSO2Cl > ZrO2–SiO2 > 

ZrO2. Noticeably, the lowest hydrophobicity was shown by the original ZrO2 support. 

Hydrophobicity was enhanced through coating ZrO2 support with SiO2; this effect was 
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attributed to that the siliceous material improved the hydrophobic environment because 

Si atom can increase the hydrophobicity of a compound. With the addition of 

hydrophobic organosilica moiety, TMMS considerably increased the hydrophobicity of 

the catalyst surface. Superhydrophobic film chemical sensor and hydrophobic polyester 

fabrics are successfully constructed by TMMS (Li, Li, Dong, & Zhang, 2016). As 

expected the presence of methyl groups on the silica surface caused the decrease in 

surface hydrophilicity. The hydrophobicity of the ZrO2–SiO2–Me&Et–PhSO3H catalyst 

was also slightly improved with the incorporation of sulphonic acid groups. 

 

 

 

Figure 4.4: Hydrophobicity levels of ZrO2, ZrO2–SiO2, ZrO2–SiO2–
Me&EtPhSO2Cl and ZrO2–SiO2–Me&Et–PhSO3H based on water contact angle 

analysis 
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 Thermal stability analysis  4.1.4

4.1.4.1 Thermal gravimetric analysis (TGA) 

The TGA curves of ZrO2, ZrO2–SiO2, ZrO2–SiO2–Me&Et–PhSO2Cl and ZrO2–

SiO2–Me&Et–PhSO3H are shown in Figure 4.5. A weight loss occurred in the ZrO2–

SiO2–Me&Et–PhSO3H catalyst at a temperature range of 260 °C–300 °C. This weight 

loss was 4 wt% in ZrO2–SiO2–Me&Et–PhSO3H compared with the 3rd step-prepared 

ZrO2–SiO2–Me&Et–PhSO2Cl, which indicated the decomposition of sulphate moiety 

(Fang et al., 2015). The second weight loss zone was observed at 560 °C–570 °C for 

ZrO2–SiO2, ZrO2–SiO2–Me&Et–PhSO2Cl and ZrO2–SiO2–Me&Et–PhSO3H; this loss 

was attributed to the decomposition of SiO2 material (Estevez et al., 2016). These 

weight losses were significant, especially for functionalised ZrO2–SiO2–Me&Et–

PhSO2Cl and ZrO2–SiO2–Me&Et–PhSO3H. TGA analysis showed that ZrO2 support 

possessed good thermal stability. Therefore, the catalytic reaction is within the thermal 

stability range of catalyst for the reaction temperature of approximately 250 ° C. 

 

Figure 4.5: TGA curves for ZrO2 (a), ZrO2–SiO2 (b), ZrO2–SiO2–Me&Et–
PhSO2Cl (c) and ZrO2–SiO2–Me&Et–PhSO3H (d) on the basis of the weight loss 

rate 
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 Chemical surface analysis 4.1.5

4.1.5.1 Fourier transform infrared spectroscopy (FT-IR) 

The FT-IR spectra of the ZrO2–SiO2 catalyst are shown in Figure 4.6 and they 

provided evidence for the formation of SiO2 (red spectra). The significant bands at 1061 

and 576 cm−1 are assigned to the Si–O–Si asymmetric stretching vibrations (Chen et al., 

2016; Saravanan, Tyagi, & Bajaj, 2016). Nonetheless, these bands did not appear at the 

spectra of blank ZrO2. The band at 1061 cm−1 was attributed to the asymmetric 

stretching vibrations, such as those of Si–O and Si–O–Zr. The bands at approximately 

791 and 730 cm−1 are associated with the formation of a condensed silica network 

(Faria et al., 2009; P. Wang, Liu, Niu, Li, & Ma, 2014). The band located around 950 

cm−1 is given by the stretching vibrations of the Si–O bond (Faria et al., 2009). The 

FTIR results confirmed the successful coating of SiO2.  

 

 

Figure 4.6:  Fourier transform infrared spectroscopy (FT-IR) spectrum of 
ZrO2–SiO2 (black: ZrO2 vs red: ZrO2–SiO2) 
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4.1.5.2 Energy-dispersive X-ray spectroscopy (EDX) analysis 

EDX analysis was performed to identify the surface composition change in each 

modification step of the catalyst. As shown in Figure 4.7(a), ZrO2 support displayed Zr 

and O peaks, with averaged mass percentages of 74.2% Zr and 25.8% O. In ZrO2–SiO2, 

the silica-coated ZrO2 consisted of additional Si peak, as shown in Figure 4.7(b). The 

averaged mass percentages of Zr, O and Si are 42.7%, 42.8% and 14.5%, respectively. 

The increase in the O compound was in agreement with the adherence of SiO2 to the 

support.  

The surface composition of ZrO2–SiO2–Me&Et–PhSO2Cl and ZrO2–SiO2–Me&Et–

PhSO3H showed no significant change. The averaged surface composition of ZrO2–

SiO2–Me&Et–PhSO2Cl comprised 39.77% Zr, 42.2% O and 18.06% Si (Figure 4.7(c)). 

The Si content of ZrO2–SiO2–Me&Et–PhSO2Cl was 3.5% higher than that of ZrO2–

SiO2. The discrepancy may be attributed to the ZrO2–SiO2 functionalised with TMMS 

and CSPETS. The ZrO2–SiO2–Me&Et–PhSO3H peaks with 44.7% Zr, 38.9% O and 

16.4% Si are presented in Figure 4.7(d). The sulphonated surface of the ZrO2–SiO2–

Me&Et–PhSO3H catalyst showed 1.66% lesser Si content than that of ZrO2–

SiO2Me&Et–PhSO2Cl. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.7: Energy-dispersive X-ray spectroscopy peaks of ZrO2 (a), ZrO2–SiO2 
(b), ZrO2–SiO2–Me&Et–PhSO2Cl (c) and ZrO2–SiO2–Me&Et–PhSO3H (d) 

 

4.1.5.3 X-ray photoelectron spectroscopy (XPS) 

XPS allows further insight analysis on the surface composition of each catalyst. 

Different from FTIR spectra, majority of the bands cannot be well distinguished in 

different composites due to the presence of broad and overlapping bands of silica with 

the sulphonated group. Therefore, the surface composition of each modified catalyst 

was investigated using XPS, and results are presented in Figure 4.8.  

The binding energy in the interval ranged of 178–188 eV (Figure 4.8(a)) indicated 

that the ZrO2 material belonged to Zr–O (182 and 185 ± 0.1 eV), Zr–Ox or Zr–OH 

groups (181 and 184 ± 0.1eV). In the ZrO2–SiO2 support (Figure 4.8(b)), the mainly 
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detected compound appeared at the peak corresponding to the interval of 530 –537 eV, 

which was attributed to the presence of SiO2. The large peak at 533.1 ± 0.1 eV 

suggested a high-majority ratio mixture of SiO2 with two different environments: Si–O–

Si (at 533.0 ± 0.1 eV) and Si–O–Zr (at 531.0 ± 0.1 eV) (Rodrı́guez-Castellón et al., 

2003). Moreover, different composites were observed for ZrO2–SiO2 support at a broad 

peak ranging from 100 eV to 105 eV. This result can be attributed to the presence of 

Si(–O)4 species (103.7 ± 0.1 eV) and Si–O–Zr units (102.8 ± 0.1 eV). 

 As shown in (Figure 4.8(c)), the peak in the area ranging from 160 eV to 170 eV 

was assigned to C–SH (163–164 ± 0.1 eV), C–S(O)2–Cl (168–169± 0.1 eV) and 

sulphate groups (168.5 ± 0.1 eV). This result can be attributed to the functionalised 

CSPETS and TMMS agents for ZrO2–SiO2–Me&Et–PhSO2Cl. Nevertheless, in 

correspondence to the peak at 160–170 eV, limited percentage of the sulphonic group 

(silica composites of the SO3H group) was detected at 168.5 ± 0.1 eV for ZrO2–SiO2–

Me&Et–PhSO3H (Figure 4.8(d)) (Fang et al., 2015). This result may be obtained 

because the detection limit of XPS (approximately 10 nm) was inaccessible to a single 

mesoporous–monosphere particle with an approximate diameter of 400 nm. These 

results suggested that the sulphonic acid sites for the ZrO2–SiO2–Me&Et–PhSO3H 

catalyst were mainly distributed in the nanosphere pores. The sulphonic acid groups 

diffused into the mesopore of the silica shell during treatment. This finding is similar to 

that of the previous work, which reported that most of the acidic sites for silica-prepared 

catalysts are buried in the bulk polymer beads (Chen et al., 2016). 
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(a) (b) 

 

(c) 

 

(d) 
 

Figure 4.8: X-ray photoelectron spectroscopy spectra for ZrO2 (a), ZrO2–SiO2 
(b), ZrO2–SiO2–Me&Et–PhSO2Cl (c) and ZrO2–SiO2–Me&Et–PhSO3H (d) 

 

 Structural characterization 4.1.6

4.1.6.1 X-ray powder diffraction (XRD) 

The catalyst crystallite structure can be measured by using XRD. Figure 4.9 shows 

the XRD patterns of catalyst in four different modification steps. The amorphous nature 

of ZrO2 was transformed to relatively crystalline character during the calcination of 

monoclinic (M) and tetragonal (T) phase diffraction (Figure 4.9(a)). The main 

diffraction in the profile appeared at approximately 16°, 26°, 28°, 32°, 42°, 46°, 54° and 

56° and corresponded to the stable M phase. Minor distribution of the metastable T 

phase is also observed at 2θ ca. 30°, 35°, 50° and 60° diffraction (Alcañiz-Monge, 

Bakkali, Trautwein, & Reinoso, 2018). The crystallinity structures at four different 
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modification steps (ZrO2, ZrO2–SiO2, ZrO2–SiO2–Me&Et–PhSO2Cl and ZrO2–SiO2–

Me&Et–PhSO3H) were almost identical. Loading of ZrO2–SiO2 with TMMS and 

CSPETS caused no improvement on the crystallinity of the catalyst. Nevertheless, the 

intensity of ZrO2–SiO2–Me&Et–PhSO3H was slightly sharpened at 28° after 

sulphonation (Figure 4.9 (b)). 

