-

-
brought to you by ., CORE

View metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is a Publisher’s version published in: http://oatao.univ-toulouse.fr/25696

To cite this version:

Cardesa, José 1.2 and Airiau, Christophe®= Sensitivity computations by
algorithmic differentiation of a high-order cfd code based on spectral
differences. (2020) In: Aerospace Europe conference 2020, 25 February 2020 -
28 February 2020 (Bordeaux,, France).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

https://core.ac.uk/display/323491042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/25696
http://www.idref.fr/243715013
http://www.idref.fr/061177199

... Aerospacekuro

* x
CED
*

=: GConference20

g(e)// -

BORDEAUX, FRANCE | 25 - 28 FEBRUARY 2820

PAPERID. 019

SENSITIVITY COMPUTATIONS BY ALGORITHMIC DIFFERENTIATION OF A
HIGH-ORDER CFD CODE BASED ON SPECTRAL DIFFERENCES

José |. Cardesal"), Christophe Airiau®®

™ IMFT, 2 Allée du Professeur Camille Soula, 31400 Toulouse, FRANCE, Email: jcardesa@imft.fr
@ IMFT, 2 Allée du Professeur Camille Soula, 31400 Toulouse, FRANCE, Email: christophe.airiau@imft.fr

KEYWORDS: computational fluid dynamics,
automatic differentiation, sensitivity analysis, flow
control, optimization.

ABSTRACT:

We compute flow sensitivities by differentiating a
high-order computational fluid dynamics code. Our
fully discrete approach relies on automatic
differentiation (AD) of the original source code. We
obtain two transformed codes by using the AD tool
Tapenade (INRIA), one for each differentiation
mode: tangent and adjoint. Both differentiated
codes are tested against each other by computing
sensitivities in an unsteady test case. The results
from both codes agree to within machine accuracy,
and compare well with those approximated by finite
differences. We compare execution times and
discuss the encountered technical difficulties due to
1) the code parallelism and 2) the memory overhead
caused by unsteady problems.

1. INTRODUCTION

Numerical codes in engineering and physical
sciences are most often used to approximate the
solution of governing equations on discretized
domains. A natural step beyond obtaining solutions
in specific conditions is to seek those conditions that
modify the solution towards a specific goal, either
for optimization or control purposes. In this context,
gradient-based methods play an important role.
They require invariably the computation of
derivatives, a task that can be automated by
Automatic Differentiation (AD) tools. In short, AD
augments outputs Y; from inputs X; into a
“differentiated” code that additionally computes
some derivatives dY;/dX; requested by the user. AD
provides two main modes, the
tangent/direct/forward mode and the
adjoint/reverse/backward mode. If 1<i<p and
1 <j <q bound the size of the output and input
spaces, respectively, then the tangent mode is most
efficient when g « p while the adjoint mode is the
only realistic option for p < gq.

Two features of high-performance codes used in
industry and academia complicate the process of

computing derivatives with AD: parallel
communications and unsteady computations. The
tangent mode of AD can deal with these features
quite easily, while the adjoint mode of AD is affected
by these features as it is based on reversal of the
data-flow of the primal code [12]. Unfortunately,
many real-life applications require computing
derivatives of relatively few outputs (cost functions,
constraints...) with respect to many inputs (state
variables, design parameters, mesh coordinates...).
Tangent AD is out of question in such cases since
p < q. As long as the adjoint mode provided by AD
tools did not address these serious limitations, most
studies [1-3] circumvented them by using the
following strategies:

e Applying AD on selected parts of the code
without MPI calls and manually assembling
the differentiated routines to obtain a
correct adjoint code

o Restricting the use of AD to code solving
problems that are either stationary of forced
to become stationary. As an exception,
earth sciences have long used adjoints of
unsteady simulations [4-5], pioneering the
so-called checkpointing schemes that we
advocate here.

In this talk, we report on the outcome of exploiting
the recently acquired maturity of AD tools [6] at
differentiating parallel code in adjoint mode by
automatic inversion of the MPI communication layer
[71 while handling the cost of an unsteady
computation.

