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Abstract

Recently, Horsman et al. (2014) have proposed a new framework, Abstraction/Representation
(AR) theory, for understanding and evaluating claims about unconventional or non-standard
computation. Among its attractive features, the theory in particular implies a novel account of
what is means to be a computer. After expounding on this account, I compare it with other ac-
counts of concrete computation, finding that it does not quite fit in the standard categorization:
while it is most similar to some semantic accounts, it is not itself a semantic account. Then I
evaluate it according to the six desiderata for accounts of concrete computation proposed by
Piccinini (2015). Finding that it does not clearly satisfy some of them, I propose a modifica-
tion, which I call Agential AR theory, that does, yielding an account that could be a serious
competitor to other leading account of concrete computation.
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1 Introduction

Abstraction/Representation (AR) theory, recently introduced by Horsman et al. (2014) and devel-

oped subsequently by the same authors and collaborators (Horsman, 2015, 2017; Horsman et al.,

2017b, 2018), is a general framework for understanding the relationships between physical sys-

tems and abstract models of those systems via representation relations. Besides yielding analyses

of the similarities and differences between the activities of predictive and experimental science,

engineering, and computation, it also provides accounts of their relations to simulation (Horsman

et al., 2014), the status of computer science as a natural science (Horsman et al., 2017a) beyond

its being a mathematical or engineering discipline (Tedre, 2011), and promises to clarify important

concepts such as the distinction between hybrid and heterotic computing (Horsman, 2015). But

its main goal has always been to answer the question of when and how a physical system is com-

puting. In contrast to other accounts of concrete computation for which representation is central,

the primary intended application of AR theory has not specifically been the human mind, but the

assessment of putative unconventional computing devices: hybrid and heterotic computers such as

the Galaxy Zoo social machine (Horsman, 2015), in which humans are enlisted as part of a galaxy

classifying system (Lintott et al., 2008), biochemical systems such as bacterial chemotaxis and

DNA (Horsman et al., 2017b), and non-sentient biological systems such as slime molds (Horsman

et al., 2018).
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Since AR theory has not heretofore received much sustained philosophical attention as a novel

account of concrete computation, I expound it in Section 2, developing some details that have been

ambiguous or only implicit in it, focusing on how it answers the question, “What is a computer?”

This semi-formal exposition facilitates a clearer organization of AR theory’s conceptual structure

besides suggesting further formal development, perhaps along categorical lines (as described in

footnotes 1 and 5). One of the additional interesting features of AR theory is that, while it is

related to semantic accounts of computation because of its central use of the concept of represen-

tation (Piccinini, 2017, §2), it is distinct from them in how it uses that concept. In Section 3 I

compare them in more detail to show how AR theory is novel. I then evaluate it with respect to

the six desiderata for accounts of concrete computation proposed by Piccinini (2015), finding that

it does quite well on many of them, but could be faulted on some: the senses in which it does (not)

make computation objective and the way it attempts to avoid collapsing into an uninteresting pan-

computationalism. Thus, in Section 5 I propose a modification of AR theory—what I call Agential

AR (AAR) theory—that solves these problems. The central way AAR theory modifies AR theory

is the titular specification of a special role for agents and their capacities to delimit more tightly

and make more objective which physical systems are actually computers. Finally, in Section 6 I

raise some further open questions about (A)AR theory. Of especial interest are its pragmatic value

as a tool for framing questions and facilitating progress in computer science, and its comparative

evaluation with other accounts of computation, such as the mechanistic account (Piccinini, 2015,

2017, §2.5).

Before continuing, a note on my methodology: My goal in general, and in Section 2 in par-

ticular, is not finely exegetical—that is, to distinguish interpretively any slight differences in the

overlapping formulations of AR theory given over the past few years (Horsman et al., 2014; Hors-

man, 2015, 2017; Horsman et al., 2017b, 2018). (In fact, I rely primarily on Horsman et al. (2014),

Horsman (2015), and Horsman et al. (2018).) One should expect a bit a variation in the formu-

lation of a theoretical framework in its first years of development as its central ideas are fixed

by usage and application, and such differences should not necessarily be reified into variations of
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doctrine. Rather, my goal is an explication of AR theory, more or less in the Carnapian sense, in

the service of making it resilient to the kinds of demands philosophers of computation make of

theories of concrete computation. Accordingly I allow that there may be different elaborations or

explications; what follows is my own.

2 AR Theory and its Computers

AR theory grounds its account of concrete computation in a wider framework for scientific repre-

sentation and mathematical modeling by abstractions. To do so, it first presupposes a distinction

between two domains of objects: the physical (states), P, whose objects p are represented no-

tationally with lowercase boldface letters, and the abstract, M, whose objects m are represented

notationally with lowercase italics letters. Concrete physical object states are also assumed to be

related by certain unary functions P → P, the class of which is denoted by F, such as that which

relates an object at a time to the same at another time (i.e., its temporally evolved counterpart). A

representation or modeling relation is then a partial map R that takes P 9 M and F 9 F, where

F is the class of unary functions on M.1 (Following standard benign notational abuse, I will write

R(m) and R( f ), with m ∈ M and f ∈ F, for what are really two distinct relations.) In other words, a

representation maps (some) physical object states to abstract objects, and (some) physical function

relations to abstract function relations.

