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Abstract We offer a framework for organizing the literature regarding the
debates revolving around infinite idealizations in science, and a short summary
of the contributions to this special issue.

1 Introduction

Idealizations are ubiquitous in science. They are distortions or abstractions
that enter scientific theories, laws, models, or, more generally, representations.
Examples include point masses, perfectly rational agents, and isolated pop-
ulations. Our focus here will be on infinite (and infinitesimal) idealizations
in which some parameter takes on an infinite (or infinitesimal) value. For in-
stance, although boiling kettles contain a finite number of particles and a finite
volume, it is often claimed that our best scientific theories describe boiling (and
other phase transitions) as occurring only in infinite systems: “The existence
of a phase transition requires an infinite system. No phase transitions occur in
systems with a finite number of degrees of freedom” (Kadanoff, 2000, p. 238).
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Ever since the important work done by Robert Batterman in his 2002 book,
The Devil’s in the Details, there has been a growing interest specifically in in-
finite idealizations. In particular, Batterman defended various novel theses
regarding explanation, reduction, and emergence by looking at detailed case
studies of intertheoretic relations involving infinite and infinitesimal limits.
Examples included the relations between thermodynamics and statistical me-
chanics, classical and quantum mechanics, the ray and wave theories of light,
and hydrodynamics and molecular dynamics. One of the main issues here con-
cerns whether idealizations play a substantive role in science in the sense that
they are necessary for scientific accounts (i.e., explanation, understanding, rep-
resentation, or prediction) of physical phenomena and, subsequently, whether
such phenomena can be identified as “emergent.”

Roughly, the notions of “infinite idealizations” and “essential idealizations”
are connected to the reduction-emergence debate as follows: Certain effects,
phenomena, or properties P are taken to be governed by some lower-level,
fundamental theory (or model) L, which faithfully represents P as occurring
in systems with some finite parameter or value of a property N . Nevertheless,
in order to predict, represent, understand and/or explain P the infinite ideal-
ization in the form of the infinite limit N → ∞, in which a new higher-level,
non-fundamental theory (or model) H is applicable, is essential and indispens-
able such that H is not reducible to (e.g., derivable, deducible, or explainable
from) L, and P is thus emergent.

In light of such work, a heated debate regarding the nature and role of in-
finite idealizations ensued with some defending the indispensable explanatory
role of idealizations and the connection with emergence (Rueger, 2000, 2006;
Batterman, 2005; Bokulich, 2008; Bangu, 2009; Morrison, 2012), others tak-
ing a more deflationary and reductionistic approach (Earman, 2004; Wayne,
2009; Butterfield, 2011; Norton, 2012; Menon and Callender, 2013), and still
others attempting to develop midway positions (Ruetsche, 2011; Shech, 2013).
Various questions arise:

– Are infinite idealizations truly indispensable? If so, what roles are they
indispensable for and what types of philosophical commitments do such
indispensability claims imply?

– How do we justify the appeal to infinite idealizations and do such justi-
fications differ from the standard, pragmatic justification given for most
idealizations?

– What explains the success of theories involving infinite idealizations?
– Do explanatory schemes involving infinite idealizations—for instance, the

renormalization group explanation of universality and critical phenomena—
signify a novel philosophical account of explanation that differs from stan-
dard accounts (e.g., covering law, unificationist, pragmatic, counterfactual,
or causal-mechanistic accounts)? If so, are infinite idealizations truly indis-
pensable to such an accounts?

– Must we represent certain phenomena with a mathematical formalism that
is most naturally interpreted as appealing to infinite idealizations, or is it
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always possible to either re-interpret the formalism as not referring to such
idealizations, or else to transition to a different formalism that eschews
appeals to infinite idealizations?

– How can actual real-world experiments serve to confirm effects that con-
cern the behavior of systems involving infinite idealizations? And if scien-
tific theories are essentially idealized, how do experiment and observation
confirm theories that are literally false?

– What do systems and objects involving infinite idealizations refer to? What
is the appropriate semantics associated with propositions involving claims
about infinite idealizations?

