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Abstract—To mitigate the cost of manually producing and maintaining models capturing software specifications, specification mining
techniques can be exploited to automatically derive up-to-date models that faithfully represent the behavior of software systems. So far,
specification mining solutions focused on extracting information about the functional behavior of the system, especially in the form of

models that represent the ordering of the operations. Well-known examples are finite state models capturing the usage protocol of
software interfaces and temporal rules specifying relations among system events.

Although the functional behavior of a software system is a primary aspect of concern, there are several other non-functional
characteristics that must be typically addressed jointly with the functional behavior of a software system. Efficiency is one of the most
relevant characteristics. Indeed, an application that delivers the right functionalities with an inefficient implementation may fail to satisfy

the expectations of its users.

Interestingly, the timing behavior is strongly dependent on the functional behavior of a software system. For instance, the timing of an
operation depends on the functional complexity and size of the computation that is performed. Consequently, models that combine the
functional and timing behaviors, as well as their dependencies, are extremely important to precisely reason on the behavior of software

systems.

In this paper, we address the challenge of generating models that capture both the functional and timing behavior of a software system
from execution traces. The result is the Timed k-Tail (TkT) specification mining technique, which can mine finite state models that
capture such an interplay: the functional behavior is represented by the possible order of the events accepted by the transitions, while
the timing behavior is represented through clocks and clock constraints of different nature associated with transitions.

Our empirical evaluation with several libraries and applications shows that TkT can generate accurate models, capable of supporting
the identification of timing anomalies due to overloaded environment and performance faults. Furthermore, our study shows that TkT
outperforms state-of-the-art techniques in terms of scalability and accuracy of the mined models.

Index Terms—Specification mining, dynamic analysis, trace analysis, model inference, timed automata, performance analysis.

1 INTRODUCTION

EHAVIORAL models provide an abstract representation
B of the behavior of a software system, considering for in-
stance various perspectives and different granularity levels.
They are the starting point for many development activi-
ties, including requirements engineering [1], testing [2], and
software evolution [3].

Unfortunately, sound and up-to-date models are seldom
available, and in many practical cases the only trustable
source of information about the behavior of a system is the
system itself. In these cases, specification mining techniques
can be used to derive models either dynamically, from the
analysis of execution traces, or statically, from the analysis
of the source code. Although the mined models inevitably
reflect the behavior of the actual system rather than the
intended behavior of the system, they can be extremely
useful in supporting many activities, including program
understanding [4], software evolution [5], verification [6],
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testing [7], [8], and failure analysis [9], [10], [11], [12], [13].

So far, specification mining focused on the functional
behavior of software systems, deriving models such as
finite state models [14], [15], [16], extended finite state ma-
chines [17], [18], [19], temporal rules [20], [21], and program
invariants [22], [23].

While the inference of models about the functional be-
havior of software systems has been extensively investi-
gated, little attention has been paid to the inference of
models that capture the relationship between the functional
behavior of a software system and its timing behavior. This re-
lationship is extremely important to establish the correctness
of software executions: an execution delivering the right
result might be wrong when considering the time spent in
the computation, and vice versa a quick execution might be
wrong when looking at the delivered result.

Early approaches trying to derive models that com-
bine the functional and timing behaviors considered the
inference of timed automata [24], [25], [26], [27], [28], [29].
Unfortunately, these techniques derive one clock timed au-
tomata [30], which are effective to capture the delay between
consecutive events (e.g., signals processed by control sys-
tems [24], [26]), but cannot be used to represent the duration
of nested operations, which are common in many software
systems.

Instead of using timed automata, Perfume [10] derives fi-
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nite state models annotated with information about resource
consumption, including time consumption. Although Per-
fume is primarily meant to produce models that can sim-
plify the identification of suspicious behaviors, the gener-
ated models also capture the relation between the timing
and functional behavior.

This paper presents the Timed k-Tail (TkT) specification
mining technique, which addresses the challenge of deriv-
ing accurate models that coherently capture the functional
and timing aspects of a software system. In particular, TkT
can derive both timed automata [31] and extended pushdown
timed automata [32] from execution traces. TkT exploits the
natural structure of the execution of a program, which
consists of a possibly nested sequence of operations, to
automatically derive information about the duration of the
operations, as well as their dependencies.

This paper extends our previous work on the inference
of timed models [33] in several ways: (i) the inference
algorithm has been extended with the capability to derive
extended pushdown timed automata that better capture the
structure of a software execution in presence of iterative
behaviors (e.g., loops), (ii) the technique is rigorously and
formally presented, using algorithms, examples, and formal
definitions, (iii) the effectiveness of the two models that
can be derived with TkT has been empirically compared,
and (iv) the empirical evaluation has been extended to
a larger set of systems and trace files considering seven
additional program versions from the Apache Commons
Collections [34] and Apache Commons Math [35] libraries.

In a nutshell, the major contributions of this paper are:

e The definition of TkT, a specification mining tech-
nique for the generation of timed automata and
extended pushdown automata.

e The implementation of a publicly available version
of TkT, downloadable from https://github.com/
Ita-disco-unimib-it/tkt.

e An empirical evaluation that both investigates the
effectiveness of the various configurations of TkT,
including the two classes of timed models that can
be generated, and compares TkT to Perfume.

The paper is organized as follows. Section 2 provides
background information. Section 3 presents the TkT speci-
fication mining technique using a simple running example.
Section 4 presents our empirical evaluation. Section 5 dis-
cusses related work. Section 6 provides final remarks.

2 TRACES AND TIMED MODELS

Given a set of traces collected from a running system, Timed
k-Tail (TkT) can automatically generate either a Timed
Automaton (TA) [31] or an Extended Pushdown Timed
Automaton (EPTA) [32] that generalizes the observations
in the traces. The generated model represents the behavior
of the monitored system in terms of both the sequences of
operations that the system can execute and the timing of
these operations.

A TA measures the time taken by an operation including
the time taken by its sub-operations. For instance, if an oper-
ation that processes an order in an online shopping system
includes two finer-grained operations, one that executes a

bank transaction and one that sends a confirmation email, a
TA represents in the model the overall duration of the order
processing, including the execution of both the transaction
and the email dispatching.

An EPTA measures the time taken by an operation
excluding the time taken by its sub-operations. For instance,
in the example of the shopping system’s order, an EPTA
represents in the model the time taken to process an order
excluding the time taken for the bank transaction and the
email dispatching. This is achieved by properly pushing and
pulling clocks to and from a stack while entering and exiting
methods.

TkT generates Timed Automata (TAs) and Extended
Pushdown Timed Automaton (EPTAs) by augmenting the
k-Tail algorithm [36], which can only produce simple au-
tomata, with the ability to generate clocks, reset operations,
clock constraints, and operations to store/restore clock val-
ues using a valuation stack.

In the rest of this section, we formally define the kind
of traces processed by TkT (Section 2.1), the models that
TkT can generate (Section 2.2), and we provide background
information about the k-Tail technique (Section 2.3).

2.1 Timed Execution Traces

Definition 1 (Timed execution trace). A timed execution trace
of length n is defined as a temporally ordered sequence
eventy .. .event,, where event; = (type,,op,, time;), with

o type € {B, E}, where B and E indicate whether the
operation begins or ends,

e o0pis alabel that identifies the operation,

o time € N{ is the timestamp of the event.

Given an event e, we denote with type(e), op(e), and
time(e) the corresponding element of e.

Definition 2 (Well-formed timed trace). A well-formed
timed trace satisfies the following properties:

o time does not decrease: time; < time; Vi < j

o cvents are paired: when an operation op starts, it pro-
duces the event (B, op,, time;) and when it ends, it
produces the event (E, op,, time;) with time; < time;.
Given an event e of type either B or E referring to an
operation op, we indicate the event of the other type
referring to the same operation op with pair(e).

o nesting of the operations is satisfied: all operations
started after the beginning of an operation op must
end before the operation op ends.

An execution trace is a timed execution trace without time
information associated with the events.

2.2 Timed Models
221

In this paragraph we extend the definition of Timed Au-
tomata provided by Alur et al. in [31] to explicitly charac-
terize the mapping between software operations reported in
execution traces and transitions of the timed automaton.

Timed Automata
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Definition 3 (Timed Automata). A Timed Automaton is a tuple
(%, S, sp, C, TR), where

e X is a finite input alphabet;

o Sisa finite set of states;

e 5o € S is the initial state;

e ( is a finite set of clocks, initially set to L (i.e.,
initially undefined);

e TRC (SxSxXx{B,E}x2°xG(C))isasetof tran-
sitions. A transition tr = (84, 8,0, t,g,7) € TR from
a state s, to a state s; takes place on an input symbol
o € X. The value t indicates that the operation either
begins (symbol B) or ends (symbol E). Further, g
is a guard condition defined on the set of clocks C
that must evaluate to true to enable the firing of the
transition. Guard conditions are defined as boolean
propositions that join predicates by using the logical
operators A (which indicates conjunction). Predicates
involving undefined clocks evaluate to true. Finally,
r is a set of clocks reset to 0 when the transition is
fired.