Most major proposals for theories of scientific representation are not “radically naturalistic”

(Suárez, 2003, p. 225) in the sense that “whether or not representation obtains depends on facts

about the world and does not in any way answer to the personal purposes, views or interests of

enquirers” (Suárez, 2003, pp. 226–7). In other words, which representation relation (if any) obtains

in an actual case depends on the existence of a concrete representational entity e intending that

relation.2 Since the representations of interest here relate abstracta with concreta, e must therefore

1Note the similarity between a representation and a “partial” functor between categories. Horsman (2015, p. 10)
raises the possibility of giving a categorical interpretation of AR theory but does not pursue it. Similarly, I also urge
its pursuit, but in future work. (See also footnote 5.)

2Horsman et al. (2014) use the terminology “computational entity,” superseded already in Horsman (2015).

3



have epistemological or even just pragmatic access to the relevant abstracta. Note however that

“AR theory does not require the representational entity to be human, or even conscious” (Horsman

et al., 2018, p. 128), only that they be capable of representing (i.e., modeling) concrete objects

as abstract ones. The collection of physical object states in the domain of a representation thus

does not determine the representation’s range; this is rather provided by a theory used explicitly or

implicitly by the representational entity, which also specifies a collection of physical object states

to which it applies.3 Importantly, different representation relations applied to a physical object

state in their common domain may not yield the same abstract object. In other words, different

theories can model the same objects in different ways.

Before continuing to how AR theory applies these ideas to concrete computation, it is help-

ful to discuss their potential presuppositions about ontology and representation. Although the

foregoing suggests that AR theory is naturally interpreted as assuming the correctness of both

mathematical platonism (Linnebo, 2018) and scientific realism (Chakravartty, 2017), it’s not clear

that these are actually necessary presuppositions. One might argue, as nominalists have (Bueno,

2014), that the reference to the distinction between the abstract and concrete domains, pace Frege

(1953) and Quine (1969), needn’t imply literal commitment to the existence of abstract mathe-

matical objects—ditto for the concrete ontology postulated by the scientific theories one uses, as

empiricists urge (Monton and Mohler, 2017). The reference to abstract objects in AR theory might

just be taken to be a façon de parler, and the physical domain might ultimately concern just phys-

ical phenomena (Horsman et al., 2018, p. 132). Similarly, although Horsman et al. (2018, p. 130)

seem to endorse the structuralist approach to representation of van Fraassen (2008),4 it’s not clear

3Horsman (2015, 2017) and Horsman et al. (2017b) essentially define a theory to be a set of representation relations,
but this immediately leads to difficulties accounting for how theories can make claims about possible but not actual
concrete situations: such situations are simply not in the domain of physical object states. But this problem can be
avoided if one simply assumes that, whatever theories are, they provide representation relations for a wide range of
domains, including possible but not actual physical states.

4In fact, it’s not clear that all aspects of AR theory are compatible with the structuralist accounts of scientific repre-
sentation given by van Fraassen (2008), who takes representations to entail the proposal or assertion of an hypothesis
that there is an isomorphic embedding of the abstract model into the concrete target of the representation. For AR
theory, a representation relation is a map from the concrete to the abstract: it’s just the wrong kind of relation to be an
isomorphic embedding. Perhaps a structuralist account of representation for AR theory would make the representation
relation a homomorphism, but I won’t pursue this question here.
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that they need to assume anything more about representation than that it allows for surrogative

reasoning about concrete objects using abstract objects, a feature all viable accounts of scientific

representation share (Frigg and Nguyen, 2016).

Indeed, the relationship between computation, on the one hand, and scientific modeling and

engineering, on the other, that AR theory describes rests on how the basis for reasoning using the

latter facilitates that for the former. To begin with, consider two concrete objects states, p and p′,

related by some physical function H: H(p) = p′. H could represent temporal evolution, so that

p′ is just p at a later time, although this isn’t necessary. Whatever H is, suppose that some theory

T provides a representation relation RT that has p, p′, and H in its domain, and that there is a

distance function d defined at least on the range of RT in M that encodes how relevantly similar

two models are. Further, let RT (p) = mp, RT (p′) = mp′ , RT (H) = C, and the relation m ≈ε m′ hold

for m,m′ ∈ M just when d(m,m′) < ε. Then T is said to be ε-valid for p, p′ and H when

RT [H](RT (p)) ≈ε RT (H(p)), (1)

i.e., when C(mp) ≈ε mp′ . So, supposing that there is some particular ε delimiting the range of ac-

ceptable error, this just means that the representation and the function H “approximately commute”

with one another.5 In particular, if H represents the dynamical evolution of one object in a certain

state to another in a certain state, then a theory of that dynamics and the objects to which is applies

is (dropping the ε-) valid simpliciter when it can be used to predict with sufficient accuracy the

abstract state of the object in question over time as represented in T .6 Determining this for a spe-

cific theory is just the process of testing that theory—and that of any instruments used (Horsman

et al., 2014, p. 7)—against its predictions within a contextually determined range of error, hence

requires that measurements sufficiently determine according to T the abstract properties needed to

5One might describe this with an approximately commuting diagram—see footnote 1 for more on the connection
with category theory. Also cf. Corless and Fillion (2014, p. 30), who attribute the idea of an approximately commuting
diagram to describe representation in the context of numerical computing to Robidoux (2002, Ch. 6).

6One could say in such cases that the function CT = RT (H) is the corresponding “abstract evolution” (Horsman,
2015, p. 4), but this should be understood metaphorically: since abstract objects do not exist in space and time they
cannot literally evolve.
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make this comparison. How one musters “confidence” (Horsman et al., 2014, p. 21) that a theory

is valid for a certain range of objects and functional relations between them is thus a matter for

confirmation theory and other criteria for theory selection in science.

