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Convergence and Complexity Analysis of a Levenberg-Marquardt

Algorithm for Inverse Problems

E. Bergou ∗ Y. Diouane† V. Kungurtsev ‡

April 8, 2020

Abstract

The Levenberg-Marquardt algorithm is one of the most popular algorithms for finding
the solution of nonlinear least squares problems. Across different modified variations of the
basic procedure, the algorithm enjoys global convergence, a competitive worst case iteration
complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small
residual problems, under suitable assumptions. We introduce a novel Levenberg-Marquardt
method that matches, simultaneously, the state of the art in all of these convergence proper-
ties with a single seamless algorithm. Numerical experiments confirm the theoretical behavior
of our proposed algorithm.

Keywords: Inverse problems; Levenberg-Marquardt method; worst-case complexity bound; global and
local convergence.

1 Introduction

In this paper, we consider solving general nonlinear least squares problems where one may or
may not have a solution with a zero residual. Problems of this nature arise in several important
practical contexts, including inverse problems for ill-posed nonlinear continuous systems [1] with
applications such as data assimilation [2]. Usually the resulting least squares problems do not
necessarily have a zero residual at any point, although the minimum residual may be small.

Recall that the Gauss-Newton method is an iterative procedure for solving nonlinear least
squares problems by iteratively solving a linearized least squares subproblem. This subproblem
may not be well-posed in the case of rank deficiency of the residual Jacobian function. Further-
more, the Gauss-Newton method may not be globally convergent. The Levenberg-Marquardt
(LM) method [3, 4, 5] was developed to deal with the rank deficiency of the Jacobian matrix
and also to provide a globalization strategy for Gauss-Newton. In this paper, we will present
and analyze the global and local convergence results of a novel LM method for solving general
nonlinear least squares problems, that carefully balances the opposing objectives of ensuring
global convergence and stabilizing a fast local convergence regime.

∗MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (elhoucine.bergou@inra.fr).
†ISAE-SUPAERO, Université de Toulouse, 31055 Toulouse Cedex 4, France
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In general, the goals of encouraging global and local convergence compete against each other.
Namely, the regularization parameter appearing in the subproblem should be allowed to become
arbitrarily large in order to encourage global convergence, by ensuring the local accuracy of
the linearized subproblem, but the parameter must approach zero in order to function as a
stabilizing regularization that encourages fast local convergence. In the original presentation of
the LM method in [3, 4], the regularization parameter is not permitted to go to zero, and only
global convergence is considered.

The strongest results for local convergence of LM are given in a series of papers beginning
with [6] (followed by, e.g., [7] and [8]; see also [9]), wherein it is assumed that the residual function
is zero at the solution. For the global convergence, the algorithm considered is a two-phase one,
where quadratic decline in the residual is tested with each step that is otherwise globalized by
a line-search procedure.

In the case of nonzero residuals, it has been found that a LM method converges locally at
a linear rate, if the norm of the residual is sufficiently small and the regularization parameter
goes to zero [10]. Our proof of linear convergence is simpler than in [10]. Worst-case iteration
complexity bounds for LM methods applied to nonlinear least squares problems can be found
in [13, 14, 15]. We show that our proposed algorithm has a complexity bound that matches
these results, up to a logarithmic factor.

In this paper, we propose a method that successfully balances the multiple objectives in the-
oretical convergence properties, including (a) global convergence for exact and inexact solutions
of the subproblem, (b) worst case iteration complexity, and (c) local convergence for both zero
and nonzero residual problems. Table 1 summarizes the literature on this class of methods; our
proposed algorithm uniquely matches the state of the art in all of these properties.

Table 1: Convergence Properties of Levenberg-Marquardt Algorithms.
[3, 4, 5] [13, 14, 15] [6, 7, 9] [10] This work

Global convergence Yes Yes Two-phase or No Yes Yes

Complexity analysis No Yes No No Yes

Local zero residual No No Quadratic Superlinear Quadratic

Local nonzero No No No Linear Linear
small residual

The outline of this paper is as follows. In Section 2, we present the proposed LM algorithm
and address the inexact solution of the linearized least squares subproblem. Section 3 contains
a worst-case complexity and global convergence analysis of the proposed method. In Section
4, we derive the local convergence theory. In Section 5, preliminary numerical experiments are
presented to demonstrate the behavior of our algorithm. Finally, we conclude in Section 6.

2 A Novel Levenberg-Marquardt Algorithm

In this paper, we consider the following nonlinear least squares problem

min
x∈Rn

f(x) :=
1

2
‖F (x)‖2, (1)

where F : Rn → R
m is a (deterministic) vector-valued function, assumed twice continuously

differentiable. Here and in the rest of the text, ‖ · ‖ denotes the vector or matrix l2-norm. At
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each iteration j, the LM method computes (approximately) a step sj of the form −(J⊤
j Jj +

γjI)
−1J⊤

j Fj , corresponding to the unique solution of

min
s∈Rn

mj(s) :=
1

2
‖Fj + Jjs‖2 +

1

2
γj‖s‖2, (2)

where γj > 0 is an appropriately chosen regularization parameter, Fj := F (xj) and Jj := J(xj)
denotes the Jacobian of F at xj.