Given a timed trace tt = event;...event,, with
event; = (type,,op,,time;) and a timed automaton
TA = (%,8,s9,C,TR), the TA accepts tt if and only if
dtry ... tr,, with tr; = (Si—1> Si, €5, ti,gi,ri) € TRVYi =
1...n that satisfies the following conditions: e; € %,
e; = op;, t; = type;, and each constraint in g; evaluates
to true, according to the values of the clocks. Note that the
value of a clock is determined by the time passed between
the last reset operation executed on that clock and the
timestamp of the current event in the trace. In the context of
TKkT, clocks are opportunistically reset when operations start
(on begin transitions) and clocks are checked against guards
when the operations end (on end transitions). Guards on
clocks that are undefined because they have never been reset
evaluate to true.

Note that the TA formalism considered in this article
differs from the Input/Output Timed Automata formalism
made popular by the UPPAAL toolset [37] since we do not
include state invariants in the model. Moreover, we rely on
the original terminology adopted by Alur et al., that is, we
use the term state instead of location to indicate the states of
the automaton.

2.2.2 Extended Pushdown Timed Automata

Extended Pushdown Timed Automata (EPTAs) have been
introduced in [32] to enable the modelling of procedural
calls based on the Pushdown Timed Automata formal-
ism [38]. More formally,

Definition 4 (Extended Pushdown Timed Automata).
An Extended Pushdown Timed Automata is a tuple
(%, S, s09,C, T, TR), where

e M is a finite input alphabet;

e S is a finite set of states;

e 5o € S is the initial state;

e ( is a finite set of clocks, initially set to L (ie.,
initially undefined);

o I'is valuation stack, initially empty;

e TR C (S xS x X x {B,E} x2° x G(C) x
{€, Store, Restore}) is the set of transitions tr =
(Sa, Sp, 0, t,g,1, s0p). TR follows the definition used
for TAs except that, in the case of EPTAs, a transition
taking place on an input symbol o may imply the
execution of a stack operation (sop in the formula).
The stack operation Store pushes the values of all
clocks belonging to C' on the valuation stack, while
the stack operation Restore pops the last set of clock
values added to the valuation stack and assign them
to the corresponding clock variables. If the reset set r
is not null, the clocks in 7 are reset after performing
the stack operation Store/Restore.

We use EPTASs to capture the time spent within single op-
erations (i.e., procedure calls) without considering the time
spent in nested operations, if any. This is achieved thanks to
the valuation stack, which is used to store the value of the
clocks when a nested operation is under execution and to
restore it when the nested operation terminates.

Similarly to the case of the Timed Au-
tomaton ~ described above, given a timed trace
tt = event, . ..event,, with event; = (type,,op,, time;) and an
EPTA = (S, s0,C, E, TR), the EPTA accepts tt if and only if
dtry...tr,, with tr, = (si,17si,ei,ti7gi,ri) € TR
Vi = 1...n that satisfies the following conditions:
e; = op;, t; = type,, and each constraint in g; evaluates to
true, according to the values of the clocks.

In this paper, we show how inferred TAs and EPTAs can
be used to verify well-formed timed traces. This is a typical
application scenario for specification mining techniques: the
models are first derived from traces collected during valid
executions and then used to reveal anomalous behaviors in
a new set of traces [9], [11], [12]. However, inferred mod-
els can also be used in alternative contexts. For example,
they can be compared to reveal the presence of conflicts
in concurrent software changes [39]. For this reason, it
is important to remark that the TA and EPTA inference
process algorithms proposed in this paper do not formally
guarantee that only well-formed traces are accepted, and
thus the inferred model may end up accepting traces that
are not well-formed.

2.3 k-Tail

k-Tail is an inference algorithm that can generate a regular
finite state automaton from a set of execution traces [36].

It works in two steps. In the first step, it generates a
Prefix Tree Automaton (PTA), that is, a tree-like automaton
where each branch accepts a different execution trace. Traces
with common prefixes share sub-branches in the model.
This representation is similar to the one used by TkT to
produce an initial automaton that accepts the input timed
execution traces (see Section 3.2). Note, however, that k-Tail
ignores time information.

In the second step, k-Tail iteratively modifies the au-
tomaton by merging the states of the model that are likely
to represent a same state of the program. The state merging
process produces a more compact and more general model
than the initial model, in fact the resulting automaton has
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fewer states and accepts more execution traces than the
initial one.

The states in the model that likely represent the same
states of the program are heuristically identified based on
their k-future, which consists of the set of execution traces
of maximum length k that can be accepted by that state. Two
states with the same k-future are assumed to be equivalent
and thus are merged. The concept of equivalent states is
extended to cope with time information and exploited also
by TkT, as described in Section 3.3.

3 TIMED K-TAIL

Figures 1 and 2 give a visual overview of the outputs of the
five steps of the TkT algorithm when it is used to generate
TA and EPTA from the same execution traces. The figures
are used throughout this section to describe the different
steps of the algorithm.

The input to TkT is a set of timed traces with information
about the ordering and the timing of the operations exe-
cuted by a program, see for instance Trace 1 and Trace 2 in
Figure 1. For each executed operation, a trace includes two
events that mark the beginning and the end of the operation,
respectively. We graphically indicate the beginning and the
end of a same operation with the letters B and E respectively,
plus a thick line that connects them. For instance, the first
two events in Trace 1 represent the beginning and the end of
the ProcessWebOrder operation. Finally, each event has a
timestamp indicating when the event has been observed.

In the first step, Trace Normalization, TkT normalizes the
timing information in the traces, which might have been
collected at different times, by assigning time 0 to the first
event in each trace and adjusting the times associated with
the other events in the traces consistently to preserve time
difference between events.

In the second step, Automaton Initialization, TkT produces
an initial automaton where each trace corresponds to a
branch in the model, see for instance the Initial Automaton
in Figure 1. The automaton is annotated with relative clocks
that measure the time taken by each operation logged in
the trace to complete. In particular, each clock is reset when
an operation starts and checked with an equality constraint
when the operation completes. Depending on the kind of
model that is generated, the equality constraint may or may
not consider the time spent in nested operations (the TA
considers the time spent in nested operations, the EPTA
does not consider it). TkT can also be configured to add a
clock measuring absolute time to the automata.

In the third step, State Merging, TkT merges equivalent
states, which are states in the model that are likely to
represent a same state of the monitored system. Merging
states might lead to multiple transitions, with the same
label, that start and end in the same states, that is, redundant
transitions that represent the same event (same event name
and same event type). In such a case, TkT merges these
transitions into a single transition with the same label and
merges annotations (i.e., the resulting transition includes all
resets and clock constraints in the merged transitions). Thus,
the more states are merged, the more reset operations and
equality constraints are accumulated on the same transitions
of the model. After the state merging process has completed,

the resulting model represents the behavior of the moni-
tored software quite extensively, see for instance the Merged
Automaton in Figure 1. Note that while the information
about the sequences of operations that can be performed
is a generalization of the sequences reported in the traces,
the timing information is still encoded as a simple set of
equality constraints that match the observations reported
in the traces. The next two steps of the process further
elaborate the timing information to produce more general
and flexible timing constraints.

In the fourth step, Clock Refinement, TkT identifies redun-
dant clocks, that is, distinct clocks that measure the duration
of exactly the same operation, and transforms them into
individual clocks that are reset once and checked multiple
times. This transformation reduces the number of clocks in
the model and increases the number of equality constraints
on a same clock associated with a same transition. See for
instance the Automaton with Refined Clocks in Figure 1.

In the last step, Guards Generation, TkT processes the in-
formation on each transition to transform the many equality
checks on the same clocks into a time interval constraint. TkT
combines with conjunctions the time interval constraints
that refer to different clocks but are associated with a same
transition, if any. The resulting model is either a timed
automaton or an extended pushdown timed automaton that
captures not only the ordering of the events, but also the
expected duration of the operations. See for instance the
Timed Automaton in Figure 1 and the Extended Pushdown
Timed Automaton in Figure 2.

In the following, we rigorously define each step of the
algorithm.

3.1 Trace Normalization

TkT processes timed traces, that is, traces that log the ex-
ecution of the operations and their durations. Each trace
starts with its own timestamp. This is not an issue for
relative clocks, but when the inferred timed automaton
includes constraints on the absolute time, it is important
to make sure all traces refer to the same starting time,
otherwise the timing information would not be comparable.
We conventionally use 0 as starting time of each trace, thus
the normalization process simply subtracts the value of the
timestamp of the first event in the trace to the timestamp
of each event. For instance, the time associated with the first
two events of Trace 1 is changed from 98483940 and 98483943
to 0 and 3, respectively. This operation is important to align
time across multiple traces.

3.2 Automaton Initialization

In this section we describe how TkT deals with the ini-
tialization of the automaton by presenting first the case of
the Initial Automaton created in order to generate a Timed
Automaton and then the Initial Pushdown Automaton created
to finally build an Extended Pushdown Automaton.

