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Short communication

An alternative to diagonal loading for implementation of a white noise

array gain constrained robust beamformer

Olivier Besson

ISAE-SUPAERO, 10 Avenue Edouard Belin, Toulouse 31055, France

ABSTRACT

Diagonal loading is one of the most popular methods of robust adaptive beamforming, and the solution
to many different problems aimed at producing beamformers which are robust to finite samples effects
or/and steering vector errors. Among the latter, constraining the white noise array gain (WNAG) is a
meaningful approach. However, relating the loading level to the desired WNAG is not straightforward. In
this communication, using a generalized sidelobe canceler structure of the beamformer, we prove that
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the WNAG constraint can be encoded directly in the beamformer, and the latter can be obtained in a
rather simple way from a specific eigenvector and without going through the diagonal loading step.

1. Problem statement

For about forty years, driven by the practical need to cope with
uncertainties that unavoidably arise in any radar, sonar or com-
munication system, an uninterrupted thread of research about ro-
bust adaptive beamforming has given rise to a vast literature and
a myriad of techniques, with many different approaches proposed
[1-4]. Yet, one of the earliest proposed methods, namely diagonal
loading (DL) [5-8], still stands as a reference to which any newly
proposed method is systematically compared. The main reason for
such a preeminence is that 1)it performs very well and 2)diago-
nal loading emerges naturally as the solution to various and dif-
ferent optimization problems, all aimed at producing beamformers
robust to either finite samples effects or steering vector errors, or
both. Indeed, let us start with the minimum power distortionless
response (MPDR) beamformer which solves [1]

m“i’nw”ﬁw subject toway =1 (1)

where R=K-1YK | xxl! stands for the sample covariance matrix
computed from K independent snapshots ¥, € CN and aj is the as-
sumed signal of interest (SOI) steering vector. Assuming that K> N,
the solution to (2) is given by

ﬁ_lao
w = — (2)
MPDR al'R a,
while a diagonally loaded beamformer writes
~ -1
WDLZOl(R-l-,LLI) ap 3)
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where p stands for the loading level and « is some normalizing
factor. The weight vector in (3) is in fact the solution to many
problems. Indeed, with o = [a}l (R+ uIl)~'ag]~', it solves (under
the constraint that R + uI > 0)

min w"Rw + w|lw|? subject to w'ay =1 (4)

which can be interpreted as a regularization of (1). Similarly, in the
landmark paper by Cox et al. [9], DL is shown to be the solution
when one wants to constrain the white noise array gain (WNAG),
i.e., it is the solution to

min w"Rw subject to w'ay = 1 and [w|? < Ak (5)
where Ayn <N is the desired WNAG. In the same vein, the min-

imization problems (6)-(10) which are stated and solved respec-
tively in [10-14]

minw"Rw subject to min w'a > 1 (6)
w lla—aq || <€

min wRw subject to min Re(w'a) > 1 (7)
w la—aql|<e

max P subject to R — Paa" > 0 for |ja — a| < €? (8)
a

max P subject to R — Paa" > 0 for |[a —ay||* < €? and |a||* =N
a

(9)

min max w”(l?-i— A;)w subject to min w" (apaff + Ay)w > 1
w A=y Azl <e
(10)
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are all meant to produce beamformers which are robust to steering
vector errors and/or to finite samples errors in R. It turns out that
their solution can always be equivalently written as in (3) even if
the solution is not computed explicitly in this form. For instance,
in [10], the problem in (6) is recognized and formulated as a sec-
ond order cone program and the solution is computed accordingly
without resorting to computation of a loading level and a vector as
in (3). Similarly, the approach we propose below computes the so-
lution to (5) as (25), which is different from (3) but equivalent. In
contrast, the problems in (7)-(10) are solved using Lagrange multi-
pliers and the solution is indeed computed as in (3) where « and
o are calculated from the parameters of the problem, i.e., €, y.
Therefore, while different implementations could be used to obtain
the solutions to these optimization problems, the latter can always
be equivalently written as a diagonally loaded beamformer.

