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Abstract
In this paper I examine the epistemic function of agent-based mod-

els (ABMs) of scientific inquiry, proposed in the recent philosophical
literature. In view of Boero and Squazzoni’s (2005) classification of
ABMs into case-based models, typifications and theoretical abstrac-
tions, I argue that proposed ABMs of scientific inquiry largely belong
to the last category. While this means that their function is primarily
exploratory, I suggest that they are epistemically valuable not only
as a temporary stage in the development of ABMs of science, but by
providing insights into theoretical aspects of scientific rationality. I
illustrate my point with two examples of highly idealized ABMs of
science, which perform two exploratory functions: Zollman’s (2010)
ABM which provides a proof-of-possibility in the realm of theoretical
discussions on scientific rationality, and an argumentation-based ABM
(Borg et al., 2019, 2017b, 2018), which provides insights into potential
mechanisms underlying the efficiency of scientific inquiry.

1 Introduction
Computational modeling has in recent years become an increasingly popu-
lar method for the study of social aspects of scientific inquiry. In partic-
ular, agent-based models (ABMs) have been used as simulations of scien-
tific inquiry, allowing for the examination of various socio-epistemological
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issues: from norms guiding scientists facing a disagreement, to different
social mechanisms that impact the efficiency of inquiry, to the division of
cognitive labor, etc. Such a computational turn in social epistemology of
science emerged from a more general trend of formal modeling of scientific
inquiry, initiated at the end of the last century.1 Originating in economic
approaches to social epistemology, formal models of science provided a fruit-
ful ground for the exploration of the dynamics between the individual and
group rationality, which had previously been studied primarily with quali-
tative methods.2 While first ABMs studying scientific inquiry emerged in
sociology of science (e.g. Edmonds, 2008; Gilbert, 1997), they kicked off in
social epistemology and philosophy of science with the pioneering works of
Zollman, 2007, 2010, Weisberg and Muldoon, 2009, Grim, 2009; Grim et al.,
2013, Douven, 2010 (building on the well-known Hegselmann and Krause’s
(2002) model), De Langhe, 2014, among others.

A common feature of ABMs developed in social epistemology and philos-
ophy of science is that they are simple, ‘thin’ representations of scientific in-
quiry (Pöyhönen and Kuorikoski, 2016). The primary appeal of such models
is that they allow for an easy insight into possible causal mechanisms under-
lying the phenomenon in question. The less components a model includes,
the easier it gets to study causal dependencies between the given compo-
nents. Nevertheless, such simplicity comes at a price: the model will likely
end up being highly idealized, making it difficult to determine its relation
to the real world. More precisely, the more idealized a model is, the harder
it gets to exactly determine target phenomena it adequately represents.

Despite their highly idealized character, many of the ABMs proposed in
the literature have been motivated by concrete episodes from the history of
science, suggesting potential explanations of the given cases (Holman and
Bruner, 2015; O’Connor and Weatherall, 2018; Weatherall, O’Connor, and
Bruner, 2018; Zollman, 2010). This has had two significant consequences
for the reception of ABMs of science. On the one hand, these models have
been considered to be primarily aiming at explaining real-world phenomena
or at least providing ‘how-possibly explanations’ or ‘proofs of possibility’
that should be applicable to the given cases. On the other hand, the lack
of robustness analysis of the given findings has cast doubt on their link to
real-world phenomena, and hence on the relevance of these results for actual

1For a recent overview of formal models of scientific inquiry see Šešelja, Straßer, and
Borg, 2020.

2Of special relevance here is the work by Kuhn, Lakatos, Feyerabend, Laudan, and
others who advanced historicist theories of scientific rationality (Nickles, 2017).
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scientific inquiry (even in a how-possibly way).3 As a result, it has been
suggested that the vast majority of ABMs developed in philosophy of science
are currently only exploratory, rather than explanatory (Frey and Šešelja,
2018b), and that they need to be ‘thickened’ and enhanced by empirical
data to provide insights into actual scientific inquiry (Martini and Pinto,
2016).

Altogether, the current state of ABMs of science is such that it is unclear
what their exact function is, unless we link them more directly to real-world
phenomena.4 The aim of this paper is twofold. On the one hand, I examine
different strategies of relating ABMs of science to actual scientific practice
and I specify challenges that these strategies face. On the other hand, I
introduce a classification of ABMs of science, which will help in providing a
clear epistemic function to highly-idealized exploratory models without nec-
essarily assigning them a mere temporary stage. The basic idea behind the
latter is that ABMs may be explanatory of theoretical phenomena, which
are nevertheless interesting as conceptual explorations of scientific rational-
ity taken in abstracto.

