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ABSTRACT

The Jet Propulsion Laboratory and Caltech developed the Axel rover to investi-
gate and demonstrate the potential for tethered extreme terrain mobility, such as
allowing access to science targets on the steep crater walls of other planets. Tether
management is a key issue for Axel and other rappelling rovers. Avoiding tether
entanglement constrains the robot’s valid motions to the set of outgoing and return-
ing path pairs that are homotopic to each other. In the case of a robot on a steep
slope, a motion planner must additionally ensure that this ascent-descent path pair is
feasible, based on the climbing forces provided by the tether. This feasibility check
relies on the taut tether configuration, which is the shortest path in the homotopy
class of the ascent-descent path pair.

This dissertation presents a novel algorithm for tethered motion planning in ex-
treme terrains, produced by combining shortest-homotopic-path algorithms from
the topology and computational geometry communities with traditional graph search
methods. The resulting tethered motion planning algorithm searches for this short-
est path, checks for feasibility, and then generates waypoints for an ascent-descent
path pair in the same homotopy class. I demonstrate the implementation of this al-
gorithm on a Martian crater data set such as might be seen for a typical mission. By
searching only for the shortest path, and ordering that search according to a heuris-
tic, this algorithm proceeds more efficiently than previous tethered path-planning
algorithms for extreme terrain.

Frictional tether-terrain interaction may cause dangerously intermittent and unstable
tether obstacles, which can be categorized based on their stability. Force-balance
equations from the rope physics literature provide a set of tether and terrain con-
ditions for static equilibrium, which can be used to determine if a given tether
configuration will stick to a given surface based on tether tension. By estimating
the tension of Axel’s tether when driving, I divide potential tether tension obsta-
cles into the following categories: acting as obstacles, acting as non-obstacles, and
hazardous intermittent obstacles where it is uncertain whether the tether would slip
or stick under normal driving tension variance. This dissertation describes how to
modify the obstacle map as the categorization of obstacles fluctuates, and how to
alter a motion plan around the dangerous tether friction obstacles. Together, these
algorithms and methods form a framework for tethered motion planning on extreme
terrain.
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C h a p t e r 1

INTRODUCTION

This thesis considers motion planning for rappelling tethered robots such as the Axel
rover in Figure 1.10, which is described in further detail in Section 1.5. Motivated
by the desire to explore hard-to-reach science targets on the Moon and Mars, Axel
was designed and built to anchor the end of its tether to the top of a cliff, rappel
downwards, and winch itself back up upon completion of its science goals. Such a
rover, however, requires new motion planning algorithms to account for the tether’s
presence, ensuring that the robot can always safely descend to its science goals and
then ascend to its starting position.

After describing the science goals motivating Axel’s creation, this chapter discusses
the issues driving the development of tethered motion planning and provides a high-
level overview of tethered motion planning. Literature more specific to this work
will be reviewed in the next chapter.

1.1 Robotic Space Exploration
Humankind has conquered the extremes of our planet — the summits of Everest and
Kilimanjaro, the depths of theMarianas Trench, the sweltering heat of Death Valley,
and the freezing stretches of Antarctica. However, despite our dominance on Earth,
humans are spectacularly unsuited for spaceflight. An unfortunate astronaut, it has
been estimated, can survive for 60-90 seconds without a suit [1]. A good spaceship
or spacesuit can protect that astronaut for months or years, but radiation remains a
major problem, especially for long-term spaceflight [1].

This is where robots shine. Robotic probes can access the furthest reaches of
our solar system, with no need for a two-way ticket. Curiosity, the Mars Science
Laboratory (MSL) rover, lay mostly dormant for the 9 months it took to reach Mars;
it will never return [2]. The two Voyager probes have been traveling since 1977 on
a grand tour of the outer solar system and now into the heliosheath and interstellar
space beyond [3]. The Cassini spacecraft spent 7 years in transit to Saturn; after
releasing the Huygens probe to land on Titan, it spent another 13 years investigating
Saturn and its moons and rings from orbit [4].

Robots excel at the dirty, dull, and dangerous. As we move outward from Earth, to
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learn about the universe and our place in it, robots can lead the way.

1.2 Potential Science Gains from Extreme Terrain Mobility
As Gary Kasparov or Ken Jennings could tell you, robots have far outpaced humans
on certain scope-limited, highly computational tasks like chess or Jeopardy!. On
ill-defined tasks, though, robots still don’t hold a candle to a human child; that’s
why grasping, manipulation, vision, and natural language processing (to name a
few) are still open research topics in the Artificial Intelligence (AI) and robotics
communities. Extreme terrains pose similar problems in scope and complexity.
While robotic vehicles can drive for hours on flat ground, an able-bodied human
can still scramble up a rockfall that would be impossible for most robots.

Figure 1.1: Stratigraphy reveals infor-
mation about the geological history of
the Grand Canyon, telling a story about
the region’s geography and climate dur-
ing each era. Photographed by the au-
thor in 2016 from the South Rim of the
Grand Canyon.

Figure 1.2: NASA’s Mars Exploration
Rover Opportunity captured this false-
color panoramic image of a wall of Vic-
toria Crater. Loose rocks lie jumbled
atop a bright band of bedrock that used
to be the surface of Mars, before the
crater-forming impact. Image credit:
NASA/JPL/Cornell [5].

Field geologists use their natural legged mobility all the time. If you climbed down
the walls of the Grand Canyon (and, ignoring the danger and illegality, you could),
you would follow the history of the Earth down through the layers of rock. By
sampling each layer, you could learn about the Earth’s environment at the time, and
perhaps about any organisms that lived there. Stacking those observations together
to see the rock strata as a whole, you could read the region like a book. Without that
ability to navigate steep slopes, though, existing extraterrestrial robots are limited
to days of drilling or traversing miles of flatter ground looking for those strata.
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Space agencies around the world are recognizing the importance of extreme terrain
mobility. In 2012 NASA laid out the agency’s technology development needs in
[6]. It states,

Extremely mobile platforms will be a critical component to both the
success and diversity of extraterrestrial body exploration. . . . In chaotic
unstructured environments with random geometries and large variations
on [sic] terrain composition, robotic platforms will be challenged more
than ever to avoid getting stuck while still performing relevant and
meaningful exploration. . . . This technology is game changing
because it provides NASA with the capability to maneuver its surface
vehicles in extreme terrain in order to ‘follow the water’ — a high-
priority science focus for Mars and lunar surface missions [6].

The updated 2015 version of the same document goes a step farther. Next to a picture
of the Axel rover (to be described in Section 1.5), it states, “NASA needs to reach
locations that may be extreme in order to find the best samples for scientific analysis.
On-, above-, and below-surface mobility enables these locations to be reached with
instruments for in-situ analysis or with sampling devices for sample return and more
extensive analysis” [7]. The EuropeanCommission even expressed a specific interest
in rappelling mobility in its recent call for space robotics technology development.
They postulate that “a robot with extreme terrain mobility could explore lunar lava
tubes, hunt for water ice in lunar cold traps, and investigate recurring slope lineae
on Mars” [8]. The next two sections consider specific space objectives that motivate
the development of Axel, and therefore this thesis.

1.2.1 The Recurring Slope Lineae Mystery
Mars is an inhospitablewasteland. Temperatures range froma frigid−100◦C (−148◦

F) to a toasty 35◦ C (95◦ F) [9]. Worse, its approximately 700 Pa atmosphere is near
the triple point of water — that is, atmospheric pressure is so low that pure water on
Mars would only exist for any length of time in a solid (ice) or gaseous form [10].
This low pressure may explain why scientists have yet to find definitive evidence
of liquid water on Mars, despite tantalizing hints that it once existed. One of the
most suggestive indications was the discovery of Recurring Slope Lineae (RSL),
first photographed in 2011 by the HiRISE camera on Mars Reconnaissance Orbiter
(MRO) [11]. These long dark streaks appear and grow on sun-facing crater walls
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during the Martian summers, and slowly disappear in the winter. In Newton Crater
in the southern hemisphere, for example, the RSL appear on its north-facing slopes.

Figure 1.3: The dark streaks in the bottom third of the photo are Recurring Slope
Lineae (RSL) inNewtonCrater, Mars. Their seasonal appearance and disappearance
may indicate the presence of liquid water on Mars. Image credit: NASA/JPL-
Caltech/Univ. of Arizona [12].

The strong correlation between solar heating and the appearance of RSL streaks sup-
ports the most popular hypothesis, that RSL are caused by briny water darkening the
soil [11]. As anyone who has thrown salt on an icy road knows, adding salt to water
lowers its freezing point, preventing cold liquid water from freezing. Simultane-
ously, salt raises water’s boiling point, effectively shifting the entire phase diagram
down and allowing for liquid water to exist at low pressures. This hypothesis is
supported by the spectral evidence of hydrated salts, which precipitate from liquid
water, found by MRO’s Compact Reconnaissance Imaging Spectrometer (CRISM)
[13]. That same spectrometer has failed to find a spectral signature of water, but the
authors point out that high-resolution spectrometry occurs in the afternoon, when
the water may have evaporated too quickly to be detected. Similar debates occur
over potential sources of this water [13]. Martian salt deposits are fairly common,
and melting overnight frosts or water deliquescing onto those salts could form a
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brine [14], [15]. However, the Martian atmosphere seems too dry for adsorption to
be the mechanism [14]. Subsurface aquifers or thin layers of subsurface ice may be
the source [16], and while the Mars Odyssey Neutron Spectrometer has not found
evidence for large shallow aquifers, there may still be ice, or smaller, deeper aquifers
[17], [18]. Alternately, RSL streaks might be caused by some other volatile liquid,
like liquid CO2 [19].

The lack of spectrographic evidence for water has popularized the dry granular flow
hypothesis. Dundas et al. [20] explain that an avalanche could expose a darker
underlying material. Over time, lighter dust would cover up that material, resulting
in the streaks “disappearing”. The seasonality of the flows seems to contradict this
hypothesis, but proponents have pointed out that a mostly-dry flow could still be
triggered by one of the aforementioned volatile processes, and would require smaller
volumes of liquid [20].

As remote sensing seems unable to resolve this debate, scientists must turn to in situ
investigation. However, entering the craters would be a death sentence to the Mars
Exploration Rovers (MER), Spirit and Opportunity, which are only designed for a
20 degree slope. The RSL occur primarily on steep, 30-40◦ slopes [21]. Although
Curiosity is designed to withstand slopes of up to 45◦, it is programmed to avoid
more than 30◦ slopes, for safety [22]. These crater walls might have soft, slippery
soil, or jumbled scree, making it all too easy to trigger a slide or rock fall. Exploring
such extreme terrains would entail considerable risk for any existing rover. It is for
scenarios such as these that the Axel rover, described in Section 1.5, was designed.

1.2.2 The Moon: Moon Diver and Cold Traps
The dark spots on theMoon—huge dark plains of basalts known as maria (singular:
mare) after the Latin for “sea”—were formed by volcanic eruptions some 1–4 billion
years ago [23]. Despite the quantity of lunar rock and soil brought back by theApollo
missions, scientists still have many questions about volcanism on the Moon. Where
in the Moon’s mantle does the magma for a given mare come from, and does that
source’s chemistry change over time? How hot was the flowing lava, how quickly
did it flow, and how fast did it cool? What did lunar regolith look like in the past,
and what was the typical time between volcanic eruptions? All of these questions
are difficult to answer with only materials from the surface, possibly contaminated
by billions of years of meteorite impacts and space weathering.
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Figure 1.4: Images of a possible 65-m
lava tube skylight in the Marius Hills on
the Moon, taken by SELENE’s cameras
at different angles and times [24]. The
solid white box in a) indicates an area that
Haruyama et al. used for crater-counting.

NASA’s Lunar Reconnaissance Orbiter
(LRO) recently discovered deep mare
pits on theMoon, in the Philolaus Crater
near its north pole [25]. These pits ap-
pear to be “skylights,” which are formed
when a portion of a lava tube col-
lapses. Agroup of scientists frommulti-
ple aerospace centers1 has recently pro-
posed Moon Diver, a Discovery-class
mission to investigate one of these mare
pits using Axel [26]. A skylight of-
fers a unique opportunity to investi-
gate lunar volcanism without resorting
to drilling: scientists can simply exam-
ine the stratigraphy of the layered lava
composing the walls. Once the primary
science objectives were met, Axel could
even explore the lava tubes as a poten-
tial location for a lunar colony, since the
tubes are naturally shielded from radia-
tion.

Shackleton Crater, near the Moon’s
south pole, is another likely location
for human habitation. Its polar location
means its peaks receive near-constant
sunlight, perfect for placing solar pan-

els. The sun never hits its depths, making it a poetically-named “crater of eternal
darkness”. As a result, the crater floor is a cold trap, one of the coldest places in the
solar system. Here, too, it is possible for water ice to exist, perhaps deposited by
meteorites and maintained by the bitter cold, despite the ultra-low pressure [27]. If
so, this could be a valuable resource for a potential Moon colony; astronauts could
mine the ice for water to drink, oxygen to breathe, and hydrogen for fuel. The Lunar
Prospector spacecraft found high amounts of hydrogen in Shackleton, potentially in-

1Scientists from: NASA Jet Propulsion Laboratory (JPL); USGS Astrogeology Science Center;
DEEPS, Brown University; Johns Hopkins Applied Physics Laboratory; University of Colorado,
Boulder; CEPS, Smithsonian Institution; AOPD University of Oxford, UK; NASA Marshall SFC
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dicating water ice, but so far it has not been confirmed by remote sensing [28], [29].
It will, perhaps, require an extreme-terrain robot performing in situ measurements
to confirm or disprove the presence of water.

1.2.3 Extreme-Terrain Mobility on Earth
A robot with extreme-terrain mobility would also find many uses on Earth. After
the Fukushima Daichi disaster, responders sent robots into the contamination zone
for reconnaissance. The robots struggled to climb stairs [30]. Improving robotic
disaster response was part of the motivation behind the DARPA Robotics Challenge
(DRC), which ran from 2012 to 2015 [31]. The DRC encouraged the development
of robots that could semi-autonomously enter a disaster zone, ultimately aimed at
helping with disaster recovery. Two of the tasks had an extreme-terrain mobility
aspect: traveling through rubble and climbing stairs [31]. An extreme-terrain robot
could also climb into a collapsed mining tunnel to look for survivors, or navigate the
site of an avalanche without concern for a secondary slide. Historically, there have
been mining disasters as a result of collapsing piles of mining waste called spoil
tips. As a preventative measure, a robot could traverse those slopes to place sensors
that could detect the early warning signs of a collapse in time to evacuate nearby
areas. A similar system could even serve as an early warning system for California’s
seasonal landslides.

1.3 Extreme Terrain Robots
Even the most advanced wheeled robots can’t usually climb steep slopes unassisted,
and, with the exception of rocker-bogie systems, they are generally limited to climb-
ing rocks and obstacles that are a fraction of their wheels’ radius. The wheeled
Curiosity rover, for example, recently failed to reach a target on a 32° slope, the
steepest it had ever attempted [32]. Tracked vehicles may do slightly better, but
without a tether they still struggle on steep slopes with loose surface coverings [33].

Absent the use of wheels and tracks, robots with extreme terrain mobility generally
fall into 3 categories: legged robots, tether-assisted robots, and hybrid systems that
involve multiple mobility modes. Noteworthy examples of legged robots include
BigDog, Cheetah, LS3, Spot, Atlas, and other Boston Dynamics robots. JPL has
developed Athlete, Lemur, and most recently, RoboSimian. While the technology
shows promise, legged locomotion can be risky, mechanically complicated, and
difficult to automate. RobotSimian and Atlas both participated in the 2015 DRC,
which highlighted some of the challenges: state-of-the-art robots repeatedly fell,
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damaging expensive and hard-to-replace components [34].

Dante, a tethered eight-legged walking robot developed by CMU, was one of the
earliest tethered extreme-terrain robots. The first version only traveled a few feet into
the crater of Mount Erebus, Antarctica, before a snapped cable ended its mission.
Dante II, however, successfully explored the caldera of Mount Spurr volcano in
Alaska before tipping over on the way out. A post-mortem suggested that the robot
tipped over due to a combination of operator error and unforeseen forces on the
tether [35], [36]. JPL’s Three-Robot System for Traversing Steep Slopes (TRESSA)
takes a different approach, using two anchoring robots (Anchorbots) that each spool
out tether to support a third climbing robot (Cliffbot) between them [37], [38].
In recent years, single-tether climbing robots have become increasingly popular,
perhaps influenced by Axel’s success. Researchers from the University of Toronto
have developed a prototype four-wheeled tethered robot called vScout, a retrofitted
Clearpath Robotics Husky A200 [39]. vScout and its successor, Tethered Robotic
Explorer (TReX), were designed primarily to help field geologists on Earth [40],
[41].

The Japanese HAKUTO team was motivated by the Google Lunar XPRIZE to
explore lunar lava tubes [42]. Their rover system consists of a four-wheeled rover
called Moonraker, which acts as an anchor for a two-wheeled rappelling rover called
Tetris. JPL’s VolcanoBots 1, 2, and 3 were designed to explore volcanoes much
closer to home; they have been tested at Kilauea volcano in Hawaii. Measuring only
10–12 inches across, these tiny robots are too small for an on-board spool, and are
instead lowered down from above by hand [43], [44].