In deciding whether to accept a step sj generated by the subproblem (2), the LM method
can be seen as precursor of the trust-region method [12]. In fact, it seeks to determine when the
Gauss-Newton step is applicable or when it should be replaced by a slower but safer steepest
descent step. One considers the ratio ρj between the actual reduction f(xj)−f(xj+sj) attained
in the objective function and the reduction mj(0)−mj(sj) predicted by the model. Then, if ρj
is sufficiently greater than zero, the step is accepted and γj is possibly decreased. Otherwise the
step is rejected and γj is increased.

In this paper, we use the standard choice of the regularization parameter

γj := µj‖F (xj)‖2,

where µj is updated according to the ratio ρj . The considered LM algorithm using the above
update strategy, as described in Algorithm 1, will be shown to be globally convergent with a
complexity bound of order ǫ−2 and have strong local convergence properties.

Algorithm 1: A Levenberg-Marquardt algorithm.

Initialization
Choose the constants η ∈]0, 1[, µmin > 0 and λ > 1. Select x0 and µ0 ≥ µmin. Set
γ0 = µ0‖F (x0)‖2 and µ̄ = µ0.

For j = 0, 1, 2, . . .

1. Solve (or approximately solve) (2), and let sj denote such a solution.

2. Compute ρj :=
f(xj)−f(xj+sj)
mj(0)−mj (sj)

.

3. If ρj ≥ η, then set xj+1 = xj + sj and µj+1 ∈ [max{µmin, µ̄/λ}, µ̄] and µ̄ = µj .

Otherwise, set xj+1 = xj and µj+1 = λµj.

4. Compute γj+1 = µj+1‖F (xj+1)‖2.

This Algorithm has one particularly novel feature among LM methods: we have an auxiliary
parameter µ̄ which represents the last parameter corresponding to a successful step, introduced
to balance the requirements of global and local convergence. If the model is inaccurate, then
µj is driven higher, however, when we reach a region associated with the local convergence
regime, the residual ‖F (xj)‖ should ultimately dominate the behavior of γj for successful steps.
Step 1 of Algorithm 1 requires the approximate solution of subproblem (2). As in trust-region
methods, there are different techniques to approximate the solution of this subproblem that yield
a globally convergent step. For that it suffices to compute a step sj that provides a reduction
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in the model at least as good as the one produced by the so-called Cauchy step (defined as the
minimizer of the model along the negative gradient) which is given by

scj := − ‖∇f(xj)‖2
∇f(xj)⊤(J⊤

j Jj + γjI)∇f(xj)
∇f(xj).

The Cauchy step is cheap to calculate as it does not require any system solve. Moreover, the
LM method will be globally convergent if it uses a step that attains a reduction in the model as
good as a multiple of the Cauchy decrease. Thus we will impose the following assumption on
the step calculation:

Assumption 2.1 There exists θfcd > 0 such that for every iteration j:

mj(0)−mj(sj) ≥ θfcd
2

‖∇f(xj)‖2
‖Jj‖2 + γj

.

Despite providing a sufficient reduction in the model and being cheap to compute, the Cauchy
step is scaled steepest descent. In practice, a version of Algorithm 1 based solely on the Cauchy
step would suffer from the same drawbacks as the steepest descent algorithm on ill-conditioned
problems.

Since the Cauchy step is the first step of the conjugate gradient method (CG) when applied
to the minimization of the quadratic s → mj(s), it is natural to propose running CG further and
stopping only when the residual becomes sufficiently small. Since the CG generates iterates by
minimizing the quadratic model over nested Krylov subspaces, and the first subspace is the one
generated by∇f(xj) (see, e.g., [16, Theorem 5.2]), the decrease obtained at the first CG iteration
(i.e., by the Cauchy step) is at least attained by the remaining iterations. Thus Assumption 2.1
holds for all the iterates s

cg
j generated by the truncated-CG whenever it is initialized by the null

vector. The following lemma is similar to [17, Lemma 5.1] and will be useful for our worst-case
complexity analysis.

Lemma 2.1 For the three steps proposed (exact, Cauchy, and truncated-CG), one has that

‖sj‖ ≤ ‖∇f(xj)‖
γj

and |s⊤j (γjsj +∇f(xj))| ≤
‖Jj‖2‖∇f(xj)‖2

γ2j
.

In what comes next, we will call all iterations j for which ρj ≥ η successful, and we denote the
set of their indices by the symbol S, i.e., S := {j ∈ N| ρj ≥ η}.

3 Worst-Case Iteration Complexity and Global Convergence

We now establish a worst-case complexity bound of Algorithm 1. Namely, given a tolerance
ǫ ∈]0, 1[, we aim at deriving the number of iterations, in the worst case, needed to reach an
iterate xj such that

‖∇f(xj)‖ < ǫ or ‖F (xj)‖ < max {ǫ, (1 + ǫ)‖F (x̄j)‖} (3)

where x̄j ∈ argmin{x∈Rn:∇f(x)=0} ‖xj − x‖. Without loss of generality, we will assume that

‖F (x̄j)‖ is unique and independent from xj, we will denote it by f̄ . It can be seen that,
if we drop this assumption, then the same arguments in this section show asymptotic global
convergence. Then, f̄ :=

√

2f(x̄j) = ‖F (x̄j)‖ can just be taken to be the value at the limit
point of the sequence. We start now by giving some classical assumptions.
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Assumption 3.1 The function f is continuously differentiable in an open set containing L(x0) :=
{x ∈ R

n : f(x) ≤ f(x0)} with Lipschitz continuous gradient on L(x0) with the constant ν > 0.