– What, if any, are the implications of infinite idealizations for foundational
issues in physics? For instance, do systems with infinite idealizations usu-
ally imply indeterministic behavior (e.g., as in Norton’s Dome) or non-local
behavior (e.g., as in the Aharonov-Bohm effect)?

– Do the issues that arise in the context of infinite idealizations in physics
also arise in other sciences? For instance, in the context of economics there
are also various infinite idealizations that arise, e.g., infinitely divisible
goods, a continuum of traders, consumers optimizing over an infinite time
horizon. How should we understand infinite population models in ecology
and evolutionary biology, and the infinite extent of languages in linguistics?

The papers in this special issue approach these questions and more from
various perspectives. They connect with diverse topics that we will discuss in
Section 2, in hope to give some structure to the literature. Section 3 gives a
summary of the different contributions and their contents.

2 Diverse Topics

We will discuss issues related to infinite idealizations as they correspond to four
broad topics,1 viz., (i) Misrepresentation, (ii) Representation, (iii) Confirma-
tion, and (iv) Realism. For completeness, we should also add (v) Intertheoretic
relations, wherein issues corresponding to emergence and reduction arise. How-
ever, since this topic was already discussed in Section 1, we will not comment
on it further (but see Palacios (2017, 2018) and Shech (2018b) for recent con-
tributions, as well as the papers by Robertson (Section 3.6), Feintzeig (Section
3.8), Liu (Section 3.10), and Bangu (Section 3.11) in this special issue).

1 Also see Shech (2018a, p. 7), who characterizes the debate revolving around infinite
idealizations (specifically in physics) as an opposition between “essentialists” and “dispens-
abilists”:

Essentialists claim that idealizations play a substantive role in science in the sense
that they are essential or indispensable for scientific accounts (i.e., explanation, un-
derstanding, representation, prediction) of certain physical phenomena, while dis-
pensabilists maintain that idealizations play no substantive role in science and are
dispensable from mature scientific theory.
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2.1 Misrepresentation

Arguably, all idealizations (finite and infinite) involve distortions or misrepre-
sentations. It is in this context that we enquire into the coherency and plau-
sibility of appealing to, strictly speaking, falsities, in order to discover truth.
For instance, if idealizations are misrepresentations, how is it that they facili-
tate true explanations and genuine understanding? One can attempt to make
headway on this issue by distinguishing between idealizations (misrepresenta-
tions/distortions) and abstractions, which only abstract away from the details
and are thus partially true (Jones, 2005; Levy, 2018), or between idealizations
and approximations as inexact descriptions of some target system in the world
(Norton, 2012). Also, much attention has been paid in particular to the role
of idealized and abstracted models in science (Morgan and Morrison, 1999;
Bokulich, 2008; Morrison, 2015; Gelfert, 2016; Massimi, 2018). We may then
investigate the epistemic virtues of appealing to multiple models and model-
based explanations. The contributions by Strevens (Section 3.2), De Bianchi
(Section 3.3), Fletcher (Section 3.4), Valente (Section 3.5), Robertson (Section
3.6), Wayne (Section 3.7), Van Wierst (Section 3.9), Liu (Section 3.10), Bangu
(Section 3.11), and Earman (Section 3.14) study such issues.

2.2 Representation

If idealizations are misrepresentations of sorts, then they are first and fore-
most representations, i.e., they have propositional content/meaning, and refer
to, denote, or stand in for something. However, it is debatable whether infi-
nite idealizations refer since such idealizations are both not part of the actual
world, and their infinitely idealized nature deems them non-actualizable—viz.,
even if such idealizations where possible according to our best theories, they
are impossible from a pragmatic point of view. Relatedly, one may also won-
der whether prominent accounts of scientific representation can accommodate
infinite idealizations, e.g., see Batterman (2010) and Bueno and French (2018,
Ch. 10) for a debate regarding whether the partial structures approach can do
justice to infinite idealizations. Similarly, see Shech (2015) for an assessment
of the inferential account of Suárez (2004) and the interpretational account
Contessa (2007) in the context of infinite idealizations. Some have also looked
at the ostensible exploratory role that infinite idealizations play with respect
to exploring the representational and modal structure of theories (Shech and
Gelfert, 2016; Massimi, 2018). In addition, it may be the case that by shifting
to a different formalism, e.g., constructive mathematics or category theory, we
may be able to avoid having to appeal to infinite idealizations and systems
altogether. The contributions by Valente (Section 3.5), Feintzeig (Section 3.8),
Van Wierst (Section 3.9), Bangu (Section 3.11), and Earman (Section 3.14)
correspond to this topic.
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2.3 Confirmation