There are also human-operated tethered systems that may someday become au-
tonomous, or at least more mechanized. In the timber industry, Steep SlopeMachine
(SSM) logging operations are highly dangerous and labor-intensive [45]. On flatter
ground, loggers use a human-operated heavy machine called a feller buncher (some-
times written “feller-buncher”) to grab, cut down, and place a tree. Recently, forestry
operations are experimenting with using a winch system to anchor and support the
feller buncher on steep slopes, such as in the cartoon in Figure 1.5 [33]. Further
mechanizing and automating the steep slope logging process may save money and
human lives, but it would require an AI that can account for one or more tethers in
its motion plan.
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Figure 1.5: Tethers provide support for robots on extreme terrains. In this free body
diagram, a tether allows a feller buncher to log trees on steep slopes [33]. Although
logging operations are not typically robotic, improved tethered planning algorithms
may assist human operators or allow for eventual automation.

1.4 Other Tethered Robots
Besides generating climbing forces, tethers have other uses. Even robots that don’t
depend on tethers for mobility, such as a bipedal walking robot, will often use a
tether as a safety line during testing to prevent a costly fall. In addition, robots have
been and will continue to be tethered for many other reasons, including power and
communications.

Early robots were often controlled by wires. Although the invention of radio allowed
remote control, there are still robots today that use a tether for communication,
Remotely Operated underwater Vehicles (ROVs) being the most notable. These
teleoperated submersibles often use an umbilical cable to send signals and power for
deep-water operations. These robots highlight the benefits of a tether in cases where
communication over a short distance is difficult due to the medium, such as water,
or in an enclosed environment. A shielded cable might be useful in a radioactive
environment, such as Fukushima. A cable can also improve communication when
there is no line-of-site between elements. For example, a tethered rover exploring
a lava tube on the Moon could use a tether to communicate with an aboveground
platform, which in turn relays signals to a satellite or to Earth.
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Figure 1.6: Even free-standing robots often use a tether during testing, for power
or safety. Big Dog, a quadruped robot by Boston Dynamics, is shown here with a
cable [46].

Figure 1.7: RoboBee gets power and control signals through a tether consisting of
4 tiny copper wires [47].

While radio and improving autonomy allow some workarounds to the communi-
cation problem, providing a robot with sufficient power can still pose a challenge.
It is still common in the robotics community to use a power cable during lengthy
testing operations, as can be seen in Figure 1.6. For RoboBee, an autonomous
flying microrobot out of Harvard, the huge energy requirement of low-Reynolds-
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number flight makes an on-board battery infeasible. Until that design challenge is
overcome, RoboBee flies with a power cable, as shown in Figure 1.7. Quadcopters
and other multirotor drones could benefit from power cables as well; a quadcopter’s
high power requirement and relatively low carrying capacity limit its flight time.
In fact, a few companies are already offering powered tether solutions for drones.
Elistair sells the Safe-T smart tethering station for drones, and NTP sells the Pow-
erline auto-tensioning drone system, primarily aimed at the persistent surveillance
use-case [48], [49]. A startup called AeroMana is developing tethered drones to
“fly for hours, not minutes” as their promotional material promises [50]. In a very
different example, Ratner and McKerrow have proposed a tethered aerial robot de-
ployed from some hovering or flying platform by a powered tether, to be used for
search and rescue [51], [52]. A tether could also be used to transfer fluid, such as
air pressure for a pneumatic robot.

Even untethered robots may someday need to understand the topology of tethers
in order to lay a cable, pick up a leash, or unreel a garden hose. For example,
robots performing repairs outside a spacecraft may need to tie themselves to the
craft, like astronauts do on EVA. Window-washing robots will need safety ropes, to
save pedestrians below in the event of a missed grip or broken suction cup. Each of
these scenarios offers another compelling reason to research how ropes and tethers
move and how to autonomously control robots that operate under the constraints of
tethers.

Of course, tethered robots do have their limitations. The most obvious is the
length constraint imposed by a tether, which severely reduces a robot’s mobility.
Tethered robots work best in a few select situations: times when a robot need
only travel a relatively short distance across environments that constrain power
and communications. This is because tethers can easily become mobility-limiting,
especially if they tangle or catch on obstacles. The complexity of a tether’s path
can grow so as to be difficult even for a human operator, necessitating autonomous
motion planning algorithms that account for a tether.

Fortunately, this thesis will show that autonomous tether planning is possible. Thus,
tethered robots are ideally suited for extreme terrain or otherwise difficult-to-traverse
environments, using tethers for support and safety. Tethers can also provide off-
board power, freeing up a robot’s mass for locomotion. Finally, they can be useful
in environments that otherwise impede communication. Axel uses its tether in all
these ways: for support in abseiling down a cliff and winching itself back up again,
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for communication, and for sending power to recharge its onboard batteries.

1.5 The Axel Rover System
This section was adapted and updated from [53].

In response to calls for an extreme terrain rover, researchers at the NASA Jet
Propulsion Laboratory (JPL) and the California Institute of Technology (Caltech)
developed the Axel class rover, and its DuAxel rover configuration. Axel is a
symmetric two-wheeled robot that can rappel down steep terrain using a tether in
order to carry out science missions at close range (see Figure 1.8). The tether is
routed through the arm, into the tension control module, and wound around a reel in
the center of its body. This tension control module, or tether management system,
maintains a relatively constant tension on the tether as Axel maneuvers, and quickly
picks up any slack should Axel slip.

A singleAxel unit is conceived as a daughter ship in amother-daughter configuration,
with Axel’s tether anchored in the mother ship (a rover or lander at the top of the
extreme terrain) [54]. In addition to providing mechanical support, the tether can
provide power and communication. Because the Axel body acts as a winch, paying
out or reeling in the tether as it travels, the system minimizes tether abrasion.

Figure 1.8: CAD rendering of the
Axel rover.

Figure 1.9: The DuAxel rover on rough
terrain. DuAxel consists of two Axel-
class rovers docked with a central module.

Axel is minimally actuated, having a motor for each wheel, one to spool the tether,
and one to control the arm through which the tether passes. This combination of
motors allows Axel to rotate its body independently of its wheels, to take pictures or
deploy scientific instruments from the access panels in its instrument modules while
on a steep cliff face. The arm provides extra leverage for climbing over obstacles
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during flat-ground traverse, and it holds the tether away from the wheels during
tether-assisted climbs.

In the DuAxel configuration, two Axel-class rovers dock with a central module,
forming a 4-wheeled rover which can traverse long distances to the edge of an
extreme terrain area (see Figure 1.9), whereupon one or both Axels disengage from
the central module to descend into the hazardous area, as in Figure 1.10. The
central module acts as an anchor and mother ship. For more details on the geometry,
mechanical design, and capabilities of the Axel and DuAxel rovers, see Matthews
and Nesnas [55], Nesnas et al. [54], and Abad-Manterola et al. [56], [57]. For
information on the tether tension, control, and motion planning of Axel and DuAxel,
see Abad-Manterola [58], Abad-Manterola et al. [59], Tsai et al. [60], and Shankar
and Burdick [61].

Axel’s 4 mm-diameter custom-made tether also contains four 28-gauge copper wires
wrapped around a nylon core, allowing power and communications signals to be
transmitted along the tether. These components are surrounded by a Vectran™ fiber
strength member braid, which is wrapped in a braided black Tefzel®2 cover.

1.6 Motivating Tethered Motion Planning
Figure 1.10 shows Axel descending steep terrain during a field test in the Arizona
desert. Clearly, without thoughtful planning of Axel’s descent in such terrain, there
is a high propensity for its tether to become entangled on terrain features. An
operator’s job is further complicated by Axel’s profile; its relatively low on-board
cameras (which provide perception to the remote operator) and the rough terrain
mean that obstacles often occlude distant sections of slope from view. Motion
planning and assistance tools would allow an operator to keep track of the tether
position during complex traverses and to check that Axel can safely traverse the
desired route.

Autonomy becomes even more important for extraterrestrial missions. A one-way
radio signal between Earth and the Moon takes 1.25 seconds, enough delay to make
teleoperation difficult. Radio signals between Earth and Mars take 4 to 24 minutes,
depending on where the two planets are in their respective orbits. For this reason,
safe operation on Mars necessitates at least low-level navigational autonomy, and
Mars rovers are becoming increasingly autonomous over time.

2Tefzel is the brand name for ethylene tetrafluoroethylene, a fluoride-based polymer.
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Figure 1.10: Axel rappelling down a rocky slope during a field test near Black Point
Lava Flow in Arizona. The tether in this image is highlighted in yellow, for visibility.

1.7 Literature Review
Although tetheredmotion planning is a relatively new field, it draws on shortest-path
algorithms from computational geometry that date back to the 1980s. Subsection
2.3.1 describes the algorithm to find the shortest path between two points in a simple
polygon, as developed by Chazelle [62] and later Lee and Preparata [63]. Guibas et
al. [64] developed an algorithm to create a tree of shortest paths from a point on a
simple polygon to all its vertices, which is covered in Subsection 2.3.2. Hershberger
and Snoeyink [65] synthesized these previous works under the framework of the the
universal covering space, showing that the Funnel and Shortest Path Tree algorithms
can be extended to polygons with holes. For more detail, see Section 2.2. Mitchell
[66] summarizes some of these results.

1.7.1 History of Tethered Motion Planning
Aside from these general shortest-path geometry solutions, most work on tethered
motion planning can be categorized by the models and constraints used. We use
Xavier’s definitions [67] for the tether-crossing constraints, in which a semi-planar
robot can cross its tether, a purely planar robot cannot, and a pushy planar robot
can push the tether to avoid crossing it. Each tethered planning problem can be
described by its combination of the following characteristics:
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• Planar or 3-dimensional robot and map

• Single or multiple robots in the workspace

• Infinite (variable) or finite-length tether

• Planar, semi-planar, and push planar tether-crossing constraints

Some of the earliest works in tethered motion planning examined multiple planar
point robots, some with tether length constraints. For example, Sinden [68] showed
that task-scheduling for multiple tethered planar robots is equivalent to the problem
of assigning edge colors for a plane embedding of a bipartite graph. He modeled the
tethers as straight line segments of variable length, treating them like 2D manipula-
tors composed of rigid links. Sinden described cases in which a solution is feasible
and gave a scheduling algorithm for all robots to visit various stations on a staggered
time schedule. Xavier [67] described an algorithm to find the shortest path for a
single tethered robot with a semi-planar crossing constraint in O((=; + 1)2=4) time,
where = is the number of obstacle vertices and =; is the number of loops in the
tether’s initial configuration.

Hert and Lumelsky wrote a series of papers on motion planning for multiple push
planar robots with finite-length tethers in a 2-dimensional workspace. They first
developed a O(=4) time algorithm to design a sequential motion strategy, where = is
the number of robots [69]. It generates a relatively efficient ordering of robotmotions
and their trajectories to target points. Their subsequent paper [70] gave aO(=2 log =)
algorithm to find trajectories for all = robots, assuming a starting configuration and
target configuration have already been found. In their third paper [71], Hert and
Lumelsky represented the problem of finding an optimal target cable configuration
as a Euclidean graph search with constraints. Specifically, the routes connecting
the start and target configurations for each cable must not intersect. They used an
exhaustive search with pruning to find a solution on this graph. Their latest paper
[72] gave an algorithm for planning tangle-free motions in an open 3-dimensional
workspace, such as for tethered underwater vehicles moving between stations. By
modeling the tethers as straight-line segments, they analyze the intersections of
the triangles formed between anchor, start point, and goal to check for triangle
intersections that may indicate tangling, and use this to produce an ordering graph.
They then construct a set of approximately optimal tangle-free robot paths, and
compute simultaneous motion trajectories for those robots.
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1.7.2 History of Frictional Rope Mechanics
Axel’s extreme-terrain purview necessitates a different approach to tethered motion
planning. Although the presence of other robots and their cables are no longer a
concern, the 3-dimensional terrain means that, under the right circumstances, the
tether could slip over an obstacle. While Axel’s long tether is rarely a restrictive
length constraint, the frictional forces on the cable between the robot and its anchor
become significant. In addition, using the cable for climbing and rapelling means
that any motion planning solution must take into account gravity and the robot’s
ability to traverse the ground.

Sailors have been taking advantage of the mechanics of rope friction since at least
the invention of the capstan or bollard. In the 1700s, Euler and Eytelwein related
the holding force and the loading force of a rope wrapped around a cylinder with
the eponymous Euler-Eytelwein formula, also known as the Capstan Equation.
Maddocks and Keller derived the force-balance equations for a frictional rope from
first principles, of which the Capstan Equation is a special case [73]. Konyukov
further generalized the statics of a frictional tether to apply to an orthotropic surface,
in which the friction coefficient varies based on the direction of force [74]. He also
gave the nonlinear system of equations describing a rope sliding across a surface.
Attaway took a more applied approach, using Coulomb’s Friction Law and the
Capstan Equation to explain some common occurances and best practice in rope
rescue climbing [75]. For further detail, see Chapter 3.

1.8 Thesis Contributions and Summary
This chapter introduces the motivations for extreme terrain and tethered robots,
such as the Axel rover. Axel presents some unique challenges to motion planning
because it uses its tether for both climbing and stabilizing forces. While there is a
body of literature on tethered motion planning, reviewed in Subsection 1.7.1, most
of it is for flat ground. In his graduate work on Axel, Abad-Manterola outlined an
algorithm for tethered motion planning on extreme terrain that could be modeled as
a single plane [59], [58]. I have extended his algorithm to work in a wider range
of circumstances, taking into account tether friction, flat planes, and the possibility
of multiple planes. This thesis also describes my implementation of this algorithm,
including some of the necessary details to make it work.

Chapter 2 reviews Abad-Manterola’s tethered planning work and explains the nec-
essary background concepts of homotopy and sleeves. His algorithm started with a
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simple polygon called a sleeve, found with a basic graph search. I leverage graph
search techniques from the computer science community and shortest-path-finding
algorithms from the computational geometry literature to make an algorithm that
can more efficiently search for a useful sleeve. The graph search techniques and
shortest-path algorithms are both reviewed in Section 2.3. This algorithm also pro-
duces a set of backup options in case the resulting path is infeasible, as described
in Subsection 2.3.3. The resulting algorithm is described in Subsection 2.4.3. Sub-
sections 2.2.4 and 2.4.4 explain how to apply these techniques to flatter ground or
a convex series of planes. Section 2.5 gives examples of the paths resulting from
applying a Python implementation of the algorithm to Martian crater data.

Chapter 3 revisits the previous chapter’s assumption that there is no friction between
the tether and the terrain. The resulting potential tether friction obstacles are
described in Subsection 3.1.1. A review of the necessary rope physics background
for the rest of the chapter is given in Section 3.2, which explains in greater detail
the literature mentioned in Subsection 1.7.2. These frictional rope equations lead
to a few insights about tethered robot motion and planning for tethered robots,
which are demonstrated with computational examples in Section 3.3. The resulting
equation that determines whether a given tether configuration will stick or slip is
incorporated into the new frictional-tether path-planning algorithms in Section 3.4.
One of these algorithms necessitates changes to the map structure used to hold
obstacle information, and Section 3.5 describes the modifications and theory behind
them.

The conclusion in Chapter 4 discusses current limitations of tethered planning, and
their impact on design and operations decisions. In particular, the number of as-
sumptions needed to model a frictional tether and the complexity of the resulting
algorithm make it potentially risky for use in an expensive space mission. For-
tunately, there are a number of improvements that could be made, as I discuss in
Future Work. In addition, this thesis has barely scraped the surface of the literature
on 3-D geodesics, which may contain exciting new solutions.
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C h a p t e r 2

A TETHERED MOTION-PLANNING ALGORITHM FOR
FRICTIONLESS SURFACES

This chapter starts with a description of the necessary background concepts of
homotopy, BTMs, and sleeves. After a review of the literature on algorithms to find
the shortest path in the sleeve, I present my improvement on one such shortest-path
algorithm, in which it is adapted for graph search. This is followed by a discussion of
how to conduct a feasibility analysis to ensure that a tethered robot at the bottom of
a slope will be able to safely traverse an ascent path. The following section presents
the results of a Python implementation of my tethered path-finding algorithm, with
examples from potential mission sites in Mars craters.

2.1 Motivating Scenario
In a typical mission scenario, planners choose not a pinpoint landing location but a
landing ellipse, tens of kilometers wide [76]. Since this must be a large flat area, it
often means the spacecraft will land on a flat plain, some distance from the crater or
geography of interest. A mobile rover, such as a DuAxel rover, must then traverse to
the crater. There, DuAxel can anchor itself on the rim and separate an Axel element.
Thus anchored to the top, an Axel unit can rappel down the cliff, stopping to survey
the areas of interest, take samples, and perform other science tasks. If it reaches a
ledge or the bottom of a crater, it may leave some slack in the tether in order to drive
around without mechanical assistance. Once its tasks are completed, Axel will pull
the tether taut in preparation for winching itself back up. By reeling in the tether
in synchrony with turning the grousered wheels, Axel can climb back up the crater
wall to its starting point [58], [61]. Upon completing its immediate science goal,
Axel can dock with its mothership and begin travel to another science site.