That being said, diagonal loading is not the unique possible way
to achieve robustness and many different approaches have been
proposed in the literature. One of them is based on producing a
better estimate of the SOI steering vector or/and a better estimate
of the interference plus noise covariance matrix, see [15-19] for
examples. Imposing additional constraints [20-25] or adopting a
Bayesian perspective [26,27] to take into account steering vector
errors also produces effective methods. This is usually achieved
at the price of more complicated optimization problems. Another
drawback of diagonal loading is the need to fix the loading level,
or equivalently to fix Awn, € or y in the beamformers (5)-(10).
Therefore, parameter-free beamformers are of interest [28] and a
number of papers have focused on finding automatically the op-
timal loading level, see e.g., [29,30]. In [29], ridge regression, also
referred to as Hoerl-Kannard-Baldwin (HKB) method [31], is advo-
cated. The idea is to adopt a generalized sidelobe canceler (GSC)
structure so that the unit-gain constraint on the SOI is automati-
cally fulfilled and one needs to solve a simple unconstrained least-
squares (LS) problem with respect to the weight vector of the aux-
iliary channels. This LS problem is regularized and various choices
of the regularizing parameter are proposed. Reference [30] con-
siders a generalized linear combination R = oI + BR and proposes
to estimate o and B from the data so as to minimize the mean-
square error of R.

In this communication, we still consider diagonal loading, or at
least a problem whose solution is diagonal loading. Now, while
the idea of automatic computation of the loading level is seduc-
ing, many engineers and practitioners may wish to have available
a parameter that they can tune according to the application they
consider, and their experience and knowledge about it. Consider-
ing the problems of (5)-(10), it seems to us that the WNAG con-
straint is the most physically appealing [9]. Indeed, WNAG can be
interpreted as the area under the array beampattern. Moreover,
we have an upper limit (N) for it and it makes sense to fix the
WNAG with respect to this upper limit, depending on the tradeoff
between mainbeam control and good sidelobe adaptation [32]. In
contrast, it may not be easy to have a good idea of € or y, that is of
the norm of the errors on either the steering vector or the sample
covariance matrix. Therefore, in the sequel, we consider the prob-
lem in (5). Unless ||[wyppg||? SA;\}N in which case wypppg is the
solution, the latter is of the form (3) with o = [a} (R + ul)~"'ao]~!
and where the WNAG is equal to Ayy [13]. However, solving

A~ -2
ai(R+ ul) “ag
[woL||? = Ayl < o ) =AzL (11)

R 1 2
[a’g (R+ pu) ao]

is not straightforward [12,13]. Indeed, this requires eigenvalue de-
composition of R followed by the search of the (hopefully) unique
solution to a scalar equation [12,13]. Our objective here is to pro-
vide an alternative approach that can produce the solution to (5)

Wepr

Tk £ [wepr — vBud)? z),

B YU

2 1 1

T AwN N

Y

Fig. 1. Generalized sidelobe canceler structure of the solution. The white noise ar-
ray gain is related to y through Awy = N/(1 + Ny2).

without resorting to the diagonally loaded form, see Eq. (25) for
an expression of this solution as a function of WNAG.

2. Deriving the white noise array gain constrained beamformer

The basic idea behind our approach is to use a GSC structure,
as illustrated in Fig. 1. Resorting to such a structure in order to de-
rive a quadratically constrained beamformer has already been ad-
vocated, see e.g., [33]. The solution to (5) can be written as

W, = Wcpr — Bw, (12)

where B € CN*(N-1) s 3 semi-unitary blocking matrix, i.e., BF'B =1,
B'ay =0, wepr = ap/(allag) and the output power can be mini-
mized in an unconstrained manner with respect to w,. Noting that
lwegr — Bwal| = |wegrl|* + [wal>. (5) is equivalent to

min [wegs — Bw, " R{wegs — Bw,] (13)
lwall <y
with 2 :Agv]N — N1, Let us rewrite wy = yu where u belongs to
the complex sphere, i.e., ||u]| <1. The interest of this approach is
that the weight vector wegr — yBu is written as a function of y,
which is directly related to the desired WNAG. Now, one can write

J(u) = [wcgr — v Bu]"R[wegr — v Bu]
= y?u"B"RBu — yu"B"Rwcgr — ywh.RBu + wi . Rwcg:
=u"Qu — vy — p"'u + wRweg (14)
with € = y2B"RB and 5 = y B Rwcg. It thus remains to solve

lm‘ir%u”ﬂu—u”n—n”u. (15)
We now examine the various options to solve the problem in (15).
The latter entails optimization over the complex unit sphere, a
type of problem for which theory is now well grounded [34]. In
fact, solving (15) can now be done conveniently with the help of
existing off the shelf toolboxes such as Manopt [35]. We used the
latter and checked that it provides the same solution as the diago-
nally loaded beamformer which satisfies the WNAG constraint (11).
However, a somewhat simpler route can be taken to solve (15).
First, note that if € is full-rank

Jay =[u-2'n]"Qu-Q ] - Q0. (16)
Therefore, if  is full-rank and |[®-'p| <1, then the solution

is u, = ~15. Note that ||Sl*1r]“2 <1 |lwypprll? <Ayl in this
case the MPDR beamformer satisfies the WNAG constraint without
diagonal loading.

