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Summary. — In this note we briefly review the present status of cosmology in
massive bigravity. The bottom line is that no stable FLRW cosmology exists at
the leading order, showing a breakdown of cosmological perturbation theory much
earlier than in GR. A possible way out could be a non-linear treatment.

PACS 04.50.Kd – Modified theories of gravity.
PACS 98.80.Jk – Mathematical and relativistic aspects of cosmology.

1. – Introduction

One of the most compelling problems in the theories of standard cosmology is related
to the present acceleration of the Universe. The simplest explanation consists of adding
to the action of General Relativity (GR) a (cosmological) constant Λ tuned to fit with
experimental data exacerbating, if possible, the old cosmological constant problem [1].
An alternative approach is to look for theories of gravity that modify GR in order to
get a weaker interaction at large distances, but still retaining the good short distances
behaviour of GR (see [2] for a recent review). Since GR turns out to be the unique
non-linear theory of a massless spin two field, any deviation will introduce new degrees
of freedom (dof). These extra dof therefore have to kick in only at cosmological scales
and need to be screened below the Solar System scale [3](1).

An obvious modification of GR is to promote the massless spin two mediator to a
massive one, hence the name of massive gravity (for a review see [5]). A massive spin
two field propagates 5 dof and this statement should be retained also when non-linear
self-interactions are introduced into the action. For a long time it was believed that a
fully non-linear theory of massive gravity could not exist due to a 6th ghost mode that

(1) Recently, shadows have been casted on the trustability of the Vainshtein mechanism [4].
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usually appears at higher orders in perturbations or around non-trivial backgrounds [6].
Only very recently it has been realized that it is actually possible to construct several
potentials which propagate 5 dof [7], avoiding the extra ghost mode. Among the Lorentz
invariant candidates, the only one known that allows for a Minkowski background, and is
therefore a non-linear completion of the Fiertz-Pauli action [8], is the dRGT model [9,10].

To write down a self-interaction term for the metric, it is mandatory to introduce
another (0, 2) tensor field fμν that allows for the unique diff invariant construction Xμ

ν =
gμαfαν ; this term will be the building block of the massive gravity potential. The extra
tensor fμν can be considered as a fixed, God given object like an aether, or dynamical
with its own Ricci scalar in the action. In the last case we are in the framework of
bigravity theories [11-14] where at linear level a massive and a massless spin two field
propagate. It should be stressed that in massive gravity the mass scale of the graviton is
set by hand and typically when considered as an effective field theory the resulting cutoff
is much lower then the Planck mass. Thus, in order to be a fully predictive theory, an
ultraviolet completion is needed.

Cosmological solutions strongly indicate that the bigravity formulation works bet-
ter compared to the fixed second metric one. Indeed in the second case spatially flat
homogenous Friedmann-Robertson-Walker (FRW) solutions simply do not exist [15] and
even allowing for open FRW solutions [16], strong coupling [17] and ghostlike instabili-
ties [18,19] develop.

This note will focus on the cosmological evolution in the bigravity approach [20-22],
showing that the only consistent and reasonable background solutions turn out to be
unstable at the leading order in cosmological perturbation theory [23].

2. – Massive bigravity: the model

The action for massive bigravity takes the following from:

(1) S =
∫

d4x
{√

g
[
M2

pl

(
R(g) − 2m2 V

)
+ LM

]
+

√
f κ M2

pl R(f)
}

,

where R(g) and R(f) are the corresponding Ricci scalars of gμν and fμν and V =∑4
n=0 an Vn is the ghost free potential [9,10] written in terms of the symmetric polyno-

mials Vn of Y μ
ν ≡ (

√
X)μ

ν .
Matter is minimally coupled with g only and is described by LM. The constant κ

controls the relative size of the strength of gravitational interactions in the two sectors,
while m sets the scale of the graviton mass. In the limit κ → ∞, the second metric gets
frozen to a prescribed background value making contact with the fixed second metric
formulation.

3. – Massive bigravity: cosmology

To account for the present acceleration of the Universe through massive gravity, we
need to assume that the scale of the graviton mass m is of the order of the present Hubble
size, i.e. m ∼ H0 ∼ 10−33 eV. We do not consider the case where m is not related to
H0, so that a cosmological constant is still necessary to fine tune with m and give the
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observed value [24]. Let us assume that both metrics are homogeneous and isotropic

ds2 = gμνdxμdxν = a2(τ)
(
−dτ2 + dr2 + r2 dΩ2

)
,

d̃s
2

= fμνdxμdxν = ω2(τ)
[
−c2(τ) dτ2 + dr2 + r2 dΩ2

]
,

(2)

and define the Hubble parameters as H ≡ a′/a, Hω ≡ ω′/ω and the ratio ξ between the
two scale factors ξ ≡ ω/a.

