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Abstract

How can inferences from models to the phenomena they represent be
justified when those models represent only imperfectly? Pierre Duhem
considered just this problem, arguing that inferences from mathemat-
ical models of phenomena to real physical applications must also be
demonstrated to be approximately correct when the assumptions of
the model are only approximately true. Despite being little discussed
among philosophers, this challenge was taken up (if only sometimes
implicitly) by mathematicians and physicists both contemporaneous
with and subsequent to Duhem, yielding a novel and rich mathemati-
cal theory of stability with epistemological consequences.

1. Introduction

Much philosophical work on “first principles” in science has focused
on what might be called first-order (first) principles, which provide the
possibility for or constrain the content of the theory’s subject matter.
For instance, one of the first modern systematic monographs on the
subject, Northrop’s Science and First Principles, took up “dissecting the
given scientific theories which our technical scientists have verified, to
determine what concepts or principles are taken as primary or unde-
fined” (1931, p. ix).1 By contrast, I aim here to exposit a second-order
(first) principle — the titular principle of stability (PS) — which delimits
not what a theory can say about the phenomena it concerns, but what
one, as a user of a theory, can justifiably infer about phenomena given
a theory that models it.2 Here is an informal rendering:

Principle of Stability (informal) An inference from the statement
that a property of a model holds to the statement that the prop-
erty of phenomena (or some possible world) it represents holds is

1. For earlier and later expositions, see also Whewell (1847) and Dilworth
(1994, 2007), and Ivanova and Farr (2015) for a collection of recent papers on
conventional and constitutive principles in science, especially physics.
2. Throughout, I understand ‘inference’ to denote a particular (generic) token
of drawing a conclusion, rather than the type denoted by ‘entailment relation’
or ‘inference rule/schema.’
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justified only if all sufficiently similar models also have that prop-
erty.

Such a property is said to be stable, from which the PS derives its name.
(Except in the inset statements of the PS, I will abbreviate ‘an inference
from the statement that p holds to the statement that q holds’ to ‘an
inference from p to q’ to eliminate the grammatically ungainly propo-
sitional bracket.)

What are the origins of the PS, and how does it compare to other
similar principles? Can it be made more precise? What arguments sup-
port it, and what consequences follow from it? Answering these four-
fold historical, comparative, formal, and epistemological questions oc-
cupy the sequel. In particular, I begin in section 2 showing that the
PS can in fact be traced definitively at least as far back to Duhem
(1954/1914). In this, he presages the reinvention of the principle under
various guises and levels of generality by about a half-century. (Com-
parison with these versions, articulated by philosophers of science and
epistemologists, occupies appendix A. The upshot is that there is a
sense in which Duhem’s PS, in modern language, is still distinct and
powerful.)

The PS must not, however, be mistaken for a metaphysical prin-
ciple, as some early workers in dynamical systems theory and recent
commentators have. Showing this in section 3 provides a natural segue
to a discussion of how the PS interacts with that theory. The far future
states of dynamical systems, it is well known, can exhibit sensitive
dependence on the details of their initial states. This presents what
might seem to be a puzzle: Duhem presents an example of an unstable
property of a system that is taken to be stable in another sense by his
contemporary Hadamard. I argue that this is not in conflict with the
PS, but to show this in more detail requires making the concepts of
stability and similarity more precise. Following work by mathematical
physicists, in section 4 I do so through topological structure on models.
This structure is not itself a part of a theory, but contextually depends
on the interface with experiment, independently specified empirical

knowledge, and the aims of inquiry.
I explore in section 5 one argument for the PS, according to which

the PS is justified in part as a “contingent a priori principle” — one
to which one commits solely in virtue of engaging in most types of
representational model-based reasoning. After addressing two objec-
tions to this justification, the PS appears to be of unusually wide scope,
applying in principle to inferences from properties of models in any
science when one can describe those models with sufficient precision.
Whether this justification is tenable, acceptance of the PS has implica-
tions for other questions in epistemology and philosophy of science.
I adumbrate these for future research and summarize the foregoing
sections in the concluding section 6.

2. Pierre Duhem’s Principle of Stability

In part II, chapter III (“Mathematical Deduction and Physical Theory”)
of The Aim and Structure of Physical Theory,3 Pierre Duhem (1954/1914)
argued that inferences from mathematical models of phenomena —
what he called “mathematical deductions” — must satisfy an addi-
tional criterion if they are to be justified as predictions or descrip-
tions. The basis of this criterion arises from the nature of the rep-
resentational relationship between theory and phenomena. Duhem
(1954/1914, p. 133) observed that

at both its starting and terminal points, the mathematical de-
velopment of a physical theory cannot be welded to observable
facts except by a translation . . . which replaces the language of
concrete observation by the language of numbers; . . . But trans-
lation is treacherous,

for the completely precise theoretical facts of mathematical models be-
lie the vague and imprecise practical facts of actual measured phenom-

3. Despite being included in Duhem’s most influential contribution to philos-
ophy of science, this chapter is little discussed among philosophers. An excep-
tion is Schmidt (2011, 2017), whose different interpretation of Duhem I critically
discuss in section 3.
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ena.
The metaphor of “translation” for representation thus emphasizes its

ability to distort and the gap between the abstract, mathematical mod-
els of a theory and the concrete, physical phenomena of the world.
Consequently, in general, “An infinity of different theoretical facts
may be taken for the translation of the same practical fact” (Duhem,
1954/1914, p. 134). For instance, the theoretical facts of 10°C, 9.99°C,
and 10.01°C in a mathematical model of temperature could equally
well represent the same practical fact of 10°C as determined by a ther-
mometer with an accuracy of only 0.2°C. So when one reasons with a
theory, one must translate practical facts into the appropriate variety
of theoretical facts as inputs, and in deducing from the theory con-
sequences, one must then translate its theoretical consequences into
practical facts. This final translation yields one or more practical facts,
but only when it yields exactly one does the theory successfully justify
inference: “A mathematical deduction . . . may therefore be useful or
otiose, according to whether or not it permits us to derive a practically
definite prediction of the result of an experiment whose conditions are
practically given” (Duhem, 1954/1914, p. 137). Moreover, the extent to
which it is so given is not fixed a priori, but rather is relative to the sen-
sitivity of the experimental apparatus, and more generally, just what
properties can be measured.

These considerations reveal that only certain deductions from math-
ematical models to physical phenomena can be justified, as such deduc-
tions must be faithful to the translation between phenomenal practical
facts and a “bundle” of theoretical facts within the model. As a tool for
making justified inferences about phenomena, therefore,

a mathematical deduction is of no use to the physicist so long as
it is limited to asserting that a given rigorously true proposition
has for its consequence the rigorous accuracy of some such other
proposition. To be useful to the physicist, it must still be proved
that the second proposition remains approximately exact when
the first is only approximately true. (Duhem, 1954/1914, p. 143)

Duhem’s invocation of “usefulness” refers to what he takes to be the
goal of physical theory as an economical representation of experimen-
tal laws that describe and predict phenomena to facilitate precise sur-
rogative reasoning about that phenomena. Ideally, the ranges of these
approximations should be quantified, delimited, and controlled, even
if only probabilistically,4 but even when these ranges are unknown,
one can still demand that the above criterion hold for some degree of
approximation or other. Understanding approximation as a kind of
similarity, one can then see this statement as a clear expression of a
version of the PS.

It seems that Duhem was motivated to formulate this criterion by
the work of Poincaré and Hadamard on celestial and rational mechan-
ics, particularly the problems of the long-term trajectories of bodies
and the “stability” of the solar system — not to be confused with
the sense of stability found in the PS. Rather, the central question of
the “stability” of the solar system is whether each planet will remain
within a bounded area for the whole of its future evolution, or will
instead escape to infinity; hence, it might be rechristened the problem
of the boundedness of the solar system. Hadamard (1898) had demon-
strated how to calculate the exact trajectories of a particle sliding fric-
tionlessly on a surface of negative curvature, shaped not unlike that
of a bull’s head but with the ears and horns extended to infinity. He
showed that arbitrarily small variations in the initial position and veloc-
ity of the particle could change whether it would remain in a bounded
area for all time or eventually shoot off to infinity. Duhem (1954/1914,
p. 141) explicitly cites the question of the boundedness of a particle’s
trajectory in this example as one whose mathematical answers could
never be utilized in physics. For the same reasons, regarding the ques-
tion of the boundedness of the trajectories of the planets of the solar

4. The discussion of the interaction between the PS and probability theory —
or measure-theoretic considerations more generally — is beyond the scope of
this essay. However, see the suggestions for further research in the concluding
section 6.
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system,5

If such a circumstance analogous to the one offered by
Hadamard’s problem should turn up here, any mathematical
deduction relative to the stability [boundedness] of the solar sys-
tem would be for the physicist a deduction that he could never
use.
One cannot go through the numerous and difficult deductions
of celestial mechanics and mathematical physics without sus-
pecting that many of these deductions are condemned to eternal
sterility. (Duhem, 1954/1914, pp. 142–143)

The “eternal sterility” of a deduction is its failure to meet his criterion
for any degree of approximation: Not only does the present degree of
measurement accuracy fail to license the deduction, but any further
improvement of it would as well.6 For Duhem, then, the question of
whether inferences from mathematical models satisfy his criterion is
not confined to fanciful theories unintended to represent actual phe-
nomena, but applies substantively to actual successful scientific theo-
ries of interest.