A matter of concern in confirmation theory is how we can confirm scientific
theories that are literally false. The worry arises already in the context of
pedestrian idealizations and abstractions since idealizations act as kinds of
auxiliary assumptions that can shield the disconfirmation of the main tenets
of a theory. What is especially interesting from our point of view is that such
alleged problems become more serious if it turns out that the idealizations
involved are indeed indispensable for scientific accounts of physical phenom-
ena as it is claimed in the context of infinite idealizations. Moreover, there is
a sense in which essentially idealized “effects,” such as phase transitions and
the Aharonov-Bohm effect as typically defined, refer to properties of fictional
or abstract systems. We are then led to wonder: how can real-world experi-
ments serve to confirm effects that concern the behavior of systems involving
infinite idealizations? Or, said differently: how do experiment lend support to
the modal parts of a theory that we cannot test directly, e.g., what some the-
ory says about possible but non-actual infinite systems? The contribution by
Earman (Section 3.14) in this issue corresponds also to this topic.

2.4 Realism

Topics having to do with misrepresentation, representation, and confirmation
usually concern epistemological issues. But there are also metaphysical ques-
tions, such as those concerning scientific realism and mathematical platonism,
which arise in light of the alleged indispensability of infinite idealizations for
explanatory and representational purposes. For instance, if infinite idealiza-
tions are explanatorily indispensably to our best scientific theories, are we
then rationally committed to existence of such objects? If so, is this view
coherent or should it be thought of as a kind of reductio? Alternatively, if
infinite idealizations are representationally indispensable to our best scientific
theories, does it follow that they faithfully represent some infinite structure
in the actual world? This corresponds to the generalization by Shech (2013,
p. 1172) of the ostensible paradoxical nature of phase transitions, introduced
originally by Callender (2001, p. 549), which we may dub “The Paradox of
Infinite Idealizations.”2 The point is that, whether we are talking about rep-

2 According to Shech (2013), the basic idea is that if we appeal to the notion of an on-
tologically faithful representation, which is both a kind of “guide to ontology” (Sklar 2003,
p. 430; Shech 2015, pp. 3478–3481) and in the spirit of realist approaches to how success-
ful theories/models represent, then the following six propositions cannot be consistently
endorsed:

1. Concrete systems include a concrete attribute (or property) A.
2. Concrete systems display a concrete phenomenon (or behavior) P .
3. P is scientifically-mathematically represented by (perhaps some structure) P ′.
4. P ′ can only arise by appealing to an idealizing limit I.
5. A system in the idealizing limit I includes an attribute A′ such that A 6= A′.
6. P ′ faithfully represents P (and so imputes attribute A′ to P ).
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resentational, explanatory, or predictive indispensability, traditional forms of
scientific realism may be committed to the existence of abstract and essen-
tially idealized objects. Other versions, e.g., contextual realism, can perhaps
evade such consequences. The contributions by Nefdt (Section 3.1), Liu (Sec-
tion 3.10), Bangu (Section 3.11), Baron (Section 3.12), and Shech (Section
3.13) concern topics having to do with scientific realism and mathematical
platonism.

3 Contributions

3.1 Nefdt on the Interpretation of Infinity in the Foundations of Linguistics

A perennial concern about idealized models is how they interface with scien-
tific realism. A realist attitude enjoins us to take seriously a scientific theory
or model’s representation of the actual structure and nature of the world, yet
idealization explicitly confounds the full satisfaction of this demand. Ryan M.
Nefdt considers a case less discussed in the philosophy of science literature on
idealization and realism, namely a certain prominent assumption in linguis-
tics about the structure of natural languages: they each contain a countably
infinite number of distinct expressions. On the one hand, this is the natural
consequence of theories, such as Chomsky’s generative grammar (1957), that
seek to explain why native speakers of a language can continually generate
and understand new sentences they have never uttered or heard before. On
the other, it is dubious that our finite minds could really instantiate such
infinite structures. Nefdt distinguishes between three grades of increasing rep-
resentational realist commitment for the linguistic realist, arguing that this
tension is only a problem for the latter two grades. On the lowest grade, one
only commits to the idea that linguistic theories model speech phenomena,
and not mental phenomena, so that the use of infinities in those models need
not represent some infinite mental state at all.