2. SOFTWARE USED

We now provide details related to the flow solver
and the AD tools used in our study.

2.1. Flow solver

The code under consideration in the present study
— hereafter the primal code — is a computational fluid
dynamics (CFD) solver that integrates the
governing equations for compressible fluid flow. It
belongs to a recent trend of CFD codes that use a
high-order spatial discretization adapted to

... Aerospacekuro

= Conference20

g(e)// -

BORDEAUX, FRANCE | 25 - 28 FEBRUARY 2820

compressible/incompressible flow computations on
complex geometries modeled by unstructured
meshes. This makes them suitable candidates to
become industrial tools in the near future [8]. Our
application code is Jaguar [9-10], a solver for
aerodynamics applications developed to suit the
future needs of the aerospace industry. The code is
written following features from the Fortran 90
standard onward, with a zero-halo partitioning
scheme and MPI-based parallelization.

2.2. AD tool

AD can be based on two working principles:
operator overloading (OO) or source transformation
(ST). The OO approach barely modifies the primal
code: the data-type of numeric variables is simply
modified to contain their derivative in addition to
their primal value, while arithmetic operations are
overloaded to act on both components of the
variables. While the debate is still active, it is
generally agreed that ST AD tools require a much
heavier development, which is in general paid back
by a better efficiency of the differentiated code
mostly in terms of memory consumption.
Benchmark tests have pointed out a tendency for
OO-differentiated codes to be more memory
demanding and somewhat slower than their ST
counterparts [2]. On the other hand, the higher
flexibility of the OO model makes it almost readily
applicable to languages with sophisticated
constructs, such as C++ or Python, for which no ST
tool exists to date. For a given application, the
choice between AD tools based on ST or OO is
dictated by these constraints: with Jaguar being
written in Fortran, ST appears to be the natural
choice. Moreover, for the size and number of time
steps of our targeted applications, it is essential to
master the memory footprint of the final adjoint
code. For this study, we have selected the ST-
based AD tool Tapenade [11], developed by INRIA.

2.3. AD of very long time-stepping sequences

The adjoint mode of AD leads to a code which
executes the differentiated instructions in the
reverse order of the primal code. However, these
differentiated instructions (the “backward sweep”)
use partial derivatives based on the values of the
variables from the primal code. The primal code, or
something close to it, must therefore be executed
beforehand, forming the “forward sweep”. As codes
generally overwrite variables, a mechanism is
needed to recover values overwritten during the
forward sweep, as they are needed during the
backward sweep. Recovering intermediate values
can be done either by recomputing them at need,
from some stored state, or by storing them on a
stack during the forward sweep and retrieving them
during the backward sweep. Neither option scales
well on large codes, either with a memory use that

grows linearly with the primal code run time, or with
an execution time that grows quadratically with the
primal code run time. We envision applications with
10° to 10° time steps to integrate the fluid flow
equations. The classical answer to this problem is a
memory-recomputation trade off known as
“checkpointing” [12]. A well-chosen checkpointing
strategy can lead to execution time and memory
consumption of the adjoint code that grow only
logarithmically with the primal code run time.

A checkpointing strategy is constrained by the
structure of the primal code. Checkpointing
amounts to designating (nested) portions of the
code, for which we are ready to pay duplicate
execution to gain memory storage of its
intermediate computations. These portions must
have a single-entry point and a single exit point, for
instance procedure calls or code parts that could be
written as procedures. For this reason, one cannot
in practice implement the theoretical optimal
checkpointing scheme, which is defined only on a
fixed-length linear sequence of elementary
operations of similar cost and nature. A
checkpointing scheme on a real code can still
achieve a logarithmic behavior, but in general below
the theoretical optimal. Moreover, since
checkpointed portions are supposed to be executed
twice or more, they must be “reentrant”; it must be
possible to re-create the exact machine state at their
entry point, and running them twice must not alter
the rest of the execution. As a consequence, a
checkpointed portion of code must always contain
both ends of an MPI communication, and similarly
both halves of a non-blocking MPI communication
[13].