Next, let us consider the alternative cases, namely when
is full-rank and ||SZ*177|| >1 or when € is rank-deficient. It is
known [36] that a solution u, (||lu.||<1) to the problem exists
if there exists A,>0 such that  + A, >0 and (2 + A Du, =7
For the two cases mentioned above, one necessarily has A, > 0.
Indeed, with a full-rank €2, if A, =0 then Qu, =5 implies that
llu. |l = || 15| > 1 which violates the inequality constraint. If
is rank-deficient, then A, =0= Qu, =5 = € R(R). The latter



condition would imply that ag € R(R) which happens with proba-
bility 0. Note also that with €2 rank-deficient and A, = 0 the matrix
Q@ + A is no longer positive-definite. Therefore, in these two lat-
ter cases, A, > 0. As already known, if this solution exists, then the
corresponding weight vector in (12) can be written in the form of
diagonal loading, as in (3). This can be easily checked:

w, =wegr — YB( + 1.0 'y
— Wegr — 72B(y2B"RB + A1) B*Rwig
= W(BF — B(BHIiB + y_z)\*l)_lBHRWCBF. (17)

Pre-mutiplying the previous equation by Bf (ﬁ-ﬁ- y~2A.d) and not-
ing that B"B =1, it ensues that
B'(R+ y210)w, = B"(R+ y 21 T)wcgr — B'Rwegr = 0. (18)

Therefore, since the orthogonal complement of B is spanned by
vector ay, we have

(ﬁ +y 2Ad)w, «cag
=w, o« (R+ y’z)»*l)flao
(R+ y*z)\,l)f]ao
=W, = N )
a!(R+y=201) a

(19)

which proves that w, = wcgr — yBu, is indeed a diagonally loaded
beamformer with y—21, as the loading level. Simply, it is written
in a different form.

Let us go back to solving (15) and let us write

] = 9" (@ + 212y
=nUA + 0D UMy [R=UAU"]
=Z(A+1D?z [z=U"7]

N-1
|z, |2

= ; ot =0, (20)

Ordering the eigenvalues in decreasing order A; > Ay > ... > An_1,
Q + A J > 0 implies that A, > —Ay_;. Moreover, it is easy to see
that f{A) is monotically decreasing over | — Ay_1,+oo[ and that
lim,\_)_m 1f()») =+o0 and lim,_, ., f(A) =0 so that there is a
unique solution A, €] — Ay_1, +oo[ to f(A) = 1. One could solve nu-
merically Eq. (20) and then compute u, = (2 + )\*I)’]n. This is es-
sentially what was proposed in [33] and it much resembles the ap-
proach of [12,13]. However, we now prove that u, can be obtained

directly, as a specific eigenvector of a certain matrix.
Let us rewrite 1 — f(X) as

gh) =1-zH(A+AD)’z
= det(I - zz" (A + AI) %)
= det(A + AI)~'det((A + AI) —zz" (A + A1) )

P (A + A1 I
=det(A + Al) det( 22H A+l ) 21)
B o (le+ar
= det(A + AI)"“det m Q1 Al )
—det(A + D 2det( | &, Il
=det(A + A _7777” alt .

Q

Therefore —A, is an eigenvalue of A = m . However, we

1
Q@
know that A, is the unique solution of f(A) =1 in | — An_1, +ool.
Therefore A, corresponds to the largest eigenvalue of —A or to the

opposite of the smallest eigenvalue of A. Let v, = [zl*] denote the

2%

corresponding eigenvector. Then, Av, = —A,v, implies that

Quy, + 13, = —A, V1, (22a)

v, + Quy, = —A,0;.. (22b)

It ensues that (2 + A.D)v,, = —(y''vy,)n. Now, we cannot have
vy, =0, otherwise Qv,, = —A,v,, and v,, would be an eigen-
vector of 2 associated with eigenvalue —A, < 0. Since € is posi-
tive semi-definite, this implies that v, = 0, which in turn implies
that Qv,, = —A,v;, and would also lead to vy, = 0 which is in con-
tradiction with the fact that v, is an eigenvector. Additionally, we
know that (2 + A.I)u, =y which necessarily implies that

u, = —"Zi*l . (23)