3.2.1

The Automaton Initialization step generates an Initial Au-
tomaton that accepts all and only the executions stored in
the traces (see Figure 1). The Initial Automaton is obtained

Initial Timed Automaton
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Traces

Trace 1

processWebOrder :B 98483940
[processWebOrder :E 98483943
-processitem :B 98483944
[checkAvailability :B 98483945
checkAvailability :E 98483946
- processltem :E 98483947
rprocessitem :B 98483948
[checkAvailability :B 98483949
checkAvailability :E 98483953
-processltem :E 98483958
-processltem :B 98483959
[checkAvailability :B 98483960
checkAvailability :E 98483965
~processltem :E 98483970

Trace 2

processPhoneOrder :B 98483975
processPhoneOrder :E 98483980
processltem :B 98483981
[cheCkAvailability :B 98483983
checkAvailability :E 98483986
processltem :E 98483990
processltem :B 98483991
[checkAvailability :B 98483992
checkAvailability :E 98483995
processltem :E 98483998

[

|
|

[

Normalized Traces

Normalized Trace 1

[processWebOrder B0
processWebOrder :E 3
-processitem :B 4

[checkAvailability
checkAvailability
processltem :E 7

-processltem :B 8

[checkAvailability
checkAvailability
processltem :E 18
-processltem :B 19
[checkAvailability
checkAvailability
-processltem :E 30

B 5
E 6

B 9
:E 13

:B 20
:E 25

Normalized Trace 2

processPhoneOrder :B 0
processPhoneOrder :E 5
processltem :B 6
[ checkAvailability
checkAvailability
processltem :E 15
processltem :B 16
[ checkAvailability
checkAvailability
processltem :E 23

‘B8
E 11

:B 17
:E 20

Initial Automaton
processPhoneOrder :B processWebOrder :B
(), r(c8) ) 4 (), r(cl)
[, —» >
processPhoneOrder:E processWebOrder :E
t==5, c8==5 t=3,c1=3

processltem :B
t=6, r(c9)

checkAuvailability :B
t=8, r(c10)

checkAvailability :E
t=11,c10=3

processltem :E

t=15,c9=9

(

checkAvailability :B
t=17,1(c12)

checkAvailability :E
t=20, c12=3
[

processltem :E
t=23,cl1=7

~
W

Merged Automaton Automaton with Refined Clocks
processPhoneOrder :BY processWebOrder :B processPhoneOrder :BY processWebOrder :B
O —0.1(c8) (. r(cl) <« 0. 1(cd) ©.rch
processPhoneOrder :E processWebOrder :E processPhoneOrder :E processWebOrder :E
t=5,08=5 t=3,cl=3 t=5,c8=5 t=3,cl=3
processltem :E A ] . pré)cesglten]lQ:B 6 processltem :E VT]‘ 4 PrgcesgheﬂllgiB 6
t=7,t=18, t=15, t=4, t=8, t=6, t=19, =16, t=7,t=18, t=15, t=4, t=8, t=6, t=19, t=16,
_2=3,c9=9,c4=10 | | 1(c2),1(c4), 1(c9), 1(c6), (el D) €2=3.2=9. 2=10 1(c2),1(c6) | o
A 4

TcheckAvailability E

checkAvailability :B

t=06,t=13, t=11,
c3=1, c5=4,c10=3

t=5, t=9, t=8, t=20, t=17,
r(c3), r(c5), r(c10), r(c7), r(c12)

) A checkAvailability :E
T t=6, t=13, t=11,

c3=1,c3=4,c3=3

&

checkAvailability ‘B
t=5, t=9, t=8, t=20,
t=17,1(c3), r(c7)

f

1 checkAvailability :E
® t=25,t=20, ¢7=5, c12=3

processltem :E
t=30, t=23, c6=11, cl1=7

y

!

checkAvailability :E

t=25, t=20, ¢7=5, c7=3

t

processltem :E
=30, t=23, c6=11, c6=7

Fig. 1. Inference of a TA with TkT: input traces, intermediate results, and output.

TABLE 1

Functions used to generate the Initial Timed Automaton.

Operation Description

event; Is a tuple (type,,op,,time;) that represents
the event with its type type,, operation name
op, and timestamp time;.

type(event;)  Returns the type type, of the event event;.

op(event;) Returns the name of the operation op; per-
formed by the event event;.

time(event;)  Returns the timestamp time; of the event;.

pair(event;)  Returns the event event, which has as type
the opposite of event;, e.g., if type(event;) =
B then type(event,) = E.

clock(event;)  Returns the clock that counts the duration

of the operation in event;. This is well de-
fined only in the generation of the initial
automaton where each operation instance is
associated with a dedicated clock.

by mapping each trace
automaton.

processltem :B

processllerr; B
t=4,1(c2)

checkAvailability :B
t=5, r(c3)

checkAvailability :E [
=6, c3=1 processltem :E
t=7,c2=3
processltem :B
t=8, r(c4)

checkAvailability :B
t=9, r(c5)

> /'\\
checkAvailability :E

t=13, c5=4 1
p4

processltem :E

processltem :B = 8,c4=10
t=19, 1(c6) 1
checkAuvailability :B
t=20, r(c7)
checkAvailability :E
t=25,c7=5 processltem :E
t=30, c6=11
Timed Automaton
processPhoneOrder :%_IprocessWebOrder ‘B
< (3 - r(t) >®

processPhoneOrder :E  processWebOrder :E

»Ne
»

checkAvailability :B
5= t=<20, r(c3), r(c7)

processltem :E

processltem :B
T<t<18 A\ 3= c2<10

4=<t<19,1(c2), r(c6)
'Y
Ll

@
checkAvailability :E
6=<t<13A1=<c3<4

checkAvailability :E
20< t<25A\ 3= c7<5

processltem :E
23<t<30 A 7= cb=l11

to an independent branch of the

Given a set of timed traces T, the Automaton Initialization
step creates a timed automaton defined as follows (Table 1
includes a summary of the definitions useful to understand
the algorithm):

o S ={so} U{astate s, ; for each event; in trace;}.
C={the absolute clock t} U {a relative clock ¢; ; for
each event; of type B in any trace;}. Given an event e
of type B, we indicate with clock(e) its relative clock.
¥= U U op

trace€T (type,op,time)Etrace
for each event; = (type,,op,,time;) occurring in a
trace trace; € T, TkT adds a transition tr to TR
defined as follows tr = (s;_1,0p,, type;, gi, Ti, Si j),
where

50,5 is the initial state sg for any value of j,
gi consists of two equalities ¢ time;, and
clock(event;) = time; — time(pair(event;)). The
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Fig. 2. Inference of a EPTA with TKT: input traces, intermediate results, and output.

second equality constrains the value of the
clock associated with event; and is present only
if type, = E.

- if type, = E, r; = & (clocks are reset only
when operations start); otherwise if type, = B,
if i > 1thenr; = {¢; ;}, else r; = {t,c1;} (the
clock measuring absolute time is reset on the
first transition only).

3.2.2 |Initial Pushdown Automaton

TKT can also generate an Extended Pushdown Timed Automa-
ton where the clocks used to measure the time spent in an
operation (e.g., a method) do not consider the time spent in
the execution of the nested operations (e.g., nested method
invocations). At the model level, this is obtained by inferring
an EPTA where every event of type B produces a transition
with a Store action, which suspends the existing clocks (with
the exception of the global clock, if any), and every event of
type I produces a transition with a Restore action, which re-
sumes the clocks suspended by the previous Store operation

to the values they had when they were suspended. Inferring
an EPTA instead of a TA can be a better option when the
software has a strongly cyclic behavior. Indeed, the duration
of an operation with a loop of nested operations would
not be affected by the number of repetitions of the loop.
This case is empirically investigated in RQ6 discussed in
Section 4.

To build an EPTA that reflects the characteristics
described above, TkT first builds an Initial Pushdown
Automaton that accepts all an only the executions stored in
the traces and that contains Store and Restore activities.

In particular, given a set of timed execution traces 7', the
Automaton Initialization step creates an initial pushdown au-
tomaton that matches the initial timed automaton described
above except for transitions, which present different guards
and include Store/Restore operations. We describe below how
transitions tr = (s;_1,j,0p;, type,, gi, i, stackOp;, s; ;) are
defined in the initial pushdown automaton:
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e 5o ; represents the initial state sy for any value of j,

e g; consists of two equalities ¢ = time; and
clock((event;)) = duration,. The value duration; is
defined as the duration of the considered operation
(i.e., time; — time(pair(event;))) minus the duration of
the nested operations (3 (time; — time(pair(event;)))
for all event; corresponding to operations completed
between pair(event;) and event;). The second equality
constraint is present only when type, = E.

o If type, = E then r; = (), because the clocks are
only reset when the operations start. If type, = B
and ¢ > 1 then r = {¢; ;}, otherwise r = {t,¢1 ;}
because the clock measuring absolute time is reset on
the first transition only (as done in the Initial Timed
Automaton).

o [If type;, = E then stackOp, = Restore because the
termination of an operation triggers a restore of the
clocks.

o [If type;, = B then stackOp, = Store because the
beginning of a new operation suspends the existing
clocks.

Note that at this point, for both timed and extended
pushdown automata, each instance of a (same) operation
is associated with a different relative clock. For instance,
the duration of the first occurrence of the processItem
operation in the Normalized Trace 1 is measured by clock
c2, while the second occurrence of the same operation in
the same normalized trace is measured by clock c4, in both
automata (see Figures 1 and 2). The automata also define
an absolute clock t that is reset when the first operation is
executed and checked at every transition of the model with
an equality constraint.

3.3 State Merging

The State Merging step iteratively merges all states that
accept the same sequences of events until no more states
can be merged. This is a standard strategy introduced in
the k-Tail algorithm [36], and also exploited by several
other algorithms [10], [16], [17], [40], to produce models that
generalize a set of observations. TkT defines a version of the
state merging process that can handle timing information
for both timed automata and pushdown automata.

