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The subtitle of Deborah G. Mayo’s Statistical Inference as Severe Testing: How to

Get Beyond the Statistics Wars suggests an aim to ameliorate or transcend the

acrimonious debates about the foundations of statistics in the twentieth century. These

debates among scientists, statisticians, and (some) philosophers have concerned the

proper answers to questions about the nature of scientific evidence and statistical

methodology. Classical statistics—also known as frequentist statistics for its historical

affinity with frequentist interpretations of probability—uses test statistics and their

p-values to quantify the (in)compatibility of data with a statistical hypothesis. The

methods of classical statistics thus have affinities with Popperian ideas of falsification

and corroboration. Many scientists and mathematicians contributed to pushing it

∗Thanks to Katie Creel, Kasey Genin, Dan Malinsky, Deborah G. Mayo, and Conor Mayo-Wilson for
comments on a previous draft.
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through adolescence in the 1920s and ’30s, but at the center were Ronald A. Fisher,

Jerzy Neyman, and Egon Pearson. Bayesian statistics, which has seen a renaissance

since mid-century, gauges evidence through the change of prior probability distributions

assigned to states of the world, via the famous Bayes’ theorem. Philosophers may be

more familiar with these latter ideas through the popularity of Bayesian epistemology,

but in Bayesian statistics they often take a different form (as Mayo reveals in her chapter

6, which I discuss below). There is also likelihoodist statistics, which adopts Bayesian

statistics’ emphasis on the conditional probability of the observed data to measure

evidence, without combining it with a prior or using Bayes’ theorem. About all these,

Mayo writes, “my goal is to tell what’s true about statistical methods themselves” (4)

and “to disentangle a jungle of conceptual issues, not to defend or criticize any given

statistical school” (183). Indeed, “I will not be proselytizing for a given statistical school,

so you can relax” (12).

This is only so if Mayo’s excludes as a “school” her own, the titular severe testing.

Her book is indeed best read as a substantial and important contribution to these very

foundational debates, articulating and defending a particular position within classical

statistics (what she calls error statistics) as the correct one for scientists—“For

statistical inference in science, it is severity we seek” (437)—and for decision-makers and

everyday inquirers: “The severity demand is what we naturally want as consumers of

statistics” (444). Severe testing concerns the warrant of inferring statistical hypotheses

from data. To describe how first requires some terminology. A simple (or “point”)

statistical hypothesis assigns a probability distribution to possible data sets. For

example, in a series of independent coin tosses, there is a simple statistical hypothesis for

each value, lying between zero and one, of the probability that the coin will land heads
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on a single toss. These hypotheses determine the probabilities of each possible sequence

of heads and tails. So far, all schools of statistical inference share this in common.

Classical statistical methods add a unary “distance” function dH on possible data X—a

particular type of test statistic, or function of the data X—that quantifies the difference

between a data set and what is expected or likely, relative to some hypothesis H.1

Mayo add two criteria for interpreting how such discrepancies undergird statistical

evidence for a hypothesis. If one is testing a (“null”) hypothesis H, whether simple or

composite—the disjunction of some simple hypotheses—then data x provide evidence for

H to the extent that:

• dH(x), the data’s difference from what is expected under that hypothesis, is low,

and

• Pr¬H(dH(X) > dH(x)), the probability of a difference larger than that given by the

data, if that hypothesis were false, is high.

The first condition is essentially equivalent to requiring that the p-value of the test

statistic forming the “distance” function be moderate or high, i.e., not close to zero. The

probability in the second condition defines the severity of this test. Requiring high

severity, a counterfactual condition, distinguishes Mayo’s account from traditional

versions of classical statistics, which instead typically appeal to the long-run error rates

of testing procedures—e.g., how often one will be in error deciding to accept an

1This is more restricted than some approaches to classical statistical testing, which

allow essentially any test statistic and focus on the long-run probabilities of erroneous

inference with them. That dH should actually quantify a difference between the data and

what is likely can be found in the work of Cox (1958) and Pearson (1947).
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hypothesis if the difference is sufficiently low (i.e., the type II error rate), or to accept its

negation if the difference is sufficiently high (the type I error rate).2 Severe testing is

thus capable to show how data positively corroborate a hypothesis, not just conflict with

it. Severity differs from the power of a test, Pr¬H(dH(X) > cα), in that it depends on

the data instead of a data-independent constant cα set by the type I error rate. (If ¬H is

composite, both severity and power are implicitly functions of the simple hypotheses

that form it by disjunction; in such cases Mayo reports the minimum of the severity

function—see footnote 2.) Thus severity is a data-dependent analog of power, like how

the p-value of a test is the data-dependent analog of the test’s type I error rate.