Assumption 3.2 The Jacobian J of F is uniformly bounded, i.e., there exists κJ > 0 such that
‖J‖ ≤ κJ for all x.

We begin by obtaining a condition on the parameter µj that is sufficient for an iteration to be
successful. We omit the proof as it is standard, see for instance Lemma 5.2 in [17].

Lemma 3.1 Let Assumptions 2.1, 3.1, and 3.2 hold. Suppose that at the j-th iteration of
Algorithm 1, one has

µj >
κ

‖F (xj)‖2
(4)

where

κ :=
a+

√

a2 + 4aκ2J (1− η)

2(1− η)
and a :=

ν
2 + 2κ2J
θfcd

.

Then, the iteration is successful.

Our next result states that, when the gradient norm stays bounded away from zero, the param-

eter µj cannot grow indefinitely. Without loss of generality, we assume that ǫ ≤
√

λκ
µ0
, where κ

is the same as in the previous lemma.

Lemma 3.2 Under Assumptions 2.1, 3.1, and 3.2, let j be a given iteration index such that for
every l ≤ j it holds that ‖F (xl)‖ ≥ max

{

ǫ, (1 + ǫ)f̄
}

where ǫ ∈]0, 1[. Then, for every l ≤ j, one
also has

µl ≤ µmax :=
λκ

max
{

ǫ2, (1 + ǫ)2f̄2
} .

Proof. We prove this result by contradiction. Suppose that l ≥ 1 is the first index such
that

µl >
λκ

max
{

ǫ2, (1 + ǫ)2f̄2
} . (5)

By the updating rules on µl, either the iteration l − 1 is successful, in which case µl ≤ µl−1 ≤
λκ

max{ǫ2,(1+ǫ)2f̄2} which contradicts (5), or the iteration l − 1 is unsuccessful and thus

µl = λµl−1 ⇒ µl−1 =
µl

λ
>

κ

max
{

ǫ2, (1 + ǫ)2f̄2
} >

κ

‖F (xl)‖2
,

therefore using Lemma 3.1 this implies that the (l − 1)-th iteration is successful which leads to
a contradiction again.

Thanks to Lemma 3.2, we can now bound the number of successful iterations needed to

drive the gradient norm below a given threshold.

Proposition 3.1 Under Assumptions 2.1, 3.1, and 3.2. Let ǫ ∈]0, 1[ and jǫ be the first iteration
index such that (3) holds. Then, if Sǫ is the set of indexes of successful iterations prior to jǫ,
one has:

|Sǫ| ≤ Cǫ−2 with C :=
2
(

κ2J + µmax‖F (x0)‖2
)

ηθfcd
f(x0).
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Proof. For any j ∈ Sǫ, one has

f(xj)− f(xj+1) ≥ η (mj(0)−mj(sj)) ≥ η
θfcd
2

‖∇f(xj)‖2
κ2J + µj‖F (xj)‖2

.

Hence, using the fact that ‖∇f(xj)‖ ≥ ǫ, ‖F (xj)‖ ≤ ‖F (x0)‖ and µj ≤ µmax, we arrive at

f(xj)− f(xj+1) ≥ η
θfcd
2

ǫ2

κ2J + µmax‖F (x0)‖2
.

Consequently, by summing on all iteration indices within Sǫ, we obtain

f(x0)− 0 ≥
∑

j∈Sǫ

f(xj)− f(xj+1) ≥ |Sǫ|
ηθfcd

2
(

κ2J + µmax‖F (x0)‖2
)ǫ2,

hence the result.

Lemma 3.3 Under Assumptions 2.1, 3.1, and 3.2. Let Uǫ denote the set of unsuccessful itera-
tions of index less than or equal to jǫ. Then,

|Uǫ| ≤ logλ

(

κ

µminǫ2

)

|Sǫ|. (6)

Proof. Note that we necessarily have jǫ ∈ Sǫ (otherwise it would contradict the definition of jǫ).
Our objective is to bound the number of unsuccessful iterations between two successful ones.
Let thus {j0, . . . , jt = jǫ} be an ordering of Sǫ, and i ∈ {0, . . . , t− 1}.

Due to the updating formulas for µj on successful iterations, we have:

µji+1 ≥ max{µmin, µ̄/λ} ≥ µmin.

Moreover, we have ‖F (xji+1)‖ ≥ ǫ by assumption. By Lemma 3.1, for any unsuccessful iteration
j ∈ {ji + 1, . . . , ji+1 − 1}, we must have: µj ≤ κ

ǫ2
, since otherwise µj > κ

ǫ2
≥ κ

‖F (xj)‖2 and the

iteration would be successful.
Using the updating rules for µj on unsuccessful iterations, we obtain:

∀j = ji + 1, . . . , ji+1 − 1, µj = λj−ji−1µji+1 ≥ λj−ji−1µmin.

Therefore, the number of unsuccessful iterations between ji and ji+1, equal to ji+1 − ji − 1,
satisfies:

ji+1 − ji − 1 ≤ logλ

(

κ

µminǫ2

)

. (7)

By considering (7) for i = 0, . . . , t− 1, we arrive at

t−1
∑

i=0

(ji+1 − ji − 1) ≤ logλ

(

κ

µminǫ2

)

[|Sǫ| − 1] . (8)

What is left to bound is the number of possible unsuccessful iterations between the iteration of
index 0 and the first successful iteration j0. Since µ0 ≥ µmin, a similar reasoning as the one used
to obtain (7) leads to

j0 − 1 ≤ logλ

(

κ

µminǫ2

)

. (9)
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Putting (8) and (9) together yields the expected result.
By combining the results from Proposition 3.1 and Lemma 3.3, we thus get the following

complexity estimate.