Therefore, we end up with a direct solution to (15), which is ob-
tained from the eigenvector of —A associated with its largest eigen-
value. It turns out that u, is unit-norm (as expected) since premul-
tiplying the second line of (22) by vi gives

H H H
viltﬂﬂ Vi, = _vl*ﬂvz* - )\'*v'l*vz*

= 7[&]}]* + A'rv‘l*]HVZ*

= V)1, (24)
which implies that |ju,|| = W =1.
To conclude, our WNAG-constrained GSC beamformer is thus
12
N — Awn
W, =Wepr— | ——— Bu, 25
CBF ( NAvwn ) (25)

where u, is obtained from the eigenvector of A associated with
its smallest eigenvalue. This beamformer guarantees a white noise
array gain equal to Awy while minimizing output power and en-
forcing a unit-gain in the SOI direction.

3. Conclusions

In this communication, we considered the problem of finding
a robust beamformer with given white noise array gain. We
proposed a solution different from diagonal loading. Using a
generalized sidelobe canceler structure, we show that the WNAG
constraint can be easily enforced and one is left with solving an
optimization problem on the complex sphere. We showed that the
solution to this problem is obtained as the eigenvector of a given
matrix. Although the new beamformer can be written in an equiv-
alent diagonal loading form, its implementation is significantly dif-
ferent and, moreover, the WNAG is directly encoded in the weight
vector without the need to go through the step of diagonal loading.

References

[1] H.L. Van Trees, Optimum Array Processing, John Wiley, New York, 2002.

[2] A.B. Gershman, Robustness Issues in Adaptive Beamforming and High-resolu-
tion Direction Finding, in: Y. Hua, A. Gershman, Q. Chen (Eds.), High Resolution
and Robust Signal Processing, Marcel Dekker, 2003, pp. 63-110.

[3] S.A. Vorobyov, Principles of minimum variance robust adaptive beamforming
design, Signal Process. 93 (12) (2013) 3264-3277. Special Issue on Advances in
Sensor Array Processing in Memory of Alex B. Gershman

[4] S.A. Vorobyov, Adaptive and Robust Beamforming, in: A.M. Zoubir, M. Viberg,
R. Chellappa, S. Theodoridis (Eds.), Academic Press Library in Signal Processing:
Volume 3, Elsevier, 2014, pp. 503-552.

[5] Y.I. Abramovich, Controlled method for adaptive optimization of filters using
the criterion of maximum SNR, Radio Engineering and Electronic Physics 26
(1981) 87-95.

[6] Y.I. Abramovich, A.Il. Nevrev, An analysis of effectiveness of adaptive maximiza-
tion of the signal to noise ratio which utilizes the inversion of the estimated
covariance matrix, Radio Eng. Electron. Phys. 26 (1981) 67-74.

[7] O.P. Cheremisin, Efficiency of adaptive algorithms with regularised sample co-
variance matrix, Radio Eng. Electron. Phys. 27 (10) (1982) 69-77.


http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0007

[8] B.D. Carlson, Covariance matrix estimation errors and diagonal loading in
adaptive arrays, IEEE Trans. Aerospace Electron. Syst. 24 (4) (1988) 397-401.

[9] H. Cox, RM. Zeskind, M.M. Owen, Robust adaptive beamforming, IEEE Trans.
Acoust. Speech Signal Process. 35 (10) (1987) 1365-1376.

[10] S.A. Vorobyov, A.B. Gershman, Z. Luo, Robust adaptive beamforming using
worst-case performance optimization: a solution to the signal mismatch prob-
lem, IEEE Trans. Signal Process. 51 (2) (2003) 313-324.

[11] R. Lorenz, S.P. Boyd, Robust minimum variance beamforming, IEEE Trans. Sig-
nal Process. 53 (5) (2005) 1684-1696.

[12] J. Li, P. Stoica, Z. Wang, On robust Capon beamforming and diagonal loading,
IEEE Trans. Signal Process. 51 (7) (2003) 1702-1715.

[13] J. Li, P. Stoica, Z. Wang, Doubly constrained robust Capon beamformer, IEEE
Trans. Signal Process. 52 (9) (2004) 2407-2423.

[14] S. Shahbazpanahi, A.B. Gershman, Z.-Q. Luo, KM. Wong, Robust adaptive
beamforming for general-rank signal models, IEEE Trans. Signal Process. 51 (9)
(2003) 2257-2269.