Having a valid theory for a domain of object states and functional relations (which one might

demand satisfies any other desired criteria besides predictive success) opens up the possibility of

using it to control and engineer physical objects according to abstract design specifications. Thus,

for a theory T , one can define the instantiation relation as a partial map R̃T that takes M 9 P

and F 9 F. Then R̃T (p′) = mp′ just when there exists some p and H in the domain of validity

for T for which Equation 1 holds. In such a case, the object state p′ has been “engineered” to

the specification mp′ , within the tolerance of error allowed by the approximation relation. One

of the important consequences of basing the engineering specification on a valid theory T that is

predictive and not merely descriptive is that T allows one to answer counterfactual questions about

instantiation: “which physical system, when represented abstractly, would give [under evolution]

the abstract representation that we are trying to instantiate?” (Horsman, 2015, p. 6).7 Thus, even

if one does not in fact engineer the object state p′ according to the foregoing procedure, it still

instantiates the abstract model mp′ .

AR theory describes computing through a particular combination of representation, instanti-

ation, and one further kind of relation: encoding and decoding. Formally, encodings E are just

abstract partial functions M 9 M and F 9 F, and decodings D the same but just on M. Typi-

cally, though, computation is a process by which one attempts to answer a specific question, i.e.,

compute the value f (c) of a specific abstract function f , which may not occur “naturally” in the

abstract models one has for valid theories of controllable physical objects: “there is though no a

priori connection between the abstract specification of the problem, c, and the abstract specification

of the computer, mp. This connection is to be found in the process of encoding” (Horsman et al.,

2018, p. 137). So, suppose again that T is a valid theory for a domain of object states, including

p and p′, and functional relations between them, including H, providing a representation relation

7See also Horsman (2017, p. 198).
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Figure 1: Depiction of a computation according to AR theory. The target output of the computation
is the value f (c) of the function f . The encoding E maps the input value c into a mathematical
model mp and the function f into an abstract dynamics on the model CT , representing some phys-
ical dynamics H as described by some theory T . According to that same theory, mp instantiates a
physical state p and the physical state p′ = H(p) is represented by the abstract model mp′ . Since
the theory T is ε-valid, mp′ ≈ε m′p = CT (mp), as indicated by the dashed arrow. The decoding D
applied to these models then returns the result of the computation. In general the computed result
approximates the value f (c), but this can often be made exact when f is a discrete function.

RT such that RT (p) = mp, RT (p′) = mp′ , and RT (H) = C. Then, for T , an encoding/decoding

pair for a function f with c in its domain satisfies E(c) = mp, E( f ) = C, and D(C(mp)) = f (c).

In a word, the encoding translates the input of the function and the function itself into the models

of the physical object states and their relations, while the decoding translates back the value of the

function. Often D can be the (perhaps weak) inverse of E in its action on M—this is when both c

and c′ are embedded in the same mathematical way in the models of the physical object states—

but this is not at all necessary. In practice, the process of encoding can be concatenated in many

levels, in which an abstract problem is encoded sequentially into models closer and closer to that

used by a theory to represent a physical object, and similarly for decoding. But mathematically,

the composition of these levels of encoding and decoding can be treated as a single operation.

Now all the components of AR theory’s account of concrete computation are in place. Suppose

once again that the assumptions of the previous paragraph regarding the valid theory T and its

domain are in place, as well as the existence of the encoding E and decoding D for a specific

function evaluation f (c) mentioned there. Further suppose that the same representational entity e

using T is able to instantiate mp in p, i.e., R̃T (p) = mp. Then e computes f (c) using p and p′ just
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when e actually performs this instantiation, measures p′ to determine mp′ ≈ε C(mp) for sufficiently

small ε, and decodes the result D(mp′) ≈ε f (c) = D(C(mp)), as depicted in Figure 1. (When the

function computed is discrete, one can often demand that m′p ≈ε mp′ entail that D(mp′) = f (c).)

In this case, the computer is p and p′—typically the same object in different states at different

times. In a word, “physical computing is the use of a physical system to predict the outcome of an

abstract evolution” (Horsman et al., 2014, p. 1), i.e., the evaluation of a function. It is important

that e is actually representing, encoding, and decoding in order for concrete computation to occur:

even if some e in some sense could have done so, no computation has occurred if it did not. The

representational entity selects which representation relation, encoding, and decoding are used, if

any. Any physical object “may potentially be a computer, but without an encode and a decode step

[with representation] it is just a physical system” (Horsman et al., 2014, p. 15).

3 AR Theory as an Account of Concrete Computation

AR theory notably does not fit within the usual division of positions about concrete computation

into mapping, counterfactual, syntactic, mechanistic, and semantic accounts (Piccinini, 2017, §2).

The mapping account, arising from a sketch by Putnam (1960), essentially takes any physical

system that can be accurately described in computational terms to be a computer, i.e., performing

a concrete computation. The best version of the mapping account, according to Piccinini (2015,

pp. 17–18), states that

a physical system S performs computation C just in case:

(i) there is a mapping from [a subset of] the states ascribed to S by a physical de-

scription to the states defined by computational description C, such that

(ii) the state transitions between the physical states mirror the state transitions be-

tween the computational states.

Clause (ii) requires that for any computational state transition of the form s1 → s2
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(specified by the computational description C), if the system is in the physical state

that maps onto s1, it then goes into the physical state that maps onto s2.