Time-stepping simulations are more fortunate: at
the granularity of time steps, the code is indeed a
fixed-length sequence of elementary operations of
similar cost and nature. The binomial checkpointing
scheme [14] exactly implements the optimal
strategy in that case, and Tapenade applies it when
requested. A checkpointing strategy is also
constrained by the characteristics of the storage
system. The binomial strategy assumes a uniform
and negligible cost for storing and retrieving the
memory state before checkpoints (“snapshots”).
This is in reality never the case. New research [15]
looks for checkpointing strategies that take this
memory cost into account, as well as different
access times for different memory levels.

In general, few studies confront unsteady problems
directly, and most works reported in the literature
focus on problems around a fixed-point solution.
Convergence towards that fixed steady state is
often enforced by means of implicit iterative
schemes with preconditioning. Few iterations are
necessary, and only the final converged state

* x
RDEAUX, FRANCE | 25 - 2

requires storage before computing the inverted set
of instructions. Consequently, memory and
computational overhead are kept low. It is
unfortunate, however, that many problems of
industrial relevance are inherently unsteady. In
acoustics and combustion, for instance,
unsteadiness simply cannot be ignored, which is
what motivates the present study.

2.4. Parallel communications

An additional challenge arises when the code to be
inverted by the AD tool contains message-passing
instructions, which also need to be invoked in
inverted order. Much conceptual work has been
devoted to AD of MPI code [16-20]. However, it is
with the recent advent of the Adjoinable MPI library
[7] that several AD tools (Adol-C, Rapsodia, dco,
OpenAD, Tapenade) support AD of code containing
MPI calls. Related projects include the Adjoint MPI
library [18,20,21] compatible with the dco suite of
AD tools, and CoDiPack [22] for C++ code - both
based on OO. The automatic inversion of MPI calls
necessary to derive a parallel adjoint code can thus
be performed by three tools. In [21], the CFD code
OpenFOAM was adjointed with the combination of
dco/c++ and Adjoint MPI. CoDiPack was used to
adjoint the CFD code SU2 [23]. To our knowledge,
these are the most similar studies to ours in terms
of letting the AD tool handle the parallel
communication layer automatically - yet without
solving a time-dependent problem.

Avoiding MPI idioms in code fed to an AD tool is an
attractive choice. Individually differentiated routines
can be manually assembled into an adjoint code
that preserves the often heavily optimized parallel
communications layer of the primal code. A
disadvantage of this approach is the increased
workload incurred every time a different problem is
tackled, where the optimization concerns different
quantities from those previously considered. A
certain degree of freedom in choosing the cost
function and automation in assembling
differentiated procedures has been achieved in [1].
Alternatively, [24] has presented the transposed
forward-mode algorithmic differentiation to take
advantage of those code portions featuring
symmetric properties in order to obtain adjointed
code using the forward-mode AD. Either way,
handling MPI calls differently from the rest of the
code contradicts the ultimate goal of AD, which is
full automation of the differentiation process
regardless of the programming features actually
used in the primal code. It is true, however, that
each specific library that involves side-effects raises
new issues, limitations, and challenges that cannot
be readily solved by AD tools. Given the efforts that
have been devoted towards making MPI calls
compatible with AD tools [16-20], we aim to test and

... Aerospacekuro

=+ Conference20

g(e)//_

AP

EBRUARY 2020 “ans

document the outcome of letting the AD tool handle
them alone. In this respect, our work intends to
provide a proof of concept illustrating that the route
followed, which on the whole has been avoided in
the literature, is in fact practicable.