The state merging process starts with the computation
of the kFuture of each state, that is, the set of all event
sequences of maximum length % that can be accepted by
a given state. Since TkT takes the type of event (i.e., whether
an event indicates either the beginning or the end of an
operation) into consideration, the kFuture includes this in-
formation.

For example, if k is equal to 2, the kFuture of the initial
state of the Initial Automaton shown in Figure 1 and the
Initial Pushdown Automaton shown in Figure 2, is composed
of two sequences of length 2. The first sequence consists of
the beginning followed by the end of the execution of the
processWebOrder operation. The second sequence con-
sists of the beginning followed by the end of the execution
of the processPhoneOrder operation.

When two states have the same kFuture, they are as-
sumed to represent a same state of the software system, and
are thus merged into a single state. This process may change

the source and the target states of several transitions, and
consequently there might be created redundant transitions
that can be merged into a single transition. Two transitions
are redundant if they start from the same state, end into the
same state, and have the same event and type. More for-
mally, given two transitions tr = (s,, event, type, sop, g,T, Sp)

and tr’ = (sl event’,type’,sop’,g’',7’,s};), they are redun-
dant if s, = s}, sp = s}, event = event’, type = type
and sop = sop’. The merge process drops both transi-

tions and adds a single transition annotated with the val-
ues from the two dropped transitions. More formally, the
transition added after dropping ¢r and tr’ is I merged =
(sa, event, type,sop, gUg',rUr’, s), essentially the resulting
transition accumulates the guard conditions and the reset
operations present in the merged transitions. We reported
the definition for transitions in the pushdown automaton.
The definition for the transitions in the timed automaton is
the same, ignoring the operation sop.

We call the automaton resulting from this step Merged
Automaton. Figures 1 and 2 show the Merged Automaton
obtained from the Initial Automaton and the Initial Push-
down Automaton by applying the state merging process with
k=2

3.4 Clock Refinement

The Merged Automaton may accept more behaviors than
the Initial Automaton and the Initial Pushdown Automaton.
However, up to this point, the generalization has only
targeted the sequences of events that can be accepted by the
automaton, while the timing information still overfits the
information in the input traces. For instance, the guard con-
ditions still consist of sets of equality constraints on relative
and absolute clocks. It is thus important to generalize the
time observations to allow a proper degree of flexibility, so
that the model can be used to discover behavioral anomalies
on the timing aspect, without being too sensitive to noise.
To estimate the time that might be taken by an operation
to complete, it is important to exploit as many observations
as possible. Since TkT creates a relative clock for each
occurrence of each operation in the traces, there is exactly
one observation for each relative clock in the model, which
is not enough to distill any general information about the
timing of the operations. However, the State Merging step
produces redundant clocks that measure the duration of ex-
actly the same behaviors. For instance, clocks c2, c4, and
¢9 in the Merged Automaton in Figures 1 and 2 measure the
duration of the processItem operation. These individual
observations over different relative clocks can be simplified
into multiple observations of a same relative clock, which
is the starting point for distilling more general information
about the duration of the operations. The Clock Refinement
step performs this simplification over the redundant clocks.
In particular, we define two relative clocks ¢, and ¢, to
be redundant if they are both reset and checked on the same
transitions. Note that, by construction, each relative clock is
reset on exactly one transition and is checked with a guard
condition on exactly one transition. Thus, if reset(c) is the
transition where the relative clock c is reset, and check(c)
is the transition where the relative clock c is checked with
a guard condition, two clocks ¢, and ¢, are redundant if
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reset(c,) = reset(cy) and check(c,) = check(cp). This
strategy to identify and remove redundant clocks can be
seen as a special case of the clock reduction strategy
based on equality between clocks defined by Daws and
Yovine [41].

TkT simplifies redundant clocks by dropping one of the
two clocks, namely ¢, and its reset operation, and renam-
ing all the occurrences of the dropped clock in its guard
condition with the redundant clock that survives, namely all
occurrences of ¢, are replaced with c,. This transformation is
performed for all redundant clocks producing an Automaton
with Refined Clocks, as shown in Figures 1 and 2. For instance,
clocks ¢2, ¢4, and c9 are all renamed as clock ¢2. The refined
automata use fewer clocks than the Initial Automaton and the
Initial Pushdown Automaton, with each clock being associated
with multiple observations. Note that the Automaton with
Refined Clocks are intermediate representations where clock
constraints are simply accumulated, in contrast with the
final TA and EPTA automata where all the constraints on
a transition must be satisfied to take a transition.

Clock refinement is not applied to the clock that mea-
sures the absolute time because it cannot be redundant
with any other clock. Note that the state merging process
is already sufficient to accumulate multiple observations on
each transition for the clock measuring the absolute time,
contrarily to the relative clocks that need this refinement
step. In fact, no relative clock can play the role of an absolute
clock because each relative clock measures the duration
of a specific operation, while the absolute clock measures
at what time any operation may end with respect to the
beginning of the execution.

3.5 Guards Generation

The Guards Generation step iterates on the transitions of the
Automaton with Refined Clocks and applies a guard generation
policy to the data available on each transition to produce
the guard of the transition. The guard generation policy is a
function that takes a set of equality constraints on a same
clock as input and generates a guard on that same clock as
output. When the data associated with a transition refer to
multiple clocks, the policy is also applied multiple times,
once on each subset of equality constraints on a same clock.
For instance, when the set of equality constraints {t=30,
t=23, c6=11, c6=7} associated with the transition labeled
processItemin the Automaton with Refined Clocks shown in
Figure 1 is processed, the guard generation policy is applied
twice, once on the data about clock t (i.e., {t=30, t=23})
and once on the data about clock c6 (i.e., {c6=11, c6=7}).
The generated guards are combined with conjunctions.

We defined two guard generation policies: the min-
max e-policy and the ~y-confidence policy. Given a set of ob-
servations for a clock ¢, the min-max e-policy generates
a guard that constrains the value of ¢ to the interval
[(1 — €)min, (1 4+ €)maz], where min and mazx are the
minimum and maximum values of ¢ in the input values,
and ¢ is a value in the range [0, 1]. Small values of € bound
the interval to the range of values provided as input, while
large values of ¢ produces a more flexible interval, up to
[0, 2mazx] in case € = 1. Figures 1 and 2 show, respectively,
the Timed Automaton and the Extended Pushdown Timed Au-
tomaton generated with the min-max 0-policy.

The ~y-confidence policy generates a confidence interval
that has a cumulative probability being equal to v to in-
clude the possible duration of an operation based on the
collected samples and assuming a normal distribution of
the durations [42]. We consider v = 0.95 and v = 0.99 as
possible values of the parameter. If the interval generated
by the ~y-confidence policy does not include all the values
observed for a clock (this may sometimes happen due to
outliers in the values used to compute the interval), TkT
extends the interval until including the min/max values
of the clock. Although the need to extend intervals rarely
happens in practice, it is necessary to formally guarantee
that the inferred model accepts every input trace.

If only one value has been observed for a clock, both poli-
cies do not generate any guard and the original constraint is
dropped.

Note that TkT generates timed automata that accept
every timed trace used for the inference by construction.
In fact both the Initial Automaton (with the corresponding
TA) and the Initial Pushdown Automaton (with the corre-
sponding EPTA) accept exactly the timed traces provided
as input. The state-merging process may only increase the
combination of events that might be accepted by the model
and cannot drop any behavior. The Clock Refinement step
simplifies the model without altering the set of accepted be-
haviors. Finally, the Guards Generation step can only increase
the range of acceptable timing for the events in the traces.

3.6 Complexity Analysis

TkT extends k-Tail with the Clock Refinement and the Guards
Generation steps. The other steps of the algorithm are the
same as the steps in k-Tail, with the only addition of oper-
ations to annotate transitions with resets and checks on the
clocks. In the worst case, the number of added resets and
checks is of the order of n, where n is the cumulative length
of all traces.

The number of clocks introduced by TkT in the initial
automaton is {%W + 1, that is, one clock for each pair of
events plus the global clock. This is also the maximum
number of clocks that can be refined in the Clock Refinement
step. Clock Refinement is performed by comparing the sets
of clocks being reset or checked in every pair of transitions
of the TA, which leads to O(n?). Finally, Guards Generation
iterates over all the transitions to transform the samples into
constraints. Since the number of transitions cannot be more
than n, the cost of this step is in the order of n.

Since n? is negligible with respect to the complexity of
k-Tail, which is O(n? x | A|¥) [16], [43] , where | A| is the size
of the alphabet of the automaton, and % is the parameter
of the algorithm, the complexity of TkT remains the same
of k-Tail. Indeed, the dominating cost factor is still the state
merging process, which is the same in the two algorithms.

3.7 Usage Scenarios

TkT is a specification mining technique that can be used
to mine models when they are not available. Similarly to
other specification mining techniques [9], [16], [19], [20],
[21], [40], [44], [45], TkT only requires the availability of
positive samples, that is, samples of behaviors that must
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be accepted by the inferred model. In this case, it is the
responsibility of the developer to run the software under
analysis and make sure that the resulting executions do
not include failures. These executions can be obtained in
many ways, for instance by running a set of (passing) test
cases or by running the system against an oracle. Note that
in the latter case the oracle may refer to the end-to-end
behavior of the system, while the models can be inferred
from the individual components of the system. For example,
the oracle may check the correctness of the output produced
by a purchase procedure, while timed automa that represent
the behavior of the individual components of the system
when the purchase procedure is executed can be inferred.
Alternatively, the oracle may also directly discriminate the
correctness of the traces that can be then used to infer a
model [46].