Theorem 3.1 Under Assumptions 2.1, 3.1, and 3.2. Let ǫ ∈]0, 1[. Then, the first index jǫ for
which ‖∇f(xjǫ+1)‖ < ǫ or ‖F (xjǫ+1)‖ < max

{

ǫ, (1 + ǫ)f̄
}

, is bounded above by

C
(

1 + logλ

[

κ

µminǫ2

])

ǫ−2, (10)

where C is the constant defined in Proposition 3.1.

For the LM method proposed in this paper, we thus obtain an iteration complexity bound of
Õ
(

ǫ−2
)

, where the notation Õ(·) indicates the presence of logarithmic factors in ǫ. Note that
the evaluation complexity bounds are of the same order.

We note that by the definition of f̄ it holds that: ‖F (xj)‖ = f̄ implies that ∇f(xj) = 0.
Thus, by letting ǫ → 0, Theorem 3.1 implies that

lim inf
j→∞

‖∇f(xj)‖ = 0.

In order to derive the global convergence result, we need to extend this to a limit result.

Theorem 3.2 Under Assumptions 2.1, 3.1, and 3.2, the sequence {xj} generated by Algorithm
1 satisfies

lim
j→∞

‖∇f(xj)‖ = 0.

Proof. Consider the case that S, the set of successful iterations, is finite. Then ∃j0 such that
for all j ≥ j0, ‖∇f(xj)‖ = ‖∇f(xj0)‖ therefore from the previous theorem we conclude that in
this case

‖∇f(xj0)‖ = lim
j→∞

‖∇f(xj)‖ = lim inf
j→∞

‖∇f(xj)‖ = 0.

Alternatively, assume S is infinite and let ǫ > 0. Since (f(xj)) is monotonically decreasing

and bounded from below, one has limj→∞ f(xj) − f(xj+1) = 0. Since
ηθfcdǫ

2

2(κ2

J
+µ0‖F (x0)‖2) > 0, we

conclude, for j sufficiently large, that

0 ≤ f(xj)− f(xj+1) ≤
ηθfcdǫ

2

2(κ2J + µ0‖F (x0)‖2)
.

Thus, for a sufficiently large j, consider the case that j ∈ S, then ρj ≥ η and by rearranging the
terms and using Assumption 2.1 we conclude that

‖∇f(xj)‖ ≤
√

2(mj(0)−mj(sj))(κ2J + µ0‖F (x0)‖2)
θfcd

≤
√

2(κ2J + µ0‖F (x0)‖2) (f(xj)− f(xj+1))

ηθfcd
≤ ǫ.

If j /∈ S than ‖∇f(xj)‖ = ‖∇f(xĵ)‖ ≤ ǫ, where ĵ ∈ S is the last successful iteration before j.
Hence, it must hold that limj→∞ ‖∇f(xj)‖ = 0.
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4 Local Convergence

In this section, we prove local convergence for the Algorithm, showing a quadratic rate for zero
residual problems and explicit linear rate for nonzero residuals. Since the problem is generally
nonconvex and with possibly nonzero residuals, there can be multiple sets of stationary points
with varying objective values. We consider a particular subset with a constant value of the
objective.

Assumption 4.1 There exists a connected isolated set X∗ composed of stationary points to (1)
each with the same value f∗ of f(·) = 1

2‖F (·)‖2 and Algorithm 1 generates a sequence with an
accumulation point x∗ ∈ X∗.

We note, that under Assumption 4.1, the value ‖F (x̄)‖ is unique for all x̄ ∈ X∗ which may not
be the case for the residual vector F (x̄). Thus we define f̄ =

√

2f(x̄) = ‖F (x̄)‖ for x̄ ∈ X∗.
Henceforth, from the global convergence analysis, we can assume, without loss of generality, that
there exists a subsequence of iterates approaching this X∗. This subsequence does not need to be
unique, i.e., there may be more than one subsequence converging to separate connected sets of
stationary points. We shall see that eventually, one of these sets shall “catch” the subsequence
and result in direct convergence to the set of stationary points at a quadratic or linear rate,
depending on f̄ .

In the sequel, N(x, δ) denotes the closed ball with center x (a given vector) and radius δ > 0
and dist(x,X∗) denotes the distance between the vector x and the set X∗, i.e., dist(x,X∗) =
miny∈X∗ ‖x− y‖, and x̄ ∈ argminy∈X∗ ‖x− y‖.

Assumption 4.2 It holds that F (x) is twice continuously differentiable around x∗ ∈ X∗ with
x∗ satisfying Assumption 4.1. In particular this implies, that there exists δ1 > 0 such that for
all x, y ∈ N(x∗, δ1),

‖∇f(x)‖2 = ‖J(x)⊤F (x)− J(x̄)⊤F (x̄)‖2 ≤ L1‖x− x̄‖2, (11)

‖F (x) − F (y)‖ ≤ L2‖x− y‖, (12)

‖F (y) − F (x)− J(x)(y − x)‖ ≤ L3‖x− y‖2, (13)

where L1, L2, and L3 are positive constants.