Solutions fall into two branches depending on how the constraint coming from the
Bianchi identities is realized. The physically interesting branch gives c = Hω/H. We will
not discuss here the other branch where ξ is constant, the effect of modification amounts
to an effective cosmological constant and perturbations are strongly coupled [20,23].

The Hubble parameter H is given by

(3)
3H2

a2
= 8πGρ + m2

(
6 a3 ξ3 + 6 a2 ξ2 + 3 a1 ξ + a0

)
,

and ξ turns out to be determined by the following algebraic equation

(4) ξ2

(
8 a4

κ
− 2 a2

)
+ ξ

(
6 a3

κ
− a1

)
+

a1

3 κ ξ
+

2 a2

κ
− 2 a3 ξ3 − a0

3
=

8πG

3m2
ρ.

Late time cosmology is the sought quasi de Sitter phase. Indeed, when matter is so
diluted that Gρ � m2, eq. (4) gives an almost constant value for ξ and c = 1. Clearly,
from (3), late time acceleration requires that m2 ∼ H2

0 .
At early times instead, under the above assumption, the rhs of equation (4) gets very

large until the very present epoch where “Dark energy” starts to dominate. This implies
for consistency that ξ can only be very large or very small if we take the parameters ai and
κ of O(1) avoiding fine tuning. Solutions with ξ � 1, i.e. ξ ∼ (ρ/ρΛ)1/n where n depends
on the dominating power of ξ and ρΛ = 3H2

0/(8πG), will spoil early time cosmology since
the additional “source” term in (3) is comparable with the contribution from matter. The
only exception is for a specific choice of the parameters ai (a3 = 0, 4 a4 − κ a2 > 0) that
allows for a cancellation of the modification respect to GR at the background level.
Nevertheless, in this very special case, the value of c is negative. Thus, starting from
c < 0, to approach the quasi de Sitter era with c = 1 at late time, the metric f must
cross c = 0 where R(f) blows up(2). In conclusion, solutions with ξ � 1 are not very
interesting.

On the other hand, when ξ � 1, i.e. ξ ∼ (ρΛ/ρ), a sensible early time cosmology is
possible, since the additional source term in (3) is subdominant and c = 4 + 3w > 0 for
standard matter equation of state w. This is then the only viable branch of background
solutions that is worth to further study.

Cosmological perturbations around the small ξ branch can be studied in the usual
way, dividing the fluctuations in tensor, vector and scalar representations of the rota-
tion group. Tensor and vector perturbations turns out to be free of instabilities; the
scalar sector instead is rather problematic [23]. Two scalars propagate and they can be
identified with the suitable gauge invariant built from gij = a2 δij(1 + 2F1(t, 	x )) and

(2) Surprisingly, in a very recent paper [25] it was shown that the singularity seems to do not
affect cosmological perturbations, at least at linear order.
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fij = ω2 δij(1 + 2F2(t, 	x )). At the leading order, the scalar perturbation of the physical
metric (the one coupled with matter) behaves like in GR; on the contrary, the one as-
sociated to the second metric develops a gradient instability inside the horizon, both in
radiation and matter dominated era. This exponential instability signals the breakdown
of the standard perturbation theory, for any fixed co-moving momentum k inside the
horizon, at very early time. As a result, the prediction for the matter contrast (formally
the same as in GR at early times) is unreliable.

At a first glance, this instability could be attributed to the strong asymmetry be-
tween the two metrics, since only g is sourced by matter, and that gives a background
solution where the physical scale factor a is much bigger than the other one, i.e. a � ω.
Introducing an additional matter sector minimally coupled with the second metric (3),
the situation does not get much better [27]. In this case the rhs of equation (4) becomes
8πG
3 m2 (ρ1 − ξ2ρ2/κ) and a background solution where the two scale factors are comparable
(ξ ∼ 1) is indeed possible. However, though the pressure provided by the second mat-
ter stabilises F2 (its dynamics becomes similar to GR), sub horizon instability persists
for the extra scalar perturbation which is present in this case. This suggest that mas-
sive bigravity has an intrinsic exponential instability for FLRW cosmological solutions,
irrespectively of the (a)symmetry in the matter coupling.

4. – Conclusions

In this note we summarised the current status of cosmology in massive bigravity
theories. The picture that emerges is that even if FLRW solutions exist, cosmological
perturbations cannot be trusted due to a gradient instability in the scalar sector inside
the horizon for any co-moving momentum k. One could speculate that some sort of
cosmological Vainshtein mechanism [28] exists and the instability is solved trough non-
linearities in the perturbations of the second metric. Even in the presence of such a
mechanism, the prize to pay will be rather high, the impossibility to use cosmological
perturbation theory.