Inferred models, including timed automata inferred by
TkT, can support a variety of tasks. For instance, the tester
can use the inferred models to derive new test cases that are
different from the ones used in the inference process [7],
[8], [47]. Alternatively, when a failure is detected, using
either an automatic or manual oracle, models representing
the behavior of the individual components can be used
to support debugging [9], [10], [11], [12], [13], that is, a
failure trace can be compared against the inferred models
to identity the anomalous events likely responsible for the
failure. Investigating these possible applications when the
timing and not only the functional dimension is relevant is
part of our future work.

4 EMPIRICAL EVALUATION

To empirically evaluate TkT, we investigated the following
seven research questions.

RQ1: Is TkT able to infer generic models that compre-
hensively capture the behavior of the software? RQ1 inves-
tigates the sensitivity of TkT with TAs and with EPTAs, that
is, its capability to derive models that accept legal traces,
including the ones that have not been used for the inference,
compared to the Perfume state-of-the-art technique.

RQ2: Is TkT able to infer precise models that reject
anomalous software behaviors? RQ?2 investigates the speci-
ficity of TkT with TAs and with EPTAs, that is, its capability
to derive models that reject anomalous traces, compared to
the Perfume state-of-the-art technique.

RQ3: How does TkT balance the ability to deal with
legal and illegal behaviors? RQ3 investigates how TkT with
TAs and with EPTAs balances sensitivity and specificity,
compared to Perfume.

RQ4: How does absolute time affect the effectiveness
of TkT? RQ4 investigates how the generation of a clock that
measures the absolute time affects sensitivity and specificity.

RQ5: How does TkT scale with the size of the traces?
RQ5 investigates how the performance of TkT with TAs
and with EPTAs scales with the number of events that are
processed, compared to Perfume.

RQ6: How do EPTAs affect the sensitivity of TkT?
RQ6 investigates if EPTAs, which rely on relative clocks
that ignore the time spent in nested calls, may increase the
sensitivity of TkT, especially in scenarios where the traces
used for the validation include many loop iterations.

RQ7: How does the number of traces affect the size
of the models inferred by TkT? RQ7 investigates to what
extent the number of traces affects the size of the models
inferred by TkT.

4.1 Prototype and Experiment Setup

The TkT prototype that we used for the experiments is im-
plemented in Java and is available at https://github.com/
Ita-disco-unimib-it/tkt. Our implementation supports all
the configurations and parameters described in this paper.

There are two main parameters that may influence how
the timing behavior is encoded in the inferred models. The
first parameter controls if guards on the absolute clock are
generated. The second parameter controls the specific guard
generation policy that TkT must use to generate guards,
among the min-max e-policy and the y-confidence policy. Both
policies can be customized according to a parameter that
can be assigned with real values in the range [0..1].

In our empirical evaluation, we study the impact of
absolute clocks and both guard generation policies by cov-
ering a range of values for their parameters. In the min-
max e-policy, we cover the whole domain, sampling more
densely the domain for small values of ¢, where we expect
the technique to be more sensitive to changes. In the ~-
confidence policy, we consider 7y equals to 0.95 and 0.99,
to focus on guards that may cover the possible durations
with high confidence. These configurations are investigated
both with and without the generation of the guards on the
absolute clock. Table 2 summarizes the set of configurations
considered in our evaluation. Each configuration has an
identifier.

The behavior of TkT is also influenced by the choice
of the parameter k, which does not play a role in guards
generation but affects the identification of the states to
be merged. In our empirical evaluation, we focus on the
parameters that may influence the timing behavior, which is
the novel aspect introduced in TkT compared to k-Tail, and
we do not study the impact of k in the state merging process
which has been already studied in many other papers [4],
[11], [16], [17], [40], [48]. We rather take advantage of these
results to fix the value of k to 2, which has demonstrated
to be a good choice when analyzing traces collected from
software systems.

4.2 Subjects of the Study

The study has been conducted on two sets of Java programs
that enabled us to perform a complementary study on the
type of anomalies to be detected by TkT, namely, slowdown
caused by the execution environment and performance
faults.

The first set of programs consists of the implementation
of four well-known algorithms: the merge sort sorting algo-
rithm [49], the Rabin Karp pattern matching algorithm [50],
the LZW compression algorithm [51], and the LZWdecom
decompression algorithm [51]. We used these algorithms to
evaluate the capability of TkT and Perfume to discriminate
the valid and the invalid executions caused by anomalies in
the execution environment (e.g., due to overloaded resources).
To study this capability, we logged the execution of all the
methods in the classes that implement the algorithms both
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TABLE 2
TKT configurations.

ID Type of
abs clock no abs clock  Automata Policy e/
T™M1 ™9 TA min-max 0.05
T™M2 TM10 TA min-max 0.10
™3 ™11 TA min-max 0.15
TM4 ™12 TA min-max 0.20
™5 ™13 TA min-max 0.25
TM6 ™14 TA min-max 0.50
™7 ™15 TA min-max 0.75
TMS8 TM16 TA min-max 1.00
EM1 EM9 EPTA min-max 0.05
EM2 EM10 EPTA min-max 0.10
EM3 EM11 EPTA min-max 0.15
EM4 EM12 EPTA min-max 0.20
EM5 EM13 EPTA min-max 0.25
EM6 EM14 EPTA min-max 0.50
EM7 EM15 EPTA min-max 0.75
EMS8 EM16 EPTA min-max 1.00
TG1 TG3 TA ~v-confidence  0.95
TG2 TG4 TA ~v-confidence  0.99
EG1 EG3 EPTA ~v-confidence  0.95
EG2 EG4 EPTA ~v-confidence  0.99

when the system is not overloaded and when it is over-
loaded by four other processes intensively executing 1/0
operations. For each algorithm we produced 100 valid and
100 invalid traces. Our test cases cover more than 90% of
the instructions implemented by the algorithms (we ignored
inputs triggering exceptional cases). We used EclEmma [52]
to measure code coverage.

The second set consists of 12 versions of three well
known opensource libraries, the Google Guava library [53]
(five versions), the Apache Commons Collections library [34]
(four versions), and the Apache Commons Math Libraries [35]
(three versions), all affected by different performance prob-
lems. For our empirical study we selected the most recent
and replicable performance faults reported in the issue
trackers of the three libraries at the time of the study, for
a total of 12 faults considered in our experiment. Table 3
shows the details of the subjects of our study, column Library
reports the library name, column Version reports the library
version affected by the fault, column Bug Id reports the bug
identifier, column URL reports the Web URL from which the
bug report can be inspected online. Column Code Coverage
reports the percentage of instructions of the faulty class (i.e.,
the class for which we generate traces) that are covered by
the test cases considered in our experiments.

We used these library versions to evaluate the capability
of TkT and Perfume to discriminate the valid executions
from the invalid executions caused by performance faults.
To study this capability, for each version of the library
we generated the traces by running the original test suite
distributed with the libraries and a non-regression test
suite that we implemented to extensively sample the fixed
functionality with various inputs. We obtained the valid
traces by running the test cases on the fixed version of the
program (we extracted the fixes from the version history of
the software). We obtained the invalid traces by executing
the same test cases on the faulty version of the software.

Since not every test execution of the faulty program nec-

essarily produces a performance failure, we used the over-
head observed when running the test suite of the program
to objectively discriminate between valid and invalid traces
(i.e., failed executions). In particular, the traces recorded
during executions showing an overhead smaller than the
one observed while running the test suite of the program
have been classified as valid, consistently with the inter-
pretation of the developers who have not recognized the
performance problems while running the test suites of the
subject programs. Traces recorded in executions showing a
higher overhead have been classified as invalid. Depending
on the library version, this strategy enabled us to generate
between 340 and 1, 000 valid traces and between 51 and 501
invalid traces caused by actual performance faults.

In the evaluation, we recorded the traces using an As-
pect] advice [54] that intercepts both method entry and exit
events.

4.3 RQ1:Is TKT able to infer generic models that com-
prehensively capture the behavior of the software?

Procedure: Research question RQ1 investigates the sensitivity
of TkT, that is, its capability to infer models that can accept
the legal traces not occurring in the set of traces used for the
inference. We study the sensitivity of TkT when generating
both TAs and EPTAs. Hereafter, we use the acronyms TkT7 4
and TkTgpr4 to refer to the configurations of TkT used to
infer TAs and EPTA, respectively. Since the quality of the
inferred models depends not only on the algorithm, but also
on its configuration and the completeness of the traces used
for the inference, we studied the effectiveness of TkT for
all the 40 configurations listed in Table 2 and for sets of
traces of various sizes. We performed the experiment for
the four algorithms and the 12 versions of the three libraries
(Google Guava, Apache Commons Collections, and Apache
Commons Math).

In order to compare TkT to Perfume, we also executed
Perfume against the traces collected from the four algo-
rithms. We do not have results about Perfume applied to the
traces collected from the Guava library because Perfume has
not been able to infer a model after 10 hours of computation,
which was our time limit for each experiment, in contrast to
TKT that completed every inference task with less than 5
minutes (see RQ5 for a discussion about scalability).