3. TEST CASE

We consider a viscous, two-dimensional
incompressible flow in a square periodic domain
spanning L =1 in the streamwise (x) and vertical
(y) directions. The velocity field at the initial instant
t, is given by

u = Utanh[r(y — 1/4)], y<1/2 (@)
u = Utanh[r(3/4 — y)], y>1/2 (2)
v = U§sin[2n(x + 1/4)], (3)

where all quantities are made non-dimensional with
L and the streamwise reference velocity U, = 1 as
follows:

t=1tU,/L, y=9/L, x =%/L, U=1U/U,, r = L. (4)

The parameters of the problem are U, r and §.
These are the streamwise velocity amplitude, the
shear parameter and the ratio of vertical to
streamwise velocity amplitudes, respectively. We
set § = 0.05 for the remainder of the study so that is
is no longer a free parameter. We analyse the
evolution of the overall enstrophy (), defined as

1,1
Q= [[y 0?dxdy, (5)

where w, = d,v—ad,u is the vorticity. It can be
readily shown from Egs. 1-3 and Eq. 5 that at ¢t = ¢,,

Q=U? [6r tanh G) — 2r tanh3 G) + 3627'[2] /3 (6)

and we choose r = 40 with U = 1 to yield an initial
enstrophy level Q,.r =53.36 which we set as a
constraint for all r. This implies U is a function of r
only, determined by re-arranging Eq. 6 as follows:

U(r) = [BQref/(6r tanh(r/4) — 2r tanh3(r/4) +
1/2

3862m2)] ", (7)

The Reynolds number is Rey, = UyL/v = 1.176 X
10* We show the spatial distribution of w, at four
different instants obtained with r = 160 on Fig. 1.
The dependence of Q on time and r is clear from
Fig. 2.

Aerospacekuro

‘=: Conference20

= 0.5 0

\\/

= 0.5

= 0.5

. N
/‘@/ .

0 0.5 1
T

Figure 1 Spatial distribution of out-of-plane vorticity

w,/\|Qyes at instants t,/Q,,, = {0,7,10,23} from top
to bottom, with r = 160.

cusl
e 4

——r=40, 384x384, MatSPE 5
r=80, 384x384, MatSPE
r=160, 384x384, MatSPE H
X r=40, 72x72, p=4, JAGUAR
r=80, 72x72, p=4, JAGUAR
X r=160, 72x72, p=4, JAGUAR

0 5 10 15 20 25 30 35
N

Figure 2 Time dependence of () at three different
values of shear parameter r. Results obtained with
codes Jaguar and MatSPE. The legend includes the
number of Fourier modes used in each direction for
the MatSPE simulation (of which 1/3 are zero-
padded for dealiasing), while the JAGUAR data
includes parameter p which is the selected order of
the spatial discretization of the spectral difference
scheme. The grid used in the JAGUAR simulation is
a 72 x 72 structured mesh which, together with the
setting p = 4, yields 360 degrees of freedom (DoF)
per spatial direction. So we are effectively
comparing 2562 DoF with MatSPE against 360°
DoF with JAGUAR.

The incompressible 2D Navier-Stokes equations
are solved with the initial and boundary conditions
outlined above using JAGUAR on a structured
mesh with 72 X 72 square elements. The Mach
number is set to zero to approach, as much as
possible, incompressibility. The solution and flux
points are located following Gauss-Lobatto-
Chebyshev and Legendre collocation, respectively,
and the CFL is kept constant at 0.5. The fluxes at
the cell faces are computed with the Roe scheme.
The temporal integration is done with a six-stage,
fourth-order low-dissipation low-dispersion Runge-
Kutta scheme optimized for the spectral difference
code using the procedure in [25]. We use an in-
house, fully spectral code (MatSPE) designed for
periodic incompressible viscous flows to solve the
same test case and validate Jaguar. The output of
the two codes is compared on Fig. 2, showing that
the agreement between the codes is extremely
good.