∗ ∗ ∗

M.C. would like to thank the organizers of IFAE 2014, the Fondazione Angelo Della
Riccia for financial support and specially the guys in the Particle Theory Group of
Nottingham for their friendship.

REFERENCES

[1] Weinberg S., Rev. Mod. Phys., 61 (1989) 1.
[2] Clifton T., Ferreira P. G., Padilla A. and Skordis C., Phys. Rep., 513 (2012)

1; arXiv:1106.2476 [astro-ph.CO]; Joyce A., Jain B., Khoury J. and Trodden M.,
arXiv:1407.0059 [astro-ph.CO].

[3] Vainshtein A. I., Phys. Lett. B, 39 (1972) 393.
[4] Kaloper N., Padilla A., Saffin P. and Stefanyszyn D., arXiv:1409.3243 [hep-th].
[5] de Rham C., arXiv:1401.4173 [hep-th].
[6] Boulware D. G. and Deser S., Phys. Lett. B, 40 (1972) 227.

(3) Coupling the same matter to both the metrics, besides a violation of the equivalence prin-
ciple, will reintroduce the BD ghost mode [26].



ON THE COSMOLOGY OF MASSIVE BIGRAVITY 5

[7] Comelli D., Crisostomi M., Nesti F. and Pilo L., Phys. Rev. D, 86 (2012) 101502;
arXiv:1204.1027 [hep-th].

[8] Fierz M. and Pauli W., Proc. R. Soc. London A, 173 (1939) 211.
[9] de Rham C. and Gabadadze G., Phys. Rev. D, 82 (2010) 044020; arXiv:1007.0443

[hep-th]; de Rham C., Gabadadze G. and Tolley A. J., Phys. Rev. Lett., 106 (2011)
231101; arXiv:1011.1232 [hep-th].

[10] Hassan S. F. and Rosen R. A., JHEP, 07 (2011) 009; arXiv:1103.6055 [hep-th]; Hassan

S. F. and Rosen R. A., Phys. Rev. Lett., 108 (2012) 041101; arXiv:1106.3344 [hep-th];
Hassan S. F. and Rosen R. A., JHEP, 02 (2012) 126; arXiv:1109.3515 [hep-th]; Hassan

S. F., Rosen R. A. and Schmidt-May A., JHEP, 02 (2012) 026; arXiv:1109.3230
[hep-th]; Hassan S. F. and Rosen R. A., JHEP, 04 (2012) 123; arXiv:1111.2070 [hep-th].

[11] Isham C. J., Salam A. and Strathdee J. A., Phys. Rev. D, 3 (1971) 867; Salam A.

and Strathdee J. A., Phys. Rev. D, 16 (1977) 2668.
[12] Damour T. and Kogan I. I., Phys. Rev. D, 66 (2002) 104024.
[13] Berezhiani Z., Comelli D., Nesti F. and Pilo L., Phys. Rev. Lett., 99 (2007) 131101;

hep-th/0703264 [hep-th].
[14] Comelli D., Crisostomi M., Nesti F. and Pilo L., Phys. Rev. D, 85 (2012) 024044;

arXiv:1110.4967 [hep-th].
[15] D’Amico G., de Rham C., Dubovsky S., Gabadadze G., Pirtskhalava D. and

Tolley A. J., Phys. Rev. D, 84 (2011) 124046; arXiv:1108.5231 [hep-th].
[16] Gumrukcuoglu A. E., Lin C. and Mukohyama S., JCAP, 11 (2011) 030;

arXiv:1109.3845 [hep-th].
[17] Khosravi N., Niz G., Koyama K. and Tasinato G., arXiv:1305.4950 [hep-th].
[18] De Felice A., Gumrukcuoglu A. E. and Mukohyama S., Phys. Rev. Lett., 109 (2012)

171101; arXiv:1206.2080 [hep-th].
[19] De Felice A., Gumrukcuoglu A. E., Lin C. and Mukohyama S., JCAP, 05 (2013)

035; arXiv:1303.4154 [hep-th].
[20] Comelli D., Crisostomi M., Nesti F. and Pilo L., JHEP, 03 (2012) 067;

arXiv:1111.1983 [hep-th].
[21] von Strauss M., Schmidt-May A., Enander J., Mortsell E. and Hassan S. F.,

arXiv:1111.1655 [gr-qc].
[22] Volkov M. S., JHEP, 01 (2012) 035; arXiv:1110.6153 [hep-th].
[23] Comelli D., Crisostomi M. and Pilo L., JHEP, 06 (2012) 085; arXiv:1202.1986

[hep-th].
[24] De Felice A., Nakamura T. and Tanaka T., arXiv:1304.3920 [gr-qc]; De Felice A.,
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