Mayo rightfully recognizes and emphasizes this difference and its epistemological

consequences: “This rule will be at odds with some common interpretations of tests.

. . . [But] the correct error-statistical view is this one” (201). It also differs from the

perspective of classical statisticians who advocate using confidence intervals (CIs) over

tests. CIs are sets of simple hypotheses selected by a certain rule, based on the data and

assumptions about their possible probability distributions, that guarantees the sets

contain the true simple hypothesis with a certain probability. For example, a 95% CI

procedure for the coin-tossing example would produce an interval of probabilities for

heads, based on the data recorded, such as [0.4, 0.6] for data consisting of half heads and

tails, such that the probability that the interval contains the true heads probability is

0.95. One of CIs’ claimed advantages over tests is that they provide a method for

selecting a range of hypotheses that the data best support. Mayo is sympathetic but

2Mayo has a separate description of the severity criteria needed for evidence of a com-

posite hypothesis logically stronger than the negation (265–6, 351–2): essentially, the

severity for each simple component of the hypothesis must be sufficiently high.
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unswayed: “I don’t want to step too hard on the CI champion’s toes, since CIs are in the

frequentist, error statistical tribe. Yet, to avoid fallacies, this standard use of CIs won’t

suffice” (245). The reason, Mayo avers, is that CIs formally treat all the simple

hypotheses within the set they select on a par, yet they ought not if their severities differ,

as they typically will. In the coin-tossing example with data consisting of half heads and

tails, a heads probability of 0.5 is not equally supported as 0.6, despite both being in the

same interval. In defending her position and distinguishing it from others within classical

statistics, she believes it will resolve or transcend debates about the foundations of

statistics: “Isolating out a particular conception of statistical inference as severe testing

is a way of telling what’s true about the statistics wars, and getting beyond them” (11).

Statistical Inference as Severe Testing incorporates elaborations of severe testing

after Mayo’s 1996 book, often done in collaboration with econometrician Aris Spanos,

such as its integration with misspecification testing, the testing of auxiliary modeling

assumptions in statistical inference. Another novelty is the book’s audience and voice.

Mayo has found a growing audience among philosophers and statisticians for public

discussion of conceptual issues in statistics at her website and blog (Mayo, 2011), whose

stylistic conventions allow for more literary, unconventional, and playful presentations of

ideas. In the book, Mayo accordingly adopts an informal tone that shifts quite casually

between different voices: first-person, both singular and plural, second-person, and

third-person all find a place in the text. At times this can distract from her argument,

but it occasionally augments them, as with a dramatized “theatre” production in

chapter 5.7 involving Neyman, Pearson, Joseph Betrand, and Émile Borel, composed

entirely of quotations from the primary sources. Nevertheless, while these stylistic

choices may on balance invite a wider audience, some familiarity with the statistics wars
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and Mayo’s previous work would aid comprehension of certain content. Part of the

reason is that Mayo sometimes varies her terminology for key ideas across the course of

the book, so readers unfamiliar with the terminology may be unsure of how they relate.

For example, severity is also variously labeled sensitivity (151), attained sensitivity

(196), attained power (342), corroboration (343), and severe corroboration (408). She

acknowledges that when it comes to the severity requirement, “I deliberately phrase it in

many ways” (209) but the effect on understanding is not salutary. It does reflect the

variegated phrasings of casual conversation among specialists on these topics, but those

who haven’t learned the local jargon will need more patience.