On Mars, the Andapa, Garni, and Selevac craters have each been identified as
potential landing sites for an Axel-based mission to investigate RSL [21]. Figure 2.1
shows a Digital Elevation Map (DEM) of Andapa crater, based on 1-m-per-pixel
HiRISE data. Located at -4.7° latitude and -5.3° longitude on Mars’ Meridiani
Planum, Anadpa is of interest because of the RSL found on its northern rim.
Although the crater floor is wide enough to be landable, wind-blown sand deposits
form polygonal ripples that could prove treacherous to a traditional wheeled rover
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approaching the crater rim from the bottom [21]. Section 2.5 will present the results
of tethered path planning on Garni Crater, which is also a prime candidate for an
RSL-investigation mission. It contains many RSL and is sufficiently close to the
equator to be reached by current landing technology. Its relatively small crater floor
is too small to be landable, so any science mission would have to travel down from
the rim [21].

Figure 2.1: This Digital Elevation Map
(DEM) of Andapa crater, in color, has
been overlaid with a semi-transparent 25-
cm-per-pixel grayscale photo to better vi-
sualize the terrain. Vertical relief is ap-
proximately 800 m. The black box de-
lineates an example cropped area to be
searched by the planning algorithm.

As Axel can only travel within a lim-
ited distance (determined by friction
and slope) from the fall line1 without
slipping, the mother ship must anchor
itself relatively close to the goal site in
horizontal distance. Thus, we need only
consider a relatively thin strip of terrain
for motion planning, such as that in the
black box in Figure 2.1.

2.1.1 Constraints
The objective for an autonomous mo-
tion planner is to find a descent and
ascent path pair, from the start point
EB to some goal point E6 and back.
Given the aforementioned motivating
scenario, assume that EB is at a higher el-
evation than E6. Intuitively, if the robot
travels hill right2 around some rocky ob-
stacle on the way down, it must also re-
turn on the hill right side to prevent the
tether from getting wrapped around that
obstacle. Maintaining this constraint for
all obstacles means that the ascent and
descent paths must be homotopic; that
is, the ascent path must be smoothly de-
formable into the descent path and vice

1Fall line: a skiing term referring to the line of greatest slope, or the negative of the terrain
gradient.

2Like stage right or skier’s right, hill right is on the right side from the perspective of someone
standing on the cliff, mountainside, or hill and facing downslope.
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versa, without passing through an obstacle or moving out of the plane. For more
detail, see Section 2.2. This homotopic definition does not consider the effects of
friction, which may impede the actual deformation of the tether.

Having found a pair of homotopic ascent/descent paths, the robot must traverse those
paths without slipping. For the descent path, this principle suggests constraining
the robot to move only within a certain angle from the fall line, where that angle
is determined by the friction forces that can be generated between the wheels and
the crater wall. Checking the ascent path is more complicated. To ascend a tether-
demand plane, the robot must first draw the tether taut. In the case of frictionless
interaction between the ground and tether, the taut tether position forms the shortest
path in that homotopy class. This path, the Shortest Homotopic Path (SHP), will
be described in Section 2.3. The places where the tether contacts an obstacle will
be called anchors. For a robot to traverse an ascent path, it must be able to move so
as to remove each proximal anchor, in order, while maintaining non-slip postures.
These details are discussed in Section 2.4.

2.1.2 The Terrain Model
Several assumptions will be made in modeling a candidate site’s terrain. Thanks
to orbiters like HiRISE, we can safely assume that the terrain is a priori known, at
least to a low resolution. As Figure 2.2 shows, a typical crater terrain consists of
sections of relatively constant slope, and can therefore be reasonably approximated
as a series of =? planes at angles [1, ...[=? . These planes can be divided into 2
categories: tether-free regions, where the robot can travel without the stabilizing
forces provided by its tether, and tether-demand regions, where Axel depends on
tether forces to move [58].

This chapter describes tethered motion planning on a single tether-demand plane,
which reasonably approximates most crater walls. Assume that the start point EB lies
on tether-demand plane, near the top, and that goal point E6 lies at a lower elevation
on that same plane. In the motivating scenario in Section 2.1, E6 represents some
science target, and EB is at or near where Axel separated from the mothership.

The same algorithms work virtually unchanged for a series of progressively-steeper
tether-demand planes which form a convex surface. In this case, an operator could
select a goal point at the edge of each pair of planes, using the last E6 as the new EB.
However, a tether-demand plane followed by either a tether-free plane or a tether-
demand plane at a shallower angle means that the taut tether may lift off the ground,
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necessitating a more complicated 3-dimensional analysis. For further discussion,
see Chapter 4.

Figure 2.2: Digital Elevation Map (DEM) of an approximately 1 km-wide strip of
the north rim of Andapa Crater on Mars.

Figure 2.3: The simplified terrain model: a 2-D tether-demand plane at angle [ with
polygonal obstacles. Image modified from Abad-Manterola [58].

A standard traversability analysis might identify and avoid robot obstacles, boulders
and rough terrain which Axel cannot traverse. However, tethered planning only
concerns tether obstacles, which may differ from robot obstacles. For example,
robot obstacles could include negative obstacles that sink below the plane of the
ground, such as potholes and craters. These concave patches of terrain pose no
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obstacle to the tether, which can pass right over them; two tether paths on either side
of a negative obstacle are still homotopic to each other.

In addition, Chapter 3 will describe frictional tether obstacles, caused by a frictional
tether-terrain interaction as the tether drags across the ground. Since whether a patch
of ground forms a frictional tether obstacle depends on the tether configuration and
the tension on the tether, these situations require further analysis. This chapter
concerns only unconditional tether obstacles.

In this quasi-2-dimensional case, these tether obstacles can be modeled as a set of =>
polygons on the plane, $1, $2, ..., $=> . Depending on the robot’s capability and the
height to which the caster arm can raise the tether, there may be positive obstacles
which prove impassable to the robot but not the tether, or vice versa. In practice, the
situations in which Axel can remove an anchor simply by driving over an obstacle
are rare. Therefore, the following algorithms assume that tether obstacles are also
robot obstacles. Since the converse is not necessarily true, a standardmotion planner
should be used in conjunction with the tethered motion planner, to identify robot
obstacles and produce a more detailed robot path that avoids them.

Because of the sloped surface, there are a few unusual obstacles that may be difficult
to model as polygons. One example is the one-way obstacle: an obstacle the robot
can get down but not back up, or (more rarely) an obstacle the robot can’t get down,
but (starting from the bottom) could get back up. This is why in practice ascent is
often harder than descent. However, by conservatively treating all such obstacles as
two-way obstacles, the problem is symmetric; ascent paths work as descent paths.
The problem of defining and modeling obstacles is outside the scope of this thesis,
so all obstacles will be modeled as polygons here. Since the shortest path will always
lie on reflex vertices,3 non-convex obstacles can be replaced in the model by their
convex hull.

For the purposes of an example traversability analysis, we will assume a known,
constant friction coefficient ` between Axel’s wheels and the terrain. In this chapter,
we will model the tether-terrain interaction as frictionless; Chapter 3 describes the
changes necessary to account for tether friction.

3A reflex vertex of a polygon is concave; the angle between its incoming and outgoing edges is
greater than 180°, when measured from the inside of the polygon.
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2.1.3 Algorithm Outline
The aforementioned model and constraints suggest a general structure for a tethered
motion planning algorithm. First, a DEMor other terrain mapmust be approximated
as a series of planes, with tether obstacles identified using the sloped terrain obstacle-
detection algorithm given in Abad-Manterola [58]. In the process, these obstacles
must be further filtered to remove obstacles that sink below the plane. Assuming
that a single tether-demand plane adequately captures the terrain, the following steps
are taken:

• Choose a homotopy class, as represented by a sleeve.4

• Find the SHP in that homotopy class.4

• Test all the anchor points to determine if ascent is feasible. In doing so, find
a traversable ascent path.

• Find a traversable descent path that is homotopic to the ascent path.

As mentioned in Subsection 2.1.2, safely-traversable ascent paths are often harder to
find than descent paths. Because of this, the first steps involve finding an ascent path
and checking that it can, indeed, be traversed. Since any ascent on a tether-demand
plane will by definition require the mechanical assistance of the tether, the tether is
drawn tight before ascent. This taut tether forms the shortest path in that homotopy
class, the SHP.

Because the ascent path is so dependent on the SHP, the initial step is to find
a desired SHP (or find the desired homotopy class, and then find the shortest
path within it). Section 2.2 provides a primer on sleeves, homotopy classes, and a
particular triangulation called the boundary triangulated 2-manifold (BTM), which
are necessary in the rest of the chapter. Section 2.3 describes how to search for the
optimal SHP, both for any criterion and specifically for the shortest SHP. Once a
candidate SHP is found, Section 2.4 describes how find a feasible homotopic ascent
path by checking if each anchor point is passable. Given a feasible ascent path, a
homotopic descent path can be generated within the sleeve. If a feasible ascent path
cannot be found, the next-best SHP from the the search algorithm can be analyzed.

4These steps can be combined, as described in Subsection 2.3.3
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2.2 Homotopy Classes
Consider a topological space, - . A path c in - is a continuous function mapping
the unit interval [0, 1] to that topological space, denoted c : [0, 1] → - . A path
homotopy between paths c0 and c1 with identical endpoints is a continuous function
Γ(B, C) : [0, 1] × [0, 1] → - such that Γ(0, C) = c0(C) and Γ(1, C) = c1(C), and for
all B ∈ [0, 1], Γ(B, 0) = c0(0) = c1(0) and Γ(B, 1) = c0(1) = c1(1). The paths c0

and c1 are path homotopic if there exists a path homotopy between them [77], [78],
[79].

Homotopy is an equivalence relation,5 so c0 ∼ c1 will be used to denote that c0 and
c1 are homotopic. The homotopy class of c is given by [c] = {G ∈ - |c ∼ G}. Later,
the shortest path in a homotopy class, the SHP, will be given as c̄. Throughout this
work, “tether” or “path” (in the context of homotopy) will be used to mean “the
continuous function representing the tethers or path”, and “homotopy” will refer
specifically to “path-homotopy”.

Assume a start point EB and a goal point E6 on the surface. The descent path, c3 ,
has endpoints c3 (0) = EB and c3 (1) = E6, and the ascent path, c0, has endpoints
c0 (0) = E6 and c0 (1) = EB. Define the reversal of a path c as c̃ = c(1 − C), i.e., the
reversal goes in the direction opposite of c, from c(1) to c(0). Now consider two
paths c1 and c2 with the same endpoints. One can form a loop ℓ by concatenating
c1 with the reversal of c2, written ℓ = c1 · c̃2. That loop ℓ is itself a path whose
endpoints coincide at what is called the loop’s basepoint; in this case, that basepoint
is at c1(0) = c2(0) = c̃2(1).

Lemma 2.2.1 Two paths with the same endpoints, c1 and c2, are homotopic if and
only if ℓ = c1 · c̃2 is contractible [79].

For more information on contractible loops, see Subsection 2.2.1.

With regard to tethered motion planning, the descent path, c3 , and the the reversal
of the ascent path, c̃0, must be in the same homotopy class; they start at EB, end at E6,
and can be continuously deformed in the plane6 without encountering an obstacle.
Similarly, c̃3 and c0 must be in the same homotopy class. The directionality of the

5Equivalence relation: ∀0, 1, 2 ∈ - , 0 ∼ 0 (reflexive); 0 ∼ 1 if and only if 1 ∼ 0 (symmetric);
if 0 ∼ 1 and 1 ∼ 2 then 0 ∼ 2 (transitive).

6Unless stated otherwise, we will always be referring to homotopy in 2D. In 3D, two paths on
either side of an obstacle can still be homotopic (unless a path goes through a toroidal obstacle, for
example).
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paths is unimportant to the theory discussed here, though, and in practice paths can
easily be reversed. For the sake of succinctness, then, c3 and c0 (and any other
paths with the same endpoints regardless of which is the start and which is the goal)
will be referred to as homotopic to each other.

The path describing the tether when the robot is at E6 is also in the same homotopy
class, regardless of whether the tether is slack or taut. In fact, the taut tether
configuration forms the shortest path in that homotopy class, the SHP, which will
be used as a canonical path to represent that homotopy class.

2.2.1 Homotopy Equivalence and Contractible Loops
One way of checking homotopy equivalence is to reduce the paths in question to
their canonical paths, then compare those reduced paths. A canonical path can be
anything that is unique to each homotopy class, and which every function in the same
homotopy class can be reduced to. For example, the crossing sequence described
in Subsection 2.2.3 could be used as a canonical path. Section 2.3 will cover how
to find the SHP, which could also be used as a canonical path. Hershberger and
Snoeyink use a path composed of segments whose vertices are the midpoint of each
triangulation edge [65]. In addition, there are a number of canonical paths named
in relation to obstacles.

If the number of holes, =, is small relative to the number of vertices of %, =ℎ << =,
it becomes faster to avoid triangulation entirely. A number of related algorithms do
so using trapezoidalization or decomposition, which scale with the number of holes.
In general, these algorithms extend a ray or ‘fence’ from a ‘sentinel point’ chosen in
each obstacle. The path is rectified, described with relation to those obstacles, and
reduced. For example, Cabello et al. rectify the path by dividing it into x-monotone
pieces, and assigning each a rank based on whether it lies above or below each
sentinel- or end-point [80]. At this point, the path could be described by a crossing
sequence through each fence [79]. Efrat et al. independently developed an algorithm
based on similar principles, and later improved upon Cabello et al.’s runtime [81].
They use ‘vertical shortcuts’ to reduce a path to a sequence of x-monotone sections,
in essence rectifying it. Bespamyatnikh made further improvements for handling
non-simple paths [82].

The problem of whether two paths are homotopic is equivalent to the problem of
whether a loop is contractible, as described in Section 2.2. If two paths with the same
endpoints, c1 and c2, are homotopic, then the loop ℓ formed by concatenating c1 with
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Figure 2.4: An example of two paths, g1 and g2, that are homologous but not
homotopic. Image from [83].

the reverse of c2 is contractible. Whether the converse is true, however, depends on
the definition used for homotopy, specifically with regards to the endpoints. Cabello
classifies endpoints as being either ‘tacks’, ‘pins’, or ‘pushpins’ based on whether
the endpoints constitute an obstacle, and if so, whether the direction in which the
tether leaves that obstacle matters [80].

Technically, the Axel tethered planning problem is a hybrid tack-pushpin model.
The anchoring mothership poses an obstacle to the tether, and circling around that
anchor before driving off is not at all equivalent to driving off directly, so EB should
be modeled as a pushpin. The goal point, however, is imaginary; the tether or robot
path may pass freely over it, so E6 can bemodeled as a tack. These distinctions rarely
matter in practice, though. Any reasonable motion planner will avoid encircling the
start point. Similarly, if Axel were to take a path whose shortening would involve
the tether path passing through the goal point, that implies that there exists a shorter
path to that goal. In addition, the physics of a tether-demand plane mean that the
robot will generally travel monotonically downhill.

Two paths with the same endpoints, c1 and c2, are homologous iff c1 · c̃2 forms the
complete boundary of a 2-dimensional manifold embedded in - not containing or
intersecting any of the obstacles [84]. Although homology is similar to homotopy,
the concepts are not equivalent. If two trajectories are homotopic, they are homol-
ogous, but the converse is not true, as can be seen in Figure 2.4. As Bhattacharya
et al. point out, computing homology classes is much simpler to compute, and in
many robotics applications homology can be reasonably substituted [84].

Complex analysis can also be used to test the contractibility of a loop, and therefore
whether two paths are homotopic. The Cauchy Integral Theorem states that if some
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function F (I) is analytic over a simply connected region ',∮
ℓ

F (I)dI = 0. (2.1)

By the Residue Theorem, that same contour integral around a pole will result in
some non-zero multiple of 2c8. Bhattacharya et al. model (G, H) nodes on a directed
graph in the complex plane as I = G + 8H [85]. Each obstacle is represented by a
pole placed somewhere inside that obstacle, Z 9 . By checking Equation (2.1), they
can determine if there is an obstacle inside a given loop, and therefore whether its
two constituent paths are homotopic.

Bhattacharya et al. also use theCauchy Integral Theorem to categorize the homotopy
class of a given path, c [85], [84]. They define the H-signature as

H(c) =
∮
c

F (I)dI, (2.2)

and
F (I) = 50(I)

(I − Z1) (I − Z2)...(I − Z# )
, (2.3)

where 50(I) is any analytic function over the complex plane. Therefore, the H-
signature for one path can be compared to that of another path to determine if the
two paths are homotopic. If two paths (oriented in the same direction, from vs to vg)
have the same H-signature, they are homotopic. They use homotopy as a constraint
in search, allowing one to limit search to a certain homotopy class, or rule out other
homotopy classes.

In several papers, Kim and his co-authors combine these approaches [86], [87], [88].
They use ray-shooting from obstacles to define a word (like a crossing sequence)
that describes each homotopy class. These are placed in a homotopy-augmented
graph, which can then be searched.

Tethered motion planning starts with an algorithm to find the SHP. In a terrain
without obstacles, represented by a simple polygon, all paths with the same start and
end point are homotopic to each other. Thus, finding the SHP is the same as finding
the shortest path in that simple polygon. This can be achieved with the Funnel
Algorithm, described independently by Chazelle [62] and by Lee and Preparata
[63], which will be described in detail in Subsection 2.3.1. However, finding the
SHP becomes non-trivial for a terrain with obstacles, represented by a polygon with
holes. Hershberger and Snoeyink showed that, by using the Funnel Algorithm on
the universal cover of a BTM, one can find the SHP of any path in that polygon [65].