5. In fact, Hadamard (1901, p. 14) had already made this comparison — that
is, between the question of the long-term boundedness (“stability”) of the solar
system and the trajectories of the particles in Hadamard (1898) — but only
concludes that this could lead one to draw erroneous predictions. He stops
short of drawing any general epistemological conclusions. (See also footnote
15.)
6. This example also illustrates that Duhem took his concerns to apply
equally to qualitative predictions — here, whether the solar system will remain
bounded — as to quantitative predictions, e.g., the exact future location of the
planets. This is in contrast to claims by Franceschelli (2014, p. 122; my trans-
lation) that for Duhem, “the guarantee of validity of a physical theory is its
ability to make experimentally verifiable quantitative predictions.” Qualitative
predictions are equally important for Duhem, even if much of the mathematical
apparatus now used to demonstrate their stability was developed afterwards
— cf. sections 3.2 and 4.

3. Stability, Instability, and Dogma

It is important to distinguish the PS, as one finds its expression in
Duhem (1954/1914) in particular, from other, superficially similar prin-
ciples regarding idealization and the so-called stability dogma in the
theory of dynamical systems. As I discuss in section 3.1, while the PS
has a similar form to various principles concerning the interpretation
of idealized models in science, it is distinct from them in that it is an
epistemological (i.e., inferential) principle rather than a metaphysical
one, and it provides a necessary rather than a sufficient condition for
inference to be justified. Explaining what the stability dogma is, and
why Duhem’s position and the PS are definitely distinct from it (in
section 3.3), requires a short informal excursion into the motivations
of that theory and some of its concepts (in section 3.2). This allows
one to show that a particular type of stability discussed in that the-
ory — structural stability — falls under the auspices of the PS, and
that modern attitudes towards it among practitioners mirror the PS.
These considerations from dynamical systems theory in turn raise a
prima facie puzzle about the toy example by Hadamard that Duhem
discussed, which I outline in section 3.4; the following section 4 goes
on to develop formalism that helps to resolve the puzzle.

3.1 Principles Regarding Idealization
As I outlined in section 2, Duhem’s motivation in “Mathematical De-
duction and Physical Theory” to constrain which inferences from mod-
els were physically justified originated in the imprecision of empirical
data that one provides to the models to make predictions. In more
contemporary terminology, one might say that one idealizes the inputs
into the model to make the model’s use feasible. But the fact that it is
the input data which is idealized, rather than (or even in addition to)
some other aspect of the model, isn’t so essential: The PS constrains
inferences from any idealized models.

Philosophers of science have indeed long recognized that there
must be some connection between idealization and justification of in-
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ferences from models, but what that connection is supposed to be has
varied. For example, van Fraassen (2008, pp. 52–53) calls the following
formulation the Principle of Approximation, which he attributes to
Reichenbach (1956, pp. 93–95): “if certain conditions follow from the
ideal case, then approximately those conditions will follow from an
approximation to the ideal case.” He notes that it cannot apply to all
conditions; the ones to which it will apply will be context-dependent.
This principle is epistemological, like the PS, but provides a sufficient
condition for inferences for other models rather than a necessary one for
inferences from the (perhaps idealized) model under consideration.

However, one can find an expression of a similar principle much
earlier, in James Clerk Maxwell’s Matter and Motion:7

“That like causes produce like effects.” This is only true when
small variations in the initial circumstances produce only small
variations in the final state of the system. In a great many phys-
ical phenomena this condition is satisfied; but there are other
cases in which a small initial variation may produce a very great
change in the final state of the system. (Maxwell, 1925/1877,
pp. 13–14)

Like van Fraassen, Maxwell stresses that the applicability of this prin-
ciple cannot be completely general. Unlike van Fraassen (and Duhem),
Maxwell took this to be a metaphysical principle rather than an episte-
mological one. Indeed, not only does he use causal language to formu-
late it, but he sees it as a constraint on the formulation of physical law
and determinism:8

7. In fact, one might even go further back to Leibniz’s Law of Continuity
(d’Alembert, 2008/1754) and its precursors in Kepler and Cusanus, but one
finds vague, striving, and unqualified expressions in these authors (Boyer,
1959/1949); to my knowledge, Maxwell appears first to give a clear and def-
inite statement to the principle.
8. Although the contemporary distinction between determinism and pre-
dictability was not available to Maxwell, charitably he would mean the latter
in this case (Earman, 1986, 2007).

[O]nly in so far as stability subsists that principles of natural
law can be formulated: it thus perhaps puts a limitation on any
postulate of universal physical determinacy such as Laplace was
credited with. . . .
We may perhaps say that the observable regularities of nature
belong to statistical molecular phenomena which have settled
down into permanent stable conditions. In so far as the weather
may be due to an unlimited assemblage of local instabilities, it
may not be amenable to a finite scheme of law at all. (Maxwell,
1925/1877, pp. 13–14)

Thus Maxwell views stability — here understood in the sense of “small
variations” from the foregoing quotation — as a constraint on the for-
mulation of physical law itself.9

More recent authors have also expressed similar principles con-
straining the interpretation (if not the construction) of physical theories
using idealized models. For example, what Jones (2006) and Lands-
man (2013) call Earman’s Principle states that “no effect [predicated by
a model] can be counted as a genuine physical effect if it disappears
when the idealizations [of the model] are removed” (Earman, 2004,
p. 191). Similarly, there is what Landsman (2013) calls Butterfield’s
Principle, that for genuine emergent properties of idealized models,
“there is a weaker, yet still vivid, novel and robust behaviour that oc-
curs before we get to the [idealized] limit . . . And it is this weaker
behaviour which is physically real” (Butterfield, 2011, p. 1065). Un-
like Maxwell’s (and van Fraassen’s) stated principles (but like the PS),
these are necessary conditions rather than sufficient ones. But like
Maxwell’s (and unlike the PS), they are metaphysical or interpretive
principles rather than purely epistemological or inferential ones: In-
stead of merely constraining what one can infer about phenomena

9. The connection between determinism and laws of nature was perhaps more
immediate to those in the nineteenth century, as determinism was widely
(though not exclusively) taken to be a necessary feature of physical theory
(van Strien, 2014). (Cf. footnote 8.)
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from one’s models, they delimit what physical possibilities those mod-
els can describe.10

3.2 Dynamical Systems and the Stability Dogma
The work of Hadamard (1898) that Duhem (1954/1914) discussed was
a precursor to the modern theory of dynamical systems, which con-
cerns the description of the changes of the state of a system over time.
In abstract terms, a dynamical system consists of a state space repre-
senting the possible states in which the considered system could be,
and a dynamical rule that prescribes how that state changes over time
(Meiss, 2007). A curve in the state space determined by that dynami-
cal rule then depicts the history of the dynamical system, its trajectory
through the state space over time. For example, in simple mechanical
systems, the state space consists of the position and velocity of the
mechanical components, such as those of particles sliding on a surface.
The equation of motion for those particles is given by Newton’s second
law, and the collection of all histories in state space — the so-called
flow for or phase portrait of the system — depicts how the positions
and velocities of any particle changes over time.

An important concept in dynamical systems theory is that of struc-
tural stability, first formally introduced by Andronov and Pontrjagin
(1937) (but under the name “rough system”). Informally, a dynami-
cal system is structurally stable just when all systems with sufficiently
similar dynamical rules produce qualitatively similar phase portraits.11

For example, if there are any fixed points in the phase portrait of a

10. A confusing feature of these principles is that they treat models as being
either idealized or not; but surely idealization comes in degrees and is relative
to the phenomena one wants to represent. In a slogan: no idealization without
(mis-)representation. Further analysis of these problems for principles concern-
ing idealization are beyond the scope of the present essay.
11. More precisely, given the set of self-diffeomorphisms of a compact smooth
manifold M, a particular such diffeomorphism f : M→ M is structurally stable
when there is a neighborhood of f in the C1 (compact-open) topology, such that,
for each diffeomorphism g in that neighborhood, there is a homeomorphism
h : M→ M such that h ◦ f = g ◦ h (Pugh and Peixoto, 2008).

particular structurally stable dynamical system — states at which the
system is unchanging under the dynamical rule — they and their quali-
tative features (such as how trajectories approach or recede from them)
will be the same for all sufficiently similar dynamical systems, even
though other particular trajectories in the phase portrait may be per-
turbed. In this sense, structural stability is a type of stability in the
sense described by the PS, specifically regarding the qualitative fea-
tures of a dynamical system’s phase portrait.

By the lights of Andronov and Pontrjagin (1937) and other early dy-
namical systems theories, “structurally unstable systems were seen as
somehow suspect. . . . [So] structural stability was imposed as an a priori
restriction on ‘good’ models of physical phenomena” (Guckenheimer
and Holmes, 1983, p. 259). This is the stability dogma. However, Gucken-
heimer and Holmes (1983, p. 259) argue that “The logic which supports
the stability dogma is faulty,” because it confuses the epistemological
significance of stability for physical (or metaphysical) significance, that
is, what we can infer for what we can describe as being possible. They
suggest that a proper replacement for the stability dogma would

state that the only properties of a dynamical system (or a fam-
ily of dynamical systems) which are physically relevant are those
which are preserved under perturbations of the system. . . . This
is quite different from the original statement that the only
good systems are ones with all of their qualitative properties
preserved by perturbations. (Guckenheimer and Holmes, 1983,
p. 259)

By “physically relevant” they mean “verifiable physical properties” (Guck-
enheimer and Holmes, 1983, p. 259) that are limited by the precision
of measurement and specification of the system in question, and by
“good systems” they simply mean those that genuinely represent phys-
ical phenomena. This replacement is merely a statement of the PS in
the context of qualitative features of dynamical systems, and seems to
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be the new consensus among dynamical systems theorists.12

3.3 Duhem and the Stability Dogma
Why can’t Duhem be read as an early advocate for the stability dogma,
rather than the PS? Indeed, Schmidt (2011, 2017) has interpreted
Duhem as proposing to constrain which models can represent phys-
ical phenomena to those with stable properties, because without such
a restriction, scientific methodology would be undermined:

Duhem believed . . . that exact sciences are threatened by insta-
bilities and, based on such considerations, he argued in favor
of stability, formulated by a stability requirement, and pursued
what later has become known as a stability dogma. (Schmidt, 2017,
p. 432)

In particular, he takes Duhem to have held that

Inasmuch as only stable theories (with non-diverging deduc-
tions) are assumed to represent a physical phenomenon, a phe-
nomenon is seen as a physical phenomenon if, and only if, it is
stable (Schmidt, 2017, p. 424).