AR theory and the mapping account are not notably similar beyond their shared idea that computa-

tion involves physical and computational descriptions of some sort. In the mapping account, there

is no invocation of anything analogous to representational entities or the role of their theories, for

example.

Counterfactual accounts, and the related causal and dispositional accounts, augment clause (ii)

in the mapping account with counterfactual, causal, or dispositional conditions, respectively. Since

AR theory invokes neither causes nor dispositions, I will set those aside to focus on its comparison

with counterfactual accounts. In such accounts, the gloss of clause (ii) by a material conditional is

replaced by a subjunctive conditional: for any computational state transition of the form s1 → s2

(specified by the computational description C), if the system were to be in the physical state that

maps onto s1, it then would go into the physical state that maps onto s2. (See, e.g., Maudlin

(1989, p. 415), Chalmers (1996, p. 312), and Copeland (1996, p. 341) for formulations along these

lines.) This is closer to AR theory than the mapping account because AR theory also demands

that, in order for physical computation to occur, the theory being used to represent the physical

states must support counterfactual relations between states and their representing models. But,

like with the mapping account, there again is, for example, no invocation of anything analogous to

representational entities or the role of their theories.

Syntactic accounts (Fodor, 1975) restrict the acceptable mappings of the mapping account

further than the counterfactual account by demanding that “only physical states that qualify as

syntactic may be mapped onto computational descriptions, thereby qualifying as computational

states” (Piccinini, 2015, pp. 44–5). By contrast, AR theory places no such restriction on the form

of a theory’s abstract representation of a physical state. Indeed, part of the motivation for AR

theory was to provide a framework for understanding for unconventional “new types of computing

[that] are being developed which again do not sit cleanly with what has become the standard model

of computing” (Horsman, 2017, p. 194) using Turing machines, the lambda calculus, etc.
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The relatively new mechanistic account of concrete computation (Piccinini, 2007, 2015) de-

scribes a physical computing system as

a mechanism whose teleological function is . . . the manipulation . . . of a medium-

independent vehicle according to a rule. A medium-independent vehicle is a physical

variable defined solely in terms of its degrees of freedom . . . as opposed to its specific

composition. A rule is a mapping from input and/or internal states to internal states

and/or outputs. (Piccinini, 2015, p. 10)

While AR theory shares with the mechanistic account an emphasis on “medium-independent

vehicles”—it is irrelevant to the theory what particular physical system the abstract models in

a computation represent—it does not demand that a physical computer be a mechanism with a

teleological function. Indeed, even though most computers are designed with such a teleological

function—namely, the one Piccinini describes—AR theory as mentioned before explicitly allows

for the possibility of computers that were not designed as such. More importantly, however, the

mechanistic account denies that “computation presupposes representation” (Piccinini, 2015, p. 3).

By contrast, representation is key in AR theory: for example, Horsman (2015, fn. 3) explicitly

endorses the dictum that there is “no computation without representation” (Fodor, 1981, p. 180).

Semantic accounts of computation share this commitment. They take inspiration from the prac-

tice of using computation to process meaningful information. As Piccinini (2017, §2.3) explains:

The semantic account of computation turns this practice into a metaphysical doctrine:

computation is the processing of representations—or at least, the processing of ap-

propriate representations in appropriate ways. . . . Only physical states that qualify as

representations may be mapped onto computational descriptions, thereby qualifying

as computational states. If a state is not representational, it is not computational either.

Moreover, consider for example a pocket calculator being used to crunch some numbers. Accord-

ing to semantic accounts, its “computational states have their content essentially. If the calculator’s

states represented something other than those numbers, they would be different computational

10



states. If the calculator’s states did not represent at all, they wouldn’t be computational states”

(Piccinini, 2015, p. 26).

Construed appropriately, AR theory also takes computational states, such as c and c′ discussed

in Section 2 above, to be individuated essentially, but only by their mathematical content—that

is, by whatever identity conditions are relevant for the type of abstract mathematical object they

are (cf. Egan, 1999). Furthermore, without an encoding and decoding, the physical states of the

putative computer, as represented by abstract models, would not be computational at all. A similar

conclusion holds for computational processes, which are individuated by the mathematical func-

tion they implement, rather than any cognitive or external semantic meaning that function may

have; without an encoding of the function into the physical relation or process used in the putative

computation, there would be no computation at all. Whatever other semantic content (meaning) the

input and output of the computation and the function computed have for the representational entity,

if any—e.g., a certain division as the dollars owed by everyone in a party at a restaurant, or a partic-

ular minimization as the length of the shortest walking path in a city between two monuments—is

irrelevant for its status as a computation. So, in this sense, a semantic account of computation,

“as closely allied with cognition and a philosophy of logic and language, is the opposite of our

starting-point for AR theory: a computation is abstract; a computer is physical” (Horsman et al.,

2018, p. 131).

Another similarity between semantic accounts and AR theory is that only abstract models, and

the physical systems they represent, can be a component of being a computation or computer,

respectively: inputs to computation can be encoded only into models that instantiate in physical

systems. In other words, without an abstract model being representational, and without a physical

system being represented, computation cannot take place. But this does not entail for AR theory,

as detailed in Section 2, that computation should be identified as the manipulation or processing of

certain representations in certain ways. Some physical computations may involve such manipula-

tions or processing, but this is not the case in general: all that is required is “the use of a computer

(a physical system) to predict the outcome of a computation (an abstract evolution [i.e., the eval-
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uation of a function]) through a compute cycle” (Horsman, 2015, p. 8), namely, the encoding,

instantiation, and decoding of a computational problem by a representational entity according to

some theory.

