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Incorporating delayed and multi-rate measurements
in navigation filter for autonomous space rendezvous

Anthea Comellini ∗, Davide Casu †, Emmanuel Zenou‡,Vincent Dubanchet §, Christine Espinosa¶

I. Introduction
Autonomous rendezvous (RDV) and capture are key capabilities to answer main challenges

in space engineering, such as In-Orbit-Servicing and Active Debris Removal. When the target

does not assist the chaser in acquisition, track and rendezvous operations, it is referred to as

non-cooperative [1], meaning that the chaser has to estimate on board the target state for sake of

autonomy. Inexpensive camera sensors, coupled with image processing (IP) and Computer Vision

(CV) algorithms can provide cost effective and accurate measurements of relative pose (i.e., position

and attitude) of the target. These tracking algorithms can have a relatively high latency time. This

results in a delay between the time instant of data acquisition and the time instant when the processed

measurements are available and ready to be fused into the navigation filter. The navigation filter

will therefore need to merge infrequent and delayed measurements. Since the tracking can be

provided by additional sensors and algorithms with different latency time, the filter must be able to

fuse multi-rate measurements. While slow measurements are available after a certain delay, fast

measurements (i.e., referred to as interim measurements, IM) are available at a higher rate and

processed almost instantaneously and have to be fused within the delay period.

The problem of delay management in space applications and more precisely in space RDV scenarios

has been sporadically assessed [2–4]. These works propose delay management techniques for

the estimation of the chaser-target relative translational dynamics -which is described by the
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Clohessy-Wiltshire-Hill (CWH, [5, 6]) equations- and are suitable only for linear systems where

no IM are considered. No solutions have already been presented for the estimation of target

rotational dynamics, which is, in addition, represented by a non-linear model. The current

recommended best practice for S/C attitude estimation is the M-EKF (Multiplicative-Extended

Kalman Filter, [7]), where both attitude quaternion and rotation rate are measured and no consistent

delay affects the measurements. However vision-based navigation algorithms usually provide only

pose measurements, and these measurements can be affected by a substantial delay. Some RDV

operations require the synchronization of chaser motion with target motion, implying the need

of knowing also target velocity and rotation rate. In the case of high rotation rates typical of a

tumbling object, the rotation rate can be estimated using a dynamic filter including the object angular

momentum equation instead of a kinematic one. For this reason, the target rotational state estimation

will be formulated as an Additive Extended Kalman Filter (A-EKF).

In fields such as automation industry, there is a vast literature on Kalman Filter (KF) with delayed and

multi-rate measurements. In [8] methods are classified into two main families: “state augmentation

approaches” and methods which fuse the measurements on arrival. State augmentation methods

rely on augmenting the current state with appropriate past information required to fuse the delayed

measurements. These methods, such as the fixed-lag smoothing [9, 10], provide optimal estimates

and can be extended to other filters (e.g., Particle Filter, Unscented KF), but are suitable only for

fixed-delay measurements. Moreover the size of the system increases as the delay increases, leading

thus to a proportional increase of the computational load. These methods are therefore suitable

for applications where delays consist in small number of samples (e.g., [11, 12]) or applications

where the computational burden is not an issue, such as industrial process control, but appear to

be inapplicable to space RDV due to the limited on-board computational resources of S/C. On the

other side, methods that fuse the delayed measurements on arrival can handle large and variable

delays with a reasonably low computational load, while granting the optimality of the estimation

under certain intervals and conditions. These methods can incorporate interim measurements while

merging the slowest ones, which makes them suitable for autonomous navigation. Within this family
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of delay management techniques, one method always provides an optimal estimate even in presence

of IM: the Filter Recalculation method (FR method) [13, 14]. It can be applied also to non-linear

systems without any loss of optimality at the expense of a high computational load. On the other

side, the method that provides the best trade-off between optimality and computational burden is the

Larsen’s method [15]. This method has been theorized for linear systems but can be extended also

to non-linear systems with the introduction of certain approximations (Sec. III.B.2).

This Note offers a comparison of these two delay management techniques, which have never been

applied to the vision-based autonomous RDV navigation problem, and especially to the estimation

of the highly non-linear target relative rotational dynamics. The Note is structured as follows: in

Sec.II the techniques are formalized, in Sec.III the implementation of these techniques is described

towards the vision-based autonomous RDV problem, in Sec.IV the performance of the filters is

investigated under different sources of uncertainties, and in Sec.V the conclusions are drown.

II. Filter Equations
In this section the methods are implemented on a linear time-discrete system for sake of clarity,

but will be extended to a non-linear continuous system in Sec.III. A linear discrete system observed

by non-delayed measurements, where the process noise F: and the measurement noise a: are

zero-mean Gaussian white-noise processes, can be put in state-space form as follows [16]: G: = �:G:−1 + �:D: + F:
H: = �:G: + a:

, with �
{
F:F

)
9

}
=

 0 : ≠ 9

&: : = 9
, �

{
a:a

)
9

}
=

 0 : ≠ 9

': : = 9
(1)

The associated KF is divided in: prediction of the a priori estimate of the state and the state error

covariance matrix (Eq.(2)); computation of the optimal gain minimizing the a posteriori estimate of

the state error covariance (Eq.(3)); update of state and covariance matrix (Eq.(4)).

prediction
 Ĝ: |:−1 = �: Ĝ:−1|:−1 + �:D:
%: |:−1 = �:%:−1|:−1�

)
:
+&:

(2)

gain computation  : = %: |:−1�
)
:
(�:%: |:−1�

)
:
+ ': )−1 (3)
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update
 Ĝ: |: = Ĝ: |:−1 +  : (H: − �: Ĝ: |:−1)
%: |: = (� −  :�: )%:−1|:−1

(4)

When delayed measurements are presents, at instant : the system in Eq.(1) receives a delayed

measurement corresponding to time instant B (B = : − #3 , #3 number of delay samples), such that:

H∗B = �
∗
B GB + aB, with �

{
aBa

)
9

}
=

 0 B ≠ 9

'∗B B = 9
(5)

In such a case, Eq.(3) is no more optimal and a new solution has to be found in order to compute the

best estimates Ĝ: |:,:∗ and %: |:,:∗ which take into account the contribution of H∗B .