From the triangle inequality and assuming (12), we get

‖F (x)‖ − ‖F (y)‖ ≤ ‖F (x) − F (y)‖ ≤ L2‖x− y‖. (14)

We introduce the following additional assumption.

Assumption 4.3 There exist a δ3 > 0 and M > 0 such that

∀x ∈ N(x∗, δ3), dist(x,X∗) ≤ M‖F (x) − F (x̄)‖.

As the function x → F (x)−F (x̄) is zero residual, the proposed error bound assumption can be
seen as a generalization of the zero residual case [6, 7, 8, 9]. Thus any ill-posed zero residual
problem, as considered in this line of work on quadratic local convergence for LM methods,
satisfies the assumptions. Our assumptions are also covered by a range of nonzero residual
problems, for instance, standard data assimilation problems [2] as given by Example 4.1.
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Example 4.1 Consider the following data assimilation problem F : Rn → R
m defined, for a

given x ∈ R
n, by F (x) =

(

(x− xb)
⊤, (H(x)− y)⊤

)⊤
, where xb ∈ R

n is a background vector,
y ∈ R

m−n the vector of observations and H : Rn → R
m−n is a smooth operator modeling the

observations. For such problems, the set of stationary points X∗ = {{x̄}} ⊂ R
n is a finite

disjoint set, F̄ = F (x̄) and dist(x,X∗) = ‖x− x̄‖ for x̄ closest to x. Clearly, one has

‖F (x)− F (x̄)‖2 = ‖x− x̄‖2 + ‖H(x)−H(x̄)‖2 ≥ ‖x− x̄‖2 = dist(x,X∗)2.

Thus, for these typical problems arising in data assimilation, Assumptions 4.2, 4.1 and 4.3 are
satisfied.

Example 4.2 Consider F : R3 → R
3 defined, for a given x ∈ R

3, by

F (x) = (exp(x1 − x2)− 1, x3 − 1, x3 + 1)⊤.

Clearly, F is Lipschitz smooth, hence Assumption 4.2 is satisfied. We note that for all x,
x̄ ∈ X∗ = {x ∈ R

3 : x1 = x2 and x3 = 0} satisfies F (x̄) = (0,−1, 1)⊤ and, for a given x, one

has dist(x,X∗) =
√

(x1−x2)2

2 + x23. Hence, for all x ∈ R
3 such that |x1 − x2| ≤ 1

2 , one concludes
that

‖F (x) − F (x̄)‖ =
√

(exp(x1 − x2)− 1)2 + 2x23 ≥ dist(x,X∗).

Thus, for this example, Assumptions 4.1 and 4.3 are also satisfied.

From the global convergence results, we have established that there is a subsequence of successful
iterations converging to the set of stationary points X∗. In this section, we begin by considering
the subsequence of iterations that succeed the successful iterations, i.e., we consider the subse-
quence K = {j + 1 : j ∈ S}. We shall present the results with a slight abuse of notation that
simplifies the presentation without sacrificing accuracy or generality: in particular every time
we denote a quantity aj, the index j corresponds to an element of this subsequence K denoted
above, thus when we say a particular statement holds eventually, this means that it holds for all
j ∈ S + 1 with j sufficiently large. Let µ̂ be an upper bound for µj, note that this exists by the
formulation of Algorithm 1. We shall denote also δ as δ = min(δ1, δ2, δ3), with {δi}i=1,2,3. In the
proof, we follow the structure of the local convergence proof in [6], with the addition that the
step is accepted by the globalization procedure. We use F̄j to denote F (x̄j). The first lemma is
similar to [6, Lemma 2.1].

Lemma 4.1 Suppose that Assumptions 4.1 and 4.2 are satisfied.
If xj ∈ N(x∗, δ2 ), then the solution sj to (2) satisfies

‖Jjsj + Fj‖ − f̄ ≤ C1 dist(xj ,X
∗)2,

where C1 is a positive constant independent of j.

Proof. Let us assume that f̄ > 0. Otherwise the proof is the same as in [6, Lemma 2.1].
Without loss of generality, since f(xj) is monotonically decreasing, we can consider that j is
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sufficiently large such that ‖Fj‖ ≤ 2f̄ . Hence, we get

‖Jjsj + Fj‖2 ≤ 2mj(x̄j − xj) = ‖Jj(x̄j − xj) + Fj‖2 + µj‖Fj‖2‖xj − x̄j‖2

≤
(

‖F̄j‖+ ‖Jj(x̄j − xj) + Fj − F̄j‖
)2

+ µj‖Fj‖2‖xj − x̄j‖2

≤
(

‖F̄j‖+ L3‖xj − x̄j‖2
)2

+ 4µj‖F̄j‖2‖xj − x̄j‖2

= L2
3‖xj − x̄j‖4 + 2‖F̄j‖(2µj‖F̄j‖+ L3)‖xj − x̄j‖2 + ‖F̄j‖2

≤
((

2µ̂f̄ + L3

)

‖xj − x̄j‖2 + f̄
)2

,

which concludes the proof.

Lemma 4.2 Suppose that Assumptions 4.1 and 4.2 are satisfied.
If xj ∈ N(x∗, δ2 ), then the solution sj to (2) satisfies

‖sj‖ ≤ C2 dist(xj ,X
∗), (15)

where C2 is a positive constant independent of j.