In sum, AR theory shares with semantic accounts of concrete computation a commitment to the

centrality and indispensability of representation, but does not demand that this notion of representa-

tion “come pre-loaded with implications of intentionality or meaning; it is, at its most fundamental,

a mapping from physical to abstract” (Horsman et al., 2018, p. 130).8 This is not to say that rep-

resentational entities cannot have intentionality in their representations or that what they compute

must be devoid of meaning; rather, whatever intention the representational entity has beyond the

mapping from physical system to abstract mathematical model, and whatever meaning the repre-

sentational entity attributes to the computation and its states beyond its mathematical structure, has

no bearing on the existence and identity conditions for concrete computations.

4 The Evaluation of AR Theory along Six Desiderata

Even though AR theory does not fit neatly within the taxonomy of accounts of concrete compu-

tation provided by Piccinini (2015, 2017), one can still evaluate it according to the same sorts of

desiderata (Piccinini, 2015, p. 11):9

An account of concrete computation that does justice to the science of computation

should have the following features:

1. objectivity;

2. explanation;

3. the right things compute;
8They continue, “We almost never talk about ‘information’ or ‘knowledge’ or ‘meaning’ in using AR theory” but

this seems to be an overstatement on at least one count: “information” is used in the context of discussing AR theory
on several occasions in the same paper (Horsman et al., 2018, pp. 138, 142, 148) and elsewhere. Perhaps it is best
to interpret these positive usages as information in the mathematical sense (Shannon and Weaver, 1949), devoid of
semantic content.

9In the interests of facilitating reference throughout this section, I have separated the desiderata by line breaks in
the following quote instead of listing them in-line.
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4. the wrong things don’t compute;

5. miscomputation is explained; and

6. an adequate taxonomy of computing systems is provided.

Indeed, many of these are also goals of the authors of AR theory: Horsman et al. (2014, pp. 15–

16) take the objectivity of computation (desideratum 1) as an explicit goal, as is an account of

computing allowing for the classification of non-standard or unconventional computers (desiderata

3 and 6) in addition to conventional ones while avoiding the endorsement of pancomputationalism

(desideratum 4) (Horsman et al., 2014, p. 2)—see also Horsman (2015, p. 2) and Horsman et al.

(2018, pp. 138–40, 145–6). Although these authors do not explicitly discuss desiderata 2 and 5,

AR theory does quite well on them. I will discuss these briefly, as well as desideratum 6, before

continuing to desiderata 1, 3, and 4, which require a longer discussion. I will argue that AR theory

could be improved along the latter three, which will lead to Agential AR theory in Section 5.

To being with desiderata 2 and 6: a good theory of concrete computation should both help

explain the capacities, features, and limitations of particular computers, and provide the means for

classifying them along these lines. AR theory allows one to do just this insofar as permits one to

use the best scientific theories of the computers themselves to understand and classify particular

kinds of computers. One can gain understanding and explanation of their types and capacities

precisely because good scientific theories provide such understanding and explanation; the only

additional step one must take is to interface the models of these theories with the mathematical

models for computation via the process of encoding and decoding. By no means does AR theory

make this routine or automatic, but it does show how it is possible, even practically.

Desideratum 5 demands that a good theory of concrete computation allow for a concrete com-

putation to go wrong and explain how. For example, a concrete computation of f (c) could yield a

value c′ not equal (or otherwise relevantly approximate) to it, could return a abstract model not in

the domain of the decoding function, or even yield a physical system not within the domain of the

theory T being used. Just as with desiderata 2 and 6, AR theory succeeds in meeting this demand

because it shows that the success of a concrete computation depends on the representational entity
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using a valid theory, so miscomputation is a sign of either invalidity or misspecification. More-

over, AR theory indicates clearly several different aspects of validity that could fail: a valid theory

may be inadvertently extended beyond its range of validity, for example, as often happens when

a conventional silicon computer overheats, or the confidence in the validity of the theory may be

unwarranted. In any case, the use of the physical computer as a means to predict must meet the

relevant counterfactual conditions that the scientific theory provides.

The demand to make concrete computation an objective matter is, at least in part, to make it

compatible with ideas about scientific objectivity and applicable to the sciences that use compu-

tational concepts—in a word, to make claims about concrete computation responsive to empirical

evidence (Piccinini, 2015, pp. 11–12). Of course, there are many different senses in which science

might be or aim at being objective (Reiss and Sprenger, 2017), the two most relevant of which here

are mind-independence and freedom from bias.10 Mind-independence is the type of objectivity that

demands that the products of scientific research do not essentially depend on our human perspec-

tive on the world. Freedom from bias, meanwhile, is a sort of intersubjectivity of the scientific

process to correct the idiosyncratic perceptions and tendencies of individual scientists, typically

through the use of measurement and quantification. Piccinini (2015, p. 12) seems to have in mind

the latter, freedom from bias, as he requires that “When [scientists using computational descrip-

tions] disagree, they address their opponents by mustering empirical evidence about the systems

they study.” Horsman et al. (2014, p. 16) seem to have both senses in mind when they remark that

whether something is a computing system “is not something that is subjective or a matter of opin-

ion: it is a matter of fact about which hypotheses can be formed and tested” and that, regarding a

putative case, the fact “that argument was required to settle the matter does not make it subjective”;

but they certainly intend the mind-independence sense when they caution,

If we are now saying that computational processes cannot be described independently

of computational entities (human or otherwise), then an immediate concern is that the

act of computations then becomes wholly subjective, possibly subjected to the intent
10A third sense is the so-called “value-free ideal” of having no social, moral, or political value impinge on scientific

method or product.
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of the entity running the computer, and not something that can be dealt with by an

objective scientific theory of computation. (Horsman et al., 2014, p. 15)