A. Filter Recalculation method

The FR method consists of going back to the time step when the delayed measurement was

taken, incorporating the measurement and recomputing the entire trajectory of the state until the

current step. In so doing, the whole estimate time history will be optimal. The estimation is made

as if two filters were employed: a principal one, which operates at constant rate by processing fast

measurements H: , and a second one, which is activated any time a delayed (i.e., slow and infrequent)

measurement H∗B arrives. The filters operate as follows. At instant B a slow measurement is taken and

ĜB |B−1, %B |B−1 are stored. For all the time steps B + 8 (8 ∈ [1, #3 − 1]) the principal filter processes fast

measurements HB+8 as in a KF (Eqs. (2),(3),(4)), and measurements HB+8 and inputs DB+8 are stored.

At : = B + #3 the slow measurement H∗B and its corresponding covariance '∗B become available: the

secondary filter is activated, goes back to instant B and computes the optimal update using the full

measurements vector H̃B = [HB, H∗B]) , where HB are the fast measurements and H∗B the slow ones:
 ̃B = %B |B−1�̃

)
B (�̃B%B |B−1�̃

)
B + '̃B)−1

ĜB |B = ĜB |B−1 +  ̃B ( H̃B − �̃BĜB |B−1)

%B |B = (� −  ̃B�̃B)%B |B−1

, with �̃B =


�B

�∗B

 , '̃B =


'B ∅

∅ '∗B

 (6)

The optimal estimates ĜB |B and %B |B are then propagated by the secondary filter from instant B + 1 to

instant : = B + #3 according to Eqs.(2),(3),(4), thus clarifying the need of storing the values of IM

and inputs. Once the loop has reached instant : = B + #3 , the filter has provided an optimal estimate
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of the current state and of the state error covariance matrix. The FR method can be extended to

variable delays and provides an optimal estimate in presence of IM even for non-linear systems.

More precisely, in the case of non-linear systems, the loss of optimality is introduced by the use of

the Extended KF, which is intrinsically sub-optimal due to the linearization of state and measurement

equations, and not by the use of the FR method.

B. Larsen’s method

The Larsen’s (or extrapolation) method was proposed in [15] as an improvement of Alexander’s

method ([17]) for delaymanagement in discrete linear system. Thesemethods rely on the computation,

throughout the delay period, of a correction term to add to the filter estimate when the delayed

measurement becomes available. The main difference between Alexander’s and Larsen’s methods is

that the latter does not need to know, at instant B, the covariance matrix '∗B nor the measurement

sensitivity matrix �∗B : these matrices are supposed to become available at instant : together with the

delayed measurement H∗B . Larsen’s method is therefore suitable for systems relying on measurements

processed by IP-CV algorithms, as these algorithms usually process '∗ together with H∗. As for the

FR method, at time B, when a new slow measurement is acquired, ĜB |B−1 and %B |B−1 are stored. At

each instant B + 8 (8 ∈ [1, #3 − 1]) the classic KF structure in Eqs. (2),(3),(4) is applied using fast

measurements. Moreover, the term "B+8 = (� −  B+8�B+8)�B+8"B+8−1 is computed, with "B = �. At

time instant : = B + #3 ,H∗B , '∗B and �∗B become available. The filter firstly computes the gain  : and

the updates as in Eqs.(3),(4) using fast measurements H: . The final correction term "∗
:
will be [15]:

"∗: = "B+#3
=

#3∏
8=1
(� −  B+8�B+8)�B+8 (7)

Then an extrapolated measurement H4GC
:

is computed to derive a representation of H∗B at instant ::

H4GC: = H∗B − �∗B ĜB |B−1 + �∗: Ĝ: |:−1 (8)

In [15] Larsen provides the demonstration of the computation of the optimal gain  ∗
:
and the

resulting state and covariance updates, which are:
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 ∗
:

= "∗
:
%B |B−1�

∗
B
) (�∗B%B |B−1�

∗
B
) + '∗B )−1

Ĝ: |:,:∗ = Ĝ: |: +  ∗: (H
4GC
:
− �∗

:
Ĝ: |: )

%: |:,:∗ = %: |: −  ∗:�
∗
B%B |B−1"

∗
:
)

(9)

where the Kalman gain  ∗
:
is actually the Kalman gain  ∗B (i.e., the gain that would have been

computed if the measurement H∗B had become available at instant B) pre-multiplied by the Larsen

correction term "∗
:
. In the presence of IM this method performs sub-optimally: at each interim

step, the gain  B+8 is computed using a covariance matrix %B+8 |B+8−1 that is not optimal because it

has not yet taken into account the contribution of H∗B . In any case, Larsen’s method always requires

only two matrix multiplications at each time instant and the storage of two variables any time a

slow measurement is acquired, with no need of storing IM and inputs. As the FR method, Larsen’s

method can be extended to variable delays which are not known a priori.

C. No interim measurements case

In the absence of IM and for a linear system, FR and Larsen’s methods give the same estimates.