Proof. We assume that ‖F̄j‖ = f̄ > 0, otherwise the proof is the same as in [6, Lemma 2.1]. In
this case, using the fact that ‖Fj‖ ≥ f̄ and µj ≥ µmin, one has

‖sj‖ ≤ ‖∇f(xj)‖
γj

=
‖∇f(xj)‖
µj‖Fj‖2

≤
√
L1

µminf̄2
dist(xj,X

∗),

which concludes the proof.

Lemma 4.3 Suppose that Assumptions 4.1, 4.2 and 4.3 are satisfied. Consider the case where
f̄ = 0, then for j sufficiently large, one has ρj ≥ η.

Proof. In fact, for j sufficiently large, using Lemmas 4.1 and 4.2, one gets
2 (mj(0) −mj(sj)) = ‖Fj‖2 − ‖Fj + Jjsj‖2 − γj‖sj‖2
≥ (‖Fj‖+ ‖Fj + Jjsj‖)

(

1
M
‖xj − x̄j‖ − C1‖xj − x̄j‖2

)

− C2
2γj‖xj − x̄j‖2

≥ ‖Fj‖
(

1
M
‖xj − x̄j‖ − C1‖xj − x̄j‖2

)

− C2
2µj‖Fj‖2‖xj − x̄j‖2

≥ 1
M
‖xj − x̄j‖

(

1
M
‖xj − x̄j‖ − C1‖xj − x̄j‖2

)

− L2
2C

2
2 µ̂‖xj − x̄j‖4

= 1
M2‖xj − x̄j‖2 − C1

M
‖xj − x̄j‖3 − L2

2C
2
2 µ̂‖xj − x̄j‖4 > 0.

On the other hand, using the fact that ‖Jj‖ is bounded (by κJ > 0), Lemma 4.2 and (since
F̄j = 0) 1

M
‖x̄j − xj‖ ≤ ‖Fj‖ ≤ L2‖x̄j − xj‖, one gets

2 |f(xj + sj)−mj(sj)| =
∣

∣‖F (xj + sj)‖2 − ‖Fj + Jjsj‖2 − γj‖sj‖2
∣

∣

=
∣

∣(‖F (xj + sj)‖ − ‖Fj + Jjsj‖) (‖F (xj + sj)‖+ ‖Fj + Jjsj‖)− γj‖sj‖2
∣

∣

≤ L3‖sj‖2 (‖F (xj + sj)‖+ ‖Fj‖+ ‖Jj‖‖sj‖) + γj‖sj‖2
≤ L3‖sj‖2 (L2‖xj + sj − x̄j‖+ L2‖xj − x̄j‖+ ‖Jj‖‖sj‖) + γj‖sj‖2
≤ (C2L2 + 2L2 + C2κJ )C

2
2L3‖xj − x̄j‖3 + L2

2C
2
2 µ̂‖xj − x̄j‖4.

Hence, for j sufficiently large

|1− ρj | =

∣

∣

∣

∣

mj(0) − f(xj) + f(xj + sj)−mj(sj)

mj(0)−mj(sj)

∣

∣

∣

∣

≤ (C2L2 + 2L2 + C2κJ)C
2
2L3‖xj − x̄j‖+ L2

2C
2
2 µ̂‖xj − x̄j‖2

1
M2 − C1

M
‖xj − x̄j‖ − L2

2C
2
2 µ̂‖xj − x̄j‖2

.
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Thus, |1− ρj| → 0 as j goes to +∞.
For the nonzero residual case, we must consider a specific instance of the Algorithm. In

particular, we specify Step 3 of Algorithm 1 to be,

If ρj ≥ η, then set xj+1 = xj + sj, µj+1 = µ̄ and µ̄ = µj .

Note that this is still consistent with the presentation of the Algorithm.

Lemma 4.4 Suppose that Assumptions 4.1, 4.2 and 4.3 are satisfied. Consider that f̄ > 0,
then for j sufficiently large, one has ρj ≥ η.

Proof. Indeed, by the new updating mechanism, the parameter µ̄ is monotonically nondecreas-
ing. In particular, if there is an infinite set of unsuccessful steps, then µj → ∞. This implies
that for some j0 it holds that for j ≥ j0, µj > κ

f̄2
> κ

‖F (xj)‖2 , which together with Lemma 3.1

reach a contradiction. Thus, there is a finite number of unsuccessful steps, and every step is
accepted for j sufficiently large.

Proposition 4.1 Suppose that Assumptions 4.1, 4.2, and 4.3 are satisfied. Let xj , xj+1 ∈
N(x∗, δ/2). One has

(

1−
√
mL1M

2f̄
)

dist(xj+1,X
∗)2 ≤ C2

3 dist(xj ,X
∗)4 + Ĉ2

3 f̄ dist(xj,X
∗)2,

where C3 := M
√

C2
1 + 2L3C1C2

2 + L2
3C

4
2 and Ĉ3 := M

√

2C1 + 2L3C2
2 .