28

Since this process starts with the BTM, this particular triangulation is discussed in
further detail in Subsection 2.2.2, below.

2.2.2 Boundary Triangulated 2-Manifolds
A boundary triangulated 2-manifold (BTM) is a simplicial complex in which every
vertex is a boundary vertex; holes are considered part of that boundary. In 2
dimensions, a simplicial complex is a collection of triangles, edges, and vertices
such that any two triangles may only intersect at a vertex or at two vertices and a
common edge (or else they must not intersect). Edges can have 2 incident triangles
or 1, for a boundary edge. Vertices must be boundary vertices with 2 incident
boundary edges, or they may lie inside a face with no incident edges [65]. For
example, the vertex labeled E in Figure 2.5 lies inside the face of one of the gray
triangles composing that BTM.

Figure 2.5: An example BTM based on a figure from [65]. Here, the interior of
polygon % is shaded gray, and holes in the polygon are white.

De Berg gives an algorithm for finding a BTM, �, of a polygon with holes % in
O(= log =) time, where = is the number of vertices of %.7 This algorithm involves
partitioning % into y-monotone8 pieces, and then triangulating each of those pieces

7In fact, this algorithm applies to any planar subdivision.
8A monotonic function is one that is entirely non-increasing or entirely non-decreasing. A

y-monotone chain of vertices is one whose y coordinates are monotonically increasing or decreasing
(and an x-monotone chain has monotonically increasing/decreasing x coordinates). A monotone
polygon is one composed of two monotone chains.
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[89]. Note that a BTM is not unique; there can be multiple BTMs for a given
polygon.

Figure 2.6: Part of the universal cover for the BTM in Figure 2.5.

Informally speaking, Hershberger and Snoeyink are “gluing” copies of each BTM
triangle together to form the 3-dimensional structure representing the universal
cover, as shown in Figure 2.6.9 Any given point ? on a BTM triangle will be
represented by multiple copies of that triangle in the I-axis. A roboticist might
compare this to the 3-dimensional configuration space for a 2-D robot that can
translate and rotate, in which a given translation of the center of that robot will be
represented by multiple points with the same (G, H) coordinates but varying in I. In
the configuration space, those points represent different rotations of that robot. The
analogy differs in that the I-axis of the universal cover represents not robot rotations
but different ways of reaching ?, or the different homotopy classes of a path from
some start point to ?. Whereas one might search the configuration space for a
robot motion plan, one can search this 3-D universal covering space for different
homotopy classes.

9In short, a cover or covering space of - is a topological space -̃ with a map ? : -̃ → -

satisfying the following: there exists an open cover {*G} of - such that for each point G ∈ - ,
?−1 (*G) is a disjoint union of open sets in -̃ , each of which is mapped homeomorphically onto *G

by ?. The universal cover of - is a simple-connected covering space. For more information, see
[90].
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Taking the universal cover of a BTM requires starting with a base triangle, and
extending the structure up or down from there. A graph representing this structure
would form an infinite tree, whose root was at that base triangle. Like any tree, it can
be searched. In fact, the Shortest Path Tree algorithm described by Guibas et al. [64]
can be easily extended to work on a non-simple polygon, using the same universal
covering space method described above. As written, this algorithm would perform
a Depth-First-Search, potentially missing an easy solution as it follows one branch
into infinity. However, using a queue in place of its recursive “split” call results in an
effective Breadth-First Search. Subsection 2.3.2 describes this algorithm in greater
detail, and Subsection 2.3.3 describes the alterations needed to turn this algorithm
into a more-efficient A* search.

Figure 2.7: An example map for a
tether-demand plane. The polygon to
be triangulated is outlined in black,
with tether obstacles represented by
the gray holes in the polygon. The
starting point is at the top and the goal
is at the bottom, with the gravity vec-
tor pointing downwards.

Figure 2.8: A boundary triangulated
2-manifold (BTM) of the same map.
The obstacles are treated as holes in
the manifold, and all triangulation
vertices are boundary vertices.
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The method of searching homotopy classes outlined here forms the first steps of
the tethered planning algorithm. The rest of this section and Section 2.3 describe
the process in greater detail. Since it forms the backbone of Hershberger and
Snoeyink’s theorems, we start with that same structure, the BTM. For simplicity, we
approximate the terrain as a tether-demand plane, and the polygonal tether obstacles
as holes in that manifold. Note, though, that the Funnel Algorithm, Shortest Path
Tree Algorithm, and my extension on the latter could be applied to any surface
represented as a BTM. As long as the tether will remain on the surface, the 2D rules
of homotopy apply. Thus, this process would work for any convex 3D surface that
can be triangulated as a BTM.10

2.2.3 Sleeves
As stated in Section 2.2, the SHP can be used as a canonical path to represent its
homotopy class. In a triangulated polygon, the series of triangles through which
the SHP passes is called the sleeve. Lee and Preparata define a sleeve, (, as a
triangulated simple polygon whose dual tree is a simple path [63]. A more intuitive
definition can be found in the 3-D geodesics literature. Balasubramanian describes a
triangle chain as a sequence of triangles such that adjacent triangles in the sequence
share an edge [91]. Mitchell states that if no face appears more than once in a list
of faces, that sequence of edge-adjacent faces is simple [92]. Thus, a sleeve is a
simple triangle chain.

A sleeve can also be described by its edge sequence, the list of edges linking those
10For further discussion, see Subsection 2.4.4.

Figure 2.9: The pale blue shading in these figures depicts some different possible
sleeves for the same BTM. In the leftmost panel, the SHP for that sleeve is drawn as
a navy blue line.
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faces. A path in a BTM, c, composed of �c line segments has a complexity of
�c. The number of times the path crosses a triangulation edge of ( is Δc. The
sleeve containing c̄, the Euclidean shortest path homotopic to c, can be found in
O(�c + Δc) time [65].

Because it depends on the triangulation, a sleeve is not unique to a given path. All
the paths contained in a sleeve are homotopic to each other. The sleeve does not
necessarily contain all the paths in a homotopy class; some paths, that exit and
reenter the sleeve without encircling any holes, may also by homotopic to those
within it. Still, this property of the sleeve will be used to find a descent path that is
homotopic to the ascent path, by generating a descent path within the sleeve.

Let c(?, @) be a path from ? to @, and ((c(?, @)) be the sleeve corresponding to
that path. To find the sleeve, start by following c(?, @) through the BTM, noting
the triangulation edges through which it passes. This edge sequence is called the
crossing sequence, j(c). If any edge appears more than once in j(c), the crossing
sequence is not simple and must be reduced to its simplest form. This reduced
crossing sequence describes the sleeve. Each of these steps can be done in O(�c=)
time, where = is the number of vertices of �, and �c is the number of segments of
c(?, @).

To compute the crossing sequence, label the non-boundary edges of the triangulated
polygon as A, B, C, etc. Every time the path passes over one of these edges, add it to
j(c). Then reduce that crossing sequence by removing each pair of adjacent identi-
cal letters. In the example in Figure 2.11, j(c) = ���������� !"##$ re-
duces to j(c) = �������� !"$ and so on down to j̄(c) = ������ !"$,
where j̄(c) is the reduced crossing sequence[79].

The sleeve ( consists of all of the triangles whose common edges are given by j̄(c).
If Δc is the length of the reduced crossing sequence, the sleeve can be computed in
O(Δc) time.

2.2.4 Planning on a Tether-Free Plane
These concepts are all that is necessary to plan on a tether-free plane, such as
flat ground. The outgoing and return paths must be homotopic to each other, but
feasibility of ascent is not a concern. In fact, the tether does not need to be drawn
taut, except to prevent the robot from running over it (possibly causing damage)
on its return. Since Axel’s tether management system ensures that the tether will
maintain a constant low tension, its motion-planing on a tether-free plane consists
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Figure 2.10: Labelling the triangu-
lation diagonals, to find the crossing
sequence.

Figure 2.11: A path with
crossing sequence j(c) =

���������� !"##$.

of the following:

1. Find a traversable outgoing path to the goal (or an incoming path from goal
to start; the order doesn’t matter).

2. Find its sleeve.

3. Generate another traversable path in that sleeve.

Of course, there are other ways to carry out tethered motion planning on a flat
plane, as discussed in Subsection 1.7.1. The sleeve provides a nice shortcut to avoid
generating a multitude of non-homotopic paths. However, if path generation is
relatively cheap, one could instead generate path pairs, check if they are homotopic
to each other, and continue until a homotopic pair is found.
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2.3 Shortest Homotopic Paths
Given a proposed path c in a polygon %, how can one find its corresponding SHP,
representing the taut tether position? The first step would be to find the BTM � by
triangulating % as described in Subsection 2.2.2. Next, one would find the path’s
sleeve, by following c across triangulation edges to get a crossing sequence j(c)
and reducing that crossing sequence to its simplest form, j̄(c). As in Subsection
2.2.3, the sleeve ((c) is the chain of triangles described by that edge sequence j̄(c).

The sleeve is a simple polygon, and the Funnel Algorithm in Subsection 2.3.1 finds
the shortest path in a simple polygon. In fact, starting with a path c is not strictly
necessary; one can simply find or start with a sleeve, as Abad-Manterola did, and
use the Funnel Algorithm to find the shortest path in that sleeve [58]. In general,
shortest-path problems are a classic topic in computer science, and can also be
solved with other algorithms like visibility graphs or graph search. For this specific
problem, though, the Funnel Algorithm runs the fastest. It is also important to
understand because the Shortest Path Tree algorithm in Subsection 2.3.2 builds
upon the same concepts.

The Funnel Algorithm only works in a single sleeve. The Shortest Path Tree
Algorithm, as extended by Hershberger and Snoeyink, works on any BTM, �. This
means that, rather than returning a single shortest path, it will return all the shortest
paths, representing all the homotopy classes, in a BTM with holes.

2.3.1 Finding the SHP with the Funnel Algorithm
Chazelle proved that the shortest trajectory between two points in a triangulated
simple polygon with = vertices can be found in O(=) time, and outlined an algorithm
to do so [62]. Lee and Preparata arrived independently at the same algorithm to
find the shortest path in a sleeve, which forms the basis for the Funnel Algorithm
below [63]. Finding the dual tree of that triangulated polygon takes O(=) time,
as does finding the path c through that dual tree, and therefore finding its sleeve.
Therefore, the process’s total running time is O(=), in addition to the time needed
for triangulation. Note that this is faster than using a visibility graph, which can be
computed in O(= log = + =� ) for a polygon with holes, %, where =� is the number
of edges in the visibility graph [93].

Let �B be a triangulated simple polygon with = vertices. As in Subsection 2.2, let
c̄(?, @) be a chain of vertices forming the Euclidean shortest path from point ? to
point @ in �B. All of the vertices of c̄(?, @) (excepting the endpoints ? and @) must
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Figure 2.12: Example of a funnel in progress, inside BTM �B. The funnel finds the
shortest path c̄ in sleeve ((c(EB, E6)), shown in pale blue. The diagonal edges that
compose the sleeve are labeled in dark blue. The funnel’s active edge 3 has left and
right endpoints U and V. In this picture, 3 = 310.

be reflex vertices, with an inner angle > 180°. Assume without loss of generality
that the start and goal points EB and E6 each lie on a vertex of one of the sleeve
triangles; diagonals can easily be added to make this true.

A funnel � is composed of the shortest paths c̄(EB, U) and c̄(EB, V) from a starting
point EB to vertices U and V of �B. Figure 2.12 shows an example funnel. The line
UV, which we shall call 3, forms the working edge or mouth of the funnel. Vertex
2 is the funnel’s cusp (or apex), where c̄(EB, U) and c̄(EB, V) meet; if c̄(EB, U) and
c̄(EB, V) share more than one vertex, those vertices will form a chain from EB to 2.



36

Since c̄(2, U) and c̄(2, V) are inward convex (as a result of being the shortest paths),
the region formed by this active part of the funnel must be either a triangle or convex
polygon.11

The Funnel Algorithm described in Algorithm 1 works by expanding and main-
taining this funnel. It requires a sleeve ((EB, E6), consisting of a series of triangles
forming a chain from start point EB to goal point E6. The interior edges added during
triangulation form the =3 diagonals 31, 32, ..., 3=3 . The diagonals are labeled so as
to increase as they move away from EB; in the case of planning for Axel, where EB is
above E6, the diagonals increase going downwards.

For a diagonal 38, let U8 refer to its left endpoint with respect to 2, and let V8 be its
right endpoint.12 Note that, because diagonals may share an endpoint, sometimes
U8 = U8+1 or V8 = V8+1. In Algorithm 1, W8 will refer to whichever end vertex (U8
or V8) is currently being expanded. For computational purposes, the funnel can be
represented by a double-ended queue (or deque, pronounced “deck”), where each
end of the deque is one of the active ends of the funnel, U8 and V8.

To expand the funnel, examine vertex E that is opposite 38 on the next triangular face
in the sleeve. Although E has two incident edges, only one will be a diagonal of the
sleeve. (The other will either be a boundary edge, or will lead to a triangle face not
in the sleeve.) That sleeve diagonal becomes 38+1, as shown in Figure 2.13.

The predecessor of vertex E, ?A43 (E) = C, is the vertex before it on the shortest path
c̄(EB, E). Thus, the predecessors form a linked list encoding the shortest path to
any given point. E always has a unique predecessor. As Figure 2.14 shows, C is the
innermost vertex (closest to the apex) that is visible from E. To conceptualize the
predecessor, imagine dividing the funnel into sectors— triangular wedges extending
to infinity — by extending a ray from each funnel vertex to its outer neighbor. If E
falls into a sector, its predecessor is the funnel vertex connecting the two rays that
compose that sector.

In Figure 2.14, for example, ray _1 =
−−−→E1E0, and ray _2 =

−−−→E2E1. If E fell between _1

and _2, its predecessor would be E1. If E fell to the left of _1, its predecessor would
be E0. Since in this example E falls between _5 and _6, its predecessor is E5.

The funnel deque is initialized with EB and the two endpoints of the first diagonal in
the sleeve. At this point, EB is the apex of the funnel and the predecessor of all other

11Guibas gives an excellent summary of the Funnel Algorithm in his lecture notes [94].
12The “handedness” ofU and V does notmatter, so long as the ordering is consistent; this definition

is simply for clarity in explaining the algorithm.
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Figure 2.13: To expand the funnel, find the vertex E opposite 38. Label the edge
incident to E that is on the sleeve as 38+1. In this example, assume that the edge V8E
is a boundary edge. Therefore, edge U8E becomes edge 38+1. Its endpoints become
U8+1 and V8+1.

points in it. The algorithm progresses down the diagonals in the sleeve, expanding
the funnel one vertex at a time. Vertex E is connected to its predecessor C, and all
funnel points outside of that line EC are discarded. Thus, the deque � increases in
size with each reflex vertex, and decreases with each concave vertex. If C is past
the apex, on the other side of the funnel, the funnel collapses around that point and
C becomes the new apex. The process continues until the funnel reaches E6; if E6
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Figure 2.14: The predecessor of E, C = ?A43 (E), is the innermost vertex that is
visible from E. Imagine extending the funnel edges as rays, _8, that divide the
funnel into sectors. In this case, E would fall in the sector composed of the two rays
intersecting C.

is not a vertex of the sleeve but lies inside the last triangle, an additional diagonal
3=3+1 should be added. At this point, the funnel should collapse down to a single
path, formed by the linked list from E6 to its predecessor, and so on back to EB. The
reverse of this list forms the shortest path in the sleeve, c̄(EB, E6).
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Algorithm 1 Funnel Algorithm
1: procedure Funnel(EB, E6, ()
2: Find the first diagonal, 31
3: Find U1 and V1, the endpoints of 31
4: � ← [U1, EB, V1]
5: ?A43 (U1) ← ?A43 (V1) ← EB, 2← EB
6: for 8 ← 2 to =3 + 1 do
7: Find the next diagonal, 38
8: Find W8 and its side, B834 ← {!, '}
9: C ← ?A43 (W8)
10: repeat
11: E ← �.?>?(B834)
12: if E == 2 then
13: 2 ← C

14: until E == C
15: �.?DBℎ(C, B834)
16: �.?DBℎ(W8, B834)
17: c(EB, E6) ← 5 8=3%0Cℎ(E6, EB) ⊲ Follow predecessors from E6 back to EB.

return c(EB, E6)

2.3.2 Finding all the SHPs with a Shortest Path Tree
The Shortest Path Tree (SPT) gives the shortest paths from a vertex E to every
other vertex on a triangulated simple polygon �B. Lee and Preparata first gave an
algorithm to find the SPT for obstacles represented by disjoint parallel line segments
in O(= log =) time [63]. They handle simple polygons by choosing a sleeve and then
finding the SHP in that sleeve. Guibas et al. improve upon Lee and Preparata’s
work, using a finger search tree data structure to allow calculation in O(=) time.
They extend the Funnel Algorithm to work on any triangulated simple polygon,
using a recursive split operation that essentially performs a depth-first search [64].