A stable theory in this sense is one whose models have only stable
(empirical) properties — “non-diverging deductions”.13 Thus, Schmidt

12. While this consensus is not complete — see, e.g., Gyenis (2013) for a re-
cent novel defense of the stability dogma — it does seem to be the dominant
position. See also Batterman (2002, ch. 4.4), especially pages 58–59.
13. In this context, Schmidt (2017, p. 424) continues: “methodology constitutes
and constructs reality” for Duhem because he is a scientific “conventionalist”
for whom “the presupposed mathematical structure of theories always plays
a central role in the constitution of physical phenomena.” It isn’t clear how
to reconcile this position on Duhem’s philosophy of science with statements
such as: “A physical theory . . . is a system of mathematical propositions, de-
duced from a small number of principles, which aim to represent as simply,
as completely, and as exactly as possible a set of experimental laws” (Duhem,
1954/1914, p. 19), or “We have proposed that the aim of physical theory is to
become a natural classification, to establish among diverse experimental laws a
logical coordination serving as a sort of image and reflection of the true order
according to which the realities escaping us are organized” (Duhem, 1954/1914,

(2011, 2017) places Duhem within the metaphysical tradition of An-
dronov and Pontrjagin (1937) and Maxwell (1925/1877) before him (for
which, see section 3.1), who take stability to be a constraint on what is
possible to represent in a physical theory.

There are at least two reasons why this interpretation is difficult to
maintain. In the first place, Duhem did not take physical theory to be
in the business of providing constraints on what phenomena count as
physical; the goal of physical theory is rather concision, completeness,
and accuracy in representing measured experimental laws as they re-
flect the natural classification of the world. (See also footnote 13.)

The second reason is that this reading is hardly compatible with
Duhem’s discussion of mathematical astronomy. If Duhem really be-
lieved that just the theories whose models only have stable proper-
ties could represent physical phenomena, then his speculations about
the boundedness (“stability”) of the long-term evolution of the solar
system within Newtonian mechanics would have led to a consequent
skepticism towards the ability of that theory to represent phenomena
at all, a skepticism wholly absent from his writings. Moreover, Duhem
never suggests that the boundedness (“stability”) of the solar system
in the far future could be an unphysical phenomenon, only that as-
tronomers may have no means to answer this question, which arises
from

the rigorous conditions that we are bound to impose on mathe-
matical deduction if we wish this absolutely precise language to
be able to translate without betraying the physicist’s idiom, for
the terms of this latter idiom are and always will be vague and
inexact like the perceptions which they are to express. (Duhem,
1954/1914, p. 143)

In contrast, “The problem of the stability [boundedness] of the so-
lar system certainly has a meaning for the mathematician” (Duhem,
1954/1914, p. 142) because the mathematician need only concern him-

p. 31). See also Ariew (2014, §2).

philosophers’ imprint - 7 - vol. 20, no. 3 (january, 2020)



samuel c. fletcher The Principle of Stability

self with theoretical facts, not the imprecise practical facts to which the
empirically minded astronomer is limited.

3.4 Stability and Instability
There is another connection between the PS and dynamical sys-
tems theory besides the former’s superficial similarity with the sta-
bility dogma. Around the same time that Duhem was writing the
manuscript for the first edition of The Aim and Structure of Physical The-
ory, Hadamard (1902, p. 49) introduced the idea of a well-posed (“bien
posé”) problem. Such a problem, which in the context of a dynamical
system would be to find its trajectory (the solution) given its state at a
time (the data), is well-posed just when:14

1. it has a solution;
2. that solution is unique; and
3. solutions depend continuously on the data.

The last condition is sometimes referred to as the stability condition for
well-posedness, for it guarantees that sufficiently small changes in the
data induce only small changes in the solution. Indeed, it is an example
of stability in the sense of the PS: The (approximate) empirical proper-
ties of solutions to well-posed problems are stable, for sufficiently sim-
ilar data yield sufficiently similar solutions. Hadamard (1923, p. 38),
much like Maxwell (as described in section 3.1), took being well-posed
to be a necessary condition for the mathematical problem to represent
well a natural law; those that did not would be better described as
stochastic.

14. Initially (Hadamard, 1902), the definition only included the first two condi-
tions, as it was only later clear to mathematicians that they did not guarantee
the third. To illustrate this, Hadamard (1923, pp. 33–34) uses the example of
the Cauchy problem for the Laplace equation which he had first discussed in
a lecture to the Swiss Mathematical Society in Zurich in 1917. (There, the term
is rendered as “correctly set.”) But even by then, the third condition is not in-
cluded, and Hadamard would only do so himself late in life after others, such
as Courant and Hilbert (1962/1937), had done so (Maz’ya and Shaposhnikova,
1999, p. 457).

Remarkably, Hadamard’s problem from 1898, the one which
Duhem considered, is well-posed!15 But this presents a prima facie
puzzle: How can the trajectories of sliding particles be both stable in
the sense of Hadamard, yet unstable in the sense relevant for Duhem’s
argument? The answer, of course, is that the two are applying different
notions of approximation or similarity to the particle trajectories. I de-
velop this resolution in the next section (4) using the mathematics of
topology, showing how a topological structure on a set encodes in a
way how its elements are similar to one another; different such struc-
tures correspond to different specifications of similarity, which in turn
have different specifications of continuity and stability.

This mathematics was developed only after the primary work of
Hadamard and Duhem under discussion was completed, and indeed,
was in part inspired from it, for under its influence,

analysts were then obliged to examine, as [Hadamard] says, the
“different types of neighborhoods and continuity,” which led un-
avoidably to functional spaces, general topology and functional
analysis. (Mandelbrojt and Schwartz in Maz’ya and Shaposh-
nikova, 1999, p. 453)

Indeed, with uncanny prescience, Duhem recognized that demonstrat-
ing how inferences from models satisfy the PS, though epistemolog-
ically necessary, might require a level of mathematical sophistication
“transcending the methods at the disposal of algebra today” (Duhem,
1954/1914, p. 143).

15. In fact, Hadamard (1901, p. 14) had already introduced the idea of an ill-
posed (“mal posé”) question to describe, potentially, the boundedness (“stabil-
ity”) of the solar system! However, he does not define this term explicitly but
only in reference to the results of his 1898. (See also footnote 5.) At this point,
the concepts were still vague, and indeed the definition he goes on to suggest
in his 1902 would not make his 1898 ill-posed.
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4. Stability, Topology, and Similarity

Since Duhem (1954/1914) wrote, physicists — especially those work-
ing in the general theory of relativity, the relativistic heir to Newtonian
astronomy — have taken up a formalized version of the PS using topol-
ogy, in particular topological structure on the models of the theory
with which one is working:

It is a general feature of the description of physical systems by
mathematics that only conclusions which are stable, in an ap-
propriate sense, are of physical interest. . . . To obtain a precise
notion of stability in general relativity we must say what “suffi-
ciently small perturbation" means, i.e., we must find a suitable
topology on the space of solutions of Einstein’s equations. (Ge-
roch, 1971, p. 70)

These solutions are just the models of general relativity, the relativis-
tic spacetimes. Similarly, Hawking (1971, p. 395) writes that “the only
properties of space-time that are physically significant are those that
are stable in some appropriate topology." Fletcher (2016, §2) has argued
convincingly that when these authors ascribe “physical significance”
to a property of a model, they mean that the property of phenomena
or some possible world it represents can be inferred from the model.
This is indeed the epistemological or inferential reading that one finds
in the PS, which is to be distinguished from the metaphysical reading
found in the stability dogma and better attributed to the variant phrase,
“physical reasonableness,” found in the literature on which models to
exclude from a theory (Manchak, 2011).

I begin in section 4.1 with the general, abstract features of topolo-
gies relevant to the current discussion, leading to a formulation of the
PS in these terms. This explication of the PS makes it more precise and
applicable to the mathematical sciences. I also address what it means
for a topology to be “appropriate” — cf. the foregoing quotations. This
in turn reveals the means (in section 4.2) to resolve the puzzle between
Hadamard’s and Duhem’s senses of stability adumbrated at the end of

the previous section (3).

4.1 Topology as Similarity
Topology is often known informally as “rubber sheet geometry” be-
cause it concerns the properties of spaces that are preserved under
continuous deformations — stretching and bending, but not tearing
or puncturing. Apart from their geometrical applications, though, the
notions of “closeness” among elements that a topological structure
thereon describes serve well as abstract notions of similarity.