For philosophers of science (and any others unfamiliar with the many battles within

the statistics wars) who persist, a cornucopia of rich examples and debates awaits—much

more than can be outlined here. It’s to Mayo’s credit that she introduces to this

audience interesting conceptual debates that have played out in the statistics literature,

where philosophers’ specialized skills often prove useful. Indeed, Mayo is often at her

most insightful in her careful rebuttals of various critiques of classical statistical testing,

based on the assumptions of that framework. Particular standouts in my mind were the

reply to the CI advocate on behalf of statistical testers, which I already discussed above,

and her analysis and rebuttal of influential arguments from Bayesian statistics that

p-values exaggerate the evidence for certain hypotheses in testing (Berger and Sellke,

1987) or do not correspond with the error probabilities of tests (Berger, 2003).

There are two further little-discussed topics for which Mayo deserves recognition for

bringing to readers’ attention. One is historical: based in part on Erich Lehmann’s

posthumously published final book (2011), she argues, contrary to widespread

conception, for a reconciliation of what are usually seen as rival and incompatible schools
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of classical statistical testing: that of Fisher and that of Neyman and Pearson. Typically,

authors present Fisher as the hard-nosed scientist who used p-values as measures of

evidence against hypotheses but had no method to determine when to reject (or accept)

any hypotheses; Neyman and Pearson were the quality control engineers, who only cared

about making a decision to reject or accept, justifying such behavioral strategies in terms

of long-term error rates. Once understood in context, however, the quotations usually

pulled to indict them of propounding methods antithetical to the needs of science—by

the like of philosophers such as Hacking, Levi, Howson and Urbach, Sober, and

others—shows instead that Neyman and Pearson were writing initially rather in the

narrow context of a debate between Betrand and Borel on (effectively) the objectivity of

test statistics, and the importance of predesignation thereof. Neyman developed

confidence intervals and other mathematical techniques to try to explicate Fisher’s

statistical deliverances; sometimes Fisher used dichotomous statistical decision

procedures, and sometimes Neyman and Pearson used p-values to quantify evidence.

The chasm between them was only dug over time with retrenchment of difficult

personalities: “At times, Neyman exaggerates the behavioristic conception just to

accentuate how much Fisher’s tests need reining in. Likewise, Fisher can be spotted

running away from his earlier behavioristic positions just to derogate the new N-P

movement, whose popularity threatened to eclipse the statistics program that was, after

all, his baby” (165). Thus accusations of inconsistency or conceptual incoherence

towards modern approaches that blend these viewpoints are not based in a careful

reading of history (179).

The second topic is the epistemological unclarity in modern Bayesian statistics.

Although Mayo does go in for some standard criticisms of philosophers’ confirmation
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theory and subjective probability in scientific contexts, these are not especially new

criticisms, nor ones that will likely sway convinced Bayesians. What is much more

interesting is the contrast, in chapter 6.3–6.6, of the ideal image of Bayesianism in

epistemology and philosophy of science with its pragmatic, even unprincipled practice in

Bayesian statistics. Priors may no longer represent degrees of belief; updating solely by

Bayes’ rule may go by the wayside as the prior is determined in part from the data; one

may change the likelihood function by running statistical tests with Bayesian p-values, or

consider the prior merely as a device “to smooth the likelihood, making fitted models

less sensitive to details of the data” (435). Bayesian in mathematical machinery, but

frequentist in interpretation? A significant portion of self-described applied Bayesian

statistics takes this attitude. In my opinion, finding an epistemological justification for

this pragmatic Bayesianism is the biggest open issue in philosophy of statistics, because

so much science relies on it.

Despite the richness of many of Mayo’s discussions, some of them do not meet their

stated goals. I’ll describe two. The first concerns the so-called replication crisis in fields

like social psychology and biomedicine where researchers consistently fail to reproduce

many published high-profile experimental results. Mayo writes that the statistics wars

“are the engine behind current controversies surrounding high-profile failures of

replication in the social and biological sciences” (xi). Many diagnoses and treatments

have been proposed, so “If we are to appraise these evidence policy reforms, a much

better grasp of some central statistical problems is needed” (3). Much of the literature

has focused on institutional causes of the replication crisis, such as lack of control over

publication bias and implicit professional incentives for unjustified and questionable

research practices (QRPs) that over-represent positive findings and impede independent
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checks of those findings (Fidler and Wilcox, 2018). Thus, revealing the essential

relevance of issues from the statistics wars, viz. those debates concerning the nature and

goals of statistical methodology, would be significant and novel.