Let us assume that the delayed measurement H∗B and its corresponding sensitive matrix and noise

covariance matrix are available at instant B. The update at instant B is then given by:
ĜB |B = ĜB |B−1 +  ∗B (H∗B − �∗B ĜB |B−1)

%B |B = (� −  ∗B�∗B )%B |B−1

with  ∗B = %B |B−1�
∗
B
) (�∗B%B |B−1�

∗
B
) + '∗B )−1 (10)

For all the time steps : = B+ 8 (8 ∈ [1, #3 −1]) state and error covariance matrix evolve in open-loop:
Ĝ: |: = Ĝ: |:−1 = �: Ĝ:−1|:−1 + �:D:
%: |: = %: |:−1 = �:%:−1|:−1�

)
:
+&:

(11)

After #3 loops, at : = B + #3 , the estimated state ĜB+#3 |B+#3
will be:

ĜB+#3 |B+#3
=

(
#3∏
8=1

�B+8

)
ĜB |B +

#3∑
8=1

©«
#3∏
9=8+1

�B+ 9
ª®¬ �B+8DB+8 (12)

Recalling the expression of ĜB |B in Eq.(10) and calling I∗B the residual H∗B −�∗B ĜB |B−1, Eq.(12) becomes:

ĜB+#3 |B+#3
=


(
#3∏
8=1

�B+8

)
ĜB |B−1 +


#3∑
8=1

©«
#3∏
9=8+1

�B+ 9
ª®¬ �B+8DB+8


 +

(
#3∏
8=1

�B+8

)
 ∗B I

∗
B (13)
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where the expression inside the curly brackets corresponds to the open-loop evolution of the predicted

state ĜB |B−1 from B to B + #3 , and the term
∏#3

8=1 �B+8 is the correction term "∗ of Eq.(7) in the

absence of IM, and therefore in the absence of interim Kalman gains. The same demonstration can

be done for the state error covariance matrix. At : = B + #3 , the estimate will be:

%B+#3 |B+#3
=

(
#3∏
8=1

�B+8

)
%B |B

(
#3∏
8=1

�)B+8

)
+

#3∑
8=1

©«
#3∏
9=8+1

�B+ 9
ª®¬&B+8

(
#3∏
8=1

�)B+8

)
=


(
#3∏
8=1

�B+8

)
%B |B−1

(
#3∏
8=1

�)B+8

)
+


#3∑
8=1

©«
#3∏
9=8+1

�B+ 9
ª®¬&B+8

(
#3∏
8=1

�)B+8

)
 −

(
#3∏
8=1

�B+8

)
 ∗B�

∗
B%B |B−1

(
#3∏
8=1

�)B+8

) (14)

where the term in the curly brackets is the open loop evolution of %B |B−1 and the term outside the

curly brackets is equal to Larsen covariance update in Eq.(9). These demonstrations show how,

in the particular case of the absence of IM, using the delayed measurement at instant B and then

propagating the a posteriori estimate ĜB |B (i.e., FR method) is equivalent to propagate the a priori

estimate (prediction) ĜB |B−1 and to perform the update at : = B + #3 by pre-multiplying the update

 ∗B I
∗
B by a correction factor, which is Larsen’s correction factor. Larsen’s method exploits the

superposition property of linear systems to project in the “future” the update  ∗B I∗B , which can be

seen as a ΔGB that is propagated through the same transformation of ĜB |B−1. In such a case, Larsen’s

method is preferable since it always requires a lower amount of computation. FR method should

be selected only if the whole optimal time history of the estimate from B to B + #3 needs to be

known. These considerations are valid only for linear systems: non-linear systems cannot exploit

the superposition property and the approximated transition matrix has to be used instead of �: .

III. Application to the space rendezvous problem
When expressed at its Center-of-Mass (CoM), the motion of a S/C can be decoupled between

the translational motion of its CoM and its rotational motion. Therefore the navigation filters for

translational and rotational dynamics will be completely decoupled. Actually, when the relative

translational dynamics is modeled according to the CWH equations, a small coupling between

translational and rotational motion exist, but can be neglected as long as the chaser is controlled

with respect to a reference frame that originates in its CoM [5].
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A. Translational dynamics in space rendezvous

In a RDV the relative distance chaser-target is much smaller than the distance planet-target,

allowing the introduction of some simplifications to derive the dynamic model which describes the

relative motion of the chaser with respect to the target. This model, in the case of a circular orbit,

can be put under the form of a system of linear differential equations called Hill’s equations [5]:
¥G − 3l2G − 2l ¤H = �G/<2

¥H + 2l ¤G = �H/<2

¥I + l2I = �I/<2

(15)

where �G,H,I are the control forces acting on the chaser CoM, <2 is the chaser’s mass and l is the

target’s orbit angular rate. The relative position is expressed in target !$� (Local Orbital Frame),

according to the convention used in [6] (G axis along the radial Earth-target, I axis along target orbit

angular momentum and H axis completing the right-handed trihedron). The homogeneous solution

of the system in Eq.(15), which leads to the analytical computation of the transition matrix Φ(C)

of the time-continuous linear state-space representation corresponding to Eq.(15), is known under

the name of Clohessy-Wiltshire equations. The CWH transition matrix is valid only for circular

orbits, even if the analytical computation of a transition matrix valid for elliptical orbits is described

in [18]. Given the transition matrix Φ(C) of the time-continuous linear state-space representation

corresponding to Eq.(15), the time-discrete state matrices �: , �: can be computed according to:

�: = 4
�) = Φ()) , �: =

∫ )

0
4�)�3C (16)

where �, � are the time-continuous state matrices associated to the system in Eq.(15) and ) is the

time step size of the time-discrete system. The result of the computation can be found in [5]. The

system can be therefore written in the form of Eq.(1) and both Larsen’s and FR methods can be easily

implemented. In the case of vision-based navigation, the CV algorithms compute a relative target

position in camera reference frame. Assuming that the rotation quaternion from camera to chaser

reference frame is known by on-ground calibration, it will be necessary to know at each instant the

quaternion @2ℎ−!$� , in order to rotate the measurements (as well as chaser control forces) from

8



chaser 2ℎ reference frame into target !$� coordinates before using them in the KF. @2ℎ−!$� can be

computed knowing chaser absolute attitude quaternion, denoted @8−2ℎ with 8 the inertial reference

frame, and the rotation quaternion from inertial reference frame to target !$� @8−!$� . The chaser

inertial attitude @8−2ℎ is estimated by the usual Attitude and Orbit Control System. Besides, the

@8−!$� is related to target orbital parameters, and therefore to its absolute velocity and position. At

each time step, the KF-estimated relative position will be added to the absolute chaser position (i.e.,

whose estimation can rely on GNSS and accelerometers measurements), resulting in an absolute

translational target state from which an updated estimation of @8−!$� can be derived.