To address this concern, they state that “It is simply an objective fact of the matter whether

or not a computational entity is part of the system. . . . [I.e.,] the requirement is that an encoding

and a decoding are present, an objective fact of the matter” (Horsman et al., 2014, p. 15). They

give as an example a student working at a calculator: “By close observation of the student, you

can determine whether information is being encoded into and decoded from the calculator. You

as the observer can formulate and test the hypothesis that the student and calculator form a com-

puting system” (Horsman et al., 2014, p. 15). However, it’s not at all clear just what the objective

criteria for “observing” or “testing” for an encoding or decoding are in the general case—these

are abstract processes, after all, in AR theory—and the example of the student depends on our

plausible imputation of intent to the student’s behavior. Horsman et al. (2017b, p. 105) write that

“if a certain process can or could occur in multiple different ways, all of which instantiate a single

abstract object or evolution, then this is the signature that it is the abstract and not the physical op-

eration that is important,” which is a sign of (but not sufficient for) representation. But important

for what (or for whom)? And what kinds of multiply realized processes count? Despite statements

to the contrary, methods in general by which researchers could come to intersubjective agreement

about whether an object is a representational entity and what theory it is using, independently

of any attributions by human observers, are yet forthcoming. This is the objectivity problem for

representational entities.

Another, more localized but still important problem for AR theory to realize the objectivity

desideratum comes from the definition of (ε-)validity for theories, which requires that the theo-

retically predicted model only be approximately the same as the measured one (equation 1). The

conflict for objectivity is that, as things currently stand, there seems to be no fact of the matter re-

garding what the relevant notion of approximation should be—i.e., how to determine the distance

function d on abstract models—and even after this is determined, how close the approximation

should be in order to count a theory as valid. Another conflict for AR theory as currently de-
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veloped is that the representational entity is required to have “confidence” (Horsman et al., 2014,

p. 21) in the validity of the theory, or that the theory be “well understood” (Horsman, 2015, p. 7),

especially as it applies to the physical functional relations in its domain (Horsman et al., 2018,

p. 134), but it is not clear that these concepts are applicable to general representational entities;

hence, what objectively determines whether they obtain? This is the objectivity problem for the

validity of theories.

I will propose a slight modification to AR theory in Section 5 to solve the objectivity problems

for computational entities and theory validity, but first I will evaluate AR theory along desiderata 3

and 4. These two require a theory of concrete computation to rule correctly on intuitively evaluable

cases, both of computation and non-computation, respectively. Historically, accounts of concrete

computation have not had trouble describing what are intuitively computers as such, but have

had more trouble ruling out non-computers. In particular, mapping, counterfactual, and some

semantic accounts have entailed a version of pancomputationalism, the thesis that all physical

systems are computers (Piccinini, 2017, §3). Unlimited pancomputationalism holds in particular

that each physical system performs each possible computation, or at least any sufficiently complex

physical system performs a large number of inequivalent computations. Its weaker version, limited

pancomputationalism, maintains only that each physical system performs at least one computation.

Now, as an account designed to accommodate both conventional and unconventional com-

puters, AR theory seems to be entirely successful in describing classical digital computers, the

Babbage difference engine, even slime mold maze solvers as computers (Horsman et al., 2018,

§3).11 Additionally, Horsman et al. (2014, p. 2) were originally motivated on practical grounds to

provide an account of concrete computation that rules out pancomputationalism—any account that

allows it, they contend, will not be of much use to science, and this is surely correct (at least for

unlimited versions). But it is not yet clear how AR theory on its own rules it out, even the unlimited

version, in part for reasons related to the objectivity problem for representational entities.

To see how this problem arises, consider any physical system state p as it arises within a

11Horsman et al. (2017b) also do so for chemotaxis in bacteria and DNA, but these cases less plausibly fall under
the category of intuitively evaluable computations.
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sufficiently large (i.e., infinite) state space and suppose that it is its own representational entity.

Given any theory valid for the states of this system and its dynamics H12 and some computational

problem—i.e., a function f to evaluate—there will be some encoding E that maps the modeled

dynamics C to the function f , an initial state mp = RT (p) to any desired input c to the function

f , and hence the final state mp′ = H(p) to the desired output f (c). Thus, without clear restrictions

on what can count as a representational entity—that is, what physical objects can represent with

theories and encode and decode—just about anything (sufficiently complex) could be computing

anything.13 This is the same pancomputational problem afflicting semantic accounts when they put

no restriction on what can be representing (Shagrir, 2006, p. 396).

Now, Horsman et al. (2018, p. 145) respond to this problem by reference to Horsman et al.