I will start with Boero and Squazzoni’s (2005) classification of ABMs in
general, and with a critical look to it, classify ABMs of scientific inquiry
(Section 2). In Section 3 I discuss some of the central procedures neces-
sary for relating these ABMs to actual scientific practice. In Section 4 I
assess ABMs proposed in the philosophical literature in view of the preced-
ing discussion and argue that they are theoretical abstractions, performing
exploratory roles. In Section 5 I illustrate these functions in terms of two
examples: Zollman’s (2010) model, and the argumentation-based ABM of
scientific inquiry (Borg et al., 2019, 2017a,b, 2018). While the first model
plays the role of providing a proof of possibility in the realm of scientific
rationality, the second model plays the role of pointing to new hypotheses
about mechanisms relevant for the efficiency of scientific inquiry. Section 6
concludes the paper.

2 Classifying ABMs of science
To explicate the difference between simple (or ‘thin’) and complex (or
‘thick’) models,5 it is useful to take a look at the classification of ABMs

3Similar worries have been directed at ABMs in social sciences, see e.g. Arnold, 2014.
4Beside explanation and exploration there may be various other functions of ABMs,

see Edmonds, 2017; Edmonds et al., 2018.
5Thanks to Daniel Singer for bringing to my attention adjectives ‘thin’ and ‘thick’,

which are sometimes used to describe simple and complex ABMs.
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introduced by Boero and Squazzoni, 2005, in terms of the degree of speci-
ficity of the purported target, and the degree of complexity of the given
model. The authors distinguish between case-based ABMs, typifications
and theoretical abstractions—on the spectrum ranging from complex and
specific models to simple and general ones. While the two dimensions of
classification—specificity and complexity—may not necessarily coincide (as
I’ll argue later on in this section), of special interest for our current purposes
is the dimension of specificity of the purported target. Let’s take a closer
look at each of these categories and see how they apply to ABMs of science.

On one end of the spectrum, we have case-based ABMs of scientific in-
quiry, aiming to represent concrete cases from the scientific practice. Their
target is thus a phenomenon that is restricted in terms of space and time
and other empirical information, specific for the given scientific episode. As
such, these ABMs tend to be ‘thick’ representations of science since they
are calibrated towards the given empirical scenario and hence, they include
a variety of details relevant for it.6

The second type of ABMs—typifications—aim to represent a class of em-
pirical phenomena. They aim at capturing key properties of the given type,
while abstracting away from particularities of each individual phenomenon.
Hence, a model designed to represent a certain type of scientific inquiry (for
instance, an inquiry characterized by deceptive information sharing among
scientists, or an inquiry that occurs in the context of theoretical diversity),
would fall in this category, characterized by mid-level specificity.7

Finally, at the other end of the spectrum we have theoretical abstrac-
tions: these are simple, highly idealized models, which often have purely ex-
ploratory function: testing new ideas, extending existing frameworks, etc.8
In contrast to typifications, theoretical abstractions are based on numerous

6For instance, an ABM of scientific collaboration presented by Zamzami and Schif-
fauerova, 2017, which aims at examining knowledge transmission and productivity of
inquiry, is calibrated on nanotechnology journal publications in Canada, and hence, it
can be considered a case-based ABM.

7Another way to understand typifications is in terms of Max Weber’s ‘ideal types’—
theoretical constructs that are formed by a “one-sided accentuation” of specific aspects
of a given class of individual phenomena. As such, an ideal type does not represent a
mere average of properties characteristic of the empirical phenomena, but an idealization
that cannot be found in the real world (Weber, 1904 [1949], p. 90). At the same time,
ideal types diverge from empirical phenomena in clearly designated ways, which separates
them from the next category—theoretical abstractions. I am grateful to the anonymous
reviewer for pointing the similarity between typifications and Weberian ideal types to me.

8For a discussion on different exploratory functions of models see Gelfert, 2016, Chapter
4, for exploratory functions of simulations see Arnold, 2008, Chapter 6 (see also Footnote
21).
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idealizations, to the extent that it is unclear in which ways exactly they di-
verge from empirical phenomena. As I suggest below, most ABMs in recent
philosophical literature fall into this category.9

As mentioned above, Boero and Squazzoni assume that complexity corre-
lates with specificity, and simplicity with generality. However, this may not
necessarily be the case.10 While simple models abstract away from a num-
ber of issues characteristic of the represented target, the idealizations they
are based on may pull just as much towards generality as they can towards
specificity. Similarly, complex models are not necessarily more specific. A
higher number of parameters may increase the complexity of a model, but
also the capacity of the model to adequately zoom in on the given target,
including a general one (e.g. by obtaining a result that remains robust under
various changes in the given parameters). Whether the results of the model
represent a narrow or a wide class of phenomena can be determined only
by means of adequate validation procedures. The next section tackles this
issue.