B. Rotational dynamics in space rendezvous

As anticipated, certain close proximity operations require the knowledge of the complete

rotational state of the target (i.e., attitude quaternion @8−C6 and rotation rate C6l8−C6). The estimation

of the absolute rotational dynamics of the chaser is not considered in this work. In this Note rotations

are described using quaternions according to Hamilton convention [19]. The Target rotational

dynamics will be modeled according to the following prediction model:
¤@8−C6 =

1
2
@8−C6 ⊗

 0
C6l8−C6


C6 ¤l8−C6 = −�−1

C6

(
C6l8−C6 × �C6 C6l8−C6

) (17)

where �C6 is the inertia matrix of the target at its CoM. The orbital disturbance torques that affects

the target dynamics will be modeled in the system as process noises. This second order system

is formulated as an A-EKF, in order to ensure observability of the rotation rate from attitude

measurements. Moreover, the application of Larsen’s method to the M-EKF is not straightforward

due to the presence of a multiplicative update. The M-EKF formulation was developed in order to

avoid the ill-conditioning problems that could appear in the state error covariance matrix when the

quaternion normalization is forced in the A-EKF update step [20]. An in-depth study is carried out

in [21] to understand whether or not such a constraint leads to an ill-conditioned % matrix. The work

provides the mathematical demonstration that the quaternion estimation error covariance matrix does
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lead to ill-conditioning problem as its trace tends to zero, but also that this property is not inherited

by its corresponding second order Taylor approximation, as the one computed by the A-EKF. This

theoretical demonstration explains how several works relying on an A-EKF attitude estimation (e.g.,

such as [22]) have never shown ill-conditioning problems. Moreover [21] has provided a practical

demonstration that the covariance matrix computed by the A-EKF is well conditioned even in static

and noise-free attitude estimation problem, contrary to predictions made in literature (e.g., [23, 24]).

This A-EKF estimation filter has been used in the sequel, and the tests in Sec.III brought numerically

stable results.

The time-discrete measurement equation must express the relative chaser-target attitude quaternion

(H: = @2ℎ−C6) as a function of the state vector @8−C6. @2ℎ−C6 also depends on the absolute chaser

quaternion @8−2ℎ, which is supposed to be previously estimated by a classic M-EKF. Exploiting the

quaternion properties it is possible to write the quaternion product in matrix form:

@2ℎ−C6 = @∗
8−2ℎ ⊗ @8−C6 = Σ(@

∗
8−2ℎ) @8−C6 , with Σ(@) =


@0 −@1 −@2 −@3

@1 @0 −@3 @2

@2 @3 @0 −@1

@3 −@2 @1 @0


(18)

The time-discrete output equation H: = �:G: + a: is therefore linear in the variable @8−C6, with:

�: =

[
Σ(@∗

8−2ℎ) ∅4x3

]
, G: =


@8−C6

C6l8−C6

 (19)

Since @8−2ℎ is the result of an estimation process, the covariance ': associated to @2ℎ−C6 should take

into account also the uncertainties introduced by Σ(@∗
8−2ℎ) through the computation of the composed

variance of the function @2ℎ−C6 = 5 (@8−2ℎ, @8−C6). Since this Note focuses on the characterization of

the intrinsic performance of the delay management techniques, the true @8−2ℎ will be used during the

performance analysis not to introduce coupling between the covariances of chaser and target states.

1. Filter Recalculation method implementation

Since the system dynamics is a continuous process (Eq.(17)), while the measurement is a discrete

process (Eq.(18)), the CD-EKF (Continuous Discrete EKF, [25, 26]) structure will be exploited.
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Both state and covariance prediction equations can be written in the following time-continuous form:
3G

3C
= 5 (C, G)

3%

3C
=

m 5 (C, G)
mG

%(C) +
(
m 5 (C, G)
mG

))
%(C) + � (C)&(C)� (C))

(20)

where the second equation is a differential Lyaponouv equation derived using the approximated

state equation 3G
3C
∼ m 5 (C,G)

mG
3G + � (C)F(C), with � (C) the input matrix of the process noise [27]. The

prediction step is computed by numerical integration from C:−1 to C: of the ordinary differential

equations in Eq.(20) using the explicit fourth order Runge-Kutta (RK) method. Numerical integration

procedures may provide solution of % that are not necessarily positive semi-definite matrix, which

is in contradiction to the intrinsic properties of the state error covariance matrix. The numerical

integration of the class of coupled differential equations in Eq.(20) is investigated in [28], which

suggests procedures that ensure stable solutions and guarantee positive semi-definite covariance

matrices %. Nevertheless, for the rotational dynamics estimation problem, it has not been experienced

any issues either with the stability of the solution or with the properties of the covariance matrix.

With a filter run frequency of 10 Hz, a single sub-step for the fourth order RK integration is necessary.