3.2 Strevens on Asymptotic Idealization in Population Genetics

In his contribution, Michael Strevens aims to characterize a particular class
of infinite idealizations, which he calls “asymptotic idealizations.” To do so,
he focuses on a topically somewhat different example, the case of population
genetics models. Such models collect together and represent different ways
that the frequency of genes change in a population during the course of evo-
lution. Aside from natural selection and mutation, there is another evolution-
ary “force” known as genetic drift, which arises purely from other stochastic
aspects of gene transmission, such as the random selection of certain genes
(over others) in the progeny of two parents. In many applications of popula-
tion genetics, however, scientists “set drift to zero”—they idealize away these
stochastic effects, apparently in order to facilitate more elegant explanations.
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They effect this idealization typically by assuming the size of the population
is infinitely large, for there is a sense in which for extremely large populations,
the effects of drift become negligible. Strevens contends that issues similar to
the case of the thermodynamic limit in statistical mechanics apply here, such
as whether this zero-drift/infinite-population assumption is essential to the
explanatory purposes towards which the models are put, and whether these
techniques are best understood as idealizations properly so called or merely
approximations. Although an infinite population model cannot be created sim-
ply by “setting population to infinity,” there is a way of transforming the finite
model into a genuine infinite model. Such a model both corresponds well to
population geneticists’ talk, Strevens emphasizes, and provides a better of ex-
planation of the target phenomenon than the non-idealized model from which
it is derived.

3.3 De Bianchi on Combining Finite and Infinite Elements in Civil
Engineering Models

It may seem at first obvious that infinite idealizations, qua idealizations, intro-
duce gross distortion of a phenomena into a model representing it. However,
Silvia De Bianchi claims that civil engineers employ infinite idealizations in the
computational structural analysis of buildings to improve their predictive ac-
curacy. Although it may seem paradoxical that introducing distortion restores
order in engineering, De Bianchi shows how this arises from the particulari-
ties of the methods engineers use. Civil engineering in particular is concerned
with the mechanics, stability, and functioning of continua, including beams
that keep roofs and bridges aloft, and foundations that keep buildings level
on the ground. These continua are best described by complicated differential
equations, complicated enough that there is rarely, if ever, any hope of deriv-
ing an analytical solution to an engineering problem. Rather, to test which
designs are optimal under expected conditions, civil engineers build digital
models of those designs that are discretized: smoothly deformable continua
are approximated by a large number of discrete elements. This turns com-
pletely intractable differential equations into more tractable algebraic finite
difference equations. But doing this accurately requires an enormous number
of finite elements, enough that they can open the floodgates to all sorts of er-
rors introduced at the computational level. Amazingly, clever use of partially
infinite elements can substantially reduce the number of needed finite elements
and control numerical error propagation. De Bianchi’s paper explains how this
works in detail.

3.4 Fletcher on Minimal Approximations and Norton’s Dome

A minimal model is an idealized model that functions better for explanation
and understanding than a less idealized version because it simplifies or ab-
stracts away details that are irrelevant for that explanation or understanding
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(Batterman, 2002a). But some putative minimal models have properties that
make them no longer models of the theory from which they derive. To clar-
ify such cases, Samuel C. Fletcher’s note combines the concepts of minimal
models and approximation (Norton, 2012) to arrive at the notion of a minimal
approximation: an inexact description of a quantity or property of a model
that functions better for explanation and understanding than a less idealized
version, without itself being a full model. Minimal approximations thus show
that the strategy of minimality, in the service of better understanding and
explanation, can be applied fruitfully to parts of models, avoiding problems
that some seemingly inconsistent minimal models might have. To illustrate,
he consider the case of Norton’s dome (2008), and the charge by Laraudo-
goitia (2013) that Norton’s original analysis of the dome system’s failure of
determinism involves such an inconsistent model within Newtonian mechan-
ics with gravitation. This opens the question as to whether this inconsistency
is somehow responsible for indeterminism in this case. Fletcher shows that
Norton’s original analysis can be vindicated once it is understood as a min-
imal approximation, one that is ultimately not essential to the existence of
indeterminism.