3 ABM validation: determining the adequate tar-
get

The literature on the validation of ABMs is vast (for recent discussions see
Beisbart and Saam, 2018; Casini and Manzo, 2016; Gräbner, 2018; Thicke,
2019). The aim of this section is not to give an exhaustive list of validation
methods suggested to this end.11 For the current purposes it will suffice to
give an overview of some of the central strategies that have been suggested
in this context, and which are necessary for showing that a given ABM of
scientific inquiry is a case-based model or a typification. For either of these
ABM types, what needs to be validated is the link between the model and
a given class of empirical phenomena (in case of typifications) or a concrete
phenomenon (in case of case-based ABMs). Such a phenomenon is specified

9The most prominent example of this class of ABMs in social sciences is Schelling’s
model of social segregation (Schelling, 1971).

10As Edmonds and Moss, 2004 argue, simplifying a model won’t necessarily make it
more general. Edmonds suggests that simplification will lead to a greater generality of
the model only if it satisfies one of the following conditions: “When what is simplified
away is essentially irrelevant to the outcomes of interest …; When what is simplified away
happens to be constant for all the situations considered …; When you loosen your criteria
for being approximately right hugely as you simplify …” (Edmonds, 2018).

11In addition to validation, ABMs also require a process of verification, the aim of which
is to evaluate how accurate the program of the model is (see e.g. Cooley and Solano, 2011).
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in the interpretation of the ABM as its purported target. The following two
types of mutually interwoven processes represent central methodologies of
validation: on the one hand, robustness analysis, and on the other hand,
the process of empirically embedding the model.

Before I turn to them, it is important to note which kinds of targets of
simulations are of philosophical interest. First, we can imagine a simulation
that is descriptively adequate (e.g. representing a particular case-study) and
which may be of sociological interest. However, such a simulation will be
philosophically interesting only if we can use it to examine counterfactual
dependencies, in view of which we can draw normative conclusions about
the given phenomenon. In other words, simulations become useful for philo-
sophical purposes once they represent a space of possibilities. Since such
possibilities can range from empirical to merely logical ones,12 the main chal-
lenge for drawing information that is relevant for the real-world phenomena
is determining which kind of possibility the model represents. That is, unless
we can specify which context precisely the given model represents, it will
be impossible to draw information concerning counterfactual dependencies,
such that we can reliably relate them to real-world phenomena. Unsurpris-
ingly, this is especially challenging in case of highly idealized models, where
it is unclear how ‘counterfactually distant’ from the real world a given model
is. The following procedures help in addressing this challenge.

3.1 Robustness analysis
Two particularly relevant types of robustness analysis are the following ones:

a) Sensitivity analysis: a method of examining the robustness of re-
sults under changes in parameters of the model (Thiele, Kurth, and Grimm,
2014). It is used to determine the scope of parameters within which results
of simulations remain stable.

b) Derivational robustness analysis: a method of examining the robust-
ness of results under the changes in idealizing assumptions of the model
(Lehtinen, 2017; Railsback and Grimm, 2011; Ylikoski and Aydinonat, 2014,
p. 302-306).13 Since the robustness analysis of this kind can be rather com-
plex and tedious, rather than starting from the model and altering each of
its assumptions separately, it may be more efficient to examine the robust-
ness of results by employing an altogether new model, which is structurally

12See Verreault-Julien, 2018 for a discussion on different types of how-possibly explana-
tions and their relation to the represented possibilities.

13See also Kuhlmann, 2020 who discusses such an analysis in the context of ABMs as a
“multiple-model robustness analysis”.
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different, while it aims at the same target phenomenon.
While the robustness analysis serves to explore the stability of results

under various changes in the model, an output of such an analysis will not
necessarily help us in validating the link between the model and its purported
target. On the one hand, if the robustness analysis shows that the results are
highly stable and that they hold under numerous changes, this may indicate
that the model is representative of a large scope of phenomena, which makes
it more likely that it also represents the specific target in question. On the
other hand, the results may indeed be sensitive to a variety of parameter
changes, in which case we need some interpretative tools to determine which
results are representative of which phenomenon exactly. For instance, if it
turns out that the results of a certain ABM of scientific inquiry hold only
under certain parameter values, then we need some way of translating the
parameters in the model into real-world values in order to determine what
exactly the model tells us about actual scientific practice. In other words,
what is needed is a link between the model and empirical information. This
is done by empirically embedding the model.