The so computed G(C: ) and %(C: ) are the prediction of the state (Ĝ: |:−1) and of the covariance matrix

(%: |:−1). From this moment on, the CD-EKF will follow the steps of a classical Discrete KF to

compute the gain  : , the covariance update and the state update using the discrete measurement

H: . When the delayed measurement H∗B arrives, the update at time B is computed using the stored

ĜB |B−1, %B |B−1, and @8−2ℎB (that is needed to compute matrix �∗B ). No inputs DB need to be stored since

the disturbance torques acting on the target affect the dynamics as process noises. Then the filter

implementation follows the steps explained in Sec.II.A. If IM are present, @8−2ℎ has to be stored for

any time step going from B to B + #3 .

2. Larsen’s method implementation

Larsen’s method has been expressly designed for linear system: the correction term "∗ requires

the knowledge of the transition matrix Φ: = �: , implying that, for a non-linear system, an

approximation must be computed. Here a second order RK approximation will be used [29]:
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Φ: = � + ) �∑ + )2

2
�∏ , with


�∏ = � (Ĝ:−1|:−1)� (Ĝ: |:−1)

�∑ = [
� (Ĝ:−1|:−1) + � (Ĝ: |:−1)

]
/2

(21)

where � (Ĝ:−1|:−1) and � (Ĝ: |:−1) are the Jacobian m 5

mG
of the state equation 5 , evaluated respectively

in the estimated state at : − 1 and the predicted state at : . The prediction of the covariance matrix

can be done using the discrete Lyaponouv equation in Eq.(2), adapted for a non-linear system:

%: |:−1 = Φ:%:−1|:−1Φ
)
: +&: (22)

In fact, as discussed in [29], both methods in Eq.(20) and Eq.(22) can be used to compute the

prediction of the state error covariance matrix for non-linear systems. The choice of using the

discrete Lyaponouv equation is done in order to save computational resources. Indeed, the matrix

Φ: needs to be computed to implement Larsen’s method, and &: is computed as follows [16] :

&: =

∫ C:

C:−1

Φ(C: , g)� (g)&(g)�) (g)Φ) (C: , g)3g

=

∫ C:

C:−1

[
� + () − g) �∑ + () − g)2

2
�∏]

� (C: )&(C: )�) (C: )
[
� + () − g) �∑ + () − g)2

2
�∏])

3g

(23)

where &(C) and � (C) have been considered constant along the interval (which is a good assumption

since matrix � depends on target inertia matrix and disturbance torques have a slow dynamics) and

Φ(C: , g) has been substituted by the second order approximation of Eq.(23). The expression of the

resulting &: can be truncated at lower orders if needed, namely for small values of ) .

IV. Simulations and Performance analysis
The Kalman Filters have been implemented in a full RDV simulator developed in Simulink and

have been tested in a Monte Carlo (MC) Campaign. The generated true S/C dynamics takes into

account all the principal sources of disturbance in LEO environment, as well as chaser thrusters

acceleration and control torques. The filters are tested with simulated measurements that are

generated by adding a Gaussian noise to the true relative state. It is necessary to go through this stage

in order to test the performance of the filters under Kalman optimality hypothesis before coupling it

with IP-CV measurements. Measurements resulting from IP-CV algorithms are affected by noise
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which depends on many factors, such as the intrinsic noise of the sensor, the relative distance

camera-target, the relative rotation rate and velocity, the camera capture rate, the illumination

conditions and even the target relative pose itself. This makes it very difficult to compute on-line in

real time a representative model of the covariance matrix ' which is valid in any condition. The delay

management techniques must therefore demonstrate robustness with respect to uncertainties in the

knowledge of matrix '. In all the simulated scenarios, the relative pose measurements are acquired

at a rate of 1 Hz and become available for the filter after a delay of 1 second, which corresponds to

#3 = 10 assuming that the navigation filter operates at 10 Hz. These are all reasonable values taking

into account the typical latency time of an IP-CV algorithm and navigation filter run frequency with

typical space processing capabilities. All the presented scenarios are tested over 200 MC runs on a

500 seconds simulation. The state error covariance matrix % is initialized as the identity matrix.

A. Performance of the translational dynamics estimation

The simulated scenario is the following: the target is on a circular orbit at an altitude of 765 km

and the chaser is approaching along the −R-Bar side. The initial relative target-chaser position in

!$� is: G0 = [−50, 0, 0 ]) m. The chaser is subjected to a continuous profile of thrust in order to

perform an R-bar maneuver and intercepts the target after 500 seconds at a relative speed of 10 cm/s.

Four MC scenarios have been selected in order to test the performance of the filtering techniques

under uncertainties in the knowledge of the true covariance of the measurements ' and the knowledge

of the chaser applied acceleration (i.e., which is the input of CWH state-space representation).

The latter may be due to an error in the knowledge of chaser mass or to a difference between the

commanded and the true thrust. All the simulations have a relative position initialization error

uniformly distributed in the interval [−10<, +10<] for G component and [−5<, +5<] for H and I

components. The relative velocity estimate is always initialized to be 0 m/s along each direction.

Table 1 summarizes the different conditions tested in each MC scenario. In cases ).� and ).�

the standard deviation of the generated measurements noise is fixed to a constant value of 2 m

for the G component and 1 m for H and I components. These values of f are quite representative
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Table 1 Definition of the MC scenarios for the translational dynamics