The standard definition of a topology is formulated in terms of an
algebra of open sets, but for present purposes, it will be more illu-
minating to define them in terms of neighborhood systems (Willard,
2004/1970, §4). A neighborhood system for a set X is an assignment
to each x ∈ X of a nonempty set N(x) of subsets of X satisfying the
following conditions:

1. For every U ∈ N(x), x ∈ U.
2. For every U, V ∈ N(x), U ∩V ∈ N(x).
3. For every U ∈ N(x), if V ⊃ U then V ∈ N(x).
4. For every U ∈ N(x), there is some V ∈ N(x) such that for all y ∈ V,

U ∈ N(y).

A set equipped with such a neighborhood system can be called a topo-
logical space. Each U ∈ N(x) is called a neighborhood of x, which
makes sense in light of the first condition, which for our purposes is
the most important, for it allows us to interpret a neighborhood of x
as those elements that are qualitatively similar to x.16 For example, the

16. It is also all one needs in order to specify a neighborhood system. Given,
for each x ∈ X an assignment of a set of subsets satisfying only the first con-
dition, the resulting neighborhood system subbasis generates a unique neighbor-
hood system, namely the smallest neighborhood system whose N(x) contain
the corresponding elements of the neighborhood system subbasis. If one does
not demand the fourth condition, one arrives at a neighborhood system for a
pretopological space. Essentially all the conclusions drawn in the sequel about
topological structure hold as well for pretopological structure, which also has
some advantages for representing finite-precision similarity, but I elide the dif-
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elements of U ∈ N(x) might be said to be “U-similar” to x; those of
V ∈ N(x) “V-similar” to x; and those of U ∩ V “U-and-V-similar” to
x. The second condition guarantees this lattermost conjuctive similar-
ity set is in the neighborhood system. (The third and fourth, which
are less important for present purposes — see footnote 16 — guaran-
tee, respectively, that in a sense, one can always find sufficiently coarse
and sufficiently fine similarity sets.) Hence, a topology on a set, under-
stood as a neighborhood system, defines a class of qualitative notions
of similarity amongst its elements.

Although this is a structurally weak formalization of similarity, it is
strong enough to formalize concepts such as continuity and stability.

Continuity Formally, a function f : X → Y between two topological
spaces is continuous at x ∈ X when for all V ∈ N( f (x)), there is
some U ∈ N(x) such that f [U] ⊆ V; it is continuous (simpliciter)
when it is so at all x ∈ X. This is just to say that for all points
arbitrarily similar to some point in the range of the function, there
is a set whose elements are similar to the corresponding point in
the domain. In other words, similar points in the domain of the
function map to similar points in the range.

Stability Formally, a property of an element x ∈ X is stable just when
that property holds of all elements in some neighborhood of x. This
is just to say that the property holds of all elements sufficiently
similar to x.

These formalizations also explain why mathematicians would call the
third condition for being well-posed from section 3.4 — that solutions
to a dynamical system depend continuously on the data — a stability
condition. For, given topologies on each of the sets of solutions and
data encoding how the members of each respective set are similar to
one another, the map f from data to solutions is continuous at a partic-
ular point d just in case for all the stable properties Ps of f (d), there is
a stable property Pd of d such that f maps all data with Pd to solutions

ference here for simplicity.

with Ps.
Thus, one can give a topological formalization of the PS as follows.

Principle of Stability (topological) An inference from the statement
that a property of a model holds to the statement that the property
of phenomena (or some possible world) it represents holds is justi-
fied only if that property is stable in an appropriate topology on an
appropriate class of models.

The two questions that remain regarding the application of this version
of PS are: What are appropriate classes of models and topologies on
them?

The appropriate class of models should be all and only those of
the theory one is applying, or more generally, just those models rep-
resenting states of affairs that one deems possible in the context of
application. This entails that the application of the PS is always rela-
tivized to such a class; judgments of the stability of a property of a
model may therefore vary depending on of which class of models one
is considering that model to be a member.17 The topology appropriate
to a context of application, meanwhile, should encode amongst those
models all and only the properties that make a difference for that con-
text. Often, these properties will consist in the relevant empirical de-
scriptions or predictions that a model entails, although in principle,
non-empirical properties could be included. Just as with the class of
models, judgments of the stability of a property of a model depend
on the way in which one considers models to be relevantly similar. In-
deed, in the sequel (section 4.2), I argue that this relativity explains the
apparent differences between Hadamard’s and Duhem’s conclusions
regarding the boundedness (“stability”) of dynamical systems like the
solar system.

17. This is in contrast with analogous uses of similarity using possible-worlds
semantics, where the “worlds” are supposed to be all those metaphysically
possible; here, one might say instead that the models represent all the scientific
possibilities (or in the case of a physical theory, physical possibilities). (Cf. ap-
pendix A.2.)
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4.2 Two Topologies on Particle Trajectories
Consider a dynamical system consisting of a particle smoothly sliding
on a surface, much like the example of Hadamard (1898) that Duhem
(1954/1914) discusses, and say that two possible positions or velocities
on the surface are within ε of each other (or ε-close) just when the
magnitude of their difference is less than ε. Then, consider the follow-
ing two subbases for neighborhood systems18 that determine different
histories of the system to be similar:

1. Given a history x, let Nε,T(x) be all the histories whose positions
and velocities are each within ε of those of x for each time during
the time interval [0, T], where T is finite.

2. Given a history x, let Nε(x) be all the histories whose positions and
velocities are each within ε of those of x for each time during the
time interval [0, ∞).

According to the first topology, two histories are similar just when their
positions and velocities are so for some finite interval of time starting
with the initial condition. By contrast, according to the second topol-
ogy, two histories are similar just when their positions and velocities
are so for all time after the initial condition.

These two topologies render different verdicts regarding whether
an initial-value problem for the dynamical system is well-posed, be-
cause they differ regarding whether the map from initial conditions
to histories is continuous: The first topology only requires that histo-
ries be similar (in position and velocity) for (arbitrarily) finite times,
while the second requires them to be so for all times. In other words,
according to the first topology, the evolution of the dynamical system
is continuous at some initial state just when, for any finite T, ε > 0,
all states sufficiently close to that initial state yield trajectories whose
position and velocity are within ε of that of the initial state for non-
negative times through T. According to the second topology, stability

18. The neighborhood system determined from a subbase is simply the smallest
neighborhood system that includes the elements of the subbase.

requires the same, but for all non-negative times.
To see how the two differ even in the simplest cases, consider a

particle constrained to fall in one direction with constant acceleration
a, so that its position is given by x(t) = x0 + v0t− at2, where x0 and v0

are its initial position and velocity, respectively. For any finite T, ε > 0,
one can find δx and δv sufficiently small in magnitude so that, letting
x′(t) = (x0 + δx) + (v0 + δv)t − at2 be the position for quite similar
initial conditions, both |x(t)− x′(t)| and |v(t)− v′(t)| are less than ε

for t ∈ [0, T].19 But one cannot find such δx and δv to satisfy these
conditions for all times — eventually, particles with slightly different
velocities will grow arbitrarily far apart from one another.

The answer to the puzzle of section 4, then, is that, implicitly,
Hadamard used the first topology, while Duhem’s question of the long-
term behavior of the solar system — whether the planets will stay in
bounded orbits — is a property to which only the second topology is
sensitive, of the two.20 In other words, the sense in which the evolution
of the dynamical system under discussion is continuous is that suffi-
ciently similar initial states of the system produce sufficiently similar
trajectories for bounded time; the sense in which it is discontinuous is
that this is not so for unbounded time. Thus, the bounded-time state
properties of the system — i.e., those that are (continuous) functions
of the bounded trajectories — are stable, and are therefore candidates
for inference about the physical system being represented, while some
unbounded-time state properties are not stable, hence are not candi-
dates for such inference, according to the PS.

There is a sense, however, in which both Duhem and Hadamard
would have agreed that the first topology is more appropriate in this

19. Here, v = dx/dt and v′ = dx′/dt.
20. The topologies on the space of histories, or trajectories, that I have defined
are called the C1 compact-open and open (or Whitney) topologies, respectively.
Depending on the initial value problem, one might use slightly different topolo-
gies that are more sensitive to “average” differences rather than maximum ones.
For more technical details on the topologies used in initial value problems, see,
e.g., Lavrent’ev et al. (2003).

philosophers’ imprint - 11 - vol. 20, no. 3 (january, 2020)



samuel c. fletcher The Principle of Stability

context of investigation. Both of them would have judged two states of
the solar system to be similar when the initial positions and velocities
of the planets were similar and that our judgments of the similarity of
future states would be based on the same, not on similarity for all time,
to which we have no empirical access. So the first topology better cap-
tures the continuous connection between similarity of initial states and
similarity of near-future states; if one accepts the PS, near-future states
are thus candidates for justified inference from astronomical models,
while this is not so according to the second topology. Therefore, this
agreement does not conflict with Duhem’s judgment that the perpet-
ual boundedness of the planets’ orbits could be an unstable property,
for based on what we can justifiably infer from the present state of the
solar system, the first topology better captures the ways in which the
planets’ trajectories are similar.

5. Epistemic Status of the Principle

5.1 Contingent Transcendental Arguments for Metaphysical Principles
Implicit evocations of the PS or the patterns of reasoning it supports
seem to be common in the scientific and mathematical modeling liter-
atures, but I have found few instances in which an author questions
it, furnishes an argument for it, or provides a reference or citation ei-
ther for it or for arguments for it. This provides some (weak) evidence
that it could be a candidate conclusion for an epistemological version
of what Chang (2008, p. 113) has called a contingent transcendental
argument for a metaphysical principle,21 one with the following form:
“If we want to engage in a certain epistemic activity, then we must
presume the truth of some particular metaphysical principles.” The re-
sulting principles are a priori not in the sense that they can be known
independently of empirical input or that they prescribe unconditional
categories of concepts for all thought, but rather that they are “neces-
sary conditions for carrying out certain epistemic activities” (Chang,

21. Here, Chang is influenced by the work of Friedman (2001) and C. I. Lewis
(1956/1929) on the relativized and pragmatic a priori, respectively.