3.2 Empirical embeddedness
In order to guide the robustness analysis towards the purported target phe-
nomena of case-based ABMs and typifications, our methods need to be em-
pirically embedded. Casini and Manzo, 2016 suggest three trends in the
literature on ABMs, which have been used to this end:14 a trend towards
theoretical realism, a trend towards empirical calibration and a trend to-
wards empirical validation. Let’s see how these strategies apply to the vali-
dation of ABMs of scientific inquiry.

a) The first strategy—enhancing theoretical realism—suggests that mod-
els be built in view of relevant psychological and sociological theories (Casini
and Manzo, 2016, p. 23). We may add that with respect to ABMs of science,
an important source of such theoretical background are accounts proposed
in traditional methodology of science and social epistemology. In particular,
when deciding how to represent different aspects of inquiry, and which sim-

14More precisely, the authors discuss these trends as conducive to the validation of
models and their capacity to warrant causal inference. They also note that due to prac-
tical limitations these strategies may not always be available, in which case ABM vali-
dation should proceed by means of theoretical explorations, which include the two above
mentioned robustness analyses, as well as ‘dispersion analysis’ (the examination of the
stochastic character of the results) and ‘model analysis’ (the examination of events, be-
haviors and feedbacks executed within the model, which aim towards transparency of the
coded processes).
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plifications may turn out problematic, we may profit from ideas proposed in
this literature. For instance, if we are modeling decision-making of scientists
concerning a line of inquiry they are to pursue, different assessments dis-
cussed by philosophers of science can be useful.15 Similarly, if a model aims
at representing the context of scientific disagreements, insights from the lit-
erature on peer disagreement may be helpful.16 This information can be
used for guiding the construction of both models tackling novel phenomena,
and models aimed at examining the robustness of existing ABMs.

b) The second strategy—empirically calibrating ABMs—consists in using
concrete numerical information as an input for parameters of the model. In
other words, empirical data is used to build micro-specifications of a given
ABM (Boero and Squazzoni, 2005), either when constructing novel mod-
els or when examining the robustness of the existing ones. Such data can
range from the number of agents that represent a given scientific commu-
nity, to their specific distribution on the given epistemic landscape, to the
time span of a given inquiry, to the epistemic success of the represented sci-
entific theories, etc. There are different possible sources of such information.
First, historical knowledge about scientific episodes may be essential for an
adequate representation of a given case-study by a case-based ABM.17 Sim-
ilarly, historical information about different episodes may be informative of
ABMs that aim to be typifications (for instance, representing inquiry in a
certain scientific discipline). Second, sociological studies about past or con-
temporary scientific episodes may also provide valuable data. Finally, recent
study of bibliometric data is a particularly promising avenue for empirical
calibration of ABMs of science. Be it case-based ABMs or typifications,
bibliometric data may serve as an input for an average number of agents
in a given domain, their distribution across different sub-topics, their cita-
tion behavior (which may suggest lines of communication and type of social
networks across the given community), their relative impact (in terms of ci-

15For instance, Nickles’ (2006) distinction between the heuristic appraisal and epistemic
appraisal motivates the behavior of agents in an argumentation-based ABM of science
(Borg et al., 2017a,b, 2018).

16For example, Douven, 2010 builds an ABM to examine some of the norms suggested
in the informal literature on peer disagreements. Moreover, future ABMs of scientific dis-
agreements could make use of the notion of higher-order evidence and its role in scientific
disagreements (Straßer, Šešelja, and Wieland, 2015), which has so far largely remained
absent from ABMs of science (for a recent discussion concerning ABMs of scientific dis-
agreements see Šešelja, 2019).