Position initialization error Control thrust � knowledge error Simulated measurement noise
Case T.A ΔG ∈ [−10<, +10<] ΔH,ΔI ∈ [−5<, +5<] Δ� = 0 fG = 2<, fH = 1<, fI = 1<
Case T.B ΔG ∈ [−10<, +10<] ΔH,ΔI ∈ [−5<, +5<] Δ� ∈ [−0.25�, 0.25�] fG = 2<, fH = 1<, fI = 1<
Case T.C ΔG ∈ [−10<, +10<] ΔH,ΔI ∈ [−5<, +5<] Δ� = 0 f = f0 + Δf, Δf ∈ [−0.8f0, 0.8f0], f0 = [2, 1, 1]<
Case T.D ΔG ∈ [−10<, +10<] ΔH,ΔI ∈ [−5<, +5<] Δ� ∈ [−0.25�, 0.25�] f = f0 + Δf, Δf ∈ [−0.8f0, 0.8f0] f0 = [2, 1, 1]<

for a distance around 50 m, but are overestimated for shorter distances (i.e., the second half of

the simulations), since camera sensors are characterized by an increase of measurement accuracy

with decreasing range [5]. The measurement component along G direction is generated with a

higher standard deviation with respect to the other components since during an R-bar maneuver

the target !$� G axis corresponds to the optical axis of the camera. Cases ).� and ).� test the

sensitivity of filter performance under the presence of random variations in the standard deviation of

the measurement noise, in order to assess the robustness to a variable covariance '. The standard

deviation will be equal to f0 + Δf, where Δf is a uniformly distributed variable that varies at any

instant in the interval [−0.8f0, +0.8f0] and f0 corresponds to the values defined for cases ).� and

).�. The filter is unaware of the measurement noise variation, therefore both cases ).� and ).�

will have the nominal tuning respectively of ).� and ).�. In cases ).� and ).�, chaser acceleration

is supposed to be known and only the sensitivity to uncertainties on the initials condition is tested.

In cases ).� and ).�, an uniformly distributed uncertainty in the interval of [−25%, +25%] is

added to the knowledge of chaser control accelerations. In order to grant the convergence of the

filter in these cases, the diagonal terms of matrix Q are increased of two order of magnitude with

respect to case ).�. Tables 2 show the steady-state performance of the filter. The reported values,

Table 2 Performance of the translational dynamics estimation

Case T.A Case T.B Case T.C Case T.D
f< f4 (1 − f4/f<) f< f4 (1 − f4/f<) f< f4 (1 − f4/f<) f< f4 (1 − f4/f<)

G [m] 1.999 0.053 97.33% 1.999 0.145 92.77% 1.924 0.052 97.29 % 1.921 0.138 92.82%
H [m] 1.000 0.033 96.73% 1.000 0.099 90.22% 0.985 0.032 96.71% 0.967 0.095 90.22 %
I [m] 1.000 0.025 97.47% 1.000 0.070 93.03 % 0.965 0.024 97.46% 0.989 0.069 93.01 %
¤G [m/s] - 0.232·10−3 - - 0.182·10−2 - - 0.225·10−3 - - 0.173·10−2 -
¤H [m/s] - 0.203·10−3 - - 0.173·10−2 - - 0.201·10−3 - - 0.168·10−2 -
¤I [m/s] - 0.103·10−3 - - 0.088·10−2 - - 0.099·10−3 - - 0.087·10−2 -

averaged over 200 MC runs, are: f< (i.e., the standard deviation of the generated measurement

noise), f4 (i.e., the standard deviation of the estimation error -Absolute Knowledge Error AKE
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according to [30] standard-), and (1 − f4/f<) (i.e. an index in percentage of the noise attenuation

introduced by the filter. As no IM are present, both FR method and Larsen’s method provide the

same results, so there is no distinction in the performance of the estimation. Comparing ).� and

).� to the correspondent cased with known control acceleration ).� and ).�, it is possible to see a

slight performance degradation. Indeed, the calibration of & used in cases ).� and ).� provides

very high level of attenuation (around 97%) that is paid by a loss of robustness with respect to

uncertainties in the knowledge of the control accelerations, which could even make the filter diverge.

The attenuation index is slightly degraded from case ).� to case ).�, while it is almost the same

for cases ).� and ).�, where the uncertainty on the process noise is dominant with respect to the

uncertainty on the measurement noise.

B. Performance of the rotational dynamics estimation

The simulated rotational dynamics is the following: the chaser is rotating very slowly around

the !$� − I axis in order to ensure target pointing during the R-bar maneuver, while the target

is rotating under the effect of its initial conditions and of the orbital disturbances. Four scenarios

have been analyzed, case '.�, case '.�, case '.� and case '.�, whose different conditions are

summarized in Table 3. The initial target rotation rate is equal to 1 deg/s around each body axis

for cases '.�, '.�, and '.�, and equal to 3 deg/s around each body axis for case '.�. These last

rotational rates are representative of drifting S/C rotation rates, and remain particularly challenging

for an IP-CV algorithm running on a space processor. In all the four scenarios, the estimated rotation

rate is initialized at 0 deg/s. In cases '.� and '.� the standard deviation of the measurements noise

Table 3 Definition of the MC scenarios for the rotational dynamics

Attitude initialization error Target’s true initial rotation rate �C6 knowledge error Simulated measurement noise
Case R.A Δ\ ∈ [−40346, +40346] C6l8−C6 = [1 , 1 , 1 ])346/B Δ �C6 = 0 f = 4346
Case R.B Δ\ = 0346 C6l8−C6 = [1 , 1 , 1 ])346/B Δ �C6 ∈ [−0.5�C688 , 0.5�C688 ] f = 4346
Case R.C Δ\ ∈ [−20346, +20346] C6l8−C6 = [1 , 1 , 1 ])346/B Δ �C6 ∈ [−0.2�C688 , 0.2�C688 ] f = f0 + Δf,Δf ∈ [−0.8f0, 0.8f0], f0 = 2346
Case R.D Δ\ ∈ [−20346, +20346] C6l8−C6 = [3 , 3 , 3 ])346/B Δ �C6 ∈ [−0.2�C688 , 0.2�C688 ] f = f0 + Δf,Δf ∈ [−0.8f0, 0.8f0], f0 = 2346

(i.e., represented in Euler attitude angles) is equal to 4 deg. In cases '.� and '.� the measurements

noise has standard deviation equal to f0 + Δf, with f0 = 2 deg and Δf a uniformly distributed

variable that varies at any instant in the interval [−0.8f0, +0.8f0]. Since the filter is unaware of the
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measurement noise variation, both '.� and '.� have the nominal tuning for a constant f = 2 deg.