2008, p. 121). He stresses that, in contrast with other accounts of the
conditions of cognitive judgment, there is no assumption that anyone
engage in any particular sort of activity at any particular time, so these
principles are really contingent on one’s commitment to doing so; once
one does make such a commitment, it entails commitment to the prin-
ciples, because the latter are necessary in order to render the former
well-defined, intelligible, or possible.

Chang (2008, p. 122) illustrates this idea with the activity of count-
ing: “If we want to engage in the activity of counting, then we have
to presume that the things we are trying to count are discrete.” The
metaphysical principle, of course, is that the type which is the object
of the count must be presumed to be discrete, i.e., consist in absolutely
distinguishable units corresponding with some subset of the natural
numbers. There is no presumption that one must engage in counting,
but if one does, discreteness of the counted must be assumed, for such
an assumption is (partly) constitutive of that activity; without it, count-
ing is unintelligible and pragmatically impossible. Although Chang
(2008, p. 127) suggests a list of other candidate pairs of simple epis-
temic activities and their (at least partially) constitutive metaphysical
principles, he is ultimately interested in how complex activities com-
prise and combine, perhaps holistically, more basic ones.

I would like to suggest the PS as the principle partly concomi-
tant with the complex activity of representational modeling — any
modeling practice predicated on explaining, predicting, or controlling
variable phenomena. This activity is compatible with empiricist ap-
proaches to science: To represent with models does not entail commit-
ment to believing that the model represents non-observable aspects
of reality.22 In particular, I shall suggest that it follows from three
other principles — Justification, Similarity, and Imprecision, each de-

22. Thus, I do not take representation to be solely for the goal of truth-apt
explanation, insofar as it must appeal. Nevertheless, the listed activities do
not necessarily include all modeling practices, such as how-possibly explana-
tions or the heuristic generation of new hypotheses or research questions (Isaac,
2013).
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scribed below — that are constitutive commitments of certain aspects
of representational modeling.

In representational modeling, one uses the model as a kind of sur-
rogate to reason about real world phenomena (Swoyer, 1991; Suárez,
2004; Contessa, 2007).23 Insofar as one is committed to doing so, it
seems that one is committed to the following principle:

Justification One has justification to infer of phenomena only those
properties licensed by the model(s) adequately representing that
phenomena.

Here, a representation is adequate when it satisfies the representational
context’s purposes or objectives, such as meeting a certain standard of
accuracy (Suárez, 2004; van Fraassen, 2008). If several models repre-
sent the phenomena equally well, then only those properties which
all those models have are licensed.24 This principle indeed just states
one’s commitment to representational modeling, for if one had justifi-
cation to infer some other properties not licensed by the model(s), one
just wouldn’t be engaging in that activity.

The kind of representational modeling under consideration con-
cerns variable phenomena, phenomena whose proper description may
differ according to circumstance. Accordingly, it typically is often used
not just to reason about an individual token of phenomena separately
from and without consideration of its relations to all others, but also
about how similar tokens of phenomena relate to one another. For ex-
ample, one would like to be able to describe the circumstances under

23. No assumption is needed that a model represents independently of the
users of a model — this sort of representation is compatible with viewing
models as epistemic tools in the sense of Knuuttila (2011).
24. This aspect of Justification depends on what Chang (2008, p. 123) calls
“the principle of single value . . . that a real physical property can have no more
than one definite value in a given situation.” In contrast with Chang (2008,
pp. 124–125), I see this as a necessary commitment of ascribing the usual sorts
of properties to phenomena rather than the practice of testing by overdeter-
mination, but this difference is not essential for present purposes. (See also
the argument below for the PS based on Justification and the following two
principles, Similarity and Imprecision.)

which a prediction of a quantity from a model is verified when the
measured value of the quantity is very close to but not exactly equal to
the predicted value. So if one commits to reason about the similarity
of phenomena using models as surrogates, then from Justification we
have the following principle:

Similarity As representations of phenomena, models are relevantly
similar according to the similarity of the phenomena they represent.

In other words, models are relevantly similar in virtue of their repre-
sentational similarity, for it is this similarity which allows one to use
justified similarity of models as a surrogate for justified similarity of
phenomena in one’s reasoning. This doesn’t prevent one from judging
models to be similar in other ways in other contexts; it only requires
that, as representational models, models are to be considered similar
in just the ways the phenomena they represent are. A measurement
model for the phenomena, explicit or implicit, determines how phe-
nomena are similar according to the modeler’s investigative interests.

Another common aspect of representational modeling is that the
process of modeling is imperfect: Variable phenomena may not be accu-
rately represented in various ways, leading to the general defeasibility
of model-based reasoning. The sources of this imperfection are diverse:
it could arise from uncertainty regarding the variable phenomena itself,
as Duhem stressed regarding measurement error in the astronomical
sciences, or from idealizations that deliberately distort or abstract from
the phenomena. But ultimately they arise because of the variability of
the phenomena themselves and our imperfection in representing it in
our models:

Imprecision If a model-based inference of a property of phenomena
is justified, then that property obtains for sufficiently similar phe-
nomena.

This principle enshrines a kind of inevitable degree of inaccuracy in jus-
tifiably determining, measuring, and representing phenomena through
modeling. It bears on modeling directly because of the central goal of
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modeling to represent phenomena for surrogative reasoning. The se-
lection of a model to represent measurable phenomena must then be
only up to some sufficiently similar class.

The PS follows from these three principles. For, suppose that some
inference of a property from a model to that of phenomena is justified.
By Imprecision, that property obtains also for a class of sufficiently
similar possible phenomena. Those sufficiently similar possible phe-
nomena are represented by sufficiently similar models, according to
Similarity. Since all those models could have represented the phenom-
ena equally well, they must all have the property originally inferred,
for otherwise, Justification would have not licensed it; one cannot con-
sistently infer incompatible values of a property.25

At least the first two principles are both sequentially dependent
on one another and are each constitutive of a contingent activity. One
needn’t engage in surrogative reasoning about phenomena using rep-
resentational models, but if one does, one commits to Justification.
Even if one does, that reasoning needn’t use similarity concepts, but if
one does, one commits to Similarity. By contrast, Imprecision seems
more directly a hypothesis explaining a widespread empirical gener-
alization, namely that our ability to measure and represent phenom-
ena comes always with some degree of error or imperfection. Perhaps
it could be given a contingent transcendental justification via the in-
evitable imperfect representation of phenomena in a model — for per-
haps, this is just a part of what representational modeling is — but I
shall not pursue that further here. My goal in this section, after all, has
been just to indicate one possible argument for the PS as being (partly)
constitutive of the practice of representational modeling itself.

5.2 Two Objections
While Justification seems quite fundamental to representational mod-
eling, one could consider apparent modeling contexts in which Simi-
larity or Imprecision does not hold. In this subsection, I thus consider

25. This uses the “principle of single value,” for which see footnote 24.

two objections, or seemingly problematic cases, for these latter two
principles, respectively. If these cases were counterexamples to these
respective principles, they would undermine the argument of the pre-
vious subsection in support of the PS. One could still maintain the PS
in light of this, but not in virtue of that argument. Nevertheless, I will
argue that these cases, properly understood, are not such counterex-
amples.

The first case I wish to consider involves a measurement without
any apparent attendant uncertainty; the measurement is thus of a phe-
nomenon that is completely distinguishable from other phenomena of
the same type. It concerns, essentially, discrete-valued phenomena. For
vividness, consider a pilot experiment regarding a treatment designed
to increase the fertility of rabbits. The control group, consisting of those
rabbits which did not receive the treatment, had an average litter size
of 6 kits. Meanwhile, the treatment group, consisting of those rabbits
which did receive the treatment, had an average litter size of 10 kits.
There is no vagueness about the number of kits in each case; although
a statistical model of the treatment effect size — the change in average
litter size arising from the treatment — would allow for uncertainty
thereof, there is no imprecision regarding the phenomena themselves.
Are measurements of such discrete phenomena therefore counterexam-
ples to Imprecision?

They are not if one recalls that the notion of similarity evoked in
Imprecision must be a sort relevant to the context of investigation.
The relevant way in which phenomena should be judged to be simi-
lar should depend on what we can actually measure and determine
of those phenomena. In the case of real-valued measurements, such as
those of position, velocity, or mass, the relevant notion of similarity can
be formalized with the standard topology on the real line, that which
takes as a neighborhood basis at a point the ε-balls, i.e., all the points
within ε distance of that point. This is because arbitrarily close but
non-identical values for these quantities cannot be distinguished. But
in the case of discrete-valued measurements, often the discrete topology
on the measurement values will be appropriate. This is the topology
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whose neighborhood basis at a point can be specified by just the single-
ton set containing that point. According to the discrete topology, each
point therefore has a neighborhood consisting only of itself; there is a
smallest set of elements sufficiently similar to a point, which is just that
containing only the point. This encodes the idea that discrete-valued
measurements can be completely distinguished from one another in a
way entirely compatible with Imprecision: A discrete value at the very
least is indistinguishable only from itself.