We define the following cost function

J = [o) dt. (8)

Its derivative with respect to r will be the target
sensitivity we compute by means of AD. From a
physical point of view, Q(t) is directly proportional to
the rate of kinetic energy dissipation in the flow due

... Aerospacekuro

* x
CED
*

=: GConference20

g(e)// -

BORDEAUX, FRANCE | 25 - 28 FEBRUARY 2820

to the action of viscosity. Hence, the area under a
curve of Q(t) on Fig. 2 for a given time interval is a
proxy for the kinetic energy dissipated by the flow
during that time. It may be argued that since our
numerical experiments only target dj/dr, it is
pointless to use adjoint-mode AD because r is a
scalar. One must bear in mind, however, that the
final application of our study is to compute
sensitivities of some J with respect to many inputs.
Restricting the number of inputs to one in the sequel
is only a convenient way to validate our proposed
work flow and the AD derivatives, as well as to
compare and study performance.

The computation of J in the primal code is carried
out by adding a contribution to the time integral at
each new time step in a running sum fashion, using
a simple trapezoidal rule. Such a framework is
convenient to illustrate the fundamental issue of
adjoint-mode AD that we already described in
section 2.3. The tangent-differentiated code
accumulates contributions of each time step to
dj/dr, along with the primal time-stepping
sequence, i.e. in the same order. This is
conceptually simple: once we reach the iteration
corresponding to t = T (which we will call iteration
number N), both J and dj/dr are known and the
program can end. In contrast, the adjoint-
differentiated code will first run an initial forward
sweep that will integrate the Navier-Stokes
equations from t = 0 to the iteration N of the time-
stepping loop, chiefly to generate the final state of
the program variables. Only then can the backward
sweep of the adjoint code start to accumulate
derivatives, computing the sensitivity of J with
respect to the state variables at iteration N — 1, and
carry on stepping back in time to finally obtain dj/dr
when t=0 is reached. In order to provide
intermediate values from the forward sweep to the
backward sweep in the correct order (i.e. reversed),
a combination of stack storage and additional
forward recomputation is needed, making a good
checkpointing scheme essential. The
recomputations and stack use will inevitably imply
that one run of the adjoint code requires significantly
more memory and execution time than the tangent
code. We thus expect the tangent code to still
outperform the adjoint code when p = q or when g
is only a few times larger than p, but the adjoint code
will definitely outperform the tangent code when
p < g, which is the case in many applications.

4. SENSITIVITY VALIDATIONS WITH FINITE
DIFFERENCES

The estimates of a given sensitivity computed with
tangent- or adjoint-mode AD codes should agree
almost to machine precision, as they result from the
same computation modulo associativity-
commutativity. In contrast, the reference value

against which to validate the sensitivity is obviously
a finite-difference (FD) estimate, which is subject to
errors due to the contribution of higher derivatives.
For the viscous test case, we compute our FD
estimates with two independent realizations at r and
r +dr, where dr/r =10">. We thus expect an
agreement between FD and AD derivatives up to
more or less half of the decimals, whereas we
expect a much better agreement between tangent
AD and adjoint AD derivatives.

5. DIFFERENTIATION WORK FLOW

We adopted the following work flow with regards to
the Jaguar flow solver, the working principles of
Tapenade and the Adjoinable MPI library:

A. ldentify the part of the code that computes
the function to differentiate, exactly from the
differentiation input variables to the
differentiation output, and make it appear
as a procedure (the “head” procedure). This
may require a bit of code refactoring. The
differentiation tool must be given (at least)
this root procedure and the call tree below
it.

B. Migrate all MPI calls to Adjoinable MPI,
whether AD will be applied in tangent or in
adjoint mode. This involves two steps. First,
as Adjoinable MPI does not support all MPI
communication styles (e.g. one-sided), the
code must be transformed to only use the
supported styles, which is a reasonably
large subset. Second, effectively translate
the MPI constructs into their Adjoinable MPI
equivalent, which occasionally requires
minor modifications to the call arguments.
As Adjoinable MPI is just a wrapper around
MPI, the resulting code should still compile
and run, and it is wise to test that.

C. Provide the AD tool with the source of the
head procedure and of all the procedures
that it may recursively call, together with the
specification of the differentiation input and
output variables. Then differentiate, after
which two steps follow. First, fix all issues
signaled by the AD tool, e.g. unknown
external procedures or additional info
needed, and validate the differentiated
code. Second, address performance issues
and in particular optimize the checkpointing
strategy by adding AD-related directives to
the source. This may also involve special
treatment of linear algebra procedures such
as solvers.