3.5 Valente on the Paradox of Reversible Processes in Thermodynamics

Reversible processes in thermodynamics have paradoxical properties. On the
one hand, orthodox thermodynamics is supposed to concern itself with systems
in equilibrium, systems whose observable quantities remain constant. On the
other, a central explanatory and predictive technique of the theory involves de-
scribing particular continual changes in a system’s state that can equally well
proceed in reverse. Such reversible processes thus involve the changing of states
that by definition do not change over time! This is why Norton (2016) has
dubbed them “impossible processes,” whose “fog of paradox” he attempts to
dispel by re-describing them as tools for the approximation of non-equilibrium
processes, rather than thermodynamically viable idealizations thereof. In his
contribution, Giovanni Valente rehabilitates a proposal by Tatiana Ehrenfest-
Afanassjeva (1956) to resolve the problem in another way. This proposal first
distinguishes between “quasi-processes” and “quasi-static processes,” the for-
mer naming the usual equilibrium curves to emphasize that they are not true
process, and the latter naming a sequence of equilibrium states that mathe-
matically approximate a quasi-process. Quasi-static processes can be realized
by real processes that involve sufficiently small departures away from equilib-
rium in between regaining equilibrium.

3.6 Robertson on the Applicability of Thermodynamics to Self-Gravitating
Systems

To what extent can the constituent stars of certain galaxies, especially those
with little interstellar dust, be modeled like particles in a gas? On the one
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hand, at the time scales relevant for galactic dynamics, they are effectively
stable corpuscles over time and their inertial paths are deflected through inter-
corpuscular forces. On the other, the nature of these forces is long-range and
always attractive, unlike those for typical gases. These differences thus raise
questions for the applicability of statistical mechanical and thermodynamic
concepts to so-called self-gravitating systems such as these. Katie Robertson
argues that statistical mechanics nonetheless applies quite well, and has deliv-
ered scientific success purchased from the application of probabilistic concepts.
But, this application yields theoretical models for these galaxies that have no
thermodynamic limit—an idealization of a statistical mechanical system as
having infinitely many constituents—hence do not in any substantive sense
fall under the purview of thermodynamics.

3.7 Wayne on the Use of Point-Particle Idealizations in Gravitational Wave
Physics

How do the capacities of very different types of models for phenomena com-
pare, if they make the same predictions in the end? Andrew Wayne considers
the case of gravitational wave models that use point-particle idealizations.
These idealizations are more problematic in general relativity than in Newto-
nian gravitation because point particles are much less plausibly genuine pos-
sibilities in the former—Wayne contends that they are in fact impossible. He
observes that this would undermine their explanatory power if one could not
also show that their idealization is dispensable, for that power is supposed
to derive from a consistent and well-confirmed scientific theory, namely, the
theory of relativity. This allows him to contrast two distinct uses of the point-
particle idealization. One involves so-called post-Newtonian methods, which
are a suite of techniques that approximate certain predictions from the general
theory of relativity in terms of power series of Newtonian quantities—think
of how the Taylor expansion of an analytic function allows one to approxi-
mate the function using a polynomial within a particular subset of its domain.
The other, newer one draws from the techniques of effective field theory—in
particular, renormalization—developed originally in condensed matter physics
and extended in high-energy particle physics. Although both ultimately and
amazingly yield the same predictions, Wayne argues that only the former can
plausibly explain gravitational wave behavior. This is because the use of post-
Newtonian methods only use the point-particle approximation as a useful sim-
plification that could be eliminated—and has been partially eliminated—by
normal development of the methods, whereas effective field theory methods,
arising originally from applications to particulate phenomena, essentially pre-
suppose the point-like nature of the sources of gravitational radiation.
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3.8 Feintzeig on Deduction and Definability in Infinite Statistical Systems