(2017b), who they claim show that representation “is a highly non-trivial process requiring the

active and explicit use of representation intrinsic to a system’s processes.” Horsman et al. (2017b,

§4) analyze cases of putative computation in biological systems, arguing that representation and

signaling—a trivial computation—occur in chemotaxis for bacteria and in DNA transcription. Sup-

pose one accepts these analyses; it’s then true that these examples are non-trivial, but why should

all examples be so in order to be legitimate? There’s nothing in AR theory itself which establishes

what counts as “non-trivial,” “active,” or “explicit” representation, much less why these features

should be at all relevant for restricting what can count as a representation or representational entity.

This is the pancomputationalist problem for representational entities.

AR theory faces another pancomputationalist problem, implicit in the above scenario, even if

that for representational entities is solved. For suppose some restriction is placed on which rep-

resentations and representational entities are legitimate, and that some person—clearly a viable

representational entity—uses a theory to represent legitimately some physical object, say, a rock.

12There is always some valid theory for any domain, namely, the one whose representation maps each physical
system to the same abstract object—this is the constant representation. However, we must assume here some theory
whose representation relation has a range with an infinite cardinality. Unless the physical domain P is much simpler
than it appears, this will be easily satisfied.

13Another option would be to restrict the admissible representations or encodings directly, although to avoid being
ad hoc this would move AR theory in the direction of a syntactic account of concrete computation. I won’t pursue
that option here, since it is inimical to the motivations for AR theory for understanding unconventional computation,
as discussed in Section 3.
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Again, if its state space is sufficiently large, then there will be some encoding of an arbitrary prob-

lem into the abstract model for the physical object and its evolution. At the very least, with the

identity encoding they can compute E(C) = C, and with the constant encoding they can compute

the identity function E(C) = id. Indeed, why cannot the encoding and decoding simply be com-

posed with the representation to provide a new representation? This is the pancomputationalist

problem for encoding/decoding.

Horsman et al. (2018, p. 146) have also responded to this sort of issue: “All the ‘computation’

of establishing the mapping from rock states to table entries [of values of f ] is being done in the

representation stage: the rock itself has computed none of this.” This is certainly true, intuitively,

but there is no restriction on what theories, representations, and encodings and decodings can be

used in AR theory as currently formulated. One might be tempted to say that the computational

work done constructing the table entries should be included as a necessary part of the computa-

tion, but this quickly leads to a regress: should one include the computational work needed to

construct the computer used to determine the table entries? Just how “much” computation must

have occurred to make inclusion necessary? Even if this response were a tenable solution to the

pancomputationalist problem for encoding/decoding, it would generate a new problem for desider-

atum 3, for what one thought were standard computers are not because one has left out all the

computers used to design them, etc.

5 Agential Abstraction/Representation Theory

In Section 4, I showed that AR theory does well along four of the six desiderata for accounts of

concrete computation proposed by Piccinini (2015, p. 11). As it is currently formulated, how-

ever, it has problems with desideratum 1, objectivity of computation, and desideratum 4, that the

wrong things don’t compute. There were in fact two distinct problems for each: respectively, the

objectivity problems for representational entities and the validity of theories, and the pancomputa-

tionalist problems for representational entities and encoding/decoding. However, as I will argue in
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this section, these problems can be overcome by some modifications to AR theory, in particular an

appropriate restriction on representational entities and how their capacities relate to representation

and encoding. Such representational entities can be called agents, and the result, Agential AR

(AAR) theory.

In their discussion of how to characterize a physical process as information processing, Maroney

and Timpson (2018, p. 124) emphasize that

the question of how information-processing tasks can be physically instantiated cannot

be separated from the question of the existence of physically embodied agents who

are informing and who might be being informed by the task. . . . It is their physical

attributes and abilities that ultimately fix the starting and ending points of the process.

Although my goal here is not a characterization of information-processing tasks per se, this is still

a valuable insight that applies mutatis mutandis to computation. Since the input and output of a

computation are abstract objects, any agent qua representational entity can be characterized as

• having (in principle) access to or understanding of these abstracta, including encodings,

decodings, and representations,

• being able to observe or measure the outcome of a physical evolution of a putative concrete

computation to compare its result with that abstractly predicted, and

• having the ability (in principle) to gain evidence, hence confidence, about the validity of a

theory concerning the objects involved in the putative concrete computation.

Certainly humans can thus be agents, while equally certainly rocks cannot. Although we are

not certain about exactly which objects have these capabilities—i.e., are agents—the investiga-

tion of this boundary is part of the subject of cognitive science, including animal cognition and

artificial intelligence.14 Thus, although there may not be agreement regarding which objects have

14I am writing as if there could be only one agential community—a group of objects considered as agents
simpliciter—presumably the one in which we are included. There could be, however, as many distinct such com-
munities as there are groups with different shared capabilities for abstraction and representation, observation and
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these properties, there is some confidence that over time intersubjective agreement will form—thus

which objects are agents is objective is the sense of being free from bias.15 Further, although hav-

ing the capacity to be an agent may involve having a mind (of a sort), this is a property that does not

depend on any individual’s opinion. Thus, this characterization of representational entities solves

their objectivity problem.