But when Mayo opens the hood to examine the engine, she shines a questioning

spotlight only on familiar problems about the “adequacy of the leap from the statistical

[hypothesis] to the substantive [scientific hypothesis]” and “testing the methods and

measurements intended to link statistics with what [researchers] really want to know”

(100). These are well-recognized cautions about mathematical modeling generally: one

must be careful to ensure that statistical hypotheses rejected or corroborated actually

represent well the scientific (“substantive”) hypotheses of interest. That’s true, but

unrelated with foundational issues in scientific evidence; it establishes no new connection

between replication and the statistics wars. Mayo further emphases that according to her

conception of severe testing, QRPs indeed produce little evidence (104), and she reminds

us that “all the fraud-busting [of questionable research] is based on error statistical

reasoning (if only on the meta-level)” (21–22), but the way in which this is so does not

distinguish severe testing from conventional classical statistics. It provides no new

insight into the source of the replication crisis.

The second discussion that falls short of its stated goals is about objectivity in

classical statistics. Although concerns about objectivity in statistics arise most

commonly regarding prior probabilities in Bayesian statistics, they arise too for classical

statistics when it comes to the choice of “distance” function.3 Different functions can

3They also arise in the use of conditioning to eliminate nuisance parameters—when

to condition, and when not to? (Cox, 1958)—but I will focus just on the case of the

“distance” function.
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generally yield different evidential, hence inferential, verdicts from the same data. This

would be a problem for Mayo if it allowed scientists’ potentially bias-inducing beliefs and

interests to guide their choice of function, hence their evidential verdicts, possibilities she

rejects as inimical to scientific objectivity (223). Now, there are certainly valuable

criteria to impose on such functions, as Mayo discusses in chapter 3.2: unbiasedness,

consistency, and monotonicity with respect to decreasing likelihood ratio—i.e., the power

associated with a test using the function should increase as sample size increases and

sample variability decreases. The ideal case is some sort of uniformly most powerful

(UMP) test. But in general an UMP test may not exist, and the aforementioned criteria

do not pick out a unique function, even if one is to accept them (cf. Howson and Urbach,

2006, Ch. 5). Why doesn’t the resulting latitude in specification introduce a space for

bias or the imposition of values?

Mayo dismisses this line of argument: “The mistake is to suppose we are incapable of

critically scrutinizing how discretionary choices influence conclusions. . . . [O]ur critical

evaluation of what the resulting data do and do not indicate need not itself be a matter

of economics, ethics, or what have you” (224). There are two problems with this

response. The first is that it isn’t yet clear how critical scrutiny’s normative force

actually—not just possibly—precludes the influence of non-epistemic values. It cannot

be mere agreement because Mayo insists (225) that intersubjective consensus forms too

thin a notion of objectivity. Here there is a large and subtle literature on scientific

objectivity with which Mayo could have connected (e.g., Longino, 1990). This is a

missed opportunity.4 The second problem is that without further criteria that provably

4Mayo was aware of the opportunity: she discusses Longino’s ideas in a few sentences

in the book (236).
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select a best function, there are no grounds available on which critical scrutiny could

select between the different choices.5 Until these are known, the question of severe

testing’s objectivity, in the above sense, is not settled.

To be completely clear, these observations are not objections to severe testing per se,

only to claims that the theory is complete (xii, 437) and allows its adherents to get

beyond the statistics wars. It deserves rather to be developed further, an ambition in

which Mayo occasionally and rightfully asks the reader to indulge: “The more devoted

amongst you will want to improve and generalize my severity curves” (350). Such a

project would be worthwhile not just for philosophy of science itself, but for the

philosophical foundation of the statistical methods on which so much scientific

knowledge relies.
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