 

 

Figure 4.9: X-ray diffraction (XRD) profiles of ZrO2 (a), ZrO2–SiO2 (b), ZrO2–
SiO2–Me&Et–PhSO2Cl (c) and ZrO2–SiO2–Me&Et–PhSO3H (d) 
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 PART 2: Control of the hydrophobicity and acidity of the catalyst  4.2

This part investigated the effect of the loading amount of TMMS-CSPETS on ZrO2-

SiO2 support towards the hydrophobicity level of the catalyst. The total loading amount 

of both activation agents, which was expressed as the molar ratio of TMMS-CSPETS to 

ZrO2-SiO2, was optimised in the presence of a constant concentration of TMMS (80 

mol%) to obtain the most suitable hydrophobicity level of the catalyst. Subsequently, 

the optimised ratio of CSPETS-TMMS to ZrO2-SiO2 was used to adjust the ratio of 

TMMS hydrophobic agent in mol%. Solid catalysts designed with different TMMS 

amounts, namely, ZrO2-SiO2-Me&Et-PhSO3H_50, ZrO2-SiO2-Me&Et-PhSO3H_70 and 

ZrO2-SiO2-Me&Et-PhSO3H_80, were produced and applied in catalytic activity 

screening. The values of 80, 70 and 50 at the end of the catalysts’ symbols indicate the 

mol% of TMMS utilised in adjusting the hydrophobicity level of the catalyst.  

 Effects of the loading amount of TMMS-CSPETS on the catalyst 4.2.1

hydrophobicity  

Table 4.2 presents the loading amounts of CSPETS and TMMS on ZrO2-SiO2. The 

effects of the amount of functionalisation agents (TMMS-CSPETS) must be 

investigated to obtain the highest possible hydrophobicity level of the designed catalyst. 

The molar ratio of activation agents to the ZrO2-SiO2 support was initially optimised at 

a constant concentration (80 mol%) of TMMS. Afterwards, the suitable 

CSPETS:TMMS ratio was optimised to obtain the most suitable catalyst acidity and 

hydrophobicity. In this study, the loading weights of TMMS-CSPETS ranged from 0.2 

g to 1.2 g to functionalise 1 g of ZrO2-SiO2. 
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Table 4.2: Loading amounts of functionalisation agents (TMMS and CSPETS) 
in ZrO2-SiO2 support 

Catalysts a Molar ratio 
SiO2:total 

agents 

b TMMS 
(mol%) 

TMMS 

(g) 

CSPETS 

(g) 

TMMS 
(mmol) 

CSPETS 
(mmol) 

ZrO2-SiO2-Me&Et-
PhSO2Cl  (3, 80) 

3:1 80 0.2 0.2 1.47 0.31 

ZrO2-SiO2-Me&Et-
PhSO2Cl  (2.5, 80) 

2.5:1 80 0.250 0.262 1.84 0.40 

ZrO2-SiO2-Me&Et-
PhSO2Cl  (2, 80) 

2:1 80 0.313 0.328 2.30 0.50 

ZrO2-SiO2-Me&Et-
PhSO2Cl (1, 80) 

1:1 80 0.6255 0.655 4.59 1.01 

ZrO2-SiO2-Me&Et-
PhSO2Cl (0.4, 80) 

1:2.5 80 1.609 1.621 11.81 2.49 

a Molar ratio SiO2:total agent;  b mol %of hydrophobic ratio= [ (TMMS mmol)/ (TMMS mmol + CSPETS mmol)]; values in the 
parentheses represent molar ratio SiO2:total reagent and TMMS mol%     

 

The effects of the loading amount of TMMS on the hydrophobicity level of the 

designed catalysts are illustrated in Figure 4.10. Results revealed that the 2.5:1 molar 

ratio of SiO2 to TMMS-CSPETS (ZrO2-SiO2-Me&Et-PhSO2Cl [2.5, 80]) achieved the 

highest performance amongst the designed catalysts because it exhibited the highest 

hydrophobicity level. The experimental work also proved that the hydrophobicity level 

of the catalyst was unaltered by loading an excessive amount of total agents. For 

instance, the corresponding 1.6 g of CEPETS and 1.6 g of TMMS were loaded 

excessively to 1 g of SiO2-ZrO2 to gain a highly hydrophobic surface catalyst in 

designing the ZrO2-SiO2-Me&Et-PhSO2Cl (0.4, 80) catalyst, but the highest 

hydrophobicity was not achieved. This work evidenced that further increase in the 

loading amount of CSPETS and TMMS will not improve the catalyst hydrophobicity. 

Furthermore, no direct relation existed between the amount of CSPETS and TMMS 
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loading and the hydrophobicity level. This study confirmed that the best molar ratio of 

SiO2 to the total agents was 2.5:1, and the catalyst with the highest hydrophobicity was 

ZrO2-SiO2-Me&Et-PhSO2Cl (2.5, 80). 

 

 

Figure 4.10: Effects of the loading amount of TMMS-CSPETS on the 
hydrophobicity levels of the designed catalysts 

 

 Effects of TMMS loading on the catalyst acidity 4.2.2

The previous section identified 2.5:1 as the most suitable molar ratio of SiO2 to the 

total agents. Different mole percentages of TMMS were used to investigate the 

hydrophobicity level of each designed catalyst at a constant molar ratio of SiO2:TMMS-

CSPETS (2.5:1). Table 4.3 reveals the mole percentages of TMMS utilised to adjust the 

hydrophobicity level of the designed catalysts, which were ZrO2-SiO2-Me&Et-

PhSO3H_80, ZrO2-SiO2-Me&Et-PhSO3H_70 and ZrO2-SiO2-Me&Et-PhSO3H_50. The 

values (80, 70 and 50) at the end of catalysts’ symbols indicate the mol% of TMMS 

utilised in adjusting the hydrophobicity levels of the catalysts. 
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 With consideration of the hydrophobicity and exchangeable capacity of CSPETS of 

the catalyst, this study used no TMMS ratio that is less than 50 mol% in preparing acid 

catalyst with good hydrophobicity at more than 40° in contact angle analysis. Results 

confirmed that the ZrO2-SiO2-Me&Et-PhSO3H_80 possessed a hydrophobicity level 

higher than those of ZrO2-SiO2-Me&Et-PhSO3H_70 and ZrO2-SiO2-Me&Et-

PhSO3H_50, which reasonably agreed with the relative amount of TMMS (i.e., the 

highest TMMS amount was utilised for ZrO2-SiO2-Me&Et-PhSO3H_80) (Table 4.3). 

The experimental results also showed that the loading amount of TMMS affected the 

acidity of the designed catalyst. The relationship of the acidity and hydrophobicity of 

the designed catalysts is illustrated in Figure 4.11; increasing the catalyst 

hydrophobicity can decrease the catalyst acidity. 

Table 4.3: Loading amounts of TMMS and CSPETS in designing different 
acidities of catalysts 

Catalysts a Molar 
ratio 
SiO2 : 
total 

reagents 

b TMMS 
(mol%) 

TMMS 
(g) 

CSPETS 
(g) 

TMMS 
(mmol) 

CSPETS 
(mmol) 

Acidity 
(mmol/g) 

ZrO2-SiO2-
Me&Et-
PhSO3H (2.5, 
80) 

2.5:1 80 0.250 0.262 1.84 0.403 0.33 

ZrO2-SiO2-
Me&Et-
PhSO3H (2.5, 
70) 

2.5:1 70 0.2 0.4 1.47 0.62 0.62 

ZrO2-SiO2-
Me&Et-
PhSO3H (2.5, 
50) 

2.5:1 50 0.153 0.7276 1.12 1.12 0.72 

a Molar ratio SiO2:total agent;  b mol% of hydrophobic ratio= [(TMMS mmol)/ (TMMS mmol + CSPETS mmol)]; values in the 
parentheses represent molar ratio SiO2:total reagent and TMMS  mol%    
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Figure 4.11: Relationship of hydrophobicity level and acidity of the designed 
catalysts 

 

 Effects of hydrophobicity and acidity of the designed catalysts on the 4.2.3

catalytic activities 

The designed catalysts with different hydrophobicity and acidity levels (ZrO2-SiO2-

Me&EtPhSO3H_80, ZrO2-SiO2-Me&EtPhSO3H_70 and ZrO2-SiO2-

Me&EtPhSO3H_50) were used in comparative studies on glycerol esterification with 

OA. All the reactions were conducted at an equimolar OA-to-glycerol ratio, 100 °C 

reaction temperature, 3 wt% catalyst concentration with respect to the OA weight and 

solvent-less reaction conditions for 8 h. Figure 4.12 shows the catalytic activities of the 

designed catalysts, which were also compared with the results in the absence of catalyst.  
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Reaction conditions: MR glycerol:OA= 1:1, 100 oC reaction temperature, catalyst = 1.5 g (3 wt % of OA), t= 8 h, speed= 300rpm. 