17For a recent example see Frey, Šešelja, and Straßer, 2020 who use historical information
about the mid-twentieth century research on peptic ulcer disease to examine the robustness
of Zollman’s (2010) ABM as a case-based model.
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tations), etc. (see e.g. Martini and Pinto, 2016; Perović et al., 2016; Thicke,
2019).18

c) The third strategy—empirically validating ABMs—consists in the
analysis and comparison of a simulated macro behavior with the real-world
macro behavior (Boero and Squazzoni, 2005). For instance, if a model aims
at representing a certain episode from the history of science, then given
specific initial conditions, the macro behavior of simulated agents should
correspond to the historical knowledge about the given case-study. Such
a procedure may be especially useful if combined with theoretical realism
and empirical calibration, which can together guide the sensitivity analysis
(by examining the macro behavior for the parameter values relevant for the
given case or type of inquiry), and the derivational robustness analysis (by
examining the output given the assumptions relevant for the given case or
type of inquiry).

4 Taking stock of ABMs of science: valid unless
proven otherwise?

Looking at ABMs developed in the field of philosophy of science, we may
notice that the vast majority of them are designed as intentionally simple:
by simplifying the representation of scientific inquiry in terms of factors
that are included in the model we can have an easier insight into causal
dependencies between these factors. Moreover, how general or specific they
are has remained largely open. On the one hand, as mentioned in Section
1, these models have frequently been taken as providing potential explana-
tory mechanisms of concrete episodes from the history of science.19 On the
other hand, validation procedures establishing the link between models and
respective case studies have been typically omitted: the majority of them
have not been subjected to any systematic robustness analysis or the pro-
cess of empirical embedding, which would relate them to concrete cases of
scientific inquiry.

Moreover, for those ABMs that prima facie display a plausible social
18The above mentioned model by Zamzami and Schiffauerova, 2017 is a case in point.
19It is important to note that models aiming to provide potential explanations of con-

crete historical episodes shouldn’t be understood as providing Lakatosian rational recon-
structions. Their aim is more modest since they can at most offer a potential rational
reconstruction of the given episode. Such a reconstruction would offer a candidate ex-
planation, which has a sufficient degree of plausibility, but which requires an empirical
confirmation in order to count as an actual explanation, allowing for an actual rational
reconstruction.
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mechanism and for which no further validation seems necessary, there is
typically the danger of triviality. If the simulation displays a process which
plausibly holds for the real-world phenomenon in virtue of our knowledge of
that phenomenon, where any further robustness analysis of the simulation
seems unnecessary, then we may ask: why run the simulation in the first
place? As Arnold, 2008 argues: “the results [of simulations] should not
already be deducible without any model or simulation from the empirical
description of the process.” (p. 191).

Hence, ABMs lacking robustness analysis—sensitivity analysis and
derivational robustness analysis—cannot be reliably considered (non-trivial)
case-based models or typifications. Accordingly, the assumption of validity
unless proven otherwise is unsuitable as a guideline for the interpretation
of non-trivial ABMs. Just like with any scientific claim, justification needs
to proceed in terms of evidence (obtained by reliable methods), where the
burden of proof is on those proposing an interpretation of a model, which
assigns it a representational power with respect to real-world phenomena.
The reason why validity cannot be granted without robustness-based evi-
dence lies in the highly idealized nature of these models. Even if the model
seems plausible, some of its underlying assumptions may be representative
only of a relatively small subset of the given target phenomena.20

In contrast, theoretical abstractions may not be representative of any
real-world phenomena, but they may rather show how a given socio-
epistemic mechanism occurs under certain theoretical conditions, even
though such conditions may be unlikely in any realistic context of scien-
tific inquiry, nor allowing for interesting counterfactual inferences about
real-world phenomena. The latter will be the case if the model is so ideal-
ized and simplified to the point of being too counterfactually distant from
actual scientific practice, so that no relevant inferences about actual science
can be drawn from it.

Altogether, this means that the majority of these models fall into the
category of theoretical abstractions, performing only exploratory function.21

20For instance, different representations of knowledge acquisition may result in strikingly
different outcomes: e.g. representing scientists as gathering information by making pulls
(each of which is success or a failure) from a given probability distribution as in Zollman-
inspired ABMs of science (see below Section 5.1) may lead to different findings than if
agents gather information about different parts of the given rivaling theories, where some
parts of each theory are defensible or indefensible (see e.g. Borg et al., 2019).

21 Arnold, 2008 classifies simulations according to their purpose, dividing them into
those employed at the ‘conceptual level’ and those employed at the ‘application level’.
The former are then distinguished into proof-of-possibility simulations and exploratory
simulations, while the letter include predictive simulations and explanatory simulations
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As a result, they cannot be reliably used for making inferences about any
concrete real-world phenomena. More precisely, some consequences of the
current exploratory status of ABMs of science are:

1. They cannot be reliably used as case-based models: this means that
without systematic validation procedures (and possibly also further
enhancements) these ABMs are insufficiently reliable as representa-
tions of any concrete case of scientific inquiry.