I also claim that the same characterization solves the pancomputationalist problems for repre-

sentational entities and encoding/decoding. Regarding the former, an arbitrary physical object just

won’t have the right capacities to be an agent, so not all objects compute in virtue of representing

themselves as such. Regarding the latter, the only encodings, decodings, and representations that

can be used in a legitimate concrete computation are those that are directly accessible, or compre-

hensible, to the agent. This rules out the many arbitrary encodings and decodings, as well as ones

that, though not arbitrary, are too complicated to be immediately accessed, and similarly for repre-

sentations. Moreover, the agent must be able to observe or measure the physical object used as a

computer, and actually do so for a concrete computation to occur. Now, it’s true that most users of

modern computers don’t actually have accessible abstract representations of them as physical de-

vices, nor for the encodings they effect when they alter the device’s state by typing in instructions

through a keyboard. But representations of all of these have been constructed by the designers of

the computer, who are part of our epistemic community (Maroney and Timpson, 2018, §6.1), so

in principle these representations are available to human users. By contrast, if one encountered an

alien putative computer, one would have to develop a theory about its behavior in enough circum-

stances before one could actually use it in a concrete computation. Thus, the above characterization

of representational entities as agents and the encodings, decodings, and representations they allow

also seems to solve their pancomputationalist problem.

prediction, and theorizing and confirmation. Thus one can think about agential communities as a sort of epistemic
community (van Fraassen, 1980, pp. 18–9), of which there can be many and which can in principle change over time
(van Fraassen, 2005). But delineating the extent and multitude of these boundaries is not necessary for AAR theory:
it is always applied relative to some such community, of which we can at least identify a prototypical or otherwise
representative member.

15This would follow from one view of cognitive science’s status as a science. Failing that, however, one could
always conservatively restrict to humans.
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The only problem that remains is that of the objectivity of the (ε-)validity of theories. Recall

that this problem was to find an objective way of characterizing how abstract models should ap-

proximate one another, and what that degree of approximation should be, in order that a theory be

counted as valid, and how a representational entity e can have confidence in that validity. Regrad-

ing the latter part of the problem, agents are just the sort of objects that can gain evidence, hence

confidence, about the validity of a theory, whose relevant objectivity is underlaid by the science

and investigation used to produce that evidence. Regarding the former part, one should understand

the distance function de (defined at least on the range of RT in M and the domain and range of

functions f to compute) as formalizing how relevantly similar two models are according to the

purposes and interests of e. These purposes and interests are contextual to encodings E and decod-

ings D actually used (or at least understandable) by e, and functions f that e intends to compute.

Relative to these, one can simply say that theory T is ε-valid for a range of physical objects p and

functional relations among them H just when in fact for every c in the domain of f ,

D(RT (H(R̃T (E(c))))) ≈ε f (c), (2)

i.e., the process of encoding c into a model, instantiating that model in a physical system, letting

the system evolve (say), then measuring it to determine its representing model and decoding this

result is approximately the same as computing the value of the function f (c). When an equality

is achieved, validity (simpliciter) obtains, but otherwise the relevant threshold ε for which the

approximation is good enough is determined again according to the purposes and interests of e.

This answer might at first seem circular: how can one define validity using instantiation if the

latter requires a valid theory? It is not circular because an agent can apply the representations of a

theory and attempt to instantiate an abstract model in a physical system without the secure grasp

that the putative computation will succeed. In this sense, unsuccessful computations are in fact

non-computations. Validity in this sense is established in practice for lots of very simple functions,

which are then composed together in the manner of recursion theory to allow for the computation
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of more complicated functions. Thus, on the picture provided by AAR theory, the modularity of

computation is more of a practical demand than an essential feature.

6 Conclusions and Further Questions

While the problem of the objectivity of the validity of theories was solved largely by filling in

details perhaps compatible with AR theory, the other three problems—of the objectivity of repre-

sentational entities, and both pancomputationalist ones—were solved only by explicitly restricting

representational entities to agents, and encoding, decoding, and representation to those intelligible

by agents. One of the possible costs of this transition to AAR theory is that it is less clear how

to vindicate biological systems such as bacteria and DNA as computers, with themselves as rep-

resentational entities (agents), contra Horsman et al. (2017b). However, perhaps this just shows

that bacteria and DNA really aren’t by and for themselves computers at all. AAR can at least

explain how we can find it fruitful to describe the physical behavior of such systems (and others)

in terms of computation: although we, as agents, are the representational entities, the theories we

develop to predict their behavior can be framed in a simple computational language that, if they

were accessible to the biological systems, would allow them to be agents, too, and compute for

themselves.

Solving these problems, though, comes with more direct benefits to theories of computation.

Within AAR theory, it allows one to pursue further work connecting it with mathematical theo-

ries of computation and with computational complexity theory. Regarding the former, one has

with AAR theory a better grip on which mathematical theories of computation can be considered

more “physics-like” by understanding how they require simpler embeddings into the models of

the physical computer (Sutner, 2018); when one considers a variety of theories besides classical

mechanics, perhaps some mathematical theories will be more like specific physical theories than

others. Regarding the latter, having an objective theory of when physical systems are computing

opens the possibility for an objective and quantitative theory of physical computational complex-
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ity and information processing, i.e., the physical “costs” of performing computation or processing

information (Maroney and Timpson, 2018).

Another line of investigation concerns a deeper evaluation and appreciations of AAR theory

within the philosophical debates concerning the proper account of concrete computation, espe-

cially since I have shown (in Section 3) how it does not fit neatly into the standard categorization

of these accounts. Given its similarities and differences with semantic accounts discussed in Sec-

tion 3, it deserves a more direct evaluation of whether it avoids the principal criticisms of these

accounts (Piccinini, 2015, Ch. 3), as well as a thorough comparison with mechanistic accounts of

computation for their comparative strengths and weaknesses. Since AAR theory seems to satisfy

the desiderata for a concrete account of computation given in Section 4, it would be interesting to

investigate on what other grounds it could be normatively compared with the mechanistic account.
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