 
 

Figure 4.12: Performance evaluation of the designed catalysts 

 

The obtained results demonstrated that the acidity of the catalyst significantly 

affected the conversion and yield. Results showed that catalytic activity increased with 

increased catalyst acidity, following the order of ZrO2-SiO2-Me&EtPhSO3H_50 

(acidity: 0.72 mmol/g; yield: 39.5%) > ZrO2-SiO2-Me&EtPhSO3H_70 (acidity: 0.62 

mmol/g; yield: 37.4%) > ZrO2-SiO2-Me&EtPhSO3H_80 (acidity: 0.33 mmol/g; yield: 

33.3%). Nevertheless, the yield difference between ZrO2-SiO2-Me&EtPhSO3H_50 and 

ZrO2-SiO2-Me&EtPhSO3H_70 was only 2%. With consideration of the amount of 

CSPETS used in catalyst development and the insignificant difference in the yield 

obtained between ZrO2-SiO2-Me&EtPhSO3H_50 and ZrO2-SiO2-Me&EtPhSO3H_70, 

this study suggested that ZrO2-SiO2-Me&EtPhSO3H_70 catalyst is the best catalyst for 

this reaction. 
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 Catalytic activity: role of hydrophobicity in GMO production 4.2.4

The role of hydrophobicity in the catalytic glycerol esterification with OA at a 

constant catalyst acidity level must be evaluated to eliminate the effect of catalyst 

acidity in this investigation. Hence, ZrO2-SiO2-Me&EtPhSO3H_50h was synthesised by 

using a 50% lower amount of TMMS at constant CSPETS loading than that of the high-

performing ZrO2-SiO2-Me&EtPhSO3H_70 catalyst (Table 4.4). ZrO2-SiO2-

Me&EtPhSO3H_50h and ZrO2-SiO2-Me&EtPhSO3H_70 catalysts possessed identical 

acidity levels (0.62 mmol/g). 

 This comparative study demonstrated the role of the hydrophobicity of acid catalyst 

in increasing the reaction yield (37.4% vs. 28.9%) at identical reaction conditions. 

Moreover, this study confirmed that the hydrophobicity of acid catalysts enhanced the 

formation rate of GMO, which is well illustrated in Figure 4.13. The plot revealed that 

the reaction rate of ZrO2-SiO2-Me&EtPhSO3H_70 was faster than that of ZrO2-SiO2-

Me&EtPhSO3H_50h. This result reasonably agreed with that reported by (Jérôme et al., 

2008); they observed that the hydrophobic interactions improve the diffusion of fatty 

acids within the silica pores because the reduced hydrophobic amount of ZrO2-SiO2-

Me&EtPhSO3H_50h achieves a low yield. ZrO2-SiO2-Me&EtPhSO3H_70 increased the 

product yield. 
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Table 4.4: Designed catalysts with different TMMS loading amounts 

The yield was obtained using HPLC analysis. Reaction conditions: MR Gly:OA= 1:1, 100 oC reaction temperature, catalyst = 1.5 g 
(3 wt % of OA), t= 8 h, speed= 300rpm 

 

 

 

 

Figure 4.13: Effects of the catalyst hydrophobicity on the formation rate of 
GMO in the presence of ZrO2-SiO2-Me&EtPhSO3H_70 and ZrO2-SiO2-

Me&EtPhSO3H_50h catalysts 

 

Catalysts Acidity 
(mmol/g) 

TMMS 
(g) 

CSPETS 
(g) 

Contact 
angle 

analysis 
( ° ) 

Yield 
(%) 

Selectivity 
(%) 

 
 

ZrO2-SiO2-
Me&EtPhSO3H_70 

0.62 0.2 0.4 42 37.4 SGMO= 
84.5% 
SGDO= 
11.2% 
SGTO= 4.3% 
 

ZrO2-SiO2-
Me&EtPhSO3H_50h 

 

0.62 0.1 0.4 30.7 28.9 SGMO= 
90.1% 
SGDO= 9.2% 
SGTO= 0.7% 
 



 

 

88 

A comparison of catalytic activity between ZrO2-SiO2-Me&EtPhSO3H_70 and 

several other catalysts reported in literature is summarised in Table 4.5. All the 

reactions were conducted at an equimolar glycerol-to-OA ratio. The conversion (40%) 

for ZrO2-SiO2-Me&EtPhSO3H_70 catalyst at 100 °C reaction temperature was lower 

than that of the MCM-4-methyl-SO3H catalyst (89%) at 120 °C. This discrepancy was 

mainly attributed to the acidity (1.7 mmol/g) of the MCM-4-methyl-SO3H catalyst. 

However, the GMO selectivity for MCM-4-methyl-SO3H was 40%, which is two times 

lower than that of ZrO2-SiO2-Me&EtPhSO3H_70. The catalyst developed in this work 

showed a better performance than that of the tin–organic framework (HPW/Cu3(BTC)2 

catalyst with conversions of 45% and 62% of GMO selectivity at 120 °C. 

Nonetheless, the catalyst activity of ZrO2-SiO2-Me&EtPhSO3H_70 (40% 

conversion) was considered remarkable compared with that of the Fe–Zn DMC 

complex subjected to a high reaction temperature (Table 4.5). The Fe–Zn DMC 

complex obtained a conversions of 63.4% and 67.3% of GMO selectivity despite being 

operated at a high reaction temperature (180 °C) and high loading catalyst concentration 

(8 wt%). The hydrophobicity enhanced titanium silicate-type catalyst (Ti-SBA-16) 

achieved a conversion of 72.8% at 180 °C and short reaction time (3 h) and showed the 

potential of ZrO2-SiO2-Me&EtPhSO3H_70 to perform well at a long reaction time. 
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Table 4.5: Comparison of the catalytic activity between ZrO2-SiO2-
Me&EtPhSO3H_70 and several other catalysts reported in literature 

Catalysts Reaction parameters Performance References 

Temperature 
(oC) 

Catalyst 
concentration 

(wt%) 

Time 
(h) 

Conversion 
(%) 

Selectivity 
(%) 

 
ZrO2-SiO2- 
Me&EtPhSO3H_70  
 
Acidity= 0.63 
mmol/g 

100 3 8 39 SGMO= 
84.5% 
SGDO= 
11.2% 
SGTO= 
4.3% 

This work 

MCM-4-methyl-
SO3H  

 

Acidity= 1.7 
mmol/g 

120 
 

5 8 89 SGMO= 
40% 

 

(Dı́az, 
Mohino, 
Pérez-
Pariente, & 
Sastre, 
2003) 

HPW/Cu3(BTC)2 
Tin-organic 
framework 

  
Acidity= NA 

120 1 8 45 SGMO= 
62% 

 

(L. H. Wee 
et al., 2013) 

Fe–Zn DMC 
complex 

 
Acidity= 1.06 
mmol/g 

 

180 8 8 63.4 SGMO= 
67.3 %  
SGDO= 
31.7 % 

 

(Kotwal et 
al., 2011) 

Ti-SBA-16  
 

Acidity= 0.09 
mmol/g 

180 3 3 72.8 SGMO= 
32.8 
SGDO= 
57.9% 
SGTO= 
9.2% 

(Kotwal et 
al., 2013) 

 

All the reactions were conducted at equimolar ratio of glycerol to OA, catalyst concentration was with respect to OA, and 
solventless conditions. 
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4.3 Schematic of catalyst synthesis 

 

Figure 4.14 shows the schematic illustration for the synthesis of the mesoporous 

ZrO2-SiO2-Me&Et-PhSO3H catalyst. BET, FESEM, FTIR, EDX and XPS results 

proved the successful coating of SiO2 on ZrO2 support. The strong adherence of SiO2 to 

ZrO2 support was mainly contributed by the OH− group of NH4OH because the 

suspension of static repulsion against Van der Waals attractive forces stabilises the 

bonding of ZrO2-SiO2 (X.-D. Wang et al., 2010). In addition, the mass of adhered SiO2 

can be measured from the mass difference between ZrO2 and SiO2-ZrO2. This study 

revealed that ZrO2 support gained approximately 1 g of SiO2 through this silica-coating 

process and confirmed the presence of SiO2.  

 

 

Figure 4.14: Synthesis diagram for the surface functionalisation on the ZrO2-
SiO2 support 

 

The hydrophobic organosilica moiety TMMS was utilised to increase the 

hydrophobic surface of the catalysts. The formation of covalent bonds on the ZrO2-SiO2 

surface transformed the hydrophilic character to hydrophobic as proven by the contact 

angle analysis, BET and XPS. This observation was also reported by Markovska et al. 

(Markovska, Yovkova, Minov, Rusev, & Lyubchev, 2013) in a previous work on 
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changing the surface property of ceramics through TMMS grafting. Hydrophobisation 

involved the attachment of methyl groups from TMMS to a silicon atom; similarly, the 

CSPETS was used to initiate the conversion of the silica surface to sulfonic moieties by 

exchanging Cl− with OH− during sulphonation. Sulfonic acid site is considerably 

important for catalysis. XPS and BET results suggested that SO3H was mainly 

distributed in the mesopore of the nanospheres. Figure 4.15 illustrates the mechanism of 

TMMS and CSPETS in functionalising ZrO2-SiO2. 

 

 

Figure 4.15: Mechanism for the synthesis of hydrophobicity-enhanced ZrO2-
SiO2-Me&Et-PhSO3H catalyst 
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4.4 Catalytic activity studies 

The hydrophobicity-enhanced ZrO2-SiO2-Me&EtPhSO3H_70 catalyst was selected 

to study the effect of process operating parameters. The influences of reaction 

temperature, catalyst concentration, glycerol-to-OA molar ratio and reaction time on the 

catalytic glycerol esterification with OA were investigated. The mass transfer limitation 

was evaluated prior to investigating the process variables to ensure that the 

esterification process was reaction controlled. The stability of the designed catalyst 

ZrO2-SiO2-Me&EtPhSO3H_70 was also evaluated. 