Proof. Indeed, using Assumption 4.3, Lemma 4.1, the fact that the step is accepted for j
sufficiently large, and f̄ = ‖F̄j+1‖, one has

‖xj+1 − x̄j+1‖2 ≤ M2‖F (xj + sj)− F̄j+1‖2
≤ M2

(

‖F (xj + sj)‖2 − 2F (xj + sj)
⊤F̄j+1 + f̄2

)

≤ M2
(

(

‖J(xj)sj + Fj‖+ L3‖sj‖2
)2 − 2F (xj + sj)

⊤F̄j+1 + f̄2
)

≤ M2
(

‖J(xj)sj + Fj‖2 + 2L3‖J(xj)sj + Fj‖‖sj‖2 + L2
3‖sj‖4

−2F (xj + sj)
⊤ F̄j+1 + f̄2

)

≤ M2
(

C2
1 ‖xj − x̄j‖4 + 2C1‖xj − x̄j‖2f̄ + f̄2 + 2L3C1‖xj − x̄j‖2‖sj‖2

+2L3f̄‖sj‖2 + L2
3‖sj‖4 − 2F (xj + sj)

⊤ F̄j+1 + f̄2
)

.

Therefore, using Lemma 4.2, one gets

‖xj+1 − x̄j+1‖2 ≤ C2
3‖xj − x̄j‖4 + Ĉ2

3 f̄‖xj − x̄j‖2 + 2M2|F (xj + sj)
⊤F̄j+1 − f̄2|, (16)

where C3 := M
√

C2
1 + 2L3C1C

2
2 + L2

3C
4
2 and Ĉ3 := M

√

2C1 + 2L3C
2
2 are positive constants.

Moreover, by applying Taylor expansion to x → F (x)⊤F̄j+1 at the point xj+1 = xj + sj around
x̄j+1, there exists R > 0 such that

|F⊤
j+1F̄j+1 − f̄2| ≤ |(J(x̄j+1)

⊤F̄j+1)
⊤
(xj+1 − x̄j+1)|+R‖xj+1 − x̄j+1‖2

= |∇f(x̄j+1)
⊤(xj+1 − x̄j+1)|+R‖xj+1 − x̄j+1‖2

= R‖xj+1 − x̄j+1‖2 by using x̄j+1 ∈ X∗.
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Note that the Hessian of x → F (x)⊤F̄j+1 is equal to
∑m

i=1 F̄ (xj+1)i∇2Fi(x), and from As-
sumption 4.2 we have ∇2Fi(x) are bounded. Hence, the constant R is bounded as follows

R ≤ L1

2

∑m
i=1 |(F̄j+1)i| ≤

√
mL1

2 ‖F̄j+1‖. Combining the obtained Taylor expansion and (16) gives

‖xj+1 − x̄j+1‖2 ≤ C2
3‖xj − x̄j‖4 + Ĉ2

3 f̄‖xj − x̄j‖2 +
√
mL1M

2f̄‖xj+1 − x̄j+1‖2,

which completes this proof.
In next lemma, we show that, once the iterates {xj}j lie sufficiently near their limit

point x∗, the sequence {dist(xj ,X∗)}j converges to zero quadratically if the problem has a zero
residual, or linearly when the residual is small.

Lemma 4.5 Suppose that Assumptions 4.1, 4.2, and 4.3 are satisfied. Let {xj}j be a sequence
generated by the proposed Algorithm. Suppose that both xj and xj+1 belong to N(x∗, δ/2). If the
problem has a zero residual, i.e., f̄ = 0, then

dist(xj+1,X
∗) ≤ C3 dist(xj,X

∗)2, (17)

where C3 is a constant defined according to Proposition 4.1.

Otherwise, if f̄ < min
{

1√
mL1M2 ,

1−C2

3
δ2

Ĉ2

3
+
√
mL1M2

}

, then

dist(xj+1,X
∗) ≤ C4 dist(xj ,X

∗), (18)

where C4 ∈]0, 1[ is a positive constant independent of j.

Proof. Indeed, under the zero residual case, i.e., f̄ = 0, then Proposition 4.1 is equivalent to
dist(xj+1,X

∗) ≤ C3 dist(xj,X
∗)2.

If the problem has a small residual, i.e., f̄ < min
{

1√
mL1M2

,
1−C2

3
δ2

Ĉ2

3
+
√
mL1M2

}

, then Proposition

4.1 will be equivalent to

dist(xj+1,X
∗)2 ≤ C2

3δ
2 + Ĉ2

3 f̄

1−√
mL1M2f̄

dist(xj,X
∗)2 = C2

4 dist(xj ,X
∗)2,

where C4 :=

√

C2

3
δ2+Ĉ2

3
f̄

1−√
mL1M2f̄

∈]0, 1[.
The final theorem is standard (see, e.g., [6, Lemma 2.3]).

Theorem 4.1 Suppose that Assumptions 4.1, 4.2, and 4.3 are satisfied. If f̄ = 0 then Algo-
rithm 1 converges locally quadratically to X∗. Otherwise, if the problem has a small nonzero
residual as in Lemma 4.5, Algorithm 1 converges locally at a linear rate to X∗.