Case '.� tests the performance of the methods under uncertainties in the initialization of the state

of the filter. Target attitude quaternion estimation is initialized by adding a random error Δ\ ∈ [−40

346, 40 346] expressed in Euler angles to the true state. Case '.� tests the filters performance

under the presence of uncertainties in the knowledge of target inertia matrix �C6 and no error in

the state initialization. The inertia matrix used in the filter is obtained by adding to each diagonal

term �C688 of the true inertia matrix a value U, where U is a uniformly distributed variable in the

interval [−0.5�C688 , +0.5�C688 ]. Cases '.� and '.� reproduce scenarios with uncertainties values

closer to the ones encountered in a real vision-based RDV in space. The initialization error Euler

angles in both cases is in the interval [−20 346, 20 346], which could be the convergence interval

of a classical model-based recursive tracking algorithm [31]. The uncertainty on the target inertia

diagonal terms is uniformly distributed in the interval [−0.2�C688 , +0.2�C688 ] which is quite probable

for RDV where the industrial model of the target is supposed to be known but still there could be

uncertainties on the amount of remaining propellant or on the degradation of the S/C. Table 4 shows

the steady-state performance of the filters for each one of the scenarios described, averaged on 200

MC runs over a simulation of 500s. The performance of the two delay management techniques is

compared to the performance of a classic CD-EKF processing the infrequent measurements without

delay. For the attitude estimation, the estimation error \ is given in the axis-angle representation,

which provides a scalar representation of the error. The reported values in Table 4, averaged on 200

MC runs, are: f< (i.e., the root mean square of the generated measurement noise), f#� (i.e., the

root mean square of the AKE for the filter with infrequent non-delayed measurements), f' (i.e.,

the root mean square of the AKE for the FR method), and f! (i.e., the root mean square of the

AKE for the Larsen’s method). As for the translational dynamics, also the attenuation index for

each filter is shown. For the rotation rate components, the root mean square corresponds to the

standard deviation of the estimation since the mean of the estimate is zero. The results confirm the

expectations: the performance of the attitude estimation is in all the cases better for the filter without

delay, followed by FR method and then by Larsen’s method. On the other side the performance of
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the estimation of the angular rate is almost comparable for all the filters. In general the filter shows

better performance under uncertainties in the initialization ('.�) with respect to uncertainties in the

knowledge of the inertia matrix ('.�) -which actually corresponds to uncertainties in the knowledge

of the prediction model. The performance degrades as the rotation rate increases (case '.� is the

only one having an attenuation index lower than 70%). In any case, it is worth highlighting that the

attenuation index of Larsen’s method is only one percent below the one of FR method. Also in the

transient phase the FR method shows very slightly better performance than the Larsen’s method.

Table 4 Performance of the rotational dynamics estimation

Case R.A Case R.B
f< f#� f' f! (1 − f#�/f<) (1 − f'/f<) (1 − f!/f<) f< f#� f' f! (1 − f#�/f<) (1 − f'/f<) (1 − f!/f<)

\ [346] 6.919 1.730 1.750 1.787 75.00% 74.71% 74.17% 6.919 1.778 1.808 1.841 74.30% 73.87% 73.39 %
lG [346/B] - 0.0131 0.0131 0.0128 - - - - 0.0130 0.0130 0.0128 - - -
lH [346/B] - 0.0120 0.0121 0.0124 - - - - 0.0124 0.0125 0.0123 - - -
lI [346/B] - 0.0191 0.0189 0.0187 - - - - 0.0203 0.0202 0.0201 - - -

Case R.C Case R.D
f< f#� f' f! (1 − f#�/f<) (1 − f'/f<) (1 − f!/f<) f< f#� f' f! (1 − f#�/f<) (1 − f'/f<) (1 − f!/f<)

\ [346] 3.402 0.907 0.920 0.939 73.35% 72.97% 72.39% 3,460 1.025 1.071 1.096 70.38% 69.06% 68.31%
lG [346/B] - 0.0075 0.0075 0.0073 - - - - 0.0044 0.0045 0.0046 - - -
lH [346/B] - 0.0076 0.0077 0.0076 - - - - 0.0069 0.0070 0.0079 - - -
lI [346/B] - 0.0010 0.0099 0.0098 - - - - 0.0072 0.0072 0.0075 - - -

The scenarios described by case '.�. and '.�. have been tested also adding a set of IM of

@2ℎ−C6. This could be the case of measurements coming from marker-based methods, which have

a relatively low latency time. The measurements are generated with a rate equal to the filter run

frequency. They are affected by a Gaussian noise having standard deviation equal to f0 + Δf, with

Δf uniformly distributed in the interval [−0.8f0, +0.8f0] and f0 = 4deg. The characteristics of

the simulated scenarios, named '�.�. and '�.�. are summarized in Table 5. Table 6 shows the

Table 5 Definition of the MC scenarios for the rotational dynamics with interim measurements

Attitude initialization error Target’s true initial rotation rate �C6 knowledge error Slow measurements noise Fast measurements noise

Case RI.C Δ\ ∈ [−20346, +20346] C6l8−C6 = [1 , 1 , 1 ])346/B Δ �C6 ∈ [−0.2�C688 , 0.2�C688 ]
f = f0 + Δf, f0 = 2346 f = f0 + Δf, f0 = 4346
Δf ∈ [−0.8f0, 0.8f0] Δf ∈ [−0.8f0, 0.8f0]

Case RI.D Δ\ ∈ [−20346, +20346] C6l8−C6 = [3 , 3 , 3 ])346/B Δ �C6 ∈ [−0.2�C688 , 0.2�C688 ]
f = f0 + Δf, f0 = 2346 f = f0 + Δf, f0 = 4346
Δf ∈ [−0.8f0, 0.8f0] Δf ∈ [−0.8f0, 0.8f0]

performance of FR and Larsen’s method. The root mean square of the averaged estimation errors of

each case can be directly compared to the values of the corresponding case in Table 4, taking into

account that the only difference is the presence of high frequency attitude measurements with higher

standard deviation. The performance of both methods is highly increased with respect to the cases
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Table 6 Performance of the rotational dynamics estimation with interim measurements

Case RI.C Case RI.D
f' f! f' f!