 Effects of mass transfer 4.4.1

Mass transfer limitation was assessed at the reaction temperature of 100 °C prior to 

temperature optimisation. The experiments were carried out at an equimolar OA-to-

glycerol ratio, 100 °C reaction temperature, 480 min and 3 wt% catalyst concentration 

with respect to the OA weight and solvent-less reaction conditions during mass transfer 

limitation study. Figure 4.16 demonstrates the reaction yield and selectivity by using 

ZrO2-SiO2-Me&EtPhSO3H_70 catalyst under two different stirring speeds (300 and 650 

rpm).The high stirring speed 650 rpm resulted in a slightly increased yield (from 35.3% 

to 37.4%) compared with the 300 rpm reaction speed. The selectivity of GDO and GTO 

also slightly increased compared with the reaction at 300 rpm, but the difference was 

insignificant. Therefore, the maximum stirring speed of 650 rpm was proposed for 

further testing of process variables in the presence of ZrO2-SiO2-Me&EtPhSO3H_70 

catalyst to eliminate the external mass transfer resistance. External mass transfer 

resistance can be completely eliminated when a high stirring speed is applied, and 

external diffusion negligibly affects the overall reaction rate (Nanda et al., 2014).  
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Figure 4.16: Effects of stirring speed on yield and selectivity using the ZrO2-
SiO2-Me&EtPhSO3H_70 catalyst at identical reaction conditions 

 

 Effects of reaction temperature 4.4.2

ZrO2-SiO2-Me&EtPhSO3H_70 catalyst was used to study the effects of reaction 

temperature. Various temperatures (100 °C, 120 °C, 140 °C and 160 °C) were utilised 

under the stirring speed of 650 rpm, equimolar OA-to-glycerol ratio, 3 wt% catalyst 

concentration with respect to the OA weight and solvent-less reaction conditions.  

Figure 4.17 presents the effects of reaction temperatures on the catalytic 

esterification of glycerol with OA. Results indicated that the conversion increased with 

increased reaction temperature because high temperature favours a high equilibrium 

product yield in a typical endothermic reaction (Trinh, Yusup, & Uemura, 2018). The 
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study. On the contrary, relatively low activities were observed at the beginning of 

reaction at 100 °C and 120 °C. The activation energy required for successful conversion 

is difficult to exceed at low temperatures because the energy possessed by the reactant 

molecules is low; consequently, the effective collision is decreased because the kinetic 

energy in the reactant molecules and potential energy of molecules are decreased (Hoo 

& Abdullah, 2014). 

 

 

Figure 4.17: Effects of reaction temperature on the catalytic esterification of 
glycerol with OA using ZrO2-SiO2-Me&EtPhSO3H_70 catalyst 

 

 

2D Graph 1
f=a*(1-exp(-b*x))
f=a*(1-exp(-b*x))
f=a*(1-exp(-b*x))
f=a*(1-exp(-b*x))

Time (min)

0 100 200 300 400 500 600

C
o
n
v
e
rs

io
n
 (

%
)

0

20

40

60

80

100 T= 160 
o
C

T= 140 
o
C

T= 120 
o
C

T= 100 
o
C



 

 

95 

The effects of reaction temperature on the selectivity of GMO, GDO and GTO are 

shown in Figure 4.18. The selectivity trends of GMO, GDO and GTO followed a 

similar order at their respective reaction temperatures of 100 °C, 120 °C, 140 °C and 

160 °C. The GMO selectivity decreased by increasing the reaction temperature but 

increased the selectivity for GDO and GTO. Notably, the selectivity percentage at 140 

°C and 160 °C were much alike, particularly at more than 360 min because 

approximately 60% of GMO and 36% of GDO were obtained. Therefore, 160 °C was 

suggested as the optimal reaction temperature by considering the obtained conversion 

and selectivity under the ZrO2-SiO2-Me&EtPhSO3H_70-catalysed esterification 

reaction of glycerol with OA.  

 
 

(a) 

 
 

(b) 
 

Figure 4.18: Effects of reaction temperature on the selectivities of GMO, GDO 
and GTO 
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The performance of ZrO2-SiO2-Me&EtPhSO3H catalyst was compared with those 

available in literature in Table 4.6. The conversion ZrO2-SiO2-Me&EtPhSO3H catalyst 

(conversion = 44.5%; acidity = 0.62 mmol/g) was lower than that of MCM-41-Q3H 

(conversion = 89%; acidity = 1.7 mmol/g) at 120 °C; the difference was mainly 

attributed to the decreased acidity of ZrO2-SiO2-Me&EtPhSO3H catalyst in this work. 

However, the conversion of ZrO2-SiO2-Me&EtPhSO3H catalyst at 160 °C (conversion 

= 89%; acidity = 0.62 mmol/g) was higher than that of Fe–Zn DMC (conversion = 

63.4%; acidity = 1.06 mmol/g) at 180 °C, which indicated that the surface and textural 

properties of ZrO2-SiO2-Me&EtPhSO3H catalyst are both key influencing factors on the 

rate of conversion and GMO formation with the elimination of catalyst acidity factor.  

Moreover, the hydrophobic-altered titanium-based catalyst (Ti-SBA-16) posed a 

relatively low catalyst acidity (0.09 mmol/g) but an improved catalytic performance 

(conversion = 72.8%) within 180 min. Given its considerably low GMO selectivity 

(32.8%), the designed catalyst ZrO2-SiO2-Me&EtPhSO3H can produce products with 

increased GMO selectivity (59%). In conclusion, the performance of ZrO2-SiO2-

Me&EtPhSO3H (conversion = 86.7% at equimolar reactant, 3 wt% catalyst 

concentration and 160 °C) is significant compared with those from literature studies 

performed in the absence of catalyst (conversion = 20% at equimolar glycerol-to-OA 

ratio, 150 °C and 20 h reaction time) (L. H. Wee et al., 2013). 
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Table 4.6: Comparison of the catalytic activity between ZrO2-SiO2-Me&EtPhSO3H_70 and available literature results 

Catalysts Reaction conditions Performance References 

Temperature 
(oC) 

Catalyst 
concentration 

(wt%) 

Time 
(min) 

Conversion (%) Selectivity 
(%) 

 

ZrO2-SiO2- 
Me&EtPhSO3H_70  

 
Acidity= 0.62 mmol/g 

 

100 3 480 39.0 SGMO= 84.5% 
SGDO= 11.2% 
SGTO= 4.3% 

This work 

120 44.5 SGMO= 66.7% 
SGDO= 28.6% 
SGTO= 4.6% 

140 70.7 SGMO= 60.1% 
SGDO= 33.7% 
SGTO= 6.2% 

160 86.7 SGMO= 58.4% 
SGDO= 34.5% 
SGTO= 7.1% 
 

MCM-41-Q3H 

 

Acidity= 1.7 mmol/g 
 

120  
 

5 480 89 SGMO= 40% 
 

(Dı́az et al., 2003) 
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Table 4.6 continued 
 

Fe–Zn DMC  
 

Acidity= 1.06 mmol/g 
 

180 7 840 63.4 SGMO= 67.3%  
SGDO= 31.7 % 

 

(Kotwal et al., 
2011) 

Ti-SBA-16  
 

Acidity= 0.09 mmol/g 
 

180 3 180 72.8 SGMO= 32.8 
SGDO= 57.9% 
SGTO = 9.2% 

(Kotwal et al., 
2013) 

 All the reaction were conducted at MR Glycerol:OA= 1:1, catalyst concentration is with respect to mass of OA and solventless conditions. 
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4.4.2.1 Interaction effects of reaction temperature and reaction time  

Figure 4.19 elucidates the interaction effects of reaction time and reaction 

temperature on the conversion and selectivity of GMO. Figure 4.19(a) indicates that the 

highest conversion was obtained at 160 °C after 480 min reaction time. The selectivity 

trend of GMO at various temperatures is shown in Figure 4.19(b). The selectivity of 

GMO decreased with time and temperature. Combining the plots in Figure 4.19(a) and 

(b) an intersection point corresponding to the highest conversion (74 %) and GMO 

selectivity (63.6 %) is obtained at 160 °C and after 240 min reaction time, at equimolar 

OA-and-glycerol ratio and 3 wt% catalyst concentration. It is worthy to note that under 

these conditions the GMO and GDO combined selectivity is 91.6%.  
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(a) 

 

 
(b) 

 
(c) 

 

Figure 4.19: Interaction effects of reaction time and reaction temperature on 
the conversion and selectivity of GMO: (a) conversion, (b) selectivity of GMO and 

(c) combined interaction of conversion and selectivity 
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 Effects of the oleic acid-to-glycerol molar ratio 4.4.3

The effects of excess glycerol on glycerol esterification with OA catalysed by ZrO2-

SiO2-Me&EtPhSO3H were investigated at the constant reaction temperature of 160 °C, 

catalyst concentration of 3 wt%, stirring speed of 650 rpm and solvent-less reaction 

conditions. Figure 4.20 shows the effects of excess glycerol under the OA-to-glycerol 

molar ratios of 1:1, 1:2 and 1:3 in 480 min. At this reaction time, the conversion 

increased slightly with increased glycerol amount in the following descending order: 

91.6%, 89.0% and 87.5% for 1:3, 1:2 and 1:1 OA-to-glycerol molar ratios, respectively. 

According to Le Chatelier’s principle, the glycerol esterification with OA will shift to 

improve products formation with increased reactant concentration. 

 

Figure 4.20: Effects of the OA-to-glycerol molar ratio on the conversion in 
ZrO2-SiO2-Me&EtPhSO3H_70-catalysed glycerol esterification with OA 
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The conversion and selectivity of various mono-, di- and trioleates at reaction time 

are presented in Figure 4.21 to evaluate the effects of excess glycerol on conversion and 

selectivity. The conversion of 1:1 OA to glycerol (75%) was nearly close to the 1:2 

molar ratio of OA to glycerol (76%). Results revealed that the 1:3 OA-to-glycerol molar 

ratio produced the highest conversion of about 82% at 240 min reaction time. Similarly, 

Singh et al. (Singh et al., 2013) stated that the significant reaction rate increases when 

the molar ratio increases from 1:2 (OA:glycerol) and insignificantly changes when 

excess glycerol is added at 1:6 OA-to-glycerol molar ratio.  

The selectivity of GDO and GTO increased with the increased glycerol feeding ratio. 