2. They cannot be reliably used as typifications: this means that without
systematic validation procedures (and possibly also further enhance-
ments) these ABMs are insufficiently reliable as representations of any
class of scientific inquiry.

3. What is more, making these models more complex won’t necessarily
make them more adequate candidates for the above two categories.

While claims 1. and 2. are supported by the discussion in the previous
and this section, let me turn now to claim 3. Even though the major-
ity of highly-idealized ABMs in the philosophical literature are simple in
character, making these models more complex—by adding assumptions and
parameters—isn’t a straightforward path to their validation. Just like in
case of simple ABMs, the link between complex models and their real-world
targets needs to be warranted if the model is to become a case-based ABM
or a typification. Moreover, there is a trade-off between the kinds of ro-
bustness analysis that pose a challenge to the validation of simple models
in contrast to the complex ones. On the one hand, in case of simple mod-
els, a small number of parameters makes the sensitivity analysis relatively
easy. In contrast, derivational robustness analysis presents a challenge for
simple models since it requires a construction of new ABMs (either as en-
hancements of the existing one or as newly constructed models). On the
other hand, the situation with complex models is reverse: while derivational
robustness analysis can be easy at least in the sense that by removing cer-
tain assumptions from the model we can get alternative ABMs, sensitivity
analysis is challenging due to a large number of parameters that constitute
a complex simulation. To elevate this difficulty, different types of screening
procedures, which facilitate sensitivity analysis, have been suggested in the
literature on simulations (see Thiele, Kurth, and Grimm, 2014).

(p. 187). In the current paper I use the term ‘exploratory’ in the sense of Arnold’s first
larger category (conceptual level simulations) mainly because proof-of-the-principle ABMs
tend to be toy-models, not necessarily referring to any real-world phenomena, and as such,
they are exploratory of the given conceptual space.
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5 What can we learn from theoretical abstrac-
tions?

If theoretical abstractions primarily serve an exploratory function (either
by exploring a conceptual space and providing a proof-of-principle, or by
exploring a causal space of mechanisms relevant for real-world phenomena),
what exactly can we learn from them? In this section I illustrate insights of
this kind by means of two highly-idealized ABMs of science: one of which has
provided a proof-of-possibility in the realm of theoretical discussions on the
tension between the individual and group rationality, and one of which has
provided novel insights into possible mechanisms underlying the efficiency
of scientific inquiry.

5.1 Zollman’s modeling in view of bandit problems
One of the most prominent classes of ABMs of science are Zollman’s (2007;
2010) models. Inspired by (Bala and Goyal, 1998), the models represent
scientific inquiry by employing the so-called bandit problems. Bandit prob-
lems, well known in the field of statistics and economics, concern situations
in which a gambler (or a group of gamblers) is trying to maximize their
payoff when confronted with multiple slot machines (bandits) that have
different probabilities of success. Analogously, we can imagine a scientist
confronted with multiple rivaling hypotheses, trying to determine which one
is the best. At the beginning of the simulation22 scientists are assigned
random prior probabilities for two rivaling hypotheses, each of which has a
designated objective probability of success, unknown to the agents-scientists.
Agents always choose to pursue a theory which they consider to be better.
Throughout the simulation they update their beliefs in view of their own
findings, and by receiving information from other agents with whom they
are connected in a social network.23 Zollman employs three types of social
networks (the so-called cycle, wheel and the complete graph) and his re-
sults suggest that the degree of connectedness of the scientific community
is inversely proportional to the success of scientists in converging on the

22I describe here Zollman’s (2010) model, which is a generalized version of his (2007)
one.

23Every round an agent makes 1,000 pulls, each of which can be a success or failure,
where the probability of success is given by the objective probability of success of the
respective theory. Agents then update their beliefs via Bayesian reasoning (modeled by
means of beta distributions), in view of their own success and the success of other agents
with whom they are linked in a social network.
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objectively better hypothesis. The reason why a fully connected community
often fails in converging on the best hypothesis is that initial findings by
scientists may be misleading, but due to the full connectedness, they may
spread quickly throughout the whole community, resulting in a premature
abandonment of the objectively better hypothesis.