\ [346] 0.667 0.690 0.736 0.790
lG [346/B] 0.0077 0.0077 0.0137 0.0140
lH [346/B] 0.0101 0.0101 0.0200 0.0212
lI [346/B] 0.0113 0.0114 0.0281 0.0293

without IM since, within a delay interval, the state does not evolve in open loop but it continues

being corrected by the fast measurements. The steady-state performance of the FR method is only

slightly better than Larsen’s one, and it is only during the transient phase that FR method shows a

remarkably better performance. The performance of the filters in the transient phase can be observed

in Fig.1, which shows the first 200 seconds of a single-run in cases '.�, '�.� (Fig.1a), and '.�,

'�.� (Fig.1b), with the same filter state initialization (i.e., an error on Euler attitude angles of

[+20 346, −10 346, +15 346]) and the same uncertainty on the diagonal terms of target inertia

matrix (i.e., 20%). In the figures it can be noticed how the filters exploiting IM converge faster than
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Fig. 1 Transient phase estimation error in a single run

filters with only infrequent delayed measurements. FR method has performance comparable to

Larsen’s method in the cases without IM ('.� and '.�), but is more performing in the case with IM

('�.� and '�.�), showing much lower error overshoots and a comparable convergence time. This

degradation of Larsen’s method performance can be explained as follows: in the case without IM

Larsen’s method was optimal (i.e., to the extent that it was linearizing the propagation of the update);

in the case with IM Larsen’s method becomes sub-optimal also with respect to Kalman theory,
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since the correction term "∗ is computed using Kalman gains that do not take into account the

contribution of the delayed measurement. The angle error of the no-IM cases shows the peculiarity

of appearing piece-wise linear: this is due to the fact that the estimate evolves in open loop as long

as a new measurement arrives and only every #3 steps the state is corrected by the Kalman update.

C. Execution time and needed storage

Both Larsen’s and FR methods have almost the same latency time for the time steps in which

no delayed measurements arrive, while, at the arrival of a delayed measurement, FR method has

to completely recompute the estimate through the delay period. Another important aspect is the

amount of data that need to be stored for each method, with respect to a classical KF without delayed

measurements. Table 7 shows the amount of “double” to be stored within a delay period (from B to

B + #3) for each method, under the following hypothesis: #3 = 10 (i.e., the number of delay samples

of the delayed measurements), 5 = 10 Hz (i.e., the navigation filter run frequency), 5 /#3 = 1 Hz

(i.e., the frequency of the delayed measurements). <8=C is the size of the IM vector H: . Larsen’s

Table 7 Amount of double to be stored within a delay period by both estimation filters

Rotational Dynamics Translational Dynamics
Recalculation Larsen Recalculation Larsen

ĜB |B−1 7x1 7x1 6x1 6x1
%B |B−1 7x7 7x7 6x6 6x6
@8−2ℎ: 4x#3 4x1 (@8−2ℎB ) - -
H: <8=Cx#3 - <8=Cx#3 -
D: - - 3x#3 -
"∗
:

- 7x7 - 6x6
56+(4 +<8=C) #3 109 42+(3+<8=C)#3 78

method, due to the need of propagating through each time instant the matrix "∗, requires to allocate

a higher memory with respect to a classical KF, but the required space does not depend on the

number of the delay samples nor on the size of the IM vector. On the other side, the FR method,

which for small values of delay and small size of IM vector requires to store a lower amount of data,

rapidly increases its storage burden as #3 or <8=C increase. Figure 2 shows the required number of

double to be stored as a function of the number of delay samples #3 , for different values of <8=C . In

the case with no IM (<8=C = 0), FR requires a higher storage than Larsen’s methods for #3 > 13
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(rotational dynamics) and for #3 > 12 (translational dynamics). Therefore Larsen’s method needs

to store a rather high amount of data, which is almost comparable to the one needed by the FR

method for values of #3 ∼ 10 (which is reasonable value taking into account latency time of IP-CV

algorithms and the typical navigation filter run frequency). However, the main advantage of Larsen’s

method concerns the computational burden, which is equally distributed over every time step.
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Fig. 2 Amount of double to be stored as a function of the delay samples

V. Conclusion
The problem of incorporating delayed and multi-rate measurements in a navigation filter for

the estimation of the dynamics of a non-cooperative target has been assessed. A dynamic filter for

the estimation of full target rotational and translational state exploiting relative pose measurement

has been formalized. Two delay management techniques have been compared: Larsen’s method,

which provides a fast but sub-optimal solution, and Filter Recalculation method, which always

provides the optimal estimate but has a higher computational load. The Monte Carlo validation

campaign has shown that Larsen’s method performance is comparable to Filter Recalculation

method performance. The latter shows remarkably better performance only in the transient phase

of simulations exploiting interim measurements but at the expense of a higher computational and

storage need. When a delayed measurement arrives, Filter Recalculation method computational load

is multiplied by a factor equal to the number of delay samples, which might be incompatible with

the critical applications run by the on-board computer for this particular time step. This suggests

that, in applications where the on-board resources are limited, Larsen’s method is preferable since it

provides a faster estimation without any significant degradation of the steady-state performance.
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