The second case I wish to consider involves an apparent mismatch
between model similarity and the similarity of the phenomena the
models represent. I have in mind in particular the class of models in-
volved in so-called inverse problems (Lavrent’ev et al., 2003). The name
is in reference to standard initial value problems, previously discussed
in section 3.2. In those problems, one begins with an initial state of a
system and a fixed dynamical rule on the system’s state space, whereby
one calculates a future state for the system. In inverse problems, how-
ever, one begins with both an initial and final state of the system,
whereby one attempts to calculate relevant features, such as param-
eter values, for the dynamical rule leading to that evolution. Inverse
scattering problems, for instance, are a common inverse problem in
which one attempts to infer the composition of an object according to
how particles or waves travel through it. An example inverse scattering
problem encountered by geophysicists is to determine the composition
of the earth by measuring the amplitude and frequency of different
types of seismic waves produced in an earthquake. They know that
the dynamical law for the waves is some type of wave equation, but
the way that equation describes the propagation of waves through a
medium depends on the density of that medium. The inverse prob-
lem here is thus to infer a density function for the earth from seismic
measurements.26

This inverse problem presents a difficulty typical of that class: It is

26. I have simplified many aspects of this problem for ease of presentation; see,
e.g., Aster et al. (2011) for more on inverse problems in the geosciences.

an ill-posed problem in the sense discussed in section 3.4. In addition
to failing the uniqueness criterion — i.e., having more than one den-
sity function as a solution — it fails the stability criterion: Arbitrarily
small changes in the data can entail arbitrarily large changes in the
inferred densities. In other words, similar phenomena do not seem to
correspond to similar models. Is the existence of such ill-posed inverse
problems a counterexample to Similarity?

It would be, only if scientists could be shown to engage in reason-
ing invoking claims about the similarity of phenomena using their so-
lutions to the ill-posed inverse problems. But in fact that does not occur.
Rather, scientists slightly change the problem using so-called regulariza-
tion techniques that restore uniqueness and stability before engaging in
similarity reasoning. How do they do this? Well, one essential reason
for the ill-posed nature of an inverse problem is that there are many
more degrees of freedom available in the target of inference — the den-
sity function for the earth in the case above — than in the initial and
final data used to make that inference. This allows for density func-
tion solutions that, for example, vary wildly over very short distances.
Such variations are not just physically implausible, but lead to high
predictive error.27 Regularization techniques restrict the class of solu-
tions considered so that much more data would be needed to infer high
frequency density variations. In other words, these techniques bias in-
ference methods towards solutions that are more similar to expected
phenomena (e.g., reasonable density variations) and away from solu-
tions that are less similar (e.g., wild density variations). So, far from
being counterexample to Similarity, inverse problems in fact provide
paradigmatic examples of how the PS influences scientific methodol-
ogy: In order to draw inferences about phenomena, scientists introduce
further assumptions in order to make satisfaction of the consequent of
the PS possible.

27. This can be seen as related to or even an example of over-fitting in statistical
inference.
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6. Conclusions, Implications, and Future Work

In this paper, I have introduced the PS in its historical, comparative, for-
mal, and epistemological dimensions. After tracing some of the history
of the PS as it is found in the work of Duhem (1954/1914) in section
2, I compared, in section 3, my own formulation of it with related no-
tions regarding idealization in science and stability in dynamical sys-
tems theory (as well as safety and robustness in appendix A) that have
perhaps received more attention. The PS emerges as a distinct episte-
mological principle among these. Then, in section 4, I showed how the
work of mathematicians and physicists both contemporaneous with
and subsequent to Duhem took up his challenge (if only sometimes
implicitly) to develop the “mathematics of approximation” with topol-
ogy, yielding a novel and rich mathematical theory of stability. This
allowed for a precise resolution of the seeming tension between dif-
ferent senses of stability invoked by Duhem and Hadamard regarding
dynamical systems like the solar system. Finally, I suggested in section
5 that the PS might be justified as a principle partially constitutive of
the activity of representational modeling itself.

There are implications of the PS that deserve further scrutiny. First,
it shows that what we can justifiably infer in much of model-based sci-
ence depends on what we think is possible, and how we think those
possibilia are similar. Changing the class of models under considera-
tion can change whether a property is stable, as the example in section
5.2 of regularization for inverse problems showed. Changing the topol-
ogy on the models can also change whether a property is stable, as the
example of the two topologies on particle trajectories from section 4.2
evinced. Thus, the PS provides a focal point for more detailed study of
the role of both of these in scientific modal epistemology.

Second, accepting the PS also entails that there will in general
be properties of a domain of phenomena described by a theory that
one is never justified in inferring28 — for Duhem, this could include

28. For example, fix any model M and consider the property that M is exactly
the right model to represent the phenomena. Formalized on the space of mod-

the (un)boundedness (“(in)stability”) of the solar system! This sort
of unknowability deserves comparison with other sorts that philoso-
phers have investigated. For example, many take the conclusion of
the Church-Fitch knowability paradox, that there are some unknow-
able truths, to be counterintuitive (Brogaard and Salerno, 2013). But
in model-based science, the PS seems to entail just this, and moreover,
give a sort of explanation of why: Some truthful ascriptions of prop-
erties, as described by a model, may not be stable and thus not candi-
dates for inference, hence knowledge, at least through that model.

To take another example, the PS could provide examples of the
failure of transmission of justification (Moretti and Piazza, 2013). For
one might be justified in believing that a particular model represents a
phenomenon adequately, yet not be in a position to justifiably believe
all the properties of the phenomena that the model describes — jus-
tification is not transmitted from model of phenomena to property of
phenomena for unstable properties. The PS thus also provides the pos-
sibility of a bridge between traditional epistemology and the literature
on modeling in the sciences.

This bridge could include further consideration of the possible con-
nections between stability and probability. (See further footnote 33.)
Because the stability of a property at a model requires that there be a
neighborhood of that model all of whose members have that property,
a natural probabilistic (or, more generally, measure-theoretic) liberal-
ization would be to allow for exceptions of probability (resp. measure)
zero. What about more probable or widespread exceptions? Perhaps
this will depend on the appetite for risk that the model’s user can
stomach; in any case, a principled argument for or against such a mod-
ification would be interesting.29

els under consideration, this property can be represented as the characteristic
function for M, χM, which takes on the value 1 at M and 0 otherwise. Unless
M is an isolated point in the topology — i.e., it has a neighborhood consisting
of just itself — this property will be unstable at M. Under these circumstances,
the PS entails that it is never justified to infer that phenomena are represented
by exactly the right model.
29. Earlier versions of this manuscript were presented in Madrid, Pittsburgh,
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Appendix A. Comparisons

Many find Duhem’s reasoning, the concept of stability, and the PS
quite natural and similar, even, to other patterns of reasoning, concepts,
or principles found in the philosophy of science and epistemology lit-
eratures. However, this similarity can misleadingly suggest conflation.
In section 3, I already compared the PS with principles regarding ide-
alizations in philosophy of science and with the stability dogma. In
this appendix, I compare stability with two further kinds of similar
concepts: robustness as discussed in philosophy of science (section A.1)
and safety as discussed in epistemology (section A.2). The upshots of
these respective comparisons are as follows:

1. The concept of stability is related to some concepts of robustness,
most closely to derivational robustness, but an analogous principle
concerning the latter has not hitherto been formulated.

2. The concept of stability is also closely related to the concept of
safety, and the PS to safety principles used in the analysis of knowl-
edge, although the latter bears on justified belief rather than justi-
fied inference.

A.1 Robustness
The concepts of “stability” and “robustness” are not always distin-
guished in the literatures that use them, and even when they are, their
relation is not always consistent. For example, the philosophers Hans-
son and Helgesson (2003, p. 221) describe stability as a label for a
family of constancy, invariance, or persistence concepts, of which ro-
bustness is “the tendency of a system to remain unchanged, or nearly
unchanged, when exposed to perturbations.” By contrast, the complex
systems theorist Jen (2003, p. 17) takes robustness to be the more gen-

Doorn, Istanbul, San Sebastián, Munich, Cambridge, Bristol, and Seattle, whose
audiences I would like to thank for their comments, especially Ben Feintzeig
and Conor Mayo-Wilson. This work was supported in part by a NSF Doctoral
Dissertation Improvement Grant and by a Marie Curie International Incoming
Fellowship (PIIF-GA-2013-628533).

eral concept of the two, it being “an approach to feature persistence in
systems for which we do not have the mathematical tools to use the
approaches of stability theory,” which concerns only “fluctuations in
external inputs or internal system parameters” (Jen, 2003, p. 13). Addi-
tionally, Jen (2003, p. 13) emphasizes that questions of robustness direct
researchers away from the specified and delimited class of models they
had been considering. By contrast, the concept of stability used in the
PS is always made relative to a fixed class of models. Thus, each of
the more specific concepts just mentioned — robustness for Hansson
and Helgesson (2003) and stability for Jen (2003) — is closely related
to but less general than the concept of stability as used in the PS: The
reference to tendencies or fluctuations imputes a causal or temporal
dimension to the sort of invariance being described that stability — as
I am using it — need not. Indeed, the models one is considering when
applying the PS need not even invoke any temporal or causal concepts,
so the notion of similarity the PS invokes is more abstract and general.