Thus, the GMO selectivity was minimised by increasing the loading amount of glycerol 

in the catalytic esterification of glycerol with OA. It has been reported that unreacted 

glycerol removal is necessary despite of an equimolar OA-to-glycerol ratio of reactant 

was used in reaction  (Konwar et al., 2016). Therefore, it can be concluded that 

equimolar OA-to-glycerol ratio can produce high GMO and GDO yield and equimolar 

ratio is suggested to obtain maximum GMO and GDO yield. 
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Figure 4.21: Effects of the OA-to-glycerol molar ratio on conversion and 
selectivity at 240 min reaction time. Conditions: catalyst concentration of OA, 3 

wt%; reaction temperature, 160 °C and speed, 650 rpm 

 

The GMO, GDO and GTO selectivities at different molar ratios are illustrated in 

Figure 4.22. The GMO selectivity decreased with increased glycerol ratio; by contrast, 

increased glycerol improved GDO and GTO selectivity. Significant GDO and GTO 

increments were also observed at more than 240 min reaction time. This work revealed 

that the selectivity profiles for the OA-to-glycerol molar ratios of 1:1 and 1:2 were 

similar, which demonstrated that no significant effect was observed for excess glycerol 

amount in the glycerol:OA molar ratio range of 1–2. 
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(a) 

 
(b) 

Figure 4.22: Effects of OA-to-glycerol molar ratios on the selectivities of GMO, 
GDO and GTO 

 

Glycerol esterification with OA was conducted with excess OA to compare the 

different reaction behaviour in the OA-to-glycerol molar ratio of 3:1 at 160 °C and 3 

wt% catalyst concentration of OA for 480 min. Figure 4.23 shows the conversion and 

selectivity obtained at the OA-to-glycerol molar ratio with excess glycerol (1:1, 1:2 and 

1:3) and OA (3:1) conditions. This work showed that excess OA caused the high 

formation of GTO (selectivity = 40%) and GDO (selectivity = 50%) and relatively low 

GMO yield. This work also confirmed that an equimolar OA-to-glycerol ratio resulted 

in an optimum yield of GMO, with 93% combined selectivity of GMO and GDO.  
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Figure 4.23: Effects of OA-to-glycerol molar ratios at 480 min reaction time. 
Conditions: catalyst concentration of OA, 3 wt%; reaction temperature, 160 °C 

and speed, 650 rpm 
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4.4.3.1 Interaction effects of molar ratio and reaction time  

The interaction effects of glycerol-to-oleic acid molar ratio and reaction time on the 

conversion and selectivity of GMO are displayed in Figure 4.24. The diagram clearly 

indicated that reaction time exerted stronger influence on selectivity and conversion 

than the molar ratio.  

 

 

Figure 4.24: Interaction effects of glycerol-to-oleic acid molar ratio and reaction 
time on the conversion and selectivity of GMO 
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 Effects of catalyst concentration 4.4.4

ZrO2-SiO2-Me&EtPhSO3H_70 catalyst (3 wt%, 5 wt% and 8 wt%) was used to 

investigate the effects of catalyst concentration on the conversion and selectivity of the 

catalytic glycerol esterification with OA at the constant operation parameters of 160 °C, 

equimolar ratio and 650 rpm. Catalyst loading was calculated with respect to the weight 

of the limiting reactant OA. Figure 4.25 shows the conversion profile produced by using 

different concentrations of ZrO2-SiO2-Me&EtPhSO3H_70 catalyst. 

Catalyst concentrations 3 wt%, 8 wt% and 5 wt% achieved the slowest reaction rate 

in sequence. A significant initial reaction rate difference was observed for 3 wt% versus 

5 wt% or 8 wt% catalyst concentration. The conversion profiles for the 5 wt% and 8 

wt% catalyst concentrations were almost identical. At the end of reaction, generally 

after 420 min, a change in catalyst loading resulted in non-accelerated reaction rate. The 

conversion was insignificantly influenced with further increase in catalyst loading from 

5 wt% to 8 wt% due to the equilibrium limit (Tao, Guan, Wang, Liu, & Louh, 2015).  
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Figure 4.25: Effects of the ZrO2-SiO2-Me&EtPhSO3H_70 catalyst concentration 
on the conversion during catalytic glycerol esterification with OA 

 

A plot explained the effects of catalyst concentration on the conversion and 
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was not recommended because such increase does not improve the conversion. A 
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(Yusoff & Abdullah, 2016). Notably, the GMO selectivity trend decreased with 

increased catalyst concentration; the 3 wt%-produced selectivity was 64%, which was 
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higher than that of the 5 wt% (SGMO = 61%) and 8 wt% (SGMO = 53%). These findings 

clearly revealed that GMO was successfully converted to GDO and GTO. The increased 

effective interaction between the reactant molecules and GTO formation was highly 

attributed to the increased number of available acidic sites and acidity of the catalyst. 

 

 

Figure 4.26: Effects of catalyst concentration on the conversion and selectivity 
at 240 min reaction time. Conditions: equimolar glycerol-to-OA ratio; reaction 

temperature, 160 °C and speed, 650 rpm 

 

The influence of catalyst concentration on the formation trend of GMO, GDO and 

GTO in terms of selectivity is elaborated in Figure 4.27. The selectivity profile of GMO 

decreased with increased catalyst concentration. The GMO selectivity curve for the 8 

wt% catalyst concentration markedly decreased, particularly from 15 min to 180 min. 

Moreover, 5 wt% and 8 wt% catalyst concentrations achieved high tendency to form 

GDO and GTO. However, the formation ratios in terms of selectivity were almost 

identical. In brief, the conversion acquired from ZrO2-SiO2-Me&EtPhSO3H_70-

0

10

20

30

40

50

60

70

80

90

Conversion GMO GDO GTO

C
o

n
ve

rs
io

n
 (

%
) 

/ 
Se

le
ct

iv
it

y 
(%

)

3 wt% catalyst concentration

5 wt% catalyst concentration

8 wt% catalyst concentration



 

 

110 

catalysed glycerol esterification with OA was 88.2% with 53.5% of GMO and 39.6% of 

GDO selectivity at 5 wt% catalyst concentration, 160 °C, equimolar reactant ratio and 

480 min reaction time. 

 
(a) 

 
(b) 

Figure 4.27: Effects of the catalyst concentration of ZrO2-SiO2-
Me&EtPhSO3H_70 on the selectivities of GMO, GDO and GTO 
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and 650 rpm) achieved a conversion of 80% and about 60% selectivity of GMO, with a 

low combined GMO and GDO selectivity (94.8%). Consequently, 240 min reaction 

time was suggested for the catalytic esterification of glycerol with OA in the presence 

of 5 wt% of ZrO2-SiO2-Me&EtPhSO3H_70 catalyst with the use of equimolar reactants. 

 

 

Figure 4.28: Interaction effects of catalyst concentration and reaction time on 
the conversion and GMO selectivity at an equimolar ratio of OA and glycerol, 

reaction temperature of 160 °C and speed of 650 rpm 
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intersection points shown between the conversion and selectivity of GMO. At 240 and 

480 min, the conversion can be increased in two ways: increasing the reaction 

temperature and the catalyst concentration. The effect of catalyst concentration was 

much significant at a short reaction time of 240 min.  

An increased GMO selectivity can be obtained at a low reaction temperature and a 

high catalyst concentration. At 240 min, the GMO selectivity was highly dependent on 

the reaction temperature (an inclined curve was obtained). By contrast, the GMO 

selectivity was less dependent on the reaction temperature at a long reaction time. 

Figure 4.29(b) shows that at a low range of reaction temperature (100 °C–125 °C), the 

GMO selectivity was high when a high loading catalyst amount was used. In 

conclusion, a high conversion (more than 80%) and selectivity of GMO (about 60%) 

can be achieved at 480 min reaction time, equimolar reactant ratio, 160 °C and 650 rpm.  

 
(a) 

 
(b) 

 

Figure 4.29: Interaction effects of catalyst concentration and reaction 
temperature on the conversion and GMO selectivity at (a) 240 and (b) 480 min 

reaction time, equimolar ratio of OA and glycerol, reaction temperature of 160 °C 
and speed of 650 rpm 
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4.4.4.3 Interaction effects of catalyst concentration and molar ratio 

The interaction effects of catalyst concentration and molar ratio on the selectivity 

and product conversion should be studied. Figure 4.30 clearly illustrates that equimolar 

glycerol-to-OA ratio enhanced the production of high GMO yield; the GMO selectivity 

decreased by increasing glycerol feeding in reaction at 240 min reaction time and 160 

°C reaction temperature. The plot also highlighted that the influence of molar ratio on 

conversion was insignificant compared with the significant effect of catalyst 

concentration. The increased catalyst concentration also resulted in an increased 

conversion. At constant molar ratio of reactants, low catalyst concentration was 

preferred in acquiring a high GMO selectivity. 

 

 

Figure 4.30: Interaction effects of the glycerol-to-oleic acid molar ratio and 
catalyst concentration on the conversion and GMO selectivity at reaction 

temperature of 160 °C, reaction time of 240 min and speed of 650 rpm 
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 Catalyst stability studies 4.4.5

The stability of the ZrO2-SiO2-Me&EtPhSO3H_70 catalyst was studied by separating 

the reaction mixture after reaction. The recovered catalyst was directly applied in the 

subsequent reaction cycle without any further treatment. The catalyst recyclability 

experiments were performed under the following optimised operating parameters: 160 

°C, temperature; 5 wt%, catalyst concentration; equimolar glycerol-to-OA ratio; 650 

rpm, stirring speed; and 480 min reaction time. Catalyst recyclability and stability 

experiment revealed that the yield decreased with the number of uses (Figure 4.31). The 

yield was reduced from 83%, 74% and 69% in accordance with the number of times of 

usage. Herein, yield refers to the total GMO, GDO and GTO in product mixtures, 

respectively. This trend may be attributed to that the GTO product blocks the active 

centres of the catalyst or the hydrophobic properties are lost (Zhang et al., 2017). The 

contact angle analysis result of the spent catalyst was inferior (31.9°) to that of the 

newly developed catalyst with 41.5° (Figure 4.32). The decreased yield also indicated 

the formation of the potential side products, such as acrolein, polyglycerol or 

polyglycerol esters (Jérôme et al., 2008). This result showed that the good 

hydrophobicity of a catalyst most probably minimised the undesirable side reaction. 