To measure the impact of the number of traces on the
sensitivity of the algorithms, we executed TkT 4, TkT gpr A,
and Perfume on random subsets of traces, considering from
10% to 100% of the set of valid traces. To mitigate the effect
of randomness, we repeated the extraction process 10 times
and reported average values. Note that these subsets of
traces may miss many valid application behaviors facilitat-
ing the generation of incomplete models. More precisely,
since different test cases exercise different usage scenarios
of the systems under test, the selection of a subset of traces
may enable us to study the effects of a test suite with limited
effectiveness (e.g., limited code coverage).

For each set of traces, we used the 10-fold cross valida-
tion method to measure the sensitivity of TkTT 4, TkTgpT 4,
and Perfume. The 10-fold cross validation method works by
dividing an initial set of traces in 10 sets of the same size
(folds), using 9 sets for the inference of the model (training
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TABLE 3
Libraries case studies: performance faults considered in our analysis.

Library Version Bugld URL Code Coverage
Guava 1.0 371 https:/ /github.com/google/guava/issues/371 85.6%
Guava 12.0 1013 https:/ /github.com/google/guava/issues/1013 100.0%
Guava 13.0 1155 https:/ /github.com/google/guava/issues /1155 96.0%
Guava 13.0 1196 https:/ /github.com/google/guava/issues/1196 96.7%
Guava 13.0 1197 https:/ /github.com/google/guava/issues/1197 94.3%
Commons Collections 3.2.1 407 https:/ /issues.apache.org/jira/browse/COLLECTIONS-407 85.3%
Commons Collections 3.2.1 413 https:/ /issues.apache.org/jira/browse/COLLECTIONS-413 100.0%
Commons Collections 3.2.1 425 https:/ /issues.apache.org/jira/browse/COLLECTIONS-425 98.5%
Commons Collections 4.0 534 https:/ /issues.apache.org/jira/browse/COLLECTIONS-534 100.0%
Commons Math 1.0 248 https:/ /issues.apache.org/jira/browse/MATH-248 82.7%
Commons Math 3.0 1153 https:/ /issues.apache.org/jira/browse/MATH-1153 92.1%
Commons Math 3.0 1220 https:/ /issues.apache.org/jira/browse /MATH-1220 97.7%

set) and 1 set for the validation of the model (validation set).
The sensitivity of the algorithm is computed as the fraction
of the traces in the validation set accepted by the model
inferred from the training set. The process is repeated 10
times, every time using a different fold as validation set. The
final score is obtained as the average value of the sensitivity
for the 10 folds. This entire process is repeated 5 times to
mitigate the effect that randomly partitioning a set of traces
into 10 folds may have. Overall, the study on the sensitivity
required the generation of 41 models (40 for TkT and 1 for
Perfume) from each training set, for each subset of traces,
for each subject application (except for library cases, where
Perfume did not complete), and for 5 repetitions, for a total
of more than 180, 000 models inferred.

We believe that the number of traces considered for
model inference can capture the effect of the quality of test
suites on the inferred models.

Results: The boxplots in Figure 3! show the sensitivity of
the models inferred using TkT74, TkT gpra, and Perfume
when an increasing number of traces is available for the
inference. In particular, each set of consecutives 10-boxes
represents a different configuration and each vertical box
shows the average fraction of accepted traces among the
subject applications.

For both the min-max e-policy and y-confidence policy
we report the configurations with the lowest (TM1 and TG1
for TkTt4, EM1 and EGI for TkTgpra) and the highest
sensitivity values (TM16 and TG4 for TkTr 4, EM16 and EG4
for TkT g pr4). We also report the sensitivity of Perfume.

The results show that the sensitivity of both TkT74
and TkTgpr 4 is high, with values quickly growing beyond
90%. Both policies perform well, with the min-max e-policy
performing slightly better than the y-confidence policy in
the case of the algorithms. This is probably due to the
availability of a good number of traces that broadly covers
the valid behaviors, which can be better exploited by the
min-max e-policy.

Both TkTr 4 and TkT g pr 4 outperform Perfume in terms
of sensitivity. Perfume rejects many traces due to the pres-
ence of constraints that overfit the input samples used
for the inference. For instance, Perfume never reaches a

1. Minimum whisker value is Q1 - 1.5*IQR, maximum whisker value
is Q3 + 1.5*IQR; where IQR is the interquartile range. Outliers are not
printed. Red lines show average.

score of 0.8 for the sensitivity even when using 90% of the
available traces for the inference, while the min-max e-policy
already achieves higher values of sensitivity when 18% of
the available traces is used for the inference. Based on a
non-parametric Mann Whitney test, the difference in accu-
racy between each TkT configuration and the corresponding
Perfume configuration (e.g., TM1 with 9% of traces in the
training set compared to Perfume with 9% of traces in the
training set) is always significant with a p-value < 0.05.

Finally, we note that each group of boxplots for TkT in
Figure 3! follows a similar pattern, with increasing median
and decreasing inter-quartile range, for a higher portion of
traces used for the inference. This result indicates that TkT
converges towards higher quality models (i.e., better sensi-
tivity) when increasing the number of traces. Models with-
out global clocks (i.e., TM and EM) achieve better results.
The same pattern cannot be seen in the case of Perfume.
Indeed, the interquartile range remains almost the same for
different portions of traces used for the inference (i.e., all the
experiments show the same degree of variability). Also, the
median is not above the value 0.6 even when more than 50%
of the available traces is used for inference. We can conclude
that Perfume led to models that tend to overfit the training
set and are unlikely to accept new, unseen traces.

4.4 RQ2:Is TKT able to infer precise models that reject
anomalous software behaviors?

Procedure: Research question RQ2 investigates the specificity
of TkT, that is, its capability to reject invalid traces. In our
experiments invalid traces are characterized by the presence
of anomalous timing due to either system overloading or
performance faults.

We measure the specificity of a model as the fraction
of invalid traces rejected by the model. We studied the
specificity for the same range of configurations, size of the
training sets, and subject applications used for RQ1.

Results: The boxplots in Figure 4! show the specificity
of the models inferred with TkT7 4, TkT g p7 4, and Perfume
when an increasing number of traces is available for the
inference. In particular, each set of 10-boxes represents a dif-
ferent configuration and each vertical box shows the average
fraction of rejected traces among the subject applications.

For both the min-max e-policy and ~y-confidence policy
we report the configurations with the highest (i.e., TM1 and
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Fig. 3. RQ1: Sensitivity wrt percentage of available traces included in the training set (i.e., 9%, 18%, 27%, 36%, 45%, 54%, 63%, 72%, 81%, 90%).

TGI1 for TkTr o, EM1 and EGI1 for TkTgpr4) and the lowest
(i.e., TM16 and TG4 for TkT 5, EM16 and EG4 for TkTgpr4)
specificity values. We also report the specificity of Perfume
limitedly to the case of the overloaded environment because
it has not been able to infer the models for the libraries.

Perfume achieves a perfect specificity for any number
of input traces. This is due to the overfitting of the timing
constraints generated by Perfume, which can easily reject
any trace that includes a small variation of the timing
behavior observed on the traces used for the inference.

TkT, in both cases (i.e., with TAs and with EPTAs),
achieves almost the same result than Perfume when applied
to the invalid traces obtained from an overloaded environ-

ment. Indeed, the best configurations (i.e., TM1, and EM1)
achieve 100% specificity and the worst configurations (i.e.,
TM16, EM16, TG4, EG4) achieve more than 90% specificity.
TAs and EPTAs behave differently, with TAs having a
slightly better capability to identify invalid traces. Based
on a non-parametric Mann Whitney test, the difference in
accuracy between each TkT configuration and Perfume is
significant with a p-value < 0.05 for six configurations (i.e.,
TG1, EG1, TM16, EM16, TG4, EG4). In two cases (i.e., TM1,
and EM1) there is no difference between TkT and Perfume
since they both reject all the invalid traces.

The boxplots in Figure 4' show that the configurations
leading to TAs with the highest sensitivity have the lowest
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Fig. 4. RQ2: Specificity wrt available traces included in the training set (i.e., 9%, 18%, 27%, 36%, 45%, 54%, 63%, 72%, 81%, 90%).

specificity, independently of the number of traces used for
the inference process (the interquartile range is large for
all the cases). In terms of guard generation policies, the
«-confidence policy is able to generate invariants better
fitting the observations with a higher capability to reject
invalid traces. In fact, even the worst configuration (i.e.,
EG4) achieves nearly perfect results.

The specificity is lower when applied to performance
faults. In particular, the worst configurations (i.e., TM16,
EM16, TG4, EG4) are much less performing compared to the
case of an overloaded environment. However, the top con-
figurations (i.e., TM1, EM1, TG1, EG1I) still behave extremely
well.

We inspected the traces and faults to understand why
some configurations do not perform well. This is almost
due to a single performance fault (fault number 1196) that
produces traces with an extremely small overhead, which
can be hardly recognized by TkIT4 and TkTgpra, and
could also be hardly recognized by a developer.

Overall, these results indicate that the models inferred
by TkT can be very effective in discriminating both classes
of invalid executions (overloaded environment and perfor-
mance faults).
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4.5 RQ3: How does TKT balance the ability to deal with
legal and illegal behaviors?

Procedure: RQ3 investigates how TkTr4 and TkTgpra bal-
ance sensitivity and specificity, also in comparison to Per-
fume. Finding a balance between sensitivity and specificity
is important to prevent the generation of models that may
trivially reject or accept all the traces. In particular, a good
model should tolerate small changes on the timing behavior,
promptly reporting any significant deviation.