Woodward (2006) gives a classification of robustness concepts into
four types: inferential, derivational, measurement, and causal. The
more specific concepts discussed above are examples of causal robust-
ness, while measurement robustness refers to the concurrence of differ-
ent, usually quasi-independent procedures yielding a common (or at
least similar) measured value of a property or quantity. Derivational ro-
bustness is the closest analog of the stability concept under discussion
here (although I return to inferential robustness below):30

Suppose that we have a model or theory that allows for the
derivation of observed facts P. Suppose the model contains some

30. Calcott (2011), building on work by Wimsatt (2007) since the 1980s, de-
lineates three types of robustness: robust theorems, robust phenomena, and
robust detection. Putting these into Woodward’s typology, roughly: Robust
phenomena are causally robust, robust detection is measurement robustness,
and robust theorems are inferentially robust propositions; Woodward’s robust
derivations don’t have a clear counterpart (the last paragraph of this subsection
notwithstanding). For this reason, I focus on Woodward’s terminology instead.
(See also Soler et al. (2012) for a variety of other proposals regarding the classi-
fication and analysis of robustness concepts.)

philosophers’ imprint - 17 - vol. 20, no. 3 (january, 2020)



samuel c. fletcher The Principle of Stability

assumption A, which might concern, e.g., the value taken by a
some parameter x, . . . Suppose A was replaced by a different as-
sumption, e.g., a different (perhaps only slightly different) value
for x. Would (a) it still be possible to derive the same result P (or
a result very close to it) or (b) would the model instead predict
a very different outcome P′ or perhaps make no relevant predic-
tion at all? To the extent that (a) is the case, the model might be
thought of as providing a ‘robust’ derivation of P. (Woodward,
2006, pp. 231–232)31

In his discussion of the boundedness (“stability”) of the solar system,
Duhem asked analogs of these questions, where the model is a New-
tonian model of the solar system, P is the eternal boundedness of the
system, and the assumption A consists in the initial positions and ve-
locities of the planets.32

Despite the close similarity of stability and derivational robustness,
there are at least three notable differences between them and their re-
lations to the models or theories to which they are applied. First, the
stability of a property in a model requires that all sufficiently similar
models display that property, while its derivational robustness is rela-
tive to a particular similar model. This bears on the second difference:
Woodward suggests that derivational robustness comes in degrees to
the extent that one can tally different assumptions (i.e., different sim-
ilar models) yielding the same prediction, while stability, as I have
described it so far, does not.33 There is thus a sense in which the de-

31. See also Schwartz (1992, p. 21): “The physicist rightly dreads precise argu-
ment, since an argument which is only convincing if precise loses all its force
if the assumptions upon which it is based are slightly changed, while an ar-
gument which is convincing though imprecise may well be stable under small
perturbations of its underlying axioms.”
32. An apparent but unsubstantial difference: Despite using the phrase “ob-
served facts,” Woodward’s discussion (2006, pp. 232–233) makes it clear that P
represents predictions or descriptions, as with Duhem’s analogs.
33. In his discussion of inferential robustness, Woodward considers the possi-
bility of measuring the degree thereof with probabilities; a probabilistic version
of the PS is worth further investigation but is beyond the scope of this discus-
sion. See also the discussions in sections 6 and A.2 .

gree of derivational robustness could provide evidence for stability. But
third, Woodward is primarily concerned with whether derivational ro-
bustness is a theoretical virtue or lack thereof a vice — the answer
to which, he maintains, “depends in part on what else is true of the
model and the evidence for it” (2006, p. 232) — while the PS concerns
the justification of inferences (or “derivations”) from models.

The fourth type of robustness Woodward considers, inferential ro-
bustness, concerns inferences from a fixed data set that are invariant un-
der a variety of incompatible modeling assumptions, among which one
has no preferential evidence. There is a sense in which this could be
an example of stability, too, in which all the relevantly similar models
agree on the data exactly, although the range of modeling assumptions
considered is typically much broader than what Duhem has in mind.
For, as Duhem’s remarks discussed in section 2 made clear, it would
be an unusual application that took the exact values of input data as
inviolably certain; even for astronomical models, conclusions drawn
therefrom cannot depend on the exact values of the input data (i.e.,
the initial conditions) to be justified. Thus, stability applies not just
to contexts of theoretical modeling that have been appropriately de-
tached from data — a restriction of derivational robustness suggested
by Woodward’s remarks — but also to models that do depend more
directly on data, such as statistical models for parameter estimation.
Like Woodward, Yu (2013) describes stability with respect to appropri-
ately similar data as a non-essential virtue of an estimation procedure,
but this is again distinct from the PS, which, in this case, would place
a necessary constraint on which inferences from estimation procedures
were justified.

A.2 The Safety Condition
Modal conditions figure in many contemporary accounts of justified
belief, particularly in understanding or analyzing the concept of knowl-
edge. The modal concept most similar to stability is known as safety,
and the necessary condition for knowledge most similar to the PS is

philosophers’ imprint - 18 - vol. 20, no. 3 (january, 2020)



samuel c. fletcher The Principle of Stability

In def. of Safety In def. of Stability
belief in P ⇔ property p
is true at world W ⇔ holds of an element x
close worlds to W ⇔ elements similar to x

Table 1: Substitutions that map between the definitions of safety and
stability reveal their common structure.

accordingly the safety condition (Rabinowitz, 2017). Sosa (1999, p. 146)
originally defined a belief in a proposition P of agent S to be safe just
when “If S were to believe P, P would be true.” One can then under-
stand this counterfactual conditional in terms of possible worlds: A
belief in P that is true at a world W is safe at W just when all (suffi-
ciently) close worlds to W in which belief in P obtains is also true.34

When formulated in this way, the analogy between safety and stabil-
ity is obvious: One obtains the definition of the latter from that of the
former through the substitutions listed in Table 1. By the same substi-
tutions, one obtains a necessary condition for justified inference, the
PS, from a necessary condition for justified belief (or knowledge), the
safety condition. An important difference between inference and belief
(or knowledge) here is that the sort of inference under consideration
is always conditional on the model, so it will not entail belief if one
does not also believe the model. The PS applies even to instrumental
uses of model-based inference, and is not intended as an antidote for
skepticism as the safety condition has sometimes been. Despite this
difference, the close parallels between the PS and the safety condition
make it striking that Duhem has not been recognized as formulating a
version of this condition over 80 years prior to Sosa.35

34. For simplicity of presentation, I have omitted the reference to a method M
by which belief is acquired, which Sosa requires be held constant across the
worlds in which the consequent of the conditional is evaluated.
35. The first edition of The Aim and Structure of Physical Theory dates from 1906.

Williamson (2000, p. 146) has formulated a similar version of the
safety condition for knowledge as follows:36 “If one knows, one could
not easily have been wrong in a similar case.” Again, if one substi-
tutes (sufficiently) similar models for similar cases, making a justified
inference from a model to phenomena for knowing, and making a
different inference for being wrong, one obtains a version of the PS.
One potential difference between Williamson’s and Sosa’s versions of
safety is that Williamson allows for some chance of error — to empha-
size, “one could not have been easily wrong.” Although it likely goes
beyond Williamson’s intent, this does suggest a probabilistic qualifica-
tion to the PS.37 (See also footnote 33.) As interesting as it is, I shall
not pursue that qualification here; I consider some directions in which
it could be understood for future work in section 6. (See also footnote
4 for Duhem’s invocation of probability in approximative reasoning.)

References

Andronov, A. and Pontrjagin, L. (1937), ‘Systèmes grossiers’, Dokl.
Akad. Nauk., SSSR 14, 247–251.

Ariew, R. (2014), Pierre Duhem, in E. N. Zalta, ed., ‘The Stanford En-
cyclopedia of Philosophy’, Fall 2014 edn, Metaphysics Research Lab,
Stanford University.
URL: https://plato.stanford.edu/archives/fall2014/entries/duhem/

Aster, R. C., Borchers, B. and Thurber, C. H. (2011), Parameter Estimation
and Inverse Problems, 2nd edn, Academic Press, San Diego.

Batterman, R. W. (2002), The Devil in the Details: Asymptotic Reasoning in
Explanation, Reduction, and Emergence, Oxford University Press, Ox-
ford.

36. Williamson rejects the analysis of knowledge as a misguided project, and so
does not see the safety condition as playing a non-circular definitional role. But
this and other variant attitudes one might have toward the role of the safety
condition in epistemology do not matter so much for my present comparative
goal.
37. See also Pritchard (2007, 2008, 2009), who presents a version of the safety
condition related to those of Williamson and Sosa in connection with his ac-
count of epistemic luck.

philosophers’ imprint - 19 - vol. 20, no. 3 (january, 2020)



samuel c. fletcher The Principle of Stability

Boyer, C. B. (1959/1949), The History of the Calculus and its Conceptual
Development, Dover, New York.

Brogaard, B. and Salerno, J. (2013), Fitch’s paradox of knowability, in
E. N. Zalta, ed., ‘The Stanford Encyclopedia of Philosophy’, Winter
2013 edn, Metaphysics Research Lab, Stanford University.
URL: https://plato.stanford.edu/archives/win2013/entries/fitch-paradox/

Butterfield, J. (2011), ‘Less is different: Emergence and reduction recon-
ciled’, Foundations of Physics 41(6), 1065–1135.

Calcott, B. (2011), ‘Wimsatt and the robustness family: Review of Wim-
satt’s Re-engineering Philosophy for Limited Beings’, Biology and Phi-
losophy 26(2), 281–293.

Chang, H. (2008), ‘Contingent transcendental arguments for metaphys-
ical principles’, Royal Institute of Philosophy Supplement 63, 113–133.

Contessa, G. (2007), ‘Scientific representation, interpretation and sur-
rogative reasoning’, Philosophy of Science 74(1), 48–68.