 The BJH plots and N2 adsorption–desorption isotherms for the fresh and spent 

catalysts of ZrO2-SiO2-Me&EtPhSO3H_70 are shown in Figure 4.33. The pore size 

distribution was unevenly distributed at the low surface area of the spent catalyst, which 

was most probably due to the existence of less-ordered structures of silica (Estevez et 

al., 2016) and the adherence of triglycerides/compounds within the pore of the spent 

samples (FESEM image of spent catalyst, Figure 4.34). 
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Figure 4.31: Catalyst stability study on the ZrO2-SiO2-Me&EtPhSO3H_70 
catalyst at an equimolar glycerol-to-oleic acid ratio, 5 wt% catalyst concentration 

of OA, 160 °C reaction temperature, 650 rpm speed and 480 min reaction time 

 

 
 

Figure 4.32: Water contact angle results for new and spent ZrO2-SiO2-
Me&EtPhSO3H_70 catalyst 

0

10

20

30

40

50

60

70

80

90

100

Conversion Yield Selectivity GMO Selectivity GDO Selectivity GTO

First run

Second run

Third run

0

5

10

15

20

25

30

35

40

45

new ZrO2-SiO2-Me&Et-PhSO3H_70 spent ZrO2-SiO2-Me&Et-PhSO3H_70

W
at

e
r 

co
n

ta
ct

 a
n

gl
e

 (
d

e
gr

e
e

)



 

 

116 

 
 

 

Figure 4.33: BJH plot and N2 adsorption–desorption isotherms of new and 
spent ZrO2-SiO2-Me&EtPhSO3H_70 catalyst 
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Figure 4.34: FESEM images of new and spent ZrO2-SiO2-Me&EtPhSO3H_70 
catalyst 
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4.5 Catalytic activity comparison of ZrO2-SiO2-Me&EtPhSO3H_70 with 

conventional sulphated zirconia and commercial catalysts  

This part investigated the comparative catalytic activity of ZrO2-SiO2-Me&Et-

PhSO3H_70 catalyst with three types of SO4
2−/ZrO2 catalysts, which were developed 

from three different zirconium precursors. The first SO4
2−/ZrO2 was prepared using a 

sol–gel method with a Zr(OCH2CH3)4 precursor (labelled as SO4
2−/ZrO2 sol gel). 

Precipitation method was used to prepare SO4
2−/ZrO2 (SO4

2−/ZrO2 precipitation) by using 

ZrOCl2·8H2O precursor. SO4
2−/ZrO2 commercial was developed using a commercially 

available Zr(OH)4. The reaction performance was related to the properties of each 

catalyst.  

 SO4
2−/ZrO2 catalyst characterisation and performance evaluation 4.5.1

The designed catalyst (ZrO2-SiO2-Me&Et-PhSO3H_70) and three SO4
2−/ZrO2 

catalysts were characterised by controlling the acidity amount at 1.55 mmol H+ under 

optimised reaction conditions. The textural properties and hydrophobicity of each 

catalyst are summarised in Table 4.7. The acidity of SO4
2−/ZrO2 catalysts ranged from 

0.35 mmol/g to 0.62 mmol/g. With regard to the influence of catalyst acidity on the 

reaction activity and selectivity, comparative studies were carried out at a constant 

concentration of 1.55 mmol H+ to investigate the effect of textural property in a reaction 

performance. Factors affecting the total performance of catalyst, especially when 

studying the complex catalyst structure, should be determined (Ogino, Suzuki, & 

Mukai, 2017).  

The surface areas of SO4
2−/ZrO2 catalysts prepared using different precursors 

(SO4
2−/ZrO2 sol gel, SO4

2−/ZrO2 precipitation and SO4
2−/ZrO2 commercial) were 85.29, 44.91 and 

60.06 m2/g, respectively, and these results also agreed with those synthesised by (Oh et 
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al., 2013a). In addition, the hydrophobicity of each catalyst was examined. Result 

showed that all SO4
2−/ZrO2 catalysts, regardless of the presence of Zr precursors, were 

less hydrophobic (as the obtained contact angle degree was low) compared with that of 

the designed catalyst ZrO2-SiO2-Me&Et-PhSO3H_70. 

 

Table 4.7: Textural properties of the different types of SO4
2−/ZrO2 catalysts and 

ZrO2-SiO2-Me&EtPhSO3H catalyst 

Catalysts BET Acidity 
(mmol/g) 

Particle 
size 

distribution 
(µm) 

Contact 
angle 

analysis 
(degree) 

Area a 

(m2/g) 
Pore 
volume 
b (cm3/g) 

Average 
pore 
diameter 
b(nm) 

ZrO2-SiO2-
Me&Et-
PhSO3H_70 

79.75 0.0247 3.77 0.62 5.01 41.5 

SO4
2-/ZrO2 sol 

gel 
85.29 0.475 4.85 0.61 

 
11.3 9.0 

SO4
2-/ZrO2 

precipitation 
44.91 0.079 3.77 0.35 

 
4.36 12.1 

SO4
2-/ZrO2 

commercial 
60.06 0.240 3.77 0.44 125 10.8 

a Total surface area was determined using BET equation; b pore volume and average pore diameter were determined using BJH 
method 

 

Figure 4.35 shows the catalytic activities of ZrO2-SiO2-Me&Et-PhSO3H_70 and 

SO4
2--/ZrO2 catalysts. Dissimilar to ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst, 

SO4
2−/ZrO2 sol gel-catalysed reaction produced considerably high conversion (93.0%) and 

selectivity of GDO; (61.3%) in a short reaction time of 240 min (Figure 4.35(a)), 

whereas further extending the reaction time to 480 min increased the GDO conversion 

and selectivity to approximately 75% and 20%, respectively (Figure 4.35(b)). 

SO4
2−/ZrO2 sol gel catalyst produced the highest amount of GDO and GTO at optimised 
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reaction conditions. The obtained selectivity for SO4
2−/ZrO2 precipitation (SGMO = 59% and 

SGDO = 36%) was comparable to that of ZrO2-SiO2-Me&Et-PhSO3H_70 (SGMO = 61% 

and SGDO = 33%) at 240 min. A long reaction time (480 min) for SO4
2−/ZrO2 precipitation 

catalyst can obtain equal selectivities of GMO and GDO (both 46%). SO4
2−/ZrO2 

commercial achieved a high conversion profile and GDO selectivity at 480 min, (C=93%, 

SGMO = 17% and SGDO = 66%), but its GDO selectivity was much lower than that of the 

SO4
2−/ZrO2 sol gel (SGDO = 74.6%) at 480 min.  

The resultant trends showed that the SO4
2−/ZrO2 catalysts generally presented better 

conversions than that of ZrO2-SiO2-Me&Et-PhSO3H_70 but with a much lower yield. 

The high conversion (94%), low yield (39%) and high selectivity for GDO and GTO 

(SGDO= 75% and SGTO= 20%) at 480 min of the SO4
2−/ZrO2 sol gel-catalysed reaction 

were highly attributed to the catalyst’s pore volume or high accessibility of the organic 

reactants to the active sites (Kuwahara, Kaburagi, Nemoto, & Fujitani, 2014). The 

formation rates of the high-molecular-weight GDO and GTO were fast for the catalyst 

with high pore volume (SO4
2−/ZrO2 sol gel, 0.475 m2/g) and (SO4

2−/ZrO2 commercial, 0.240 

m2/g), which may subsequently lead to undesirable product formation. Remarkably, the 

role of catalyst hydrophobicity was effective in obtaining a high product yield. 

Therefore, the correlation between the structure/property of catalysts and the catalytic 

performance was investigated in the following section. Understanding the correlation 

characteristics of catalyst to reaction is vital in developing effective catalysts (Diao, He, 

Yang, Wang, & Zhang, 2015). 
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(a) 

 
(b) 

Figure 4.35: Comparison of the catalytic activities of various Zr-based catalysts. 
All reactions were conducted at constant amount of 1.55 mmol H+, equimolar ratio 
of OA and glycerol, reaction temperature of 160 °C and 650 rpm stirring speed for 

240 min (a) and 480 min (b) 
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 Correlation between SO4
2−/ZrO2 catalyst properties and 4.5.2

selectivities/activities 

Two correlations were successfully established. Firstly, the correlation between 

structural properties and selectivity was made. The correlation of hydrophobicity with 

selectivity/initial reaction rate was also proven.  

4.5.2.1 Correlation between structural properties and selectivity 

The aforementioned XRD results indicated that ZrO2-SiO2-Me&Et-PhSO3H catalyst 

mainly consisted of a monoclinic phase and a minor tetragonal phase. Comparison of 

the XRD results of different types of SO4
2−/ZrO2 catalysts with ZrO2-SiO2-Me&Et-

PhSO3H can provide correlation between the structural properties and the selectivities 

of product mixture.  

Figure 4.36 demonstrates the XRD patterns for various catalysts. All SO4
2−/ZrO2 

catalysts possessed highly tetragonal phase and less monoclinic phase. The acidic 

tetragonal phase may be stabilised by sulphated group (Oh et al., 2013a).  XRD results 

also clearly revealed that ZrO2-SiO2-Me&Et-PhSO3H catalyst was composed of a more 

thermodynamically stable monoclinic phase than those of other SO4
2−/ZrO2 catalysts. 

The monoclinic diffractions at 16°, 26°, 28° and 32° were more intense than those of 

SO4
2−/ZrO2 precipitation (c) and SO4

2−/ZrO2 commercial (d). Notably, no monoclinic peak was 

observed at SO4
2−/ZrO2 sol gel (b), but a crystalline tetragonal phase was mostly detected. 