Traditional accounts of reduction tell us that a theory reduces to another if
the former can be deduced from, or contains no more information than, the
later. But is this condition satisfied in cases in which “the reducing theory”
involves infinite idealized systems whereas the “reduced theory” describes only
finite systems? In other words, can the behavior of infinite limiting systems
be deduced from the behavior of finite systems? Benjamin Feintzeig uses the
tools of category theory to illustrate that infinite models in statistical physics,
in particular models that account for total magnetization, contain no more
information or structure than finite models. To make this point, he uses the
mathematical language of operator algebras to show that the (bounded) com-
pletion of a C*-algebra in the weak topology is unique and, in a sense, fully
determined by the algebra. According to him, this demonstrates an impor-
tant sense in which the properties of infinite systems are fully determined by
the physics of finite systems. He concludes the paper by considering possible
objections to his proposal and by suggesting avenues for future investigation.

3.9 Van Wierst on the Paradox of Phase Transitions in the Light of
Constructive Mathematics

Statistical mechanics suggests that phase transitions occur only in infinite sys-
tems, yet we observe concrete finite systems displaying phase transitions in the
real world. How can we explain this apparent paradox? To what extent does
this paradox depend on the classical notion of actual infinity? Can construc-
tive mathematics help us dissolve this problem? Pauline van Wierst addresses
these questions suggesting that many of the philosophical issues related with
the use of infinite idealizations in the theory of phase transitions are inherent
to classical mathematics. Accordingly, she argues that switching to a construc-
tive framework for statistical mechanical theories of phase transitions would
make many of the conceptual problems related with phase transitions disap-
pear. The reason is that constructive mathematics rejects the notion of actual
infinity, which is philosophically problematic, and replaces it with a notion of
potential infinity that denotes systems with arbitrarily large but finite number
of components. Since the notion of potential infinity does not allow for dis-
continuities, it is compatible with atomism and does not generate the paradox
that arises when we interpret infinite limits as actually infinite systems. By
representing phase transitions as continuous changes rather than as disconti-
nuities, van Wierst argues that we do justice to the fact that in reality “there
is a grey area in between phases in which it is not clear in which phase—if
any—the system is.”
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3.10 Liu on Contextual Realism and the Thermodynamic Limit

When we use infinite systems to explain the behavior of finite target systems,
we are distorting an aspect of reality in our scientific models. How can we
make these kinds of idealizations compatible with scientific realism, which is
in general committed to the idea that scientific theories are true or at least
approximately true? Liu suggests a solution to this compatibility problem by
endorsing a form of contextual realism, according to which truth is not inde-
pendent of any epistemic or philosophical conception, but rather it is connected
to anchoring assumptions that “insulate parts or levels of reality so as to secure
reasons for believing of certain objects as real or existing that would otherwise
not be believable”. Important in this view is that anchoring assumptions are
not determined by mere convention or convenience of practice. Instead it is
reality itself that makes them possible. In the case of phase transitions, so ar-
gues Liu, the thermodynamic limit functions as an anchoring assumption that
insulates the context in which these phenomena can be correctly described as
singularities. In this particular context and not in others, phase transitions
understood as singularities of infinite systems are a real thing, in the same
way as dogs and cats are real things in a certain context, but not in others.

3.11 Bangu on the Referential Role of Discontinuities and Singularities in the
Physics of First-Order Phase Transitions

In recent years, phase transitions have motivated an important debate in phi-
losophy of science, where some philosophers—so-called “Referentialists”—have
affirmed that the discontinuities and singularities that characterize these phe-
nomena do refer to properties of real thermal systems, whereas others—so-
called “Non-Referentialists”—have taken the opposite view. How can we ex-
plain this disagreement? Sorin Bangu asserts that the source of this discord is
a misunderstanding of technical terms involved in the physics of phase tran-
sitions. In particular, so argues Bangu, philosophers have failed to distinguish
between three related but different notions: discontinuity of a thermodynam-
ical parameter, singularity of a thermodynamic potential and the idea of an
infinite system. After giving a careful explanation of these three notions, Bangu
concludes that discontinuities are “trivially real” and therefore do not pose any
problem for the Referentialist position. More problematic for the Referential-
ist is the notion of singularities, i.e. “the mathematical representation of the
physical discontinuity in the formalism of the free energies”, because it is this
notion that requires the introduction of an infinite system. Nonetheless, Bangu
argues that even in this case, one can defend a weak form of Referentialism,
in which singularities are not assumed to refer to a property of the physical
systems but rather to “clusters of states, or regions in the graph collecting
measurement data”.
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3.12 Baron on Explanatory Idealization in Phase Transitions