... Aerospacekuro

= Conference20

g(e)// -

BORDEAUX, FRANCE | 25 - 28 FEBRUARY 2820

6. RESULTS

The temporal integration of the equations of motion
is carried out from t = 0 to the n — th iteration of the
time integration loop in Jaguar, with n = 6.8 x 10°.
With the CFL setting outlined in section 3, this
number of time steps corresponds to t,/Q,., = 19.8,
which from Fig. 1 can be seen as the time when the
decay of Q) becomes slow for all three values of r.
The value of dJ/dr is given in Tab. 1, where the
results from FD, tangent-mode AD and adjoint-
mode AD are all gathered. The agreement between
FD-based sensitivities and AD validates the
differentiation procedure.

Table 1 dj/dr computed with three different
methods, for the time integration interval between
t=0andt=T (6.8 x 10°time steps). Viscous test
case with r = 160, run with 16 parallel processes.

Differentiation method | Sensitivity dJ /dr
FD (MPI) -0.22002254
Tangent AD (AMPI) -0.22002394265381
Adjoint AD (AMPI) -0.22002394265861

The agreement between the two AD-based
sensitivities is excellent, within round-off error of
double precision arithmetic. It was expected in case
of correct differentiation by Tapenade, but
nevertheless it is puzzling when comparing the
drastic differences between the two differentiated
codes. The fact that the adjoint-differentiated code
outputs the correct answer after carrying out the
time-stepping loop backwards confirms the absence
of any stability or convergence issues related to
inverting the instructions of a code that integrates in
time a reversible and dissipative system. More
specifically, there is no issue of numerical instability
caused by a term with negative diffusivity.

The time required for the various computations is
shown on Tab. 2. A factor of two is indicated for the
FD computation, given that two runs of the primal
code are required. The computations are run on 16
Intel(R) Xeon(R) Gold 6140 processors at 2.30GHz.
The Intel Fortran compiler version 18.0.2 is used,
with identical optimization flags for all codes:
-XCORE-AVX2 -ipo -O3 -gopt-malloc-options=3. It
appears that the tangent-mode AD can be faster
than two runs of the primal code, requiring 1.7 times
the execution time of the primal code. The higher
accuracy of sensitivity computations from tangent-
mode AD thus comes with the added benefit of a
faster computation than that of FD. Furthermore,
each additional cost function differentiated with
respect to r will require an additional FD
computation, whereas the cost of each new
sensitivity with respect to r will keep the cost of the
tangent-mode execution constant. We note in
passing that the FD computation is based on the

MPI code before the modifications of step B.
outlined in section 5, so that the tangent-mode AD
is faster than the FD computations despite the move
from MPI to Adjoinable MPI. This indicates that the
cost of this additional wrapper on top of the MPI
library is negligible.

Table 2 Same as Tab. 1, but showing execution
times normalized by the primal code execution time.

Differentiation method | Normalized run time
FD (MPI) 1 (x2)
Tangent AD (AMPI) 1.7

Adjoint AD (AMPI) 15.4

Tab. 2 also shows the slowdown factor of the adjoint
code, which is 15.4 and deserves some discussion.
An initial experiment without any specific
checkpointing scheme simply ran out of memory
after only less than a hundred timestepping
iterations. Therefore, binomial checkpointing is
unavoidable. It accounts for a significant part of this
adjoint slowdown: since we chose to allow for 80
snapshots for binomial reversal of 6.8 x 10> time
steps, the binomial model tells us this costs an
average 3.9 extra recomputations per time step.
This leaves us with roughly an 11-fold slowdown to
account for, which is still higher than expected.
There is certainly still room for improvement of our
current checkpointing scheme. We still have to
investigate the impact of the very deep call tree
inside each time step, or the possibility to improve
the time to write and read memory snapshots. Both
the tangent and the adjoint codes produced by
Tapenade received no further optimization other
than compilation options. Nevertheless, with their
present performance, the adjoint code is already
preferable to the tangent code as soon as the
number of input variables, with respect to which we
request sensitivities, goes over 15.