This result reasonably agreed with the highest pore volume (0.475 cm3/g) and pore size 

(4.85 nm) of SO4
2−/ZrO2 sol gel obtained in the BET results. The tetragonal phase was 

highly attributed to the different precursors used with identical calcination temperature 

and calcined time. Crystallinity was also proven affected with the type of zirconia 

precursor (Rashad & Baioumy, 2008). 
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Figure 4.36: XRD patterns of (a) ZrO2-SiO2-Me&Et-PhSO3H_70, (b) 
SO4

2−/ZrO2 sol gel, (c) SO4
2−/ZrO2 precipitation and (d) SO4

2−/ZrO2 commercial 

 

Figure 4.37 displays the correlation between pore volume versus conversion and 

selectivity. The experimental results fitted with the curve representing selectivity and 

conversion. This work proved the importance of pore volume in controlling product 

selectivity. Notably, increasing the pore volume of a catalyst can increase the formation 

of GDO and GTO with large molecular sizes. Furthermore, GMO formation was 

unfavourable when catalysed by catalyst with a large pore volume. The conversion rate 

increased gradually with the increased catalyst pore volume.  

The pore size (average pore diameter (nm); Table 4.7) was correlated with product 

selectivity, but the outcome was irrational because the obtained average pore diameter 

mostly ranged at the same peak (3.77 nm). Nevertheless, a remarkable phenomenon was 

observed in the BJH plot of different catalysts (Figure 4.38). The high selectivities of 
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GDO and GTO detected in the reaction mixtures using the SO4
2−/ZrO2 sol gel and 

SO4
2−/ZrO2 commercial catalysts were attributed to their macroporous sizes, which 

exceeded 50 nm, and mesoporous catalyst. Nonetheless, the pore sizes of ZrO2-SiO2-

Me&Et-PhSO3H_70 and SO4
2−/ZrO2 precipitation were highly uniform in less than 15 nm. 

The BJH plots of each catalyst clarified the influence of pore size on product selectivity. 

The FESEM images, FTIR profile and TGA curve of ZrO2-SiO2-Me&Et-PhSO3H_70, 

SO4
2−/ZrO2 sol gel, SO4

2−/ZrO2 precipitation and SO4
2−/ZrO2 commercial are presented in 

Appendix A. 
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Figure 4.37: Correlation of pore volume with conversion and selectivity at the 
constant acidity of 1.55 mmol H+ and other operating parameters 

 

 

Figure 4.38: BJH plots of (a) ZrO2-SiO2-Me&Et-PhSO3H_70, (b) SO4
2−/ZrO2 sol 

gel, (c) SO4
2−/ZrO2 precipitation and (d) SO4

2−/ZrO2 commercial 
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4.5.2.2 Correlation between hydrophobicity and selectivity/initial reaction rate  

The correlation of catalyst hydrophobicity with the selectivity of reactions was 

evaluated. Figure 4.39 demonstrates that the increased hydrophobicity of a catalyst 

decreased the conversion rate. Unlike the pore textural properties, the increased 

hydrophobicity enhanced the GMO formation. However, the GDO and GTO 

selectivities decreased with improved hydrophobicity. Despite the decreased 

hydrophobicity and the total conversion of reaction at 8 h, the initial reaction rate or 

turnover frequency, which was calculated during the first 15 min reaction time, 

indicated that a catalyst with improved hydrophobicity displayed an increased turnover 

frequency value (Table 4.8). Surface hydrophobicity plays an important role in 

esterification reactions with polyols (glycerol) (Kotwal et al., 2013). 

 

 

Figure 4.39: Correlation between hydrophobicity and the conversion and 
selectivity at the constant acidity of 1.55 mmol H+ and operating parameters 
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Table 4.8: Turnover frequency of each catalyst during the first 15 min of 
reaction 

Entry  Catalyst TOF (h
-1

)
a
 

1 
  

ZrO2-SiO2-Me&Et-PhSO3H_70 
 

61.4 
 

2 
 

SO4

2-
/ZrO2 sol gel 

 
48.7 

 
3 
  
  

SO4

2-
/ZrO2 precipitation 

 
47.9 

 

4 
 

SO4

2-
/ZrO2 commercial 

 

57.5 

 

aTurnover Frequency (TOF)= total number of moles transformed into the desired product by one mole of active site per initial 15 
min of reaction time  

 

 Commercial Amberlyst 15 and Aquivion characterisations and 4.5.3

performance evaluations 

A comparative study between ZrO2-SiO2-Me&Et-PhSO3H_70 and the commercially 

available Amberlyst 15 and polymeric perfluorosulfonic acid (PFSA) Aquivion was 

performed under optimised operating reaction conditions in the glycerol esterification 

with OA. Aquivion PFSA is a copolymer based on tetrafluoroethylene and the sulfonyl 

fluoride vinyl ether catalyst from Solvay Specialty Polymers. Aquivion is a 

perfluorosulfonic superacid resin with a relatively high acid strength, high thermal 

stability and approximately −12 Hammett acidity (comparable to the acid strength of 

H2SO4) (Fang et al., 2016). Amberlyst 15 is a conventional macroporous sulphonic ion 

exchange resin with 120 °C thermal stability (Kong et al., 2015). The catalyst 

characteristics are summarised in Table 4.9. Although the ion exchange capacity of 

Aquivion PFSA (1.0 mequiv/g) used in this study is lower than that of Amberlyst 15 

(4.7 mequiv/g), the Hammett acidity function of Amberlyst 15 (H0 = −2) is considerably 



 

 

127 

lower than that of the superacid Aquivion (H0 = −12) (Karam et al., 2016). Thus, the 

influences of the different acidity strengths of catalysts were observed in the present 

work. 

 The surface area, pore volume, particle size distribution and acidity strength of these 

three catalysts differed. The distribution phenomenon of each catalyst was also 

examined in a polar and nonpolar solvent (within a layer of immiscible toluene–water 

phase), and result is demonstrated in Figure 4.40. Aquivion were located on the 

interface between toluene and water. Nevertheless, Aquivion exhibited an amphiphilic 

property because it was only located on the interface between toluene and water, unlike 

the Me&Et-PhSO3H-SiO2-ZrO2, which was distributed in the toluene phase. By 

contrast, Amberlyst 15 was immersed in the bottom-water phase. 

Table 4.9: Comparison of the textural properties of ZrO2-SiO2-Me&EtPhSO3H 
catalyst with those of commercial Amberlyst 15 and Aquivion catalyst 

Catalysts BET Acidity 
 

Particle 
size 

distribution 
(µm) 

Area 
(m

2
/g) 

Pore 
volume 

 

(cm
3
/g) 

Average 
pore 

diameter 
(nm) 

ZrO2-SiO2-Me&Et-
PhSO3H_70 

 

79.75 0.0247 3.77 0.62 
mmol/g 

5.01 

Amberlyst 15 42.5 0.290 28.8 4.7 
mequiv./g 

 

300 

Aquivion PFSA- 
superacid* 

<0.1 - - 0.98- 
1.06 

mmol/g 
 

660 

*The characterization data of Aquivion was obtained from  (Fang et al., 2015) 
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(a) 

 
(b) 

 
(c) 

 

Figure 4.40: Sample photos of catalyst dispersed in toluene (top) and water 
(bottom): (a) Me&Et-PhSO3H-SiO2-ZrO2, (b) Amberlyst 15 and (c) Aquivion  

 

Three sets of experiments were performed under optimised conditions in glycerol 

esterification with OA in the presence of different catalysts, namely, ZrO2-SiO2-

Me&EtPhSO3H, Amberlyst 15 and Aquivion. Aquivion afforded the highest 

conversion, which was nearly 99% in 240 min reaction time (Figure 4.41 (a)). 

Approximately 98% conversion was obtained within 120 min reaction time. The 

formation rates of GDO and GTO were the fastest for Aquivion (SGDO = 69% and SGTO 

= 30%), although an equimolar ratio of reactants was used. This result was attributed to 

the strong acidity of Aquivion. A relatively low selectivity of GMO was obtained for 

Aquivion-catalysed reaction (< 3%). This finding suggested that the superstrong acidity 

of Aquivion is suitable in producing large GTO molecules at the OA-to-glycerol molar 

ratio of 3:1. Further lowering the loading amount of Aquivion (optimisation of catalyst 

concentration) is necessary to attain high yield and selectivity of GMO. Superstrong 

acid potentially produces undesirable side reaction products, such as acrolein, 

polyglycerol, alkene and polyglycerol esters. A long reaction time is unadvisable for 



 

 

129 

Aquivion-catalysed reaction because the yield and GTO selectivity were reduced 

(Figure 4.41(b)).  

Results showed that Amberlyst 15 obtained a higher yield and selectivity for GDO 

and GTO (SGDO = 65% and SGTO = 12%) than those of the two other catalysts; this result 

can be attributed to the lower acidity strength of Amberlyst 15 (H0 = −2) than that of 

Aquivion (H0 = −12) and its larger pore size (28.8 nm) than that of ZrO2-SiO2-

Me&EtPhSO3H (3.77 nm). Prolonging the reaction time of Amberlyst 15 to 8 h 

increased the GDO and GTO selectivities (SGDO = 74% and SGTO = 16%).  

ZrO2-SiO2-Me&EtPhSO3H obtained the highest yield and GMO selectivity (60%), 

which proved that catalyst acidity is vital in controlling the conversion rate and yield. 

Firstly, a moderate acidity level of catalyst or suitable loading amount of catalyst is 

required to produce a high-yield product, and excess acidity may lead to side reaction. 