5 Numerical Results

In this section, we report the results of some preliminary experiments performed to test the
practical behavior of Algorithm 1. All procedures were implemented in Matlab and run using
Matlab 2019a on a MacBook Pro 2,4 GHz Intel Core i5, 4 GB RAM; the machine precision is
ǫm ∼ 2 · 10−16.
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We will compare our proposed algorithm with the LM method proposed in [15]. In fact,
the latter algorithm can be seen to be similar to Algorithm 1 except that γj := µj‖∇f(xj)‖
where the parameter µj is updated in the following way. Given some constants c0 > 1, c1 =
c0(c0 + 1)−1 and 0 < η < η1 < η2 < 1, if the iteration is unsuccessful then µj is increased
(i.e., µj+1 := c0µj). Otherwise, if ‖∇f(xj)‖µj < η1 then µj+1 = c0µj, if ‖∇f(xj)‖µj > η2
then µj+1 = max{c1µj , µmin}, and µj is kept unchanged otherwise. The LM method proposed
in [15] was shown to be globally convergent with a favorable complexity bound but its local
behavior was not investigated. In our comparison, we will refer to the implementation of this
method as LM-(global), while Algorithm 1 will be referred to as LM-(global and local)

(since it theoretically guarantees both global and local convergence properties). Both algorithms
were written in Matlab and the subproblem was solved using the backslash operator. For the
LM-(global and local) method, two variants were tested. In the first one, named LM-(global

and local)-V1, we set the parameter µj+1 equal to max{µ̄/λ, µmin} if the iteration is declared
successful. In the second variant, named LM-(global and local)-V2, the parameter is set
µj+1 = µ̄ if the iteration j is successful. The initial parameters defining the implemented
algorithms were set as: η = 10−2, η1 = 0.1, η2 = 0.9, λ = c0 = 5, µ0 = 1 and µmin = 10−16. As
a set of problems P, we used the well known 33 Moré/Garbow/Hillstrom problems [20]. All the
tested problems are smooth and have a least-squares structure. The residual function F and
the Jacobian matrix for all the test problems [20] are implemented in Matlab. Some of these
problems have a nonzero value at the optimum and thus are consistent with the scope of the
paper. To obtain a larger test set, we created a set of additional 14 optimization problems by
varying the problem dimension n when this was possible. For all the tested problems, we used
the proposed starting points x0 given in the problems’ original presentation [20]. All algorithms
are stopped when ‖∇f(xj)‖ ≤ ǫ where ǫ is the regarded accuracy level. If they did not converge
within a maximum number of iterations jmax := 10000, then they were considered to have failed.

For our test comparison, we used the performance profiles proposed by Dolan and Moré [21]
over the set of problems P (of cardinality |P|). For a set of algorithms S, the performance profile
ρs(τ) of an algorithm s is defined as the fraction of problems where the performance ratio rp,s
is at most τ , ρs(τ) = 1

|P|size{p ∈ P : rp,s ≤ τ}. The performance ratio rp,s is in turn defined

by rp,s =
tp,s

min{tp,s:s∈S} , where tp,s > 0 measures the performance of the algorithm s when

solving problem p, seen here as the number of iterations. Better performance of the algorithm s,
relatively to the other algorithms on the set of problems, is indicated by higher values of ρs(τ).
In particular, efficiency is measured by ρs(1) (the fraction of problems for which algorithm s
performs the best) and robustness is measured by ρs(τ) for τ sufficiently large (the fraction of
problems solved by s). For a better visualization, we plot the performance profiles in a log2-scale.

We present the obtained performance profiles using two levels of accuracy in Figure 1. For
a level of accuracy of 10−3, LM-(global and local) variants present a better efficiency com-
pared to LM-(global) (in more than 60% of the tested problems LM-(global and local)-V1

performed best, and LM-(global and local)-V2 performed better on 40% while LM-(global)
was better on less than 30%). When it comes to robustness, all the solvers exhibit good per-
formance. Using a higher accuracy, the two variants of LM-(global and local) outperform
LM-(global). The LM-(global and local)-V1 variant shows the best performance both in
terms of efficiency and robustness.
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Figure 1: Obtained performance profiles considering the two levels of accuracy, 10−3 and 10−5.

In order to estimate the local convergence rate, we estimated the order of convergence by

EOC := log

( ‖∇f(xjf )‖
max{1, ‖∇f(x0)‖}

)

/ log

( ‖∇f(xjf−1)‖
max{1, ‖∇f(x0)‖}

)

,

where jf is the index of the final computed iterate. When EOC ≥ 1.8, the algorithm will be
said quadratically convergent. If 1.8 > EOC ≥ 1.1, then the algorithm will be seen as super-
linearly convergent. Otherwise, the algorithm is linearly convergent or worse. The estimation

Table 2: Order of convergence for problems in P with the accuracy level ǫ = 10−5.

P Method
Number of problems to converge

Linear or worse Superlinear Quadratic

zero LM-(global and local)-V1 2 8 18
residual LM-(global and local)-V2 4 9 15

LM-(global) 18 9 1

nonzero LM-(global and local)-V1 7 7 5
residual LM-(global and local)-V2 10 8 1

LM-(global) 12 5 2

of the order of convergence (see Table 2) shows the good local behavior of the LM-(global

and local) variants compared to LM-(global). In fact, LM-(global and local) variants
converged quadratically or superlinearly on 38 (v1) and 33 (v2) problems respectively, while
LM-(global) showed quadratic or superlinear convergence for only 17 problems.

6 Conclusions

In this paper, we presented and analyzed a novel LM method for solving nonlinear least-squares
problems. We were able to formulate a globally convergent LM method with strong worst-case
iteration complexity bounds. The proposed method is locally convergent at quadratic rate for
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zero residual problems and at a linear rate for small residuals. Preliminary numerical results
confirmed the theoretical behavior. Future research can include problems with constraints as
well as those with noisy data.
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