Zollman’s model is indeed highly-idealized: it abstracts away from differ-
ent types of interactions among scientists (e.g. mere exchange of obtained
evidence vs. critical interaction), it assumes that scientists always prefer
a better hypothesis without any inertia towards their previous choice of
inquiry, etc. Moreover, the results of his runs pass neither sensitivity anal-
ysis nor derivational robustness analysis. On the one hand, Rosenstock,
O’Connor, and Bruner, 2017 have shown that as soon as certain parameter
values are slightly changed (e.g. the values for the objective probability of
success assigned to two hypotheses), all networks are equally successful. On
the other hand, Frey and Šešelja, 2018a have shown that changing some
of the assumptions in the model (e.g. adding the idea that scientists don’t
abandon their current hypothesis as soon as they learn that the rivaling one
is superior since they have a ‘rational inertia’ towards the former) changes
Zollman’s results as well. In view of these findings, it is difficult to argue
that Zollman’s ABM represents a typical context of scientific inquiry, or that
we can draw from it normative conclusions about actual scientific practice.

Nevertheless, the model still provides philosophically valuable insights:
it illustrates a case of the tension between individual and group rationality as
a theoretical notion, that is, irrespective of how realistic such a scenario is.24

As such, it contributes to the conceptual exploration of rationality, where
it is legitimate to push some assumptions to extreme in order to observe
their consequences. We do the same in case of epistemic modal logic, for
instance, which includes the ‘positive introspection axiom’, according to
which if one knows p then one knows that one knows p, and which has
been criticized as highly problematic (see e.g. Williamson, 2002, p. 114-
134). Yet, epistemic logic is nonetheless considered a valuable contribution
to attempts at formally modeling knowledge. As explorations of rationality
these models are philosophically valuable since they tell us something about
the theoretical phenomena they represent. In case of Zollman’s model, we
have learned about conditions under which a certain degree of connectedness
of a social network, representing information flow among scientists, may be
epistemically harmful. Whether these conditions ever occur in the real world

24I am indebted to Christian Straßer for an inspiring discussion that resulted in a number
of ideas appearing in this section.
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is a separate question.
In this sense, Zollman’s ABM provides a proof-of-possibility that indi-

vidual and group rationality may not always go hand-in-hand, and that
communication structure may be an underlying mechanism leading to this
tension. While his models can of course serve the purpose of grounding fur-
ther enhancements that aim at providing normatively relevant information
about actual scientific research, it doesn’t get its epistemic value primar-
ily from such a temporary heuristic role. To the contrary: I suggest that
its primary role consists in explaining the above mentioned theoretical phe-
nomenon.

5.2 Argumentation-based ABM (ArgABM)
Inspired by Abstract Argumentation Frameworks,25 Borg et al.’s (2017;
2017; 2018) model represents scientific inquiry as an argumentative ex-
change between scientists pursuing rivaling research programs. Through-
out each run of the simulation agents-scientists explore an ‘argumentative-
landscape’, gradually discovering arguments in favor or against their current
theory. Each theory (or a research program) is represented as consisting of a
number of arguments. These arguments are represented abstractly, as nodes
in a directed graph, connected via a ‘discovery relation’. The discovery rela-
tion represents paths that agents take when moving on the landscape, from
one argument to another. Moreover, arguments belonging to one research
program can attack arguments of one of the rivaling programs. The land-
scape then consists of different argumentative (rooted) trees, with nodes as
arguments26 and edges as discovery relation, where an argument in one tree
may attack an argument in another tree (see Figure 1).

Roughly speaking, an argument in a theory is considered defended if
it is not attacked, or if there is another defended argument in the same
theory, which attacks the attacker-argument.27 Moreover, the landscape is

25Abstract Argumentation Frameworks were pioneered by Dung, 1995 and previously
used for the modeling of scientific debates by Šešelja and Straßer, 2013. In what follows
I give an informal overview of ArgABM. For all the details see the original papers on the
model.

26All theories are trees of the same size, i.e. consisting of the same number of arguments.
27More precisely, we call a subset of arguments A of a given theory T admissible iff for

each attacker b of some a in A there is an a′ in A that attacks b. Since every theory in
the model is conflict-free (in the sense that no two arguments in the same theory attack
one another), it can easily be shown that for each theory T there is a unique maximally
admissible subset of T (with respect to set inclusion). An argument a in T is said to be
defended in T iff it is a member of this maximally admissible subset of T .