7. CONCLUSIONS AND FUTURE WORK

A CFD code with a high-order spatial discretization
based on spectral differences and an optimized
parallel communications layer has been
automatically differentiated by letting the AD tools
(Tapenade and Adjoinable MPI) handle the
communications layer in an automated way. In
adjoint mode, the inversion of the communications
during the backward sweep was found to produce
correct code which could execute in 15 times the
primal code execution time. The computational
overhead is to a large extent the consequence of
having to resort to binomial checkpointing to trade
storage for computational time in order to invert a
temporal integration loop with a number of iterations
of the order of 10%. We have presented a detailed
outline of the code modifications required to achieve
the correct differentiation of the parallel code.

Aerospacekuro

= Conference202

3/
ANC

A viscous flow test case was treated. Even though
it is a physically dissipative system, it has been
computed using the backward mode of AD without
running into stability issues, and yielding the correct
derivative at the end of the computation. The run
time for the tangent-differentiated code was 1.7
times slower than a single run of the primal. It is
therefore readily superior to finite difference
approximations even for single derivative
computations. A natural further step would involve
embedding the derivative solver into an optimal
control loop. The strength of a code such as Jaguar
lies in its ability to handle acoustics problems, such
as the noise radiated by the wake of an object
during a given time. Optimization in this type of
problems constitutes an interesting perspective to
the present work.

8. ACKNOWLEDGEMENTS

We thank Laurent Hascoét (INRIA Sophia-Antipolis)
for the help provided with Tapenade. This work has
been financed by a grant from the STAE Foundation
for the 3C2T project, managed by the IRT Saint-
Exupéry. J.I.C. acknowledges funding from the
People Program (Marie Curie Actions) of the
European Union’s Seventh Framework Program
(FP7/2007-2013) under REA grant agreement
n.PCOFUND-GA-2013-609102, through the
PRESTIGE program coordinated by Campus
France. The computations were carried out at the
CALMIP computing center under the project P0824.

REFERENCES

1. Mdller, J.D., Hiickelheim, J., Mykhaskiv, O.
(2018). STAMPS: a finite-volume solver
framework for adjoint codes derived with
source-transformation AD. In: 2018
Multidisciplinary Analysis and Optimization
Conference, p2928.

2. Kenway, G., Mader, C., He, P., Martins, J.
(2019). Effective adjoint approaches for
computational fluid dynamics. Prog. Aerosp.
Sci. 110, p100542.

3. Xu, S., Radford, D., Meyer, M., Mdiller, J.D.
(2015) Stabilisation of discrete steady adjoint
solvers. J. Comput. Phys. 299, pp75-195.

4. Charpentier, I. (2001). Checkpointing schemes
for adjoint codes: application to the
meteorological model Meso-NH. SIAM J. Sci.
Comput. 22(6), pp2135-2151.

5. Heimbach, P., Hill, C., Giering, R. (2005). An
efficient exact adjoint of the parallel MIT
general circulation model, generated via
automatic differentiation. Future Gener.
Comput. Syst. 21(8), pp1356-1371.

6. Huickelheim, J., Hascoét, L., Miller, J.D. (2017).
Algorithmic differentiation of code with
multiple context-specific activities. ACM
Trans. Math. Softw. 43(4).

7. Utke, J., Hascoét, L., Heimbach, P., Hill, C.,
Hovland, P., Naumann, U. (2009). Toward
Adjoinable MPI. In: 2009 IEEE International
Symposium on Parallel Distributed
Processing, pp1-8.

8. Witherden, F., Jameson, A. (2017). Future
directions in computational fluid dynamics. In:
23rd AIAA Computational Fluid Dynamics
Conference, p3791.