The split operation handles the case when the dual tree splits into two or more paths.
Algorithm 2, denoted as B?;8C (3, �, 2), requires as inputs the funnel � (represented
as a deque), cusp 2, and the diagonal at the current mouth of the funnel, 3. If 3
is a polygon edge, it returns nothing. Otherwise, the algorithm finds the vertex E
opposite of 3, and computes C = ?A43 (E). The funnel will then be split along EC
into 2 funnels, both containing C and E. The split operation will then be called on
each of these funnels in turn, with their new diagonals 31 and 32.

For example, in Figure 2.15, the predecessor of E falls to the right of 2, such that
the original funnel is � = [U8, ..., 2, C, ..., V8]. After the split it becomes 2 funnels;
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Figure 2.15: The split operation, used when the BTM branches, turns one funnel
into two. �U is outlined in red and �V in blue.

�U and �V. The first funnel keeps the same cusp 2, such that �U = [U8, ..., 2, C, E].
However, 2 is no longer in �V = [E, C, ..., V8]. Instead, C becomes the new cusp
for �V. The two new split calls will be B?;8C (31, �U, 2) and B?;8C (32, �V, C). This
continues recursively until the entire space has been searched.

The setup for the split algorithm is identical to that of the Funnel Algorithm. Simply
replace lines 6 – 16 in Algorithm 1 with the split() call described in Algorithm
2.

Hershberger and Snoeyink further extend this SPT funnel algorithm to work on
a polygon with holes [65]. Their innovation lies in realizing that the universal
covering space of a BTM is simply connected; it has no holes. Therefore, Guibas’
SPT algorithm can be applied to this lift of the BTM into the covering space,
resulting in an infinite tree.

2.3.3 Searching a Shortest Path Tree
Prior to my work, only Abad-Manterola had applied homotopy class constraints to
tethered rovers [58], [59]. Very few — among them, Kim, Bhattacharya, Kumar,
and their collaborators — had combined search methods with homotopy [83] [85].
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Algorithm 2 Shortest Path Tree Split Operation
1: procedure Split(3, �, 2)
2: Assume that � is a global variable
3: if 3 is a boundary edge of � then return
4: else
5: Find E, 31, 32
6: C ← ?A43 (E)
7: 83G ← �.8=34G(C)
8: �U ← [� [0 : 83G], E]
9: �V ← [E, � [83G : 4=3]]
10: if 2 in �U then
11: 21 ← 2, 22 ← C

12: else if 2 in �V then
13: 21 ← C, 22 ← 2

14: Split(31, �U, 21)
15: Split(32, �V, 22)

No one, to my knowledge, has used the Shortest Path Tree algorithm to find SHPs
or homotopy class options for a tethered robot.

The Shortest Path Tree algorithm by Guibas et al. builds a tree of the shortest paths
in each homotopy class [64]. This could be used to build a Shortest Path Map from
a single point to every other point in a polygon. Alternately, it could be used to find
all the shortest paths to a single goal.

One of my innovations was in realizing that the Shortest Path Tree algorithm was
in essence carrying out a graph search, and an inefficient one at that. The recursive
split() call is analogous to carrying out a Breadth-First Search for shortest paths
(or Depth-First, depending on the order one chooses in which to make the call).
The speed of that search can be improved by placing the split() calls in a priority
queue, such that only the most likely candidates are expanded.

For tethered motion planning, that might mean optimizing for safety, perhaps by
prioritizing funnels with the widest 3, and therefore the highest distance between
obstacles. To minimize the stress on the tether, one might discount any funnels with
a high bend radius, or select those with the smallest total turning angle. Selecting
funnels that are closest to the fall line would improve the chances that the best SHP
is traversable. Of course, this depends on having some metric for a funnel’s distance
to the fall line.

Part of the difficulty in applying graph search methods to the funnel algorithm lies
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in determining what constitutes a node. The gold standard in graph search, the A*
algorithm prioritizes which node to visit based on an estimate of the cost of traveling
to the goal via that node. In a standard implementation, the key for a node a is given
by

5 = 6 + ℎ. (2.4)

Here 6 is the cost to arrive at a, commonly called the cost-to-go, and ℎ is the heuristic
estimating the smallest cost to travel from a to the goal, E6. For the search to be
optimal, the heuristic must be admissible — that is, ℎ must never overestimate the
cost.

While A* can find any optimal path, its most common use is to find the shortest
path. In this case, ℎ would be a heuristic estimate of the distance from a to the goal.
Euclidean or Manhattan distance from a to E6 are both commonly used distance
heuristics.

Perhaps the most obvious choice of a node would be E, the next point in a split
operation. This, however, would result in an inadmissible heuristic. Imagine the
case in which the predecessor of the goal E6 is 2. If there truly are no obstacles
between the two, the taut tether would go directly from 2 to E6 without passing
through E. The length of a path from 2 to E to E6 will always be equal to or longer
than ℎ, making ℎ an overestimate of the cost. Therefore, finding the predecessor
C6 = ?A43 (E6) of the goal is crucial; C6 acts as the node, in that the shortest path to
E6 is guaranteed to pass through it. Since the predecessor-finding operation depends
on the funnel, C6 must be recalculated for every funnel at every step.

Consider Figure 2.16. Assume, without loss of generality, that C6 lies in funnel �U.
The shortest path to E6 through this side will pass through C6, so the cost-to-go for �U
is 6(C6). The heuristic, then, is the distance between C6 and the goal, ℎ = 38BC (C6, E6).
The key is given by

5 = 6(C6) + 38BC (C6, E6). (2.5)

In this case any path through funnel �V will be longer than one through �U, since it
will have to bend around E and back up towards E6. The cost-to-go can be calculated
as the cost to get to E, and the heuristic estimated as the distance from E to E6, giving

5 = 6(E) + 38BC (E, E6). (2.6)

However, note that for �V the predecessor of E6 is E. Therefore, Equation (2.5) works
for either funnel. The SPT search is explicitly looking for the shortest path, so ℎ
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Figure 2.16: Using A* search with a distance metric on the Funnel Algorithm
requires a modification: the relevant node being expanded for each funnel is the
predecessor of E6 for that funnel. Therefore, a tether path through �U has a key
5 (�U) = 6(C6) + ℎ(C6). However, if the robot traveled via �V, the predecessor of E6
is E. Then, 5 (�V) = 6(E) + ℎ(E).

can be any admissible distance metric. I have chosen to use the L2-norm, Euclidean
distance, ℎ = 38BC (0, 1) = ‖1 − 0‖2.

The Expand() function does not actually return the path. However, as the graph
node structure implies, one can find the shortest path to any node by tracing back
that node’s parent, and its parent’s parent, and so on. This is what 5 8=3%0Cℎ() does,
following the linked list of parent nodes from E6 back to EB, and returning that list.

Algorithm 3 shows the setup used for searching the Shortest Path Tree; by changing
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Algorithm 3 A* Search of Shortest Path Tree
Input: EB - start point, E6 - goal point, � - triangulated polygonal map
Output: (ℎ?!8BC - list of SHPs in order of shortest to longest
1: procedure SptSearch(EB, E6, �)
2: Initialize PriorityQueue &
3: (ℎ?!8BC ← []
4: ?0Cℎ�>D=3 ← False
5: Find edges 31, 32, 33 of the triangle containing EB
6: for 38 in [31, 32, 33] do
7: if 38 is not a boundary edge then
8: Find U1, V1 for 38
9: � ← [U1, EB, V1]
10: ?A43 (U1) ← ?A43 (V1) ← EB, 0 ← EB
11: Find E, 3U, 3V
12: C = ?A43 (E)
13: 5 ← 6(C) + 38BC (C, E6)
14: &.?DBℎ( 5 , (�, E, 3U, 3V, 0))
15: while not &.8B�<?CH() do
16: (:4H, 30C0) ← &.?>?()
17: ?0Cℎ�>D=3 ← Expand(30C0) ⊲ See Algorithm 4
18: if ?0Cℎ�>D=3 then ⊲ Place interrupt here to avoid infinite loop
19: c̄ ← 5 8=3%0Cℎ(E6, EB)
20: (ℎ?!8BC.0??4=3 (c̄)

return (ℎ?!8BC ⊲ List is empty if no paths found.

Algorithm 4 Expand Kite
1: procedure Expand(�, E, 3U, 3V, 2)
2: if E == E6 then return True
3: else
4: C ← ?A43 (E)
5: E.6 ← 6(C) + 38BC (E, C) ⊲ Update cost-to-go for E
6: 3 ← [3U, 3V]
7: Find �U and �V ⊲ The same as in lines 7 – 9 of Alg. 2
8: �′← [�U, �V]
9: for 8 ← 0, 1 do
10: if 3 [8] is a boundary edge then
11: do nothing ⊲ Can’t expand in this direction.
12: else
13: Find E′, 3′U, 3′V, 2

′

14: D ← ?A43 (E6)
15: 5 ← 6(D) + 38BC (D, E6)
16: &.?DBℎ( 5 , (�′[8], E′, 3′U, 3′V, 2′))

return False
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the priority queue to a simple queue sans key, it can also be used with the split()
algorithm. Algorithm 4 is analogous to split() in that it splits and updates the
funnel, but in addition it calculates a key for each new funnel.

2.4 Traversability Analysis
One iteration of Algorithm 3 in Subsection 2.3.3 will return an SHP c̄8. The next
step is to determine whether Axel can safely ascend from E6 to EB, given this taut
tether configuration. In order to ascend, Axel must be able to navigate around each
obstacle that the tether contacts, in turn.

Abad-Manterola defined the initial anchor point, 00, as the location on the tether-
demand plane where the tether is affixed to the host platform [58]. Assume that the
=> tether obstacles are labeled $1, $2, ..., $=> . If that taut tether described by c̄8
contacts one or more tether obstacles, those points of contact are called intermediate
anchor points[58]. Note that the tether may contact an obstacle in multiple places,
or not at all, so the number of anchor points is not the same as the number of
obstacles. Since an intermediate anchor point will only occur on a convex vertex of
an obstacle, any anchor point analysis can be carried out on the convex hull of that
obstacle, for simplicity.

Anchor points are labeled in increasing order as they proceed away from the initial
anchor point. Each SHP c̄8 has a list of =0 +1 anchor points (=0 intermediate anchor
points and the 1 initial anchor point), �8 = (00, 01, ..., 0=0). The 9 th anchor point
on the 8th SHP is given by 08, 9 .

At any given point, the area that Axel can traverse on a tether-demand plane is
determined by its proximal anchor point. Imagine the simplest case: a point robot
on a plane, tied to a single initial anchor point via a tether. The area in which it could
move without slipping would form a cone descending from that anchor, whose width
is determined by the coefficient of friction, as described in Subsection 2.4.2. For a
more complicated robot and terrain model, that traversable area is described by the
anchor reachable set [58]. Note that anchors are determined only by contact with
tether obstacles$, but a traversability analysis may involve avoiding robot obstacles
as well.

Definition 2.1 Anchor Reachable Set. The anchor reachable set is the set of points
in a tether-demand plane, C8, 9 (@), that are reachable from robot configuration @
while 08, 9 is its proximal anchor point.
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Figure 2.17: The path and SHP from the example in Figures 2.7-2.11 are shown in
green and navy blue, respectively. Intermediate anchor points are circles in purple.

Clearly, the edges of the anchor reachable set could be determined by a traversability
model of the robot, as in the simple friction cone model. However, this definition
hints at another limiting factor for a robot on an intermediate anchor point 0 9 : if the
robot travels far enough sideways, the tether may lose contact with the obstacle at
0 9 , making 0 9−1 the proximal anchor point. In this case, Axel is no longer in C8, 9
because it is in C8, 9−1. This can also be conceptualized using the predecessor from
Subsection 2.3.1, which encapsulates visibility. As the robot moves sideways, 0 9 is
no longer occluding line-of-sight to 0 9−1.

Definition 2.2 (ARS Edges.) The Anchor Reachable Set C8, 9 has 3 types of edges:
a reachable edge, past which the robot can no longer traverse without slipping; a
visibility edge13, beyond which 0 9 is no longer the proximal anchor point; and, in
rare cases, an edge which may be both.

13Abad-Manterola calls this the “SHP Edge”.
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Figure 2.18: The reachable set, R |, defines the limits that the robot can traverse
without slipping while tied to proximal anchor 0 9 . It is shown in striped cyan,
surrounded by dashes lines representing the reachable edges. C8, 9 , the anchor
reachable set for 0 9 , is in solid cyan. The visibility edge, dotted, extends down from
0 9−1. Crossing this edge will release the tether from 0 9 , making 0 9−1 the proximal
anchor.

In order to ascend past a given anchor 0 9 , Axel must pass over a visibility edge of
C8, 9 , making 0 9−1 its proximal anchor. At this point, if it is not inside the reachable
set for 0 9−1, Axel will slip. From this we get the following definition:

Definition 2.3 (Passable intermediate anchor point.) An intermediate anchor
point 0 9 is passable from configuration @ if the robot can cross a visibility edge of
C8, 9 (@) to C8, 9−1(@).

To safely ascend, Axel must pass 0=, then 0=−1, and so on until 01. If it can do so,
we say the ascent is feasbile.

Definition 2.4 Feasibility. An SHP c̄8 or a list of anchor points �8 is feasible if
every intermediate anchor point in turn is passable.
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2.4.1 Checking if an Ascent is Feasible
Algorithm 5 below describes how to check if a proposed ascent path with a given
SHP is feasible. It finds the set of all anchor points, �8, for that SHP, then checks
each for passability. To do so, it finds R 9 , the set of points that would be reachable
if the rope were tied to 0 9 . ! is the line of visibility, referring to the infinite ray
sketched out by extending the taut tether from �8 [ 9 −1] to �8 [ 9]. V refers to the set
of points on the visibility edge of C8, 9 , from which @′ will be selected. In addition,
the algorithm narrows down the selection of @′ by first ensuring that any potential
@′ will also be inside the anchor reachable set for 0 9−1.

Algorithm 5 Check if SHP is Feasible
Input: c̄8, a shortest homotopic path
Output: F0H%CB, if ascent feasible. False if not feasible.
1: procedure CheckFeasibility(c̄8)
2: @ ← E6
3: �8 ← 64C�=2ℎ>A%>8=CB(c̄8)
4: =0 ← ;4=6Cℎ(�8) − 1
5: R 9 ← 5 8=3)843'402ℎ01;4(4C (�8 [ 9], @)
6: 9 ← =

7: F0H%CB← []
8: while 9 > 0 do
9: ! ← 5 8=3!8=4$ 5+8B818;8CH(�8 [ 9], �8 [ 9 − 1])
10: V ← ! ∩ R 9 ⊲ Find visibility edge of C8, 9 .
11: R 9−1 ← 5 8=3)843'402ℎ01;4(4C (�8 [ 9 − 1], @)
12: Q ← V ∩ R 9−1
13: while True do
14: if Q.8B�<?CH() then return False ⊲ Ascent is not feasible.
15: else
16: @′← Q.?>?()
17: if @′ can be reached from @ then
18: 2>=C8=D4 ← False, @ ← @′

19: F0H%CB.033 (@) ⊲ This anchor point is passable.
20: R 9 ← R 9−1
21: 9 ← 9 − 1

return F0H%CB

In calculating the anchor reachable sets to determine if ascent is feasible for c̄8, we
produce sets of reachable points and edges through which Axel must pass. There are
several ways to generate ascent and descent paths from this information, depending
on the traversability model and planning hierarchy in use. For example, a robot
operator might simply use the visualization as a planning tool. Alternately, one
could search the areas of those reachable sets to find a path, and check or ensure
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that the path travels through the visibility edges in order. In Algorithm 5, we use
the anchor reachable sets to develop a high-level motion plan, selecting waypoints
along the visibility edges. These waypoints are sent to a second motion planner that
incorporates a more detailed traversability analysis using more detailed terrain data.

2.4.2 Feasbility with a Tether Friction Cone Model
Algorithm 5 can be used with any traversability model that can determine reachable
sets. The following “tether friction cone” model for a simple holonomic point robot
illustrates the concept. Assume the friction coefficient ` is constant, and that the
robot is on a plane with constant slope [: .

g sin(η)

T

θ

f

Tsin(θ)

Tcos(θ)

Figure 2.19: A free body diagram illustrating the forces on Axel in the G − H plane,
at angle [ to the horizontal. Not shown in the diagram is the normal force in the
I-direction, �= = <6 cos [.

Let \ 9 (@) refer to the tether angle at configuration @, with proximal anchor 0 9 .
This refers to the angle between the taut tether and the fall line. As can be seen in
Figure 2.19, the forces on the robot include tether tension ) , the gravity, the normal
force, and friction (which is modeled here as 5 = `�=, where �= is the normal
force). Using these, Abad-Manterola [58] shows that the maximum angle the robot
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can deviate from the fall line without slipping is given by���\<0G9

��� = sin−1 (` cot([: )). (2.7)

1

robot

aj

aj-1

g

Θj
max

Figure 2.20: In this map adapted from Abad-Manterola [58], the BTM is shown in
gray and the obstacles are white. The orange arrow 6 shows the direction of the
fall line. The SHP is in blue, with a black line representing the visibility line for
the proximal anchor. Each anchor 0 9 has a friction cone defined by \<0G

9
, shown in

green.