Courant, R. and Hilbert, D. (1962/1937), Methods of Mathematical
Physics, Vol. II: Partial Differential Equations, Wiley, Singapore.

d’Alembert, J.-B. l. R. (2008/1754), Continuity, law of, in ‘The Encyclo-
pedia of Diderot and d’Alembert Collaborative Translation Project’,
University of Michigan Press, Ann Arbor. Trans. John S. D. Glaus
of “Continuité, loi de,” Encyclopédie ou Dictionnaire raisonné des
sciences, des arts et des métiers, vol. 4. Paris, 1754, pp. 116–117.
URL: http://hdl.handle.net/2027/spo.did2222.0000.868

Dilworth, C. (1994), ‘Principles, laws, theories and the metaphysics of
science’, Synthese 101(2), 223–247.

Dilworth, C. (2007), The Metaphysics of Science: An Account of Modern
Science in Terms of Principles, Laws and Theories, 2nd edn, Springer,
Dordrecht.

Duhem, P. (1954/1914), The Aim and Structure of Physical Theory, 2nd
edn, Princeton University Press, Princeton. Trans. Philip P. Wiener.

Earman, J. (1986), A Primer on Determinism, D. Reidel, Dordrecht.
Earman, J. (2004), ‘Curie’s principle and spontaneous symmetry break-

ing’, International Studies in the Philosophy of Science 18, 173–198.
Earman, J. (2007), Aspects of determinism in modern physics, in J. But-

terfield and J. Earman, eds, ‘Philosophy of Physics’, Elsevier, Ams-
terdam, pp. 1369–1434.

Fletcher, S. C. (2016), ‘Similarity, topology, and physical significance in
relativity theory’, British Journal for the Philosophy of Science 67(2), 365–
389.

Franceschelli, S. (2014), La déduction mathématique et la théorie
physique. Exemple de solutions numériques physiquement utiles, in
F. Varenne, M. Silberstein, S. Dutreuil and P. Huneman, eds, ‘Mod-
éliser & simuler – Tome 2’, Editions Matériologiques, Paris, pp. 109–
135.

Friedman, M. (2001), Dynamics of Reason, CSLI Publications, Stanford.
Geroch, R. (1971), ‘General relativity in the large’, General Relativity and

Gravitation 2(1), 61–74.
Guckenheimer, J. and Holmes, P. J. (1983), Nonlinear Oscillations, Dy-

namical Systems, and Bifurcation of Vector Fields, Springer, New York.
Gyenis, B. (2013), Well Posedness and Physical Possibility, PhD thesis,

University of Pittsburgh, Pittsburgh.
Hadamard, J. (1898), ‘Les surfaces à courbures oppossées et leurs

lignes géodésiques’, Journal de Mathématiques pures et appliquées, 5e

série 4, 27–74.
Hadamard, J. (1901), Notice sur les Travaux Scientifique de M. Jacques

Hadamard, Gauthier-Villars, Paris.
Hadamard, J. (1902), ‘Sur les problèmes aux dérivées partielles et leur

signification physique’, Princeton University Bulletin 13(4), 49–52.
Hadamard, J. (1923), Lectures on Cauchy’s problem in linear partial differ-

ential equations, Yale University Press, New Haven.
Hansson, S. O. and Helgesson, G. (2003), ‘What is stability?’, Synthese
136, 219–235.

Hawking, S. W. (1971), ‘Stable and generic properties in general rela-
tivity’, General Relativity and Gravitation 1(4), 393–400.

Isaac, A. M. C. (2013), ‘Modeling without representation’, Synthese
190(16), 3611–3623.

Ivanova, M. and Farr, M. (2015), ‘Conventional principles in science: On
the foundations and development of the relativized a priori’, Studies

philosophers’ imprint - 20 - vol. 20, no. 3 (january, 2020)



samuel c. fletcher The Principle of Stability

in History and Philosophy of Modern Physics 52, 111–113.
Jen, E. (2003), ‘Stable or robust? What’s the difference?’, Complexity
8(3), 12–18.

Jones, N. J. (2006), Ineliminable Idealizations, Phase Transitions, and
Irreversibility, PhD thesis, Ohio State University, Columbus.

Knuuttila, T. (2011), ‘Modelling and representing: An artefactual ap-
proach to model-based representation’, Studies in History and Philoso-
phy of Science 42(2), 262–271.

Landsman, N. (2013), ‘Spontaneous symmetry breaking in quantum
systems: Emergence or reduction?’, Studies in History and Philosophy
of Modern Physics 44(4), 379–394.

Lavrent’ev, M. M., Avdeev, A. A., Lavrent’ev, Jr., M. M. and Priimenko,
V. I. (2003), Inverse Problems of Mathematical Physics, VSP, Zeist.

Lewis, C. I. (1956/1929), Mind and the World Order: Outline of a Theory
of Knowledge, Dover, New York.

Manchak, J. B. (2011), ‘What is a physically reasonable space-time?’,
Philosophy of Science 78, 410–420.

Maxwell, J. C. (1925/1877), Matter and Motion, Sheldon Press, London.
Maz’ya, V. and Shaposhnikova, T. (1999), Jacques Hadamard, A Universal

Mathematician, American Mathematical Society, Providence.
Meiss, J. (2007), ‘Dynamical systems’, Scholarpedia 2(2), 1629. Revision

#121407.
Moretti, L. and Piazza, T. (2013), Transmission of justification and war-

rant, in E. N. Zalta, ed., ‘The Stanford Encyclopedia of Philosophy’,
Winter 2013 edn, Metaphysics Research Lab, Stanford University.
URL: https://plato.stanford.edu/archives/win2013/entries/transmission-
justification-warrant/

Northrop, F. S. C. (1931), Science and First Principles, Cambridge Univer-
sity Press, Cambridge.

Pritchard, D. (2007), ‘Anti-luck epistemology’, Synthese 158(3), 277–298.
Pritchard, D. (2008), Knowledge, luck, and lotteries, in V. F. Hen-

dricks and D. Pritchard, eds, ‘New Waves in Epistemology’, Palgrave
Macmillan, London, pp. 28–51.

Pritchard, D. (2009), ‘Safety-based epistemology: Whither now?’, Jour-

nal of Philosophical Research 34, 33–45.
Pugh, C. and Peixoto, M. M. (2008), ‘Structural stability’, Scholarpedia
3(9), 4008. Revision #91834.

Rabinowitz, D. (2017), The safety condition for knowledge, in ‘The In-
ternet Encyclopedia of Philosophy’.
URL: http://www.iep.utm.edu/safety-c/

Reichenbach, H. (1956), The Direction of Time, University of California
Press, Berkeley.

Schmidt, J. C. (2011), Challenged by instability and complexity: On
the methodological discussion of mathematical models in nonlinear
sciences and complexity theory, in C. Hooker, ed., ‘Philosophy of
Complex Systems’, North Holland, Oxford, pp. 223–254.

Schmidt, J. C. (2017), Science in an unstable world: On Pierre Duhem’s
challenge to the methodology of exact sciences, in W. Pietsch, J. Wer-
necke and M. Ott, eds, ‘Berechenbarkeit der Welt? Philosophie und
Wissenschaft im Zeitalter von Big Data’, Springer Fachmedien Wies-
baden, Wiesbaden, pp. 403–434.

Schwartz, J. T. (1992), The pernicious influence of mathematics on
science, in M. Kac, G.-C. Rota and J. T. Schwartz, eds, ‘Discrete
Thoughts: Essays in Mathematics, Science, and Philosophy’, 2nd edn,
Birkhäuser, Boston, pp. 19–26.

Soler, L., Trizio, E., Nickles, T. and Wimsatt, W. C., eds (2012), Charac-
terizing the Robustness of Science: After the Practice Turn in Philosophy of
Science, Springer, Dordrecht.

Sosa, E. (1999), ‘How to defeat opposition to Moore’, Philosophical Per-
spectives 13, 141–154.

Suárez, M. (2004), ‘An inferential conception of scientific representa-
tion’, Philosophy of Science 71(5), 767–779.

Swoyer, C. (1991), ‘Structural representation and surrogative reason-
ing’, Synthese 87(3), 449–508.

van Fraassen, B. C. (2008), Scientific Representation: Paradoxes of Perspec-
tive, Oxford University Press, Oxford.

van Strien, M. (2014), ‘The Norton dome and the nineteenth century
foundations of determinism’, Journal for General Philosophy of Science

philosophers’ imprint - 21 - vol. 20, no. 3 (january, 2020)



samuel c. fletcher The Principle of Stability

45(1), 167–185.
Whewell, W. (1847), The Philosophy of the Inductive Sciences: Founded

Upon Their History, new edn, John W. Parker, London.
Willard, S. (2004/1970), General Topology, Dover, Mineola, NY.
Williamson, T. (2000), Knowledge and its Limits, Oxford University Press,

Oxford.
Wimsatt, W. C. (2007), Re-engineering philosophy for limited beings: Piece-

wise approximations to reality, Harvard University Press, Cambridge,
MA.

Woodward, J. (2006), ‘Some varieties of robustness’, Journal of Economic
Methodology 13(2), 219–240.

Yu, B. (2013), ‘Stability’, Bernoulli 19(4), 1484–1500.

philosophers’ imprint - 22 - vol. 20, no. 3 (january, 2020)


	1. Introduction
	2. Pierre Duhem's Principle of Stability
	3. Stability, Instability, and Dogma
	Principles Regarding Idealization
	Dynamical Systems and the Stability Dogma
	Duhem and the Stability Dogma
	Stability and Instability

	4. Stability, Topology, and Similarity
	Topology as Similarity
	Two Topologies on Particle Trajectories

	5. Epistemic Status of the Principle
	Contingent Transcendental Arguments for Metaphysical Principles
	Two Objections

	6. Conclusions, Implications, and Future Work
	Appendix A. Comparisons
	Robustness
	The Safety Condition