Recently, it has been argued that infinite idealizations are indispensable to the
explanation of certain phenomena, meaning that the removal of the idealiza-
tion undermines the explanation. As a consequence, it has been said that one
ought to accept the truth of those idealized claims. The problem is that in
cases like phase transitions, this leads to a contradiction with our most suc-
cessful background theories such as the atomic theory of matter and general
relativity. How can one solve this paradox? Baron suggests a solution that
lies on a distinction between constructive and substantive indispensability. A
claim is constructively indispensable to our current best scientific theories, if
there are reasons to suspect that it can be eventually dispensed with, even
if “there is no explanation available that eschews the claim in question”. In
contrast, a claim is substantively indispensable to our best scientific theories
if there is no reason to suppose that the claim can be dispensed with. Cases
such as phase transitions—in which the thermodynamic limit appears to be
indispensable—are, for Baron, only constructively indispensable. What gives
us a reason to believe that this idealization is modally dispensable? According
to Baron that it fails to cohere (or be consistent) with the underlying frame-
work constituted by our background theories. Failure of coherence functions
then as a criterion for constructive indispensability. Baron argues that if an
idealization is constructively indispensable, then we do not have to believe
that it is literally true so that the paradox of infinite idealizations does not
arise.

3.13 Shech on Infinitesimal Idealization, Nominalism, and Fractional
Quantum Statistics

Elay Shech discusses the possibility of indispensable idealizations but in con-
nection to a recent debate on nominalism that has taken place in philosophy
of mathematics. Defenders of the “easy road” to nominalism have argued that
it is possible to accept the thesis that mathematical entities are indispens-
able to our best scientific theories without having to commit ourselves to
the existence of such mathematical objects. In his contribution to this issue,
Shech challenges this view by pointing out that it relies on a condition of
“approximate instantiation” that fails to be satisfied in the case of essential
idealizations. To make this point, Shech suggests to identify the notion of “ap-
proximate instantiation” with Norton’s notion of approximation, according to
which there is an approximation just in case there is a “match between the
relevant properties of the limit system (using to represent/model the target
system) and the corresponding limit properties”. Cases of essential idealiza-
tions such as the assumption of two dimensions in the account of fractional
quantum statistics fail to provide an approximation of real physical systems
in the sense described above and therefore cannot be understood as a math-
ematical structure being approximately instantiated by a physical system. In
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light of this result, one has, according to Shech, two options left: either one
embraces ontological commitment to the mathematical structure involved in
those explanations or endorse the “hard road” to nominalism, which denies
the indispensability of such mathematical objects.

3.14 Earman on the Role of Idealizations in the Aharonov-Bohm Effect

How can experiments on real systems serve to confirm the predictions of a the-
ory that concerns the behavior of a fictional system? The usual explanation
found in the literature is that actual laboratory conditions are “sufficiently
close” to those that characterize the fictional system. But is this always the
case? In his contribution to this issue, John Earman addresses this question
focusing on the Aharonov-Bohm (AB) effect, which involves a set of idealiza-
tions such as the assumption of an infinitely long solenoid with other fictional
attributes. Earman argues that in contrast to standard accounts on idealiza-
tions, the “idealizations” involved in the AB effect should not be understood as
distorted descriptions of real systems found in the world, but rather as “accu-
rate and precise descriptions” of a target fictional system that is not realized in
the actual world. According to him, this different use of idealizations increases
the conceptual and mathematical challenges surrounding the AB effect and
encourages us to pay careful attention to certain aspects of the effect that are
generally neglected in the literature, for instance that the observables are not
local and that the idealizations responsible for the AB affect are also responsi-
ble for the unitarily inequivalent representations of the canonical commutation
relations that emerge in the limit of a series of actual world systems.
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