Let us call k 9 the SHP angle, for the angle formed by the taut tether between 0 9−1

and 0 9 as measured with respect to the fall line. For 0 9 to be passable, there are 2
basic requirements:

1. C8, 9 , the anchor reachable set of 0 9 , must have a visibility edge. For this to be
true, \<0G

9
> k 9 .

2. In order to travel from some point @ on the visibility edge of C8, 9 into C8, 9−1

without slipping, 0 9 must be in the anchor reachable set of 0 9−1. Therefore,
\<0G
9−1 > k 9

Of course, if ` is constant throughout the surface, \ 9 = \ 9−1, so only one of these
needs to be checked.
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2.4.3 Summary: Planning on a Single Tether-Demand Plane
The first step in finding an ascent/descent path pair is to preprocess the data. This
involves approximating terrain data as a series of planes, and finding the obstacles
on each plane : represented by polygon %: . Then the space around those obstacles is
triangulated into a BTM. For each triangulated plane that is a tether-demand plane,
Algorithm 6 can be run to find a feasible descent and ascent path.

Algorithm 6 summarizes the process of finding the shortest (or best) SHP viaA* SPT
search, checking that SHP for feasibility, and using waypoints from that feasibility
check to find an ascent path. The descent path could also be generated with those
same waypoints. Alternately, one could generate a homotopic descent path in the
sleeve and check that it is traversable. If at any point a path cannot be found, the
process can be repeated for the next-best SHP.

Because there are many different options for how to find the paths, each best-suited
for a different environment, Algorithm 6 has left the details vague.

Algorithm 6 Find a Feasible Ascent/Descent Path Pair
Input: start EB, goal E6, polygonal map % of tether obstacles on a plane
Output: (c0, c3) ascent and descent path pair
1: procedure Path Planning(EB, E6, %)
2: �← 5 8=3�)" (%)
3: B40A2ℎ4A ← SptSearch(EB, E6, �) ⊲ Initialize search
4: while True do ⊲ Or while (2>D=C < 2DC> 5 5 )
5: c̄ ← B40A2ℎ4A.64C#4GC�4BC ()
6: F0H%CB← CheckIfFeasible(c̄)
7: if F0H%CB is not False then
8: find ascent path c0 through F0H%CB
9: find corresponding descent path c3
10: return (c0, c3)

Note that Algorithm 6 has the potential to loop forever. Any given BTMwith one or
more obstacles has infinite homotopy classes, since a path can always loop around
an obstacle (or several obstacles) more times. This could potentially be solved with
a loop-check in Algorithm 3 to ensure that only simple paths are returned. However,
that SPT search might still return paths that, while in unique homotopy classes,
would not be well-suited for Axel to travel. For example, any path that requires
the robot to move upwards from an anchor, unsupported by its tether, would not
be traversable. While these paths will naturally be rejected during the Algorithm 5
feasibility check, they will also have a longer travel distance, and thus be returned
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later in the search. For these reasons, in practice an operator can quickly determine
when Algorithm 6 has ceased to return any useful paths, and terminate the search
at that time.

2.4.4 Multiple Planes and 3 Dimensions
Recall that a sleeve is the same as a ‘triangle chain’. Balasubramanian et al. state,
“it is possible to isometrically flatten any triangle chain of a triangular mesh...
[b]y isometrically flattening the triangle chain, we also map the curve to the plane
isometrically. Under such a mapping, the instrinsic geometry of the surface is
preserved” [91]. Because of this, the Funnel Algorithm or its variants can still be
used on any BTM with holes, even if that BTM consists of several planes in a row.
In addition, the tether will only remain in contact with the surface as long as the
surface is convex. Therefore, planning can be safely carried out for any series of
planes where for each plane : , [: > [:−1.

As long as the tether remains in contact with the surface, most of Algorithm 6
remains the same for planning on multiple planes. The planner must still find an
SHP, check that ascent is feasible (for any tether-demand plane), and then generate
homotopic ascent and descent paths in the sleeve. Only the traversability model
depends on the plane, affecting the anchor reachable sets. In addition, the tether
must be drawn taut before moving from any tether-free plane to a tether-demand
plane.

It should be possible to find a shortest path or SHP in a more complicated polyhedral
surface, without approximating it as a series of planes. There are several algorithms
for finding geodesics or shortest paths on polyhedral surfaces[91], [92], [95]. Many
of these algorithms are slow for large numbers of vertices, so a number of faster
approximation algorithms have also been developed [96]. However, a geodesic is
only a locally shortest path; they may differ from globally shortest paths, especially
around boundaries. Balasubramanian et al. present an algorithm for finding shortest
paths [91], but their approach provides paths that lie on the surface, even in the
presence of any concavities. Because a taut tether would lose contact with the
surface on these concavities, their algorithm would need to be modified to handle
terrain concavities.

2.5 Experimental Results
To demonstrate the utility of this tethered path-finding algorithm, I wrote a program
that analyzed real-world data for potential paths. The following subsections show
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results for data sets from Garni Crater on Mars and Golden Queen Mine on Earth.

2.5.1 Garni Crater

100 0 100 200 300 400 m

Elevation (m)

-5305
-5197
-5088
-4981
-4873

Legend

Figure 2.21: DEM of the north rim of Garni Crater. The cropped selection that will
be analyzed in later figures is superimposed in grayscale.

As Section 2.1 mentioned, Garni Crater is one likely mission destination for Axel.
The DEM shown in Figure 2.21 was based on data taken by the MRO HiRISE
camera, with a resolution of 1 m per pixel in G and H. The Geographic Information
Systems (GIS) programQGISwas used to produce Figure 2.21, combining the DEM
(in color) with a grayscale semi-transparent photo for texture. QGIS was also used
to crop a strip of the crater’s north rim that has a relatively constant slope, shown
in grayscale in Figure 2.21 and in color in Figure 2.22. This cropped strip, as seen
in Figure 2.22, will be modeled as a single tether-demand plane in the rest of this
section.
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Figure 2.22: DEM of the cropped section on Garni’s north rim, shown in color. One
of the challenges in testing the obstacle detection and path planning algorithms was
that most of the likely Martian terrain was relatively smooth, like this. However,
that is the ideal scenario for a rover on Mars.

2.5.2 Obstacle Detection
The cropped selection was then read into Matlab for obstacle detection. I wrote a
program to do so based on Abad-Manterola’s algorithm for obstacle detection on a
slope [58], which in turn was based on the extreme-terrain algorithm developed by
Manduchi et al. [97]. These algorithms use the parameters �<8=, �<0G , and \<0G ,
which depend on the vehicle’s ground clearance, the vehicle’s width, the quality of
the data, and the maximum slant the vehicle can safely traverse.14 In the following
examples, I used �<8= = 0.2 m, �<0G = 2 m, and \<0G = 40°. Figure 2.23 depicts
the resulting detected obstacles as colored polygons, which are superimposed on a
grayscale image of Garni’s gradient magnitude. The smoothness of Garni’s crater
wall at this location makes it difficult to gauge the obstacle detection’s effectiveness.
However, a crater-littered patch of Shackleton crater on the Moon provides a target-

14Tailoring the parameter values to the situation is an inexact science. For further discussion on
how to choose them, see [97].
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Figure 2.23: The gradient magnitude of the DEM on the left, with obstacles super-
imposed in color. This particular terrain seems composed of regular sandy dunes,
so it is unsurprising that very few obstacles were detected.

rich test environment, as can be seen in Figure 2.24.
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Figure 2.24: The same obstacle detection algorithm was run on this 1-m resolution
elevation data from Shackleton crater on the Moon. The algorithm does a much
better job in an environment with sharp, clearly-defined obstacles like micro-craters
and boulders.

2.5.3 Triangulation
The obstacle detection code writes mapfiles in a particular format, giving the co-
ordinates for the convex hull of each tether obstacle. An operator can then run my
tethered motion planning GUI, written in Python, which is pictured in Figure 2.25.
The GUI reads themapfile in as a Doubly-Connected Edge List (DCEL) and displays
it, as shown in Figure 2.26.

Next, the tethered motion planner triangulates the map. As described in Section
2.2.2, this involves two steps: dividing the map into y-monotone polygons, as shown
in Figure 2.27, and triangulating those poylgons. Figure 2.28 shows the resulting
BTM. The relatively small scale of the obstacles with respect to the map causes
many long, thin BTM triangles that span the width of the map. Despite looking like
lines in Figure 2.28, a close-up view of two obstacles in Figure 2.29 reveals that the
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Figure 2.25: The GUI used for tethered motion planning allows an operator to
visually check every step of the process, from viewing the map, to triangulating,
finding a path, and checking its feasibility. Buttons and checkboxes become enabled
after necessary triggering events, to prevent user error.

BTM-finding algorithm has produced triangles, as expected.
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Figure 2.26: The Garni Crater obstacle map resulting from Figure 2.23 is read into
the program and displayed. The operator can chose the desired start and end points,
depicted by the red ‘x’ and the green circle, respectively. Any obstacles — tiny on
this map, and hard to see — are colored in blue.
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Figure 2.27: The first triangulation step to get the BTM involves dividing the map
into y-montone polygons. This map is useful for debugging, but its display can be
turned off for regular use.
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Figure 2.28: Due to the small size of the obstacles, and the large distances between
them, many crater BTMs end up looking like this one: with lots of long, skinny
triangles near each other.
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Figure 2.29: A close-up of the BTM in Figure 2.28 reveals that each obstacle does,
indeed, have many thing triangles connected to it. Note the scale, in meters, on the
side; each of these obstacles is just a few meters wide, for a map whose resolution
is 1 m.
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2.5.4 Path Search and Feasibility Check
The program then runs an A* search on the shortest path tree. Some examples of the
funnels produced in the process can be seen in Figure 2.30, where each new funnel
is overlaid on any previous funnels in a different color. As described in Subsection
2.3.3, the program finds the best — in this case, the shortest — SHP. That SHP,
shown in magenta in Figure 2.31, is a straight line from the start to the goal, as can
be expected in a map with sparse obstacles.

Figure 2.30: This figure is primarily used for debugging the path-finding algorithm.
At each step, one of the existing funnels gets overwritten or extended in a new random
color. An astute reader may be able to spot some of these funnels-in-progress by
their colors in this image.

The GUI in Figure 2.25 gives the operator the option to display the sleeve for a given
SHP. Figure 2.32 shows the sleeve for the best SHP, in dark gray. Having found the
absolute shortest path from start to goal in the map, the program gives the operator
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Figure 2.31: Since obstacles were sparse in this Garni map, it is unsurprising that
the resulting best (in this case, shortest) path was a straight line from start to goal,
as shown in magenta.

an option to continue the search to find the next shortest SHP, or the shortest path
that is in a different homotopy class. Figure 2.33 shows the second- and third-best
SHPs for this map, along with the sleeve for the third-best SHP.

Due to those slim BTM triangules, a sleeve can often appear from a distance as
though it surrounds an obstacle. Closer inspection of the sleeve around an obstacle,
as in Figure 2.34 and Figure 2.35, shows that this is not the case; in fact, a thin
triangle is excluded from the sleeve.

Once an SHP is found, the program identifies the anchor points and checks if ascent
is feasible for that SHP. This requires a slope and friction coefficient, which the
operator can enter in the GUI. Figure 2.36 shows resulting wide friction cones
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Figure 2.32: The darker gray depicts the sleeve for the best path found in Figure 2.31.

in cyan, for ` = 0.4 and a 45° slope. Figure 2.37 is the same situation, except
with ` = 0.3. Intermediate anchors are shown as yellow squares, and at least one
waypoint along the visibility line is given for each intermediate anchor. Although
their similarity in size to the obstacles might make them hard to see, both figures
depict waypoints as stars.

Since the resolution of these satellite images is too low for precise robot planning, the
tethered motion planner acts as a high-level task planner. The sleeves and waypoints
can then be passed to amotion planning algorithm that incorporates higher resolution
sensory data from Axel and uses it to plan paths between waypoints.
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Figure 2.33: The best, second best, and third best paths are shown in maroon. In
dark gray is the sleeve for the third best path.
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Figure 2.34: Although the sleeve in the previous image may appear to encompass an
obstacle, a closer look reveals that there is actually a very small, slim BTM triangle
that is not part of the sleeve.
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Figure 2.35: An even-closer look at the obstacle in question.
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Figure 2.36: This path is feasible; it easily falls inside the wide cyan lines, resulting
from the ` = 0.4 on a 45° slope.
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Figure 2.37: Even with a smaller friction coefficient, this path is feasible too.
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2.5.5 Golden Queen Mine
To better anticipate potential issues on an extraterrestrial mission, Axel has been
strenuously field-tested on Earth. At the time of this analysis, the latest field test has
been scheduled for August of 2019; the team plans to pilot the robot down the steep,
rocky slopes of a Meteorology Station Hill at Golden Queen Mine, in the California
desert north of Lancaster. In this analysis, the aforementioned program was used to
prove that safe, feasible paths exist at that site. In addition to its eventual use for
full autonomy, this software could be used on site as an additional planning tool for
human operators during any future field tests.

Figure 2.38 shows aDEMof the testing site at GoldenQueenMine. As in Subsection
2.5.2, a Matlab obstacle detection program was run on a cropped subset of the
DEM. Figure 2.39 shows the resulting obstacles which form the starting map for
path planning.

Figure 2.40 shows the BTM for the Golden Queen Map. For clarity, a zoomed-in
selection of the top of the map is shown in Figure 2.41. Similarly, Figures 2.42 and
2.43 show the shortest path from the start to goal, and the sleeve for that path; the
latter is a close-up of the topmost portion of the map. The shortest path is magenta,
and the sleeve for that path is dark gray.

Despite its first appearance, this final shortest path is not a perfect straight line. The
2 small obstacles that form anchors can most clearly be seen in Figure 2.44, as gold
boxes. That figure also depicts the wide friction cones with ` = .4, meaning that
this path is feasible.
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Figure 2.38: This DEM of the testing site at Golden Queen Mine is based on data
from the Harvard Dataverse, by Sparky Henderson. The black rectangle represents
the cropped area that was used as the robot’s map.
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Figure 2.39: The Golden Queen Mine obstacle map, as displayed by the path-
planning program. As in Subsection 2.5.3, obstacles are shown in blue. An example
starting point is denoted with a red ‘x’, and a desired goal point is denoted by the
green circle.
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Figure 2.40: The BTM for the Golden Queen Mine map.
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Figure 2.41: Zooming in on a section of the BTM gives a better sense of the triangle
structures that compose it.
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Figure 2.42: Although it appears that the path between start and goal is a straight
line, there are in fact 2 small obstacles around which the robot must detour. This can
more clearly be seen in the close-up views, and in the fact that Figure 2.44 shows 2
anchors.
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Figure 2.43: A close-up view of the final path and its sleeve.
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Figure 2.44: The friction cones, in cyan, extend from the 2 anchors boxed in gold.
Since each anchor is within the friction cone of its proximal anchor, the robot can
safely ascend this path.
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2.6 Summary
This chapter explained one of the key concepts driving tethered motion planning:
to avoid leaving the tether tangled around an obstacle, the planned ascent and
descent paths must be homotopic to each other. Those homotopy classes can be
represented by their shortest path, the SHP, or by their sleeve (among other things).
The Funnel Algorithm can be used to find the shortest path in a sleeve, and the
Guibas’ Shortest Path Tree algorithm can find the shortest paths to all the points in
a polygon. Hershberger and Snoeyink showed that, using a BTM, these algorithms
can be extended for find all the shortest paths in a polygon with holes.

My contribution was to apply graph-search techniques to these algorithms, adding a
queue and a heuristic. By treating certain BTM vertices as nodes, the SPT algorithm
can be altered to return the shortest SHP, followed by the next shortest, and so on.
Each of these SHPs in turn represents a homotopy class, so this search can be used
to quickly narrow down the sleeve in which the robot should search for ascent and
descent paths. That SHP also forms the basis for the feasibility check, in which the
algorithm must check each anchor point to ensure that it is passable. I’ve presented
the conditions for which this is true, with a simplified friction cone model of the
area the robot can traverse. In the process of checking if ascent is feasible, the
algorithm can easily return a set of waypoints that are on the lines of visibility for
each anchor. A more precise motion planner, with more detailed data, can then find
a pair of paths in the sleeve that pass through those waypoints.

This process even works for a series of planes, as long as the edges between those
planes are convex, such that the tether stays on the ground. Section 2.5 shows the
intermediate steps and the paths found for some actual Martian terrain, using the
program I developed for that purpose. Overall, this chapter shows how to preprocess
DEM data, find a BTM, and create and search a Shortest Path Tree to find an SHP.
After that SHP is checked for feasibility, a sleeve and a set of waypoints can be
found, in the process of finding or generating an ascent and descent path pair.
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C h a p t e r 3

MODELING AND PREDICTING TETHER-TERRAIN
INTERACTION

3.1 Introduction
Chapter 2 presented a tethered motion planning algorithm under the assumption of
a frictionless tether. In practice, however, the friction between the terrain and the
tether can have a significant impact on the behavior of the rope, and therefore on
the robot’s movement. As Axel descends the slope, the tether can catch on raised
patches of the terrain. These tether friction obstacles, described in Subsection 3.1.1
below, differ from the obstacles in the previous chapter because they only occur in
certain tether configurations with a sufficiently high friction coefficient between the
tether and the terrain.