9. Cassagne, A., Boussuge, J.F., Villedieu, N.,
Puigt, G., D'ast, I., Genot, A. (2015). Jaguar: a
new CFD code dedicated to massively parallel
high-order LES computations on complex
geometry. In: The 50th 3AF International
Conference on Applied Aerodynamics (AERO
2015).

10. Brunet, V., Croner, E., Minot, A., De
Laborderie, J., Lippinois, E., Richard, S.,
Boussuge, J.F., Dombard, J., Duchaine, F.,
Gicquel, L., Poinsot, T., Puigt, G., Staffelbach,
G., Segui, L., Vermorel, O., Villedieu, N.,
Cagnone, J.S., Hillewaert, K., Rasquin, M.,
Lartigue, G., Moureau, V., Couaillier, V.,
Martin, E., de la Llave Plata, M., Le Gouez,
J.M., Renac, F. (2018). Comparison of various
CFD codes for LES simulations of
turbomachinery: from inviscid vortex
convection to multi-stage compressor. In:
ASME Turbo Expo 2018: Turbomachinery
Technical Conference and Exposition. Vol.
2C: Turbomachinery.

11. Hascoét, L., Pascual, V. (2013). The Tapenade
automatic differentiation tool: principles,
model, and specification. ACM Trans. Math.
Softw. 39(3).

12. Griewank, A., Walther, A. (2008). Evaluating
derivatives: principles and techniques of
algorithmic differentiation, Siam.

13. Hascoét, L., Utke, J. (2016). Programming
language features, usage patterns, and the
efficiency of generated adjoint code. Optim.
Methods Softw. 31(5), pp885-903.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

... Aerospacekuro

= Conference20

Walther, A., Griewank, A. (2004). Advantages
of binomial checkpointing for memory-reduced
adjoint calculations. In: Numerical
mathematics and advanced applications,
Springer, pp834-843.

Aupy, G., Herrmann, J., Hovland, P., Robert, Y.
(2016). Optimal multistage algorithm for
adjoint computation. SIAM J. Sci. Comput.
38(3), pp232-255.

Hovland, P., Bischof, C. (1998). Automatic
differentiation for message-passing parallel
programs. In: Proceedings of the First Merged
International Parallel Processing Symposium
and Symposium on Parallel and Distributed
Processing, pp98-104.

Heimbach, P., Hill, C., Giering, R. (2002).
Automatic generation of efficient adjoint code
for a parallel Navier-Stokes solver. In:
Computational Science ICCS 2002, Springer,
pp1019-1028.

Schanen, M., Naumann, U., Hascoét, L., Utke,
J. (2010). Interpretative adjoints for numerical
simulation codes using MPI. Procedia
Comput. Sci. 1(1), pp1825-1833.

Schanen, M., Naumann, U. (2012). A wish list
for efficient adjoints of one-sided MPI
communication. In: European MPI Users'
Group Meeting, Springer, pp248-257.

Schanen, M., Forster, M., Naumann, U. (2010).
Second-order algorithmic differentiation by
source transformation of MPI code. In:
European MPI Users' Group Meeting,
Springer, pp257-264.

Towara, M., Schanen, M., Naumann, U.
(2015). MPI-parallel discrete adjoint
OpenFOAM. Procedia Comput. Sci. 51, pp19-
28.

Sagebaum, M., Albring, T., Gauger, N. (2017).
High-performance derivative computations
using CoDiPack. arXiv preprint
arXiv:1709.07229.

Albring, T., Sagebaum, M., Gauger, N. (2016).
Efficient aerodynamic design using the
discrete adjoint method in SU2. In: 17th
AIAA/ISSMO multidisciplinary analysis and
optimization conference, p3518.

24. Hickelheim, J., Hovland, P., Strout, M., Miiller,
J.D. (2018). Parallelizable adjoint stencil
computations using transposed forward-mode
algorithmic differentiation. Optim. Methods Softw.
33(4-6), pp672-693.

25. Berland, J., Bogey, C., Bailly, C. (2006). Low-
dissipation and low-dispersion fourth-order Runge-
Kutta algorithm. Comput. & Fluids. 35(10), pp1459-
1463.