14



pre-defined in such a way that one theory is the best in the sense that it
is fully defended from all its attackers in the objective landscape. Over the
course of a run, agents gather knowledge about the objective landscape,
which consists of arguments in favor of each theory, and attacks on these
arguments. In addition to gathering knowledge on their own, they also learn
about the landscape from other agents with whom they are linked in a social
network. In view of this knowledge, agents evaluate the theories. A run is
successful if agents manage to converge on the objectively best theory.28

Research
Program 1

♂

♂

♀

Research
Program 2

♀

Figure 1: An example of an argumentative landscape consisting of 2 theories
(or research programs). Darker shaded nodes represent arguments that have
been investigated by agents and are thus visible to them; brighter shaded
nodes stand for arguments that aren’t visible to agents. The biggest node in
each theory is the root argument, from which agents start their exploration
via discovery relation, which connects arguments within one theory. Arrows
stand for attacks from an argument in one theory to an argument in another
theory (Borg et al., 2019).

As the authors explicitly state, ArgABM was primarily designed as an
exploratory model, aimed at testing the robustness of previously proposed
ABMs of scientific interaction (such as Zollman’s ones). While it has more
parameters than Zollman-inspired ABMs, and it allows for more assump-

28The model employs an additional, more permissive criterion of success, according to
which agents are successful if the best theory is at least as populated as any of the rivaling
theories.
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tions to be integrated in the model, it still lacks the validation procedures
discussed in Section 3.

The results obtained by ArgABM suggest that more connected groups
perform significantly better than the less connected ones under a variety of
conditions. And while these findings appear contrary to conclusions drawn
from Zollman’s ABMs, the authors caution that structural differences be-
tween these ABMs may indicate that each model represents a specific kind
of inquiry. This is the first important exploratory result of ArgABM: differ-
ent ABMs of science may be representing different types of inquiry, which
means that more research should be done towards determining the specific
context of inquiry represented by each of the models.

Second, a recent iteration of ArgABM by Borg et al., 2019 examines
different evaluation procedures underlying theory-choice performed by sci-
entists. For instance, scientists may prefer a theory that has more defended
arguments than its rivals. Alternatively, they may prefer a theory that has a
lower number of undefended arguments (which can be understood as anoma-
lies in the given theory). As the authors show, these assessments may result
in different preference orders on the given theories, and in strikingly differ-
ent outcomes of the simulation. Hence, this result is a novel insight into
a potential mechanism that may impact the efficiency of scientists. While
the link between the modeled evaluations and actual scientific practice (i.e.
evaluations underlying theory-choice performed by actual scientists) remains
an open question, this result points to the significance of a factor that has
previously often been omitted from ABMs of science.29

Before closing this section, let me add that one could argue that just like
Zollman’s model, ArgABM actually provides a proof-of-possibility for differ-
ent theoretical phenomena (the relation between the degree of connectedness
of scientists and their efficiency, the relative performance of different evalua-
tion procedures underlying theory-choice, etc.). Indeed, the two exploratory
functions discussed here are closely related: a proof-of-possibility may also
be an insight into a potential novel mechanism, and the other way around.
In fact, the exact function a model performs is largely a matter of the con-
text in which it is proposed, including initial motivations for developing the
model and ways in which it is employed: as the first model tackling a given
question, a model designed to test the robustness of previous proposals, etc.

29An exception is the epistemic landscape ABM proposed by Currie and Avin, 2018,
which represents the diversity of methods preferred by scientists during their inquiry.
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6 Conclusion
In this paper I have analyzed a class of highly-idealized ABMs of scientific
inquiry, proposed in the literature in philosophy of science and social epis-
temology, suggesting they should be considered as exploratory models. To
this end, I have argued that the majority of these models belong to the
category of theoretical abstractions, which means that what they represent
is unspecified. As a result, these models cannot be reliably used for draw-
ing inferences about actual scientific practice, at least as long as they don’t
pass an adequate validation procedure. Such a procedure consists in different
types of robustness analysis, guided by the process of empirically embedding
the model towards its purported target. Nevertheless, I have argued that
in the lack of such validation procedures, theoretical abstractions are still
epistemically valuable by being informative of theoretical phenomena, i.e.
by providing conceptual insights about scientific rationality and the process
of scientific inquiry.

Finally, it is important to notice that insights obtained by such ex-
ploratory ABMs might have been overlooked were these models immediately
calibrated towards concrete cases of scientific inquiry. This suggests that
exploratory ABMs are not just a preliminary stage in the development of
empirically validated models, merely providing the ground for an eventual
epistemic benefit. While they do play that role as well, their additional func-
tion consists in providing conceptual explorations of scientific rationality and
revealing potential causal mechanisms underlying scientific inquiry, which
may remain a blind spot in those ABMs that are immediately informative
of real-world phenomena.
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