Tether friction obstacles change the tethered motion planning problem in several
ways. If a planner fails to account for them in choosing a descent and ascent path,
those paths may end up on different sides of that obstacle. That new obstacle would,
in effect, split one homotopy class (and one sleeve) in two, and Axel could not take
its planned ascent path without wrapping the tether around the obstacle. Even if
this friction obstacle occurred in a location such that the ascent and descent paths
were still homotopic, it could cause other problems. That obstacle might create new
anchor points, which necessitate reevaluating the passability of those anchor points
and the feasibility of the SHP. These, in turn, could change the waypoints on the
planned ascent path.

Furthermore, tether friction obstacles pose a potential danger to a rover. Because
tether friction depends on tether position and tension, Axel’s movements may jostle
the tether over or past a friction obstacle, causing the robot to suddenly slip down-
wards. Thus, any motion plan should either avoid tether friction obstacles entirely,
or ensure that those obstacles will remain obstacles (or non-obstacles) in the face of
perturbations in tether tension and position.

In this chapter I introduce the concept of tether friction obstacles, and give a general
overview for how to plan with tether friction. Next I review and organize the scant
existing literature on rope physics, which give equations for the frictional forces
on the tether as a function of tether shape and tether tension. With a series of
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computational examples, I show how these equations can be used to determine
the limits of tether tension for which there is static equilibrium or, given tether
tension, whether the tether is in static equilibrium. The latter forms the basis for any
frictional tethered planning algorithm, in which potential tether friction obstacles
must be evaluated to determine if the tether will stick. After describing the necessary
assumptions made about tether tension, I give pseudocode in Section 3.4 for path
planning with a frictional tether. To the planner, tether friction obstacles may seem
to appear or disappear after the map has been triangulated, so Section 3.5 explains
how to update BTMs and sleeves to handle such changes. I also give an algorithm
for online tethered path planning that is based on the same concepts, taken from
[53]. Finally, I conclude with a summary and discussion of the challenges involved
in planning with a frictional tether.

3.1.1 Tether Friction Obstacles
The geometric tether obstacles analyzed in Chapter 2 acted as permanent obstacles
to the tether due to their shape and height, and could be represented by convex
polygons or as the union of convex polygons. Because Axel’s caster arm can raise
the height of the tether to a level higher than its wheels, it was assumed that any tether
obstacle was also a robot obstacle.1 However, there is another category of tether
obstacles: potential tether friction obstacles (PTFOs). These PTFOs are places
where the terrain may, in the right circumstances, act as an obstacle to the tether,
but not necessarily to the robot. In this case, the presence of the PTFO prevents
the tether from sliding along the terrain surface in the regions of the PTFO, thereby
acting as both an obstacle to tether movement and as a potential anchor point for the
rover.

For example, consider a tether under tension looped around a low bump or hummock.
With no friction between the tether and the hill, the tether will slide right over the
top. In this case, that hillock does not act as an obstacle. With sufficiently high
tension, the tether will do the same; at infinite tension, the tether converges on the
same configuration as in the frictionless case.2 However, at low tensions with a
high enough friction coefficient, the tether may catch on the hill. Whether or not
that bump acts as an obstacle depends on the friction coefficient, the tether’s starting

1Due to its grousers, Axel can sometimes climb obstacles even taller than its wheels, if that
obstacle’s surface provides “footholds” for said grousers. Similarly, the arm generally pushes against
the ground during movement, providing an extra lever arm. This definition of a tether obstacle
assumes that Axel can lift its arm to move its tether over an obstacle if needed.

2further discussed in Subsection 3.2.5.
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configuration, the terrain’s local geometry, and the tension (and change in tension)
along the tether.

One of the contributions of this chapter is to analyze how a given tether interacts
with a PTFO to determine if that PTFO does, in fact, act as an obstacle under
those circumstances. If it does, it is known as a tether friction obstacle (TFO),
and the points at which the SHP contacts that obstacle as friction anchors. These
TFOs should still be treated differently from geometric obstacles for several reasons.
Because these obstacles depend on friction, they only occur for a tether lying on
the ground. In practice, this doesn’t always happen. As Axel drives, its caster arm
frequently moves up and down to go over rocks or to adjust tension. This means
that anchors around these obstacles are easily lost, especially while the robot is near
that obstacle. In addition, these tether obstacles generally are not robot obstacles.
This means that, rather than traveling around an anchor to remove it, Axel can drive
right over that anchor point.

PTFOs can be helpful or harmful in planning and execution. Obviously, if Axel
unexpectedly loses an anchor at a PTFO, the tether may suddenly go slack. If
this occurs on a tether-demand plane, the robot may slip downhill, perhaps into an
undesirably dangerous area. Conversely, sometimes the operator may wish for an
obstacle when there is none. For example, a relatively steep slope means relatively
thin friction cones, limiting Axel’s range from side to side. However, if it is preceded
by a gentler slope, anchoring on an obstacle to one side of that slope may allow
Axel to reach areas on the steep slope that it otherwise could not. If no traditional
obstacle is present, a friction obstacle may provide this opportunity. Indeed, this is
when friction obstacles work best; the additional contact angle as the tether goes
over the cliff ensures that the friction obstacle will experience less tension as Axel
moves past that cliff edge, which acts like a capstan.3

3.1.2 Planning with Tether Friction
In preprocessing a map without tether friction, the first step is tether obstacle de-
tection. When incorporating tether friction, this step should also identify PTFOs,
and label them as such. This simply means finding any convex terrain, by analyz-
ing the surface curvature as discussed in Subsection 3.3.3. In both cases the map,
represented by a polygon with holes %, is next triangulated into a BTM, �.

The algorithm described in Section 3.4 first searches for any PTFOs. It will treat
3For more information on capstans, see Subsection 3.2.5.
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them like geometric tether obstacles as it finds an SHP. Then, it checks how the
tether configuration represented by that SHP will interact with any PTFOs. Section
3.2 describes the rope physics equations needed to determine if the tether will stick
or slip in those cases. Section 3.3 shows some simple examples of ropes under
tension, and computes the tension changes at static equilibrium or whether those
ropes will slip. That check also requires some assumptions about tether tension,
which are described in Subsection 3.4.1.

If the tether slips off an anchor point, the SHP must be replanned around it. This
does not mean that the planner can simply remove that anchor point from the list.
The taut tether may actually contact another obstacle that was occluded by the first.
This means that updating an SHP to remove a PTFO requires several elements from
online motion planning, like re-triangulating an area on the fly, and finding a new
sleeve. These are described in Section 3.5.

If the SHP will stick, that PTFO becomes a TFO. Each anchor point can then be
checked to see if it is passable, and the whole ascent feasible. This involves another
step for TFOs, however; because sticking is dependent on tether configuration, the
planner must check for TFO stability at every angle the tether passes through as Axel
moves. Finally, if the SHP passes all these tests, the planner can generate waypoints
and return the sleeve, just like in Chapter 2. This process is described in further
detail in Section 3.4.

Clearly, every element of planning with a frictional tether requires a solid under-
standing of how ropes interact with frictional terrain, so let us begin with a literature
review on the subject.

3.2 Physics of Rope on a Smooth Frictional Terrain
Given a tether position, tension, and friction coefficient, what are the frictional
forces on the tether? Will that tether stay in static equilibrium? These questions
are answered by the force balance equations for a rope with a constant friction
coefficient described by Maddocks and Keller [73]. Konykhov used variational
calculus to derive the same equations for orthotropic surfaces, in which the surface
has a direction-dependent friction coefficient [74]. He described the requirements
for a rope to stick, and gave the dynamical equations of motion for a sliding rope.

This section summarizes relevant parts of their work. It first discusses the frames
of reference commonly used for a curve on a surface, which are what the afore-
mentioned authors used in formulating the statics equations of a rope. The next
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subsection explains some of the necessary assumptions made about the frictional
forces and the rope model. Subsection 3.2.3 follows Maddocks’ and Keller’s deriva-
tion of the force equations for a rope in static equilibrium. These equations can be
greatly simplified by assuming that the rope is weightless, which results in a single
simple equation for static equilibrium. As will be seen in Section 3.3, that equation
can be used to determine if a tether in a given configuration will stick or slip, and
therefore whether a certain PTFO acts as a tether friction obstacle. Finally, the
last subsection describes a few special cases relevant to the derived force-balance
equations, to provide insight on some of their implications for tethered planning.

3.2.1 Frames of Reference
This subsection reviews some useful frames of reference for describing tether
physics. For more details on the differential geometry of curves and surface, see
[98].

Differential geometry commonly uses the Frenet-Serret frame to describe themotion
of a particle along a continuous differentiable 3-D curve, as in Figure 3.1. This frame
is composed of the unit vectors T̂, N̂, B̂, or the tangent, normal, and binormal unit
vectors, respectively. For a curve d(B) that is arc-length parameterized4 by B, those
basis vectors can be defined as

T̂ ,
3d

3B

N̂ ,
1
^

3T̂
3B

B̂ , T̂ × N̂.

(3.1)

At every point along that curve, its curvature, ^, is defined as

^(B) ,
3T̂
3B

 = ‖d′′(B)‖. (3.2)

These 3 vectors form a frame that moves along the curve as B increases. At any
given point B0, the vectors T̂ and N̂ span a plane containing B0, called the osculating
plane. The osculating circle5 is a circle through B0 in this plane, with its center in
the direction of N̂. Its radius ' is 1

^(B) .
4An arc-length parameterized curve has unit speed: ‖d′(B)‖ = 1.
5The Latin etymological root osculummeans “to kiss”; in this case, the circle “kisses” the curve

U(B) at B0.
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Figure 3.1: The Frenet-Serret frame for a curve d(B) in 3-D space.

Now assume that, rather than moving in free space, the arc-length parameterized
curve d(B) lies on some 3-D surface " , like in Figure 3.2. Like the Frenet-Serret
frame, the Darboux frame follows the motion of that curve. Unlike the Frenet-Serret
frame, it incorporates the surface geometry, with basis vectors that are oriented
tangent to the curve and normal to the surface.

t̂ ,
3d

3B

n̂ , ∇"
ĝ , t̂ × n̂

(3.3)

Note that the Frenet-Serret and the Darboux tangent unit vectors are identical: T̂ = t̂.
The Darboux normal is the surface normal, not the curve’s normal: N̂ ≠ n̂. In fact,
the two normal vectors differ by some angle q around t̂. The ĝ unit vector — called
the tangent normal, or the geodesic unit vector — is orthogonal to both the tangent
and the normal unit vectors.

The normal curvature, ^=, is the curvature of d(B) in the n̂ direction. The geodesic
curvature, ^6, is its curvature in the ĝ direction. In other words, the normal and
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Figure 3.2: The Darboux frame for a curve d(B) on a surface " .

geodesic curvatures are the components of ^ · N̂ projected onto the surface " .

^= =
3 t̂
3B

n̂ = d′′(B) · n̂,

^6 =
3 t̂
3B

ĝ = d′′(B) · ĝ.
(3.4)

The previous two equations can also be written in terms of q, the angle between N̂
and n̂:

^= = ^ cos(q),
^6 = −^ sin(q).

(3.5)

Note that a curve is a geodesic if ^6 = 0, and therefore ^ = ^=. A geodesic curve’s
acceleration is always normal to the surface. Therefore ^6 can be thought of as
describing how far a curve is from being a geodesic.

3.2.2 Rope Model
Model a rope or tether lying on the ground as a long, thin cylinder with radius A.
As in Maddocks and Keller, assume that the ground terrain is modeled as a locally
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smooth surface, and can be represented by surface "′ [73]. Moreover, assume that
the rope is represented as a curve along its centerline, and that is has an arc-length
parametrization B. The curve x(B) describes the center of the rope, which lies on a
surface " that is parallel to the ground surface "′, at a distance A above it.

The tension of the rope is given by the function Z (B) . This function is always
positive and only acts in the direction t̂:

Z (B) = ) t̂ > 0. (3.6)

One could interpret this as a constitutive assumption: the internal force exerted by
tension will always be tangent to the centerline, because the rope is unable to support
shear stress.

Note that forces and masses will be written in terms of densities, or the total force
or mass per unit of rope.

3.2.3 Force Balance Equations from First Principles
Maddocks and Keller take what is perhaps the more intuitive approach to writing
down the force balance equations for a rope on a surface [73]. Let O(B) be the net
internal force, obtained by integrating stresses across each orthogonal cross section.
From Subsection 3.2.2, that internal force is given by O(B) = ) (B) t̂, meaning that

O(B) =
∫
�

f3� = ) (B) t̂. (3.7)

The internal force density, or force per unit length, is 3O(B)
3B

. If K (B) represents all the
external forces acting on the rope per unit length, the force density balance equation
is

3O(B)
3B

= K (B). (3.8)

In other words, the change in tension per unit length is equal to all the external forces
acting on that rope per unit length.

The other forces acting on the rope include gravity, friction, and the normal force due
to the surface. Let ] (B) = (,C ,,=,,6) denote the external forces per unit length,
or the external force densities, such as that due to gravity. Let L(B) = (�C , �=, �6)
denote the friction forces per unit length in the t̂, n̂, and ĝ directions, respectively.
Therefore, K (B) = �C t̂ + �=n̂ + �6ĝ +] and Equation (3.8) becomes

3 () (B) t̂)
3B

= �C t̂ + �=n̂ + �6ĝ +] . (3.9)
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Expanding 3 () (B)t̂)
3B

and applying Equation (3.4) for normal and geodesic curvature,
the left side of Equation (3.9) yields

3)

3B
t̂ + ) 3 t̂

3B
· n̂ + ) 3 t̂

3B
· ĝ = 3)

3B
t̂ + ) (^=n̂ + ^6ĝ). (3.10)

As described in Subsection 3.2.1, ^6 (B) is the geodesic curvature and ^= (B) is the
normal curvature. Substituting Equation (3.10) back into Equation (3.9) results in
the following force balance equation:

3)

3B
t̂ + ) (^=n̂ + ^6ĝ) = �C t̂ + �=n̂ + �6ĝ +] . (3.11)

This equation can be divided into components along the t̂, n̂, and ĝ directions:
3)

3B
= �C +,C ,

^=) = �= +,=,

^6) = �6 +,6 .

(3.12)

Let �2 (B) denote the frictional force on the rope due to the ground, while the rope is
in static equilibrium. Using the Coulomb model of friction, �2 ≤ `�=, the frictional
forces on the rope are

�2
C + �2

6 ≤ `2�2
= . (3.13)

Recall that ` here is the coefficient of static friction; the Coulomb friction model in
Equation (3.13) describes the force limits needed to maintain static equilibrium.

Substituting Equation (3.12) into the Coulomb friction model in Equation (3.13)
results in (

3)

3B
−,C

)2
≤ `2(^=) −,=)2 − (^6) −,6)2. (3.14)

Condition 3.14 must be satisfied if the rope rests in static equilibrium [73]. If this
condition is satisfied and �= > 0, the rope sticks to the ground [74]. A version of
this equation will be used to check if a given patch of ground acts as a tether friction
obstacle, given the tether configuration and tension.

3.2.4 Equilibrium Conditions with a Weightless Tether
Konyukhov [74] assumes a weightless tether, ] (B) = 0, so that the force balance
equation in Equation (3.14) becomes(

3)

3B

)2
≤ `2(^=))2 − (^6))2. (3.15)
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Rearranging yields the full Coulomb’s friction model equation for a weightless
tether, which will be used in Section 3.3:(

3)

3B

)2
≤ (`2^2

= − ^2
6))2. (3.16)

The term inside the parentheses must be positive; otherwise, taking the square root
of the equation to find 3)

3B
would result in an imaginary term on the right hand side.

Since `2^2
= − ^2

6 > 0, the following must be true in order for a tether to stick to a
surface in static equilibrium:

l2 , `2^2
= − ^2

6 > 0. (3.17)

This is significant because l(B) encapsulates almost everything about the tether-
terrain interaction: the friction coefficient, the shape of the terrain, the shape of the
tether, and how it’s lying on the terrain. Only tension and the change in tension over
the tether are excluded. Therefore, Equation (3.17) can be useful in determining if
static equilibrium is even possible, at any tension.

Using Equation (3.5), the previous equation can be restated as

`2^2 cos2(q) − ^2 sin2(q) > 0, (3.18)

which simplifies to
`2 > tan2 q, (3.19)

where q is the angle between N̂ and n̂, as illustrated by Figure 3.3.

Knowing the friction coefficient, one can easily check if any given tether shape has
the potential to stick, based on the angle between its Frenet-Serret normal and the
surface normal. This is further detailed in Subsection 3.3.2. Note that this in no
way ensures that sticking will occur. Even if Equation (3.19) is satisfied, sticking
still depends on tether tension, as in Equation (3.14) [74].

3.2.5 Special Cases: Capstan Equation and Geodesics
Both Konyukhov andMaddocks and Keller show that the weightless-tether equation
resulting from Equation (3.16) are generalizations of the the capstan equation [73]
[74]. Although the capstan equation is not used in my motion planning algorithm,
it is useful as a proof of concept and as a starting point in conceptualizing ropes on
surfaces. Mechanical engineers may be familiar with this equation from textbooks
and mechanics classes.
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Figure 3.3: Ropes on a frictional sphere, illustrating the effect of q on static equi-
librium. When the rope is lying across the sphere’s apex, q = c and the rope is
unlikely to slip. At a lower q, however, the rope may slip.