To study this balance, we computed the harmonic mean
of sensitivity and specificity for the configurations that we
studied in RQ1 and RQ2. We aggregated data according to
the percentage of available traces used for the inference.
We distinguished between a small portion of traces (at
most 30% of the available traces used for the inference), an
intermediate portion of traces (the number of traces used
for inference comprised between 30% and 70%), and a high
portion (more than 70%) of the available traces.

Results: The boxplots in Figures 5' and 6! show the
results for all the configurations when a small, intermediate,
and high number of traces are available.

In both cases (i.e., with TA and with EPTA) TkT per-
formed better than Perfume, with larger differences when
fewer traces are available. Based on a non-parametric Mann
Whitney test, for each setup (i.e., small, intermediate, and
high portion of available traces), the difference in accuracy
between each TkT configuration and Perfume is always
significant with a p-value < 0.05.

TkT demonstrated to be relatively sensitive to the choice
of the parameters in the investigated configurations. Indeed,
values from the middle to the top of the range for the min-
max e-policy (i.e., TM4-8, TM13-16) all performed similarly.
The choice is relatively difficult also for the ~y-confidence
policy, which again performed similarly to the min-max e-
policy. Small values of v may work better when few traces
are available, while higher value of v may work better
when several traces are available, but again the choice of
the parameterization is not critical.

We can also notice that using absolute clocks systemati-
cally achieves better results than not using them for all the
investigated configurations. This aspect is further discussed
with RQ4.

Overall, the results show that TkT is not highly sensitive
to the choice of the parameterization, with only small values
of € for the min-max e-policy that performed slightly worse
than the other configurations, and thus should be avoided.
Moreover, TkT obtained an almost optimal balance between
specificity and sensitivity, clearly outperforming Perfume.

4.6 RQ4: How does absolute time affect the effective-
ness of TkT?

Procedure: RQ4 investigates how the use of the absolute
clocks affects sensitivity and specificity. The adoption of
absolute time may allow to detect operations that begin
or terminate too late with respect to the beginning of the
trace, but may also introduce subtle dependencies among
the operations. To investigate the effect of adopting absolute
time, we compare the sensitivity and the specificity of the
configurations that use absolute clocks to the configurations
that do not use them, for all the available cases.
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Fig. 7. RQ4: Distribution of sensitivity/specificity with and without abso-
lute clocks. Red lines show the average across all inferred models.

Results: The box plot in Figure 7 shows the results
for sensitivity and specificity with and without absolute
clocks. According to our set of experiments, the adoption
of absolute clocks leads to a small decrease of sensitivity
while they contribute to a slightly higher specificity.

Results obtained with RQ3 shows that, overall, using
absolute clocks might be beneficial for the model. However,
if there is a reason to prioritize specificity to sensitivity, or
vice versa, the absolute clock might be used or ignored,
respectively.

4.7 RQ5: How does TKT scale with the size of the
traces?

Procedure: To investigate RQ5, we compare the inference
time of TkT (when it generates TA and EPTA) to the infer-
ence time of Perfume. In particular, we investigate how the
cost of the inference increases when an increasing number
of traces are processed by the algorithms. We measured the
time necessary to infer a model for all the executions per-
formed to answer RQ1. The experiments have been run on
a Lenovo System X 3500 M5 Server with 32 cores (3.20GHz).
Since Perfume did not complete on the library cases, we
only considered the four algorithms for this study.

Results: Figure 8% shows a boxplot with the inference
time of TkT compared to Perfume. Each box represents
multiple executions all performed with samples of the same
size.

Data show that Perfume is significantly slower than TkT.
For example when the number of traces to be processed is
close to 100, TkT is almost three orders of magnitude faster
than Perfume (Perfume takes on average 34.7 minutes, while
TKT takes 0.5 seconds). More specifically, the cost of running
Perfume increases quickly with respect to the number of
processed events, while the cost of running TkT growths by
a negligible fraction.

The observed differences in performance can find a
justification also looking at the complexity of the algorithms.

2. Minimum whisker value is Q1 - 1.5*IQR, maximum whisker value
is Q3 + 1.5"IQR; where IQR is the interquartile range. Red lines show
average.
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Although a formal complexity analysis of Perfume is not
available, there are a few steps in Perfume that can make
the algorithm slower than TkT. Perfume is an extension of
Synoptic [14], which starts its inference process by mining
properties from execution traces. Perfume extends the set
of mined properties used by Synoptic employing a total
of seven properties. Moreover, the inference process uses
model checking to implement a counterexample-guided ab-
straction refinement process that iteratively manipulates the
inferred automaton until reaching a refined model. Finally,
Perfume runs k-Tail with k=1 to reduce the inferred model.
The total cost of running property mining, model checking,
and k-Tail with k=1 is plausibly more expensive than run-
ning TkT with k=2, whose complexity is of the same order
of k-Tail (see Section 3.6).

These results suggest that Perfume might hardly scale
to large systems producing long traces, as we experienced
with the libraries, contrarily to TkT that scaled gracefully
with the number of events.
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Fig. 8. RQ5: Inference time of TkT (red) and Perfume (blue), plus
number of events processed during inference (green). To save space,
we plot the chart area below 2,000,000 (y axis). The upper whiskers
not shown in the figure are the ones for the boxplots generated with 82
and 90 traces and their values are equal to 35,18,000 and 38,06,000,
respectively.

4.8 RQ6: How do EPTAs affect the sensitivity of TkT?

Procedure: To respond to RQ6, we performed an experi-
ment to compare the sensitivity obtained with TA to the
sensitivity obtained with EPTA when the traces used for
validation include several repetitions of iterative behaviors
not observed in the traces used to infer the models.

To perform this experiment, we considered traces ob-
tained while executing loop iterations many times. More
precisely, we considered as subjects of our study compo-
nents belonging to the case studies in Table 3 whose iterative
behavior depends on the size of the input (typically a
Java collection class). We selected the classes affected by
the Guava bug IDs 371, 1013, 1055 and by the Commons
Collections bug IDs 407, 413, 425, and 534. For each of these
case studies, we derived 1,000 test cases, each one exercising
the software with inputs (typically a collection class) that
differ for their size (i.e., the number of elements in the
collection).

To perform the experiment we inferred models by select-
ing traces generated with an input of size up to k, with the

value of k ranging from 100 to 1,000 with a step equals to
100. To evaluate the sensitivity of the model, we used the
remaining traces. We performed the experiment for all the
configurations in Table 2 except the ones including absolute
clocks since absolute clocks alone may negatively affect
sensitivity.

Results: The boxplots in Figure 9' show the distribution
of the percentage of valid traces accepted by the models
inferred with TkT when traces with an increasing length are
available for inference. In particular, we report eight groups
of boxplots that capture the results achieved with eight
different configurations of TkT, four related to TA, and four
related to EPTA. To ease visual comparison of the results,
we display pairs of configurations from left to right, such
that each pair differs only for the kind of model derived.

For both the min-max e-policy and the y-confidence
policy we report the configurations with the lowest (i.e.,
TM9, EM9 , TM16, EM16), and the highest (i.e., TG3, EG3,
TG4, and EG4) acceptance rate.

Results show that, expectedly, the use of long traces
during inference lead to a greater portion of traces being
accepted. Indeed, in these cases, the difference in length be-
tween the longest trace used for validation and the longest
traces used for inference is minimal. More in general, we
notice that EPTAs better tolerate iterations compared to TAs
since they produce models with higher sensitivity. This is
likely the effect of the main characteristic of the EPTAs mod-
els derived by TkT, that is, ignoring the time spent in nested
calls, which might be large in long executions. For example,
configuration EM16 achieves an average sensitivity of 0.8
even when the length of the traces used for inference is one-
tenth of the maximal length of the traces used for validating
the model. This may suggest the adoption of EPTAs models
to validate long execution traces collected in the field.

4.9 RQ7: How does the number of traces affect the size
of the inferred models?

Procedure: To address RQ7, we study the size of the models
inferred by TkT when an increasing number of traces are
processed. We consider all the executions performed to
answer RQ1. We do not distinguish between TkTr4 and
TkT g pT 4 because, by construction, for a same set of traces,
they lead to automata with the same number of states
and transitions. Indeed, the automata generated by the two
algorithms differ only for their guard conditions.

In addition, we measure how the number of traces affects
the degree of reduction in the number of clocks included in
the model, compared to the number of clocks in the initial
model. More precisely, we consider the percentage of clocks
merged according to the procedure described in Section 3.4.

Results: We report in Figures 10 and 11 two sets of
boxplots capturing the number of states and transitions
belonging to the models inferred by TkT. The charts show
that the number of traces do not largely influence the size
of the inferred automata. Indeed, except for the cases in
which only 9% and 18% traces are used for the inference,
the interquartile range does not largely vary in the boxplots.
This suggests that TkT is capable of inferring complete
models even when a relatively small number of traces has
been used.
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Fig. 9. RQ6: Sensitivity of TKT (i.e., percentage of traces that are correctly accepted) for traces of increasing length (i.e., generated by processing

input collections containing 100 to 1,000 elements).
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Fig. 10. RQ7: Number of states belonging to the models inferred to
answer RQ1.