Secondly, textural properties, such as pore size/pore volume, influence the selectivity of 

a product significantly by controlling the pore size of catalyst to form the desired 

selectivity product. 
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(a) 

 

 

(b) 

Figure 4.41: Comparison of the catalytic activities of ZrO2-SiO2-
Me&EtPhSO3H, Amberlyst 15 and Aquivion catalysts. All reactions were 

conducted at the constant acidity of 1.55 mmol H+, equimolar ratio of OA and 
glycerol, reaction temperature of 160 °C and stirring speed of 650 rpm for 240 min 

(a) and 480 min (b) 
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The colour of the reaction medium catalysed by Me&Et-PhSO3H-SiO2-ZrO2, 

Amberlyst 15 and Aquivion are displayed in Figure 4.42. The product colour increased 

according to the darkness level as follows: Me&Et-PhSO3H-SiO2-ZrO2 > Amberlyst 

15 > Aquivion. The darkest product mixture colour was that of Aquivion. This work 

revealed that the catalyst acid strength affected the colour product because the colour 

produced by Aquivion was similar to that of homogeneous catalyst, such as H2SO4 

product.  

To examine the influence of the strong acid strength of Aquivion, catalyst stability 

studies were carried out by using filtered and reused catalyst directly under optimised 

reaction conditions for 180 min. In Figure 4.43, the increased number of catalyst 

reusable times also increased the product yield. Notable increases in GMO selectivity in 

the third experimental run were also observed. The resultant trend confirmed the loss of 

strong catalyst active sites of Aquivion might attribute to the increasing of yield. 

Therefore, low catalyst acidity/moderate acidity amount is essential for glycerol 

esterification with OA. 
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(a) 

 

(b) 

 

(c) 
 

Figure 4.42: Colour of products catalysed by (a) Me&Et-PhSO3H-SiO2-ZrO2, 
(b) Amberlyst 15 and (c) Aquivion 

 

 

Figure 4.43: Catalyst stability studies on Aquivion at optimised reaction 
conditions: 1.55 mmol H+, equimolar ratio of OA and glycerol, reaction 

temperature of 160 °C and stirring speed of 650 rpm for 180 min 
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CHAPTER 5: CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

This work developed a novel highly hydrophobic heterogeneous acid catalyst using 

ZrO2-SiO2 support. Silication enabled the adherence of SiO2 on ZrO2 support and 

resulted in the formation of ZrO2-SiO2. In addition, the loading amounts of TMMS and 

CSPETS were found vital in controlling the hydrophobicity and acidity of the catalyst. 

ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst with 70 mol% of TMMS and 0.62 mmol/g 

acidity was the optimal catalyst for glycerol esterification with OA. The catalyst 

hydrophobicity decreased with increased acidity. Furthermore, at constant catalyst 

acidity, a catalyst with increased hydrophobicity showed an improved yield. A 

comparative study on two catalysts with the same acidities (0.62 mmol/g) but different 

loadings of TMMS agent (ZrO2-SiO2-Me&EtPhSO3H_50h and ZrO2-SiO2-

Me&EtPhSO3H_70) proved that ZrO2-SiO2-Me&EtPhSO3H_70 with high TMMS agent 

amount can increase the product yield from 28.9% to 37.4% at 100 °C, 300 rpm and 

equimolar ratio of OA and glycerol.  

ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst was applied during process optimisation 

study. Result showed an 80% conversion with a 59.4% GMO selectivity and 34.6% 

GDO selectivity (combined GMO and GDO selectivity = 94.8%) at the optimised 

conditions of equimolar OA-to-glycerol ratio, 160 °C reaction temperature and 5 wt% 

catalyst concentration with respect to the OA weight for 4 h. After prolonging the 

reaction time to 8 h under the same operating parameters, 88.2% conversion with 53.5% 

GMO selectivity and 40.0% GDO selectivity (combined GMO and GDO selectivity = 

94%) were obtained. This work discovered that increasing the reaction temperature 
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accelerates the conversion rate but decreases the selectivity of GMO. The equimolar 

ratio of OA to glycerol was suggested to increase the selectivities of GMO and GDO. 

This work also confirmed that 5 wt% ZrO2-SiO2-Me&Et-PhSO3H_70 catalyst 

concentration is the optimal level for the catalytic study of glycerol with OA. Moreover, 

the GMO selectivity decreased with the increased catalyst concentration. This effect 

was highly attributed to the increased number of available acidic sites of the catalyst. 

Therefore, a strongly acidic catalyst promoted the formation of a low-GMO-selectivity 

product mixture. 

A comparative study on ZrO2-SiO2-Me&Et-PhSO3H with different SO4
2−/ZrO2 

catalysts validated the following points: (i) the structural crystallinity of SO4
2−/ZrO2 was 

affected with the type of zirconia precursor and (ii) the importance of catalyst pore 

volume or high accessibility of the organic reactants to the active sites. The catalyst 

pore volume was correlated with the selectivity of the reaction; a large pore volume 

enabled the formation of large-molecular-size GDO and GTO. Furthermore, highly 

uniform pores measuring less than 5 nm attained high GMO selectivity. Comparison of 

the performance of ZrO2-SiO2-Me&Et-PhSO3H and commercially available Amberlyst 

15 and Aquivion noted that catalyst acidity is a key parameter for catalytic activity and 

conversion rate. Nevertheless, high acidity/acid strength reduced the product yield in 

the glycerol esterification of OA. The mild acidity of ZrO2-SiO2-Me&Et-PhSO3H with 

a hydrophobic surface was recommended for the catalytic esterification of glycerol with 

OA at equimolar ratio of reactants to attain a high selectivity of GMO. Superacid 

Aquivion was recommended to produce GTO at a OA-to-glycerol moral ratio of 3:1. 

This study proved that the textural properties (pore volume and pore size), acidity 

and hydrophobicity of heterogeneous acid catalysts play vital roles in controlling the 
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activity and selectivity of reactions. Therefore, the acid strength and the number of 

available acid sites influence the conversion rate of reaction, and the hydrophobicity 

and pore volume of solid catalysts significantly affect the selectivity of the product. 

 

 Recommendation 5.2

 This work developed hydrophobicity-enhanced heterogeneous acid catalyst using 

ZrO2-SiO2 support. It was proven that catalyst hydrophobicity plays an important role to 

enhance formation rate of GMO. However, the stability of the catalyst is not suitable to 

robust usage and not ready for commercial use. Therefore, two suggestions are 

recommended to improve designing of high thermal stability of catalyst. First, oxidative 

cleavage of tetrasulfide bridges in sulfonic acid functionalized hybrid silicas catalyst is 

suggested to produce strong –SO3H bond between acid sites and catalyst support. 

Second, it is essential to study different method in preparation of porous, mesoporous or 

hollow silica-based catalyst, for instance, surfactant addition or combination with hard-

soft template methods. An accessible and permeable pores, especially radially oriented 

channels is vital for small molecules, bio-macromolecules or even nanoparticles to 

easily move into or out of the porous matrices.  

In addition, kinetic study should be done in future for batch and continuous 

processes. The designed hydrophobicity-advanced heterogeneous acid catalyst in this 

work can be applied in typical esterification of carboxylic acid with non-polar reactant, 

for instance, acetylation for the production of bio-additives, etherification production of 

glycerol tertiary butyl ether, biodegradable surfactant production derived from glycerol-

fatty alcohol as well as water-sensitive biomass conversion synthesis. 
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Meanwhile, commercial strong acidity Aquivion catalyst is suggested for production 

of GTO biolubricant. The process optimization works is needed in order to maximize 

GTO yield.  
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APPENDIX A 

i. FTIR profile for (a) ZrO2-SiO2-Me&Et-PhSO3H_70 (b) SO4
2-/ZrO2 sol gel (c) 

SO4
2-/ZrO2 precipitation (d) SO4

2-/ZrO2 commercial 

 

 

ii. FESEM image for (a) ZrO2-SiO2-Me&Et-PhSO3H_70 (b) SO4
2-/ZrO2 sol gel (c) 

SO4
2-/ZrO2 precipitation (d) SO4

2-/ZrO2 commercial 
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(c) 

 

(d) 
 

 

iii. TGA curve for (a) ZrO2-SiO2-Me&Et-PhSO3H_70 (b) SO4
2-/ZrO2 sol gel (c) SO4

2-

/ZrO2 precipitation (d) SO4
2-/ZrO2 commercial 

 

 

 

 

 

-6

-5

-4

-3

-2

-1

0

1

0 100 200 300 400 500 600 700 800 900 1000

TG
 (

w
t/

m
in

)

Temperature (oC)

ZrO2-SiO2 -Me&Et-PhSO3H_70

SO42-/ZrO2 sol gel

SO42-/ZrO2 precipitation

SO42-/ZrO2 commercial



 

 

155 

APPENDIX B 

i. Calibration curve for OA 

 

 

ii. Calibration curve for GMO 
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iii. Chromatogram peaks for group of GMO and OA in 80ACN20H20 0.1%TFA 

mobile phase catalysed by ZrO2-SiO2-Me&Et-PhSO3H_70 

 

 

 

iv. Calibration curve for GDO 
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v. Calibration curve for GTO 

 

 

vi. Chromatogram peaks for group of GDO and GTO in 40ACN40MeOH20THF 

mobile phase catalysed by ZrO2-SiO2-Me&Et-PhSO3H_70 
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APPENDIX C 

 

i. Calculation method for molar ratio SiO2:total agent (TMMS-CSPETS)  

Component TMMS CSPETS 
Molecular weight 
(g/mol) 

136.2178 324.85 

Mass (g) 0.6255 0.655
2⁄  

Mole (mmol) 4.59 1.01 
Total mole of 
combined reagents 
(mmol) 

 
5.60 

 
Mole SiO2 i.  

ii. 1 g of ZrO2-SiO2  produced from 1.08 g SiO2/3.19 g ZrO2-
SiO2 = 33.85 % SiO2 

iii.  

iv. 1 g of ZrO2-SiO2 consists of 0.3386 g of SiO2 

v.  

vi. 0.3386 g of SiO2/ 60.08 gmol-1 SiO2 = 5.6 mmol SiO2 
vii.  

Molar ratio of 
SiO2:total 
functionalised 
agent (TMMS-
CSPETS) 

 
5.6 mmol SiO2

5.6 mmol
= 1 
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