[15] D.D. Feldman, LJ. Griffiths, A projection approach for robust adaptive beam-
forming, IEEE Trans. Signal Process. 42 (4) (1994) 867-876.

[16] A. Khabbazibasmenj, S.A. Vorobyov, A. Hassanien, Robust adaptive beamform-
ing based on steering vector estimation with as little as possible prior infor-
mation, IEEE Trans. Signal Process. 60 (6) (2012) 2974-2987.

[17] Y. Gu, A. Leshem, Robust adaptive beamforming based on interference covari-
ance matrix reconstruction and steering vector estimation, IEEE Trans. Signal
Process. 60 (7) (2012) 3881-3885.

[18] L. Huang, J. Zhang, X. Xu, Z. Ye, Robust adaptive beamforming with a novel
interference-plus-noise covariance matrix reconstruction method, IEEE Trans.
Signal Process. 63 (7) (2015) 1643-1650.

[19] X. Yuan, L. Gan, Robust adaptive beamforming via a novel subspace method
for interference covariance matrix reconstruction, Signal Process. 130 (2017)
233-242.

[20] M.H. Er, A. Cantoni, An alternative formulation for an optimum beamformer
with robustness capability 132 (6) (1985) 447-460.

[21] K.-C. Huarng, C.-C. Yeh, Performance analysis of derivative constraint adap-
tive arrays with pointing errors, IEEE Trans. Antennas Propag. 40 (8) (1986)
975-981.

[22] C.Y. Chen, P.P. Vaidyanathan, Quadratically constrained beamforming robust
against direction-of-arrival mismatch, IEEE Trans. Signal Process. 55 (8) (2007)
4139-4150.

[23] Z.L. Yu, W. Ser, M.-H. Er, Z. Gu, Y. Li, Robust adaptive beamformers based on
worst-case optimization and constraints on magnitude response, IEEE Trans.
Signal Process. 57 (7) (2009) 2615-2628.

[24] A. Khabbazibasmenj, S.A. Vorobyov, Robust adaptive beamforming for gener-
al-rank signal model with positive semi-definite constraint via POTDC, IEEE
Trans. Signal Process. 61 (23) (2013) 6103-6117.

[25] M. Rubsamen, M. Pesavento, Maximally robust Capon beamformer, IEEE Trans.
Signal Process. 61 (8) (2013) 2030-2041.

[26] K.L. Bell, Y. Ephraim, H.L.V. Trees, A Bayesian approach to robust adaptive
beamforming, IEEE Trans.Signal Process. 48 (2) (2000) 386-398.

[27] O. Besson, S. Bidon, Robust adaptive beamforming using a Bayesian steering
vector error model, Signal Process. 93 (12) (2013) 3290-3299.

[28] L. Du, T. Yardibi, J. Li, P. Stoica, Review of user parameter-free robust adaptive
beamforming algorithms 19 (2009) 567-582.

[29] Y. Seln, R. Abrahamsson, P. Stoica, Automatic robust adaptive beamforming via
ridge regression, Signal Process. 88 (1) (2008) 33-49.

[30] L. Du, J. Li, P. Stoica, Fully automatic computation of diagonal loading levels
for robust adaptive beamforming, IEEE Trans. Aerospace Electron. Syst. 46 (1)
(2010) 449-458.

[31] AE. Hoerl, RW. Kannard, K.F. Baldwin, Ridge regression: some simulations,
Commun. Stat. 4 (2) (1975) 105-123.

[32] J. Ward, H. Cox, S. Kogon, A comparison of robust adaptive beamforming al-
gorithms, in: Proceedings 37th Asilomar Conference on Signals, Systems and
Computers, 2003, pp. 1340-1344. Pacific Grove, CA

[33] Z. Tian, K.L. Bell, HL.V. Trees, A recursive least squares implementation for
LCMP beamforming under quadratic constraint, IEEE Trans. Signal Process. 49
(6) (2001) 1138-1145.

[34] P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Mani-
folds, Princeton University Press, Princeton, NJ, 2008.

[35] N. Boumal, B. Mishra, P.-A. Absil, R. Sepulchre, Manopt, a Matlab toolbox for
optimization on manifolds, J. Mach. Learn. Res. 15 (2014) 1455-1459.

[36] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press,
Cambridge, UK, 2004.


http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30186-5/sbref0036

	An alternative to diagonal loading for implementation of a white noise array gain constrained robust beamformer
	1 Problem statement
	2 Deriving the white noise array gain constrained beamformer
	3 Conclusions
	 References