Regarding clock reduction, the actual degree of reduc-
tion depends on the characteristics of both the software
and the traces. However, since TkT assigns clocks on every
begin transition, the actual reduction on the number of
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Fig. 11. RQ7: Number of transitions belonging to the models inferred to
answer RQ1.

clocks achieved by TkT is proportional to the degree of
generalization of the input traces. Since the inferred models
are quite compact, as shown in Figures 10 and 11, also clock
reduction is assumed to be significant. This is confirmed by
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our experiments. Indeed, we observed an average reduction
rate of the clocks comprised between 93% (for the sample
size equal to 9% of the traces) and 99% (for the sample size
equal to 90% of the traces) for the algorithms used in the
empirical evaluation.

410 Threats to Validity

The choice of the faults and test cases might introduce
threats to the internal validity of our study. To avoid any
bias, we both distinguished the classes of faults that we
investigated and we detailed the procedure that we used
to work with them. In particular, we saturated the CPU
to assess TkT against performance problems caused by
anomalies in the environment, and we considered third-
party confirmed performance faults to assess TkT against
performance problems caused by software faults. In the
latter case, we also defined an objective procedure based
on the observed slowdown of the system to classify the test
cases, and thus the relative traces, as representative of legal
or illegal executions.

The external threats to validity concern with the general-
ization of the results. We addressed this threat by studying
different classes of faults, both due to the environment and
due to the executed software, different applications and
several configurations, considering a range of situations, in
this way mitigating the risk of lack of generalizability.

4.11

The reported evaluation demonstrates that TkT can be a
useful tool to derive finite state models augmented with
time information that describes the behavior of a monitored
program. In particular, TkT can generate either TAs, which
use guards to represent the full duration of each operation,
or EPTAs, which use guards to represent the duration of
an operation without considering nested operations. Guards
can be generated with two different policies, min-max e
policy and vy-confidence policy, both configurable according
to a parameter. Finally, TkT can be configured to either
generate or not generate constraints on the absolute clock.

The empirical results show that TkT is not particularly
sensitive to the choice of the configuration parameters. In
general, we expect developers to choose between EPTAs
and TAs based on the desired semantics of the constraints.
However, some software applications may have a strong
cyclic behavior that cannot be correctly captured with a TA.
In these cases, inferring an EPTA can be a better option, as
reported in RQ6.

The choice between the two policies depends on the
need of privileging sensitivity or specificity. Indeed, the
v-confidence policy performs better with specificity, while
the min-max e policy performs better with sensitivity. As
shown, the specific choice of the values of the parameters is
not fundamental, as long as small values of € are avoided.

Finally, the absolute clock might improve the quality of
the models, but again, if only either sensitivity or specificity
should be optimized instead of the balance of the two, it
might be useful to either include or exclude guards on the
absolute clock to improve specificity or sensitivity, respec-
tively.

Discussion

5 RELATED WORK

Specification mining literature includes a variety of tech-
niques and approaches for generating models that represent
the behavior of software systems from sets of execution
traces. Here we discuss specification mining techniques
according to the type of model that they generate: ordering
of operations, simple FSAs, annotated FSAs, and FSAs with
time information.

Mining Operation Order: Many techniques can generate
models about the ordering of operations. Some approaches
focus on partial models, that is, models that constrain the
ordering of a portion of the operations that can be executed
by a system. A popular way to express properties about par-
tial order of operations is with temporal rules that specify
temporal relations among events, without specifying the full
behavior of the software. Various classes of temporal rules
can be mined with techniques such as Perracotta [20], the
algorithm by Lo et al. [44], and Texada [21].

In contrast with these approaches, which are useful
when the developer is interested in properties about a subset
of the events that can be produced by a software system, TkT
aims to capture the whole behavior of a software system
with a finite state model that comprehensively represents
the possible combination of events that can be produced by
the monitored software.

Mining Simple FSAs: Mining accurate finite state models
from execution traces is a long living problem. In their sem-
inal work, Biermann and Feldman introduced k-Tail [36],
a well-known algorithm for the generation of a finite state
automaton from a set of observations using an algorithm
based on iterative state merging. The k-Tail algorithm has in-
spired many other techniques that modified and improved
the learning process in different ways, for instance making
the resulting model more compact [40] and introducing a
steering process to improve the quality of the model [16].
Also, TkT uses a modified version of the state merging
process originally introduced in k-Tail.

When the traces include information about the state of
the monitored application, it is possible to apply a style
of inference that exploits state information rather than the
sequences of the events. Some of the approaches that apply
this strategy are ADABU [55], ReAjax [47], and Revolu-
tion [45]. These techniques can be extremely effective, but
they can be applied only when suitable monitors that can
efficiently inspect the state of the application can be imple-
mented. We designed TkT to be applicable to traces that are
frequently available and easy to produce, such as traces with
events and timestamps, for this reason TkT does not rely on
the existence of monitors that can extract additional state
information.

Mining Annotated FSAs: Few specification mining tech-
niques deal with the problem of deriving FSAs that in-
clude additional infromation necessary to better capture
the behavior of an application. This is the case of speci-
fication mining techniques that infer extended finite state
machines [17], [18], [19] (i.e., FSAs with transitions anno-
tated with guards conditions specifing the values that can
be assigned to some variables), and FSA annotated with
data-flow information [56] (i.e., FSAs where transitions are
labeled with identifiers that can capture how the values of
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some variables reoccur across events). While the annotated
models can represent behavioral information that cannot be
captured with simple FSAs, inferring extended models may
negatively affect the quality of the models in some of the
cases [48].

TkT also mines behaviors that cannot be captured with
simple FSAs. Contrarily to existing extensions that focus
on adding different classes of constraints on the models,
TkT focuses on time information, which is an aspect that
requires a specific extension to the mining process. The
time information represented in the model produced by
TkT requires the generation of clocks, resets, and guards
on clocks, which cannot be represented with the existing
extended models.

Mining FSAs with Time Information: Mining models that
represent both the functional behavior of an application,
such as the operations that can be performed and their
ordering, and time information, such as the time required
by each operation to complete, is important to be able to
work on the interplay between these two aspects.

Perfume [10] is a technique that addresses the problem of
mining models that capture the interplay between the func-
tional and the timing behavior by extending Synoptic [14]
with the ability to deal with the durations of the operations.

In addition to Perfume, several techniques for the in-
ference of automata with time information [24], [25], [26],
[27], [28] have been developed in recents years, but most
of them have been specifically designed to model em-
bedded and cyber-physical systems. OTALA [24] derives
timed automata where each distinct combination of dis-
crete input/output signals corresponds to a state of the
automata, a criterion that cannot be easily applied to traces
recorded from other software systems. BUTLA [25] instead,
derives a prefix tree acceptor that captures the sequences
of system events appearing in traces. BUTLA integrates a
state merging criterion that merges states with a similar
probability of being final, or receiving the same events.
This merging criterion is effective in the context of cyber-
physical systems where the system state may directly de-
pend on individual events (e.g., a switch turned on), but
it is hardly applicable to other types of software systems
where the current system state may depend on sequences
of operations. HyBUTLA [26] augments BUTLA with the
capability of dealing with discrete and continuos signals.
Contrarily to BUTLA and HyBUTLA, TkT targets generic
software systems that can execute sequences of possibly
nested operations by suitably extending the state merging
strategy originally defined in k-Tail.

Several approaches, [24], [26], [27], [28] derive real-time
automata [27], that is, one-clock timed automata [30] where
constraints simply capture the time difference between con-
secutive events. TkT instead derives constraints that can
bound the duration of pair of non-consecutive events (e.g.,
the beginning and the end of the execution of a method),
thus being able to effectively deal with the duration of
nested operations. This same limitation characterizes also
approaches that derive event recording automata [29].

Finally, mining techniques can be used to associate time
information with call paths [57]. The idea is to detect and an-
alyze "hot code functions” (i.e., functions that are executed
frequently) to create performance assertions, useful for per-

formance monitoring and regression testing. In contrast
with this approach, TkT aims to generate comprehensive
finite state specifications enriched with time information.

6 CONCLUSIONS

Mining accurate models that can serve software engineering
tasks is challenging. So far, specification mining solutions
focused on the generation of behavioral models that capture
the functional behavior of a system, producing models like
temporal rules [20], [21], [44], finite state machines [16], [36],
[47], and extended finite state machines [17], [18].

Although these models are useful, they fail to capture the
interplay between the functional and the timing behavior of
a system. This relation is relevant in many contexts where
completing operations with unusual timing might represent
a problem. For instance, an algorithm that requires too long
to complete may cause serious inefficiencies in a system.

In this paper we presented TkT, a specification mining
technique that generates timed automata and extended
pushdown automata from a set of execution traces. The gen-
erated automata can suitably represent both the functional
and the timing aspects, supporting analyses that consider
those two aspects independently or jointly. Empirical results
obtained with well-known data processing algorithms and
leading opensource libraries has shown that TkT is efficient
and effective. More precisely, all possible configurations of
TkT lead to models that correctly generalize the software
behavior observed in traces (i.e., with a very high sensitivity,
above 0.8), even when a small portion of the available traces
is used. TkT has high specificity, that is, it can effectively
detect anomalies caused by either overloaded environment
and performance faults. TkT has an almost optimal bal-
ance between specificity and sensitivity, independently from
its configuration parameters. Interestingly, extended push-
down automata can be more effective than timed automata
when the software under analysis has a strongly cyclic
behavior. Finally, TkT scales to systems producing large
execution traces.
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