Given a weightless rope wrapped around a capstan, bollard, or other frictional
cylinder, the capstan equation, also known as the Euler-Eytelwein formula, relates
the tension on one end of the rope ();>03) to the tension required to hold the system
in static equilibrium ()ℎ>;3). e is the effective contact angle, or the angle over which
the rope is touching the capstan.

);>03 = )ℎ>;34
`e . (3.20)

According to the capstan equation, the force of a load that can be held without
slipping increases exponentially as the contact angle of the rope increases. Note,
though, that the (positive) sign of the `e term is just convention. One could just as
easily solve for the tension required to hold the load, )ℎ>;3 = );>034−`e . The sign of
the exponential term and which way the tension changes depend on how the tension
terms are labeled.

Konyukhov shows that the capstan equation is a special case of Equation (3.16) [74].
Equation (3.16) can be rearranged as

− l) < 3)

3B
< l) (3.21)
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and integrated so that ∫
B

−l3B <
∫
)

1
)
3) <

∫
B

l3B. (3.22)

If l is constant, which is true for the constant curvature of the rope on a capstan,

− lB < ln) |)0
)1
< lB, (3.23)

which becomes
4−lB < )1/)0 < 4

lB . (3.24)

In the case of a rope wrapped around a capstan with radius ', the rope’s curvature is
the same as the capstan’s, ^ = 1/'. All of that curvature is in the direction normal to
the capstan’s surface, so ^= = 1/' and ^6 = 0. By Equation (3.17),l = ±`^= = ± `' .

To put B in terms of e, consider that the circumference of a circle is 2c', and the
length of an arc of a circle is e', where e is the angle that arc subtends. Therefore,
Konyukhov’s lB term is equivalent to ± `

'
e' = ±`e. Assuming that );>03 > )ℎ>;3 ,

like the capstan equation does, selects for the positive `e. Thus, Equation (3.20) is
a specialized case of Equation (3.16).

It is important to note that the capstan equation, like Equation (3.16), provides only
a tension limit for which the system is in static equilibrium. The loading tension
);>03 can always be lower; this will result in a smaller effective contact angle. These
equations cannot be used to calculate an exact tension on a tether, only to find a
limiting tension past which the tether will slip.6

In fact, this variation on the capstan equation in Equation (3.24) describes any
situation in which l is constant with respect to B. This occurs when ^= and ^6 are
constant; in other words, the curvature in both the normal and geodesic directions
is constant.

As was stated in Subsection 3.2.1, a curve is a geodesic (on a surface () if ^6 = 0. In
fact, according to Maddocks and Keller, “the geodesics are the curves of maximal
growth or decay of tension. Moreover, in the absence of friction, they are the
only equilibria with ) not equal 0” [73]. Konyukhov shows the converse, that “the
equilibrium curve on a rough surface under maximum tension load is geodesic.”
[74] This means that, for a weightless tether, as tension approaches infinity (or

6Konyukhov provides a system of equations to describe the sliding contact of a tether on a
surface, but they are highly non-linear (except for in certain special cases) and are outside the scope
of this work [74].
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friction approaches 0), the tether will deform into a geodesic. Since a geodesic is a
locally shortest path, at high tension the tether will tend toward the SHP.

3.3 Computing Tether Tension and Static Equilibrium
The examples in this section use the equations from Section 3.2, and form the basis
for the algorithms in Section 3.4.

3.3.1 Model and Assumptions
The conditions for static equilibrium that stem from Equation (3.16) depend on the
assumption of a weightless tether. Fortunately, this is a reasonable assumption in the
case of Axel’s tether, which was specifically designed to be tough but lightweight.
The current tether has a mass of 15 g /m, which over 100 m adds up to a mere 1.5
kg — a fraction of Axel’s approximately 70 kg mass. At 1 km, a goal distance for
Axel, the 15 kg of tether might be significant, if the tether were actually in the air
the whole time. At such a distance, however, Axel is likely to have passed multiple
anchors or changes in slope, on which the tether can rest. Besides acting as capstans
(and thus reducing the load on the initial anchor point, should Axel slip and suddenly
place high tension on the tether), these anchors ensure that at any given time, only
a small length of tether will be free to move.

Furthermore, Equation (3.16) will be used to identify tether friction obstacles. These
TFOs will generally be significant when Axel is climbing, with the tether held taut
at high tension. Even when not moving, the tether management system7 should
ensure that the tether never goes slack. This is significant because tether weight
has less impact as tension increases. Consider the terms in Equation (3.14). The
normal force component (that gets multiplied by `) is (^=) −,=)2. At sufficiently
high tension, the ^=) term dominates the,= term. The same is true for the geodesic
or dragging force component, (^6) −,6)2. The force component in the tangent
direction is (3)/3B−,C)2, so a high change in tension 3)

3B
would make tether weight

negligible.

Experimental tension measurements also show that, at typical driving tensions, the
tether weight contributes only a small fraction of the forces on the tether. During
a 2011 field test near Black Point Lava Flow in Arizona, the Axel team found that
tether tension reached a maximum of 170 lbs-force (756 N) for a then-55-kg robot
descending 20-80° slopes [58]. 100 m of tether would exert almost 12 N of force in

7Axel’s tether management system is described in Section 1.5.
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the direction of gravity, or 1.5% of the tether tension force.

Modeling tether friction against the terrain naturally depends heavily on the coef-
ficient of (static) friction. In his paper on tether friction in rope rescue, Attaway’s
tables use a range from ` = 0.25 to 0.45, and he chooses ` = 0.4 for one example
[75]. Unless noted otherwise, I have likewise used ` = 0.4. Because ` changes so
much depending on the surface, however, the frictional tethered planner can only
provide a first-order approximation of the true situation. It should be used as an aid
to an operator, and not be relied upon as the sole determinant that a path is safe to
travel.

Unfortunately, the wide range of ` for different surfaces also means that estimating
the friction coefficientwill probably be the hardest step in frictional tethered planning
in the field. Camera images alone will not suffice. The easiest method might be to
test the coefficient of friction for a wide range of materials in the field, by scraping
the surface with an arm or wheel equipped with a force sensor. Enough of these
tests would allow an operator to match a camera image of a dirt type with an
experimentally-determined ` for a similar-looking Martian or lunar dirt.

3.3.2 Conditions for Sticking at a Friction Anchor
The equations in Section 3.2 allow one to determine whether a tether will stick (i.e.,
remain in static equilibrium) on a surface. However, Equation (3.16), the weightless
Coulomb’s law equation in Subsection 3.2.4, is an ordinary differential equation
(ODE) for tether tension. This can be expensive to compute, especially for the
combinations of tether configurations and tensions at many possible points. Instead,
it behooves us to use Konyukhov’s conditions for static equilibrium to first narrow
the field of possibilities.

According to Konyukhov, the following 3 conditions must be satisfied for a weight-
less rope to lie in static equilibrium on a surface [74]:

1. There is contact between the rope and the surface, with no separation. �= is
positive for all points of the curve:

�= = −^=) > 0. (3.25)

2. The friction coefficient and angle q satisfy the following for all points of the
curve:

− ` < tan q < `. (3.26)
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3. The tension forces at both ends, ) and )0, satisfy the following:

)04
−

∫
B
l3B < ) < )04

∫
B
l3B . (3.27)

Since ) > 0, Equation (3.25) is equivalent to ^ cos q < 0. In addition, ^(B) > 0,
which requires that cos q < 0. Thus, for Equation (3.25) to be true, c/2 < q < 3c/2.
In Figure 3.3, this means that N̂must fall in the half-space formed by the (t̂, ĝ) plane,
on the side opposite n̂. Condition 1 in Subsection 3.3.3 will show what should be
intuitively obvious: that a tether cannot stick along a surface that is concave in the
direction of its tangent vector.

Equation (3.26) is also a restriction on q, which is analogous to a friction cone
constraint in robotic manipulation and grasping.8 As is depicted in Figure 3.3, the
friction coefficient ` determines the width of a cone extending opposite from the
surface normal, n̂. If the Frenet-Serret normal N̂ in the direction of the curve’s
acceleration falls inside this cone, sticking is possible for certain tether tensions. If
it does not, the rope will certainly slip.

The surface convexity requirement resulting from Condition 1 can be tested for
any surface, although for certain points whether a tether can stick will depend on
the direction of the tether’s tangent. Terrain data can be preprocessed in this way
before the motion planning algorithm is run, to speed up the process. Fully testing
Conditions 1 and 2, though, requires a tether configuration.

The planning algorithm to be described in Section 3.4 will provide a potential SHP,
representing a taut tether in a known configuration. From that, the tether’s curvature,
^, and angle between normals, q, can easily be calculated. If Condition 1 holds
true, Condition 2 can be checked with the same variable q, as well as the friction
coefficient `. If Condition 2 is true, sticking is theoretically possible for this tether
configuration.

Condition 3 depends on tether tension and the change in tether tension. While one
could use Equation (3.16) to check if a tether will slip, this requires the calculation
of 3)

3B
, a difficult term to estimate, or measure in the field. However, by making some

assumptions about the average and limits of Axel’s driving tether tension, one can
estimate the tension on either end of a tether around a PTFO, ) and )0. Subsection
3.4.1 covers these assumptions in more detail.

8This is a different friction cone from that given for Axel’s traversability in Chapter 2.
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3.3.3 Analysis of Surface Features
For a weightless tether to maintain its shape on a frictional surface, the surface must
be convex in that direction. Principal directions of surface curvature, which are
easily computed at each point, can be used to rule out certain spots on the surface
as being likely to cause tether slippage. The reasoning for this can be seen from the
definitions below.

Consider a given surface " at point ?. The principal curvatures ^1 and ^2 are the
maximum and minimum values for curvature at that point; they quantify how the
surface bends in different directions. The directions in the normal plane in which
curvature is at its maximum and minimum are called the principal directions, v̂1

and v̂2, and they form an orthonormal basis as long as ^1 ≠ ^2. At any point, a
vector u can be defined by an angle b with respect to the principal directions such
that u = cos(b)v̂1 + sin(b)v̂2.9

Although Section 3.2 generally discussed ^= in regard to a curve, it can also be
described for a vector tangent to that curve.

Theorem 3.3.1 (Meusnier’s Theorem) All curves lying on a surface " passing
through a point ? on " with the same tangent line have the same normal curvature
[98].

As a result, ^= can be defined in terms of the principal curvatures. If a curve’s
tangent vector is represented by a vector u at an angle b with respect to v̂1,

^= = ^1 cos2(b) + ^2 sin2(b). (3.28)

Alternately, the principal directions can be thought of as the angles of b for which
^= is at a maximum and minimum:

^1 = max
b
^= (b), (3.29)

and
^1 = min

b
^= (b). (3.30)

9Principal curvatures and principal directions are the eigenvalues and eigenvectors, respectively,
of the shape operator at that point. The shape operator is a symmetric linear map (? : "? → "? .
((v) = −∇E n̂(?); that is, the shape operator is the negative derivative of the unit normal of the
surface.
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Recall that by Equation (3.25), static equilibrium requires ^= > 0. Any wholly
concave surface will have ^1, ^2 < 0, meaning that ^= can never be positive. If
^1, ^2 > 0, Equation (3.25) is satisfied, and the program can move on to the next
step in checking for possible sticking. If one of the principal curvatures is greater
than 0 and the other is less than 0, ? is a saddle point. In this case, tether sticking is
only possible at angles b for which ^= > 0.

Using Equation (3.28), the following equation determines the break point b 5 ;0C at
which ^= = 0:

b 5 ;0C = tan−2
(
−^1
^2

)
. (3.31)

This equation can be used to determine the range of angles for which sticking is
possible.

3.3.4 Numerical Solutions for Tension
Although there is no general closed form analytical solution to Equation (3.14), it
can be solved numerically for a given initial tension )0. The examples in this section
were computed in Matlab, using Matlab’s ode45 solver. Unless otherwise stated,
they were calculated with a friction coefficient of ` = 0.4.

Figure 3.4: Numerically computed tension along a capstan matches the well-known
analytic solution, increasing or descreasing exponentially over the contact angle
from 0 to c

2 radians.
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Figure 3.4 shows the numerically-computed tension along a rope wrapped around a
capstan, from 0 to c

2 radians. Recall that the capstan equation gives both an upper
and lower limit to the tension at the end of the rope, depending on which end tension
is considered );>03 and which is considered )ℎ>;3 .10 Those tension limits are shown
by the dashed black and blue lines. The solid red line represents the numerically-
computed tension with the same assumptions as the capstan equation: the rope is
weightless, ^6 = 0, and ^= = 1/' where ' is the radius of the capstan. Although
' = 0.5 m here, examination of the capstan equation will show that the capstan’s
radius does not matter, only the angle contacted by the rope. As expected, the
numerical solver computes the same tension limit as the capstan equation (whether
that is an upper limit or a lower limit depends on how one sets up the inputs, and
can easily be changed).

Figure 3.5: Tension along a helix with a radius ' = 1, pitch � = 1, and starting
tension )0 = 45 N.

The slightly more complicated setup used in Figure 3.5 also serves as a test case,
comparing Konyukhov’s analytical solution to the numerically computed tension in
a weightless rope wrapped in a helix around a cylinder. That helix is a geodesic,
so ^6 = 0. In this example, the cylinder has a radius of ' = 1 m, and a pitch of
� = 1 m, describing the height in I for the rope to make 1 full rotation. The figure

10For more explanation, see Subsection 3.2.5.
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shows tension for 0 to c/2 radians. Once again, the numerical solution matches the
analytic one.

Figure 3.6: A heavy rope segment (blue) lying on a titled plane, whose surface
normal vector is shown in green.

Figure 3.6 depicts the geometry of the next example, for a heavy rope on a tilted
plane. Unlike in the previous examples, there in no analytical solution, since the
weightless rope approximations are no longer valid. In this example, the rope has a
mass density of 100 g/m, which is almost 7 times the mass density of Axel’s current
15 g/m tether. The numerical results for tether tension over the tether are shown in
Figure 3.7. Unlike in the previous examples, both ^= and ^6 are 0, so only the rope’s
weight contributes to a change in tension. In fact, this is example is a variation on
the common physics-textbook problem: if a chain is suspended in the air from one
end, what is the tension along the chain? In both cases, the tension changes solely
due to the weight of the chain or rope, which increases along the length of that rope.

The next set of experiments examined both tether sticking and tether tension on a
slope. The problem’s geometry is shown in Figure 3.8. A heavy tether (black)
is anchored at the top of a shallow slope, and continues over an edge to a much
steeper slope. The bottom of the tether is loaded with a tension of 539 N, the
force provided by Axel’s 55-kg-mass due to Earth gravity, hanging straight down
(conceptually, imagine the lower slope ends in an overhang, and Axel is hanging
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Figure 3.7: Numerically computed rope tension for a heavy (0.1 kg/m) rope on a
tilted plane.

Figure 3.8: A heavy tether is anchored to a shallow slope, followed by a steeper
slope, in the geometry shown here.

down unsupported, below). Tether length is measured from the hanging-robot end,
where B = 0. The questions to be investigated were twofold: would the tether stick
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Figure 3.9: The heavy tether shown will stick to the shallower slope with a low fric-
tion coefficient, but will only stick to the steeper slope at higher friction coefficients.
` also affects how quickly tension changes along the tether.

(stay in static equilibrium) in these conditions? And if it did, how would the tension
on the tether change?

The graph in Figure 3.9 shows how tension changes over the length of the tether,
and how sticking depends on the coefficient of friction. Each colored line represents
the rope tension for that coefficient of friction; if the line is not shown, the tether did
not stick to the surface under those conditions. For example, the tether sticks to the
shallower slope at ` = 0.31, and results in a lower tension change than that for the
higher friction coefficients. On the steeper slope, however, the tether with ` = 0.31
will slip sideways. Only the higher friction coefficients are sufficient for sticking at
this slope.

One result of the capstan effect is that it allows even loose initial anchors to hold
over a long traverse. The anchor must hold out against the initial tension as Axel
drives away, of course. However, after the tether wraps around a few anchors (either
sideways, or over hilly friction anchors), that initial anchor becomes insulated against
any slips or falls that might result in higher-than-expected tensions.
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3.3.5 Checking if Sticking is Possible
Before testing whether a particular tether configuration will stick, terrain data can
be preprocessed to eliminate all the concave areas where the tether will not stick.
As described in Subsection 3.3.3, Condition 1 (Equation (3.25)) can be checked by
finding the principal curvatures at each point in the terrain. The example below
uses a small patch of terrain data from Shackleton crater on the Moon, as shown in
Figure 3.10.

Figure 3.10: A small surface patch of Shackleton crater on the Moon.

In Figure 3.11, convex points are given in green and concave points in red. The
concave points can be immediately eliminated; a tether through one will never stick
there. At the saddle points in blue, however, the surface is convex in one direction
but concave in another. Since whether a tether can stick depends on the angle of the
tangent vector through those points, Figure 3.12 additionally shows those vectors
through saddle points for which sticking is possible. Once again, convex points are
in green and concave in red. Saddle points are shown in black, overlaid by cyan
arrows in every direction for which the surface is convex.

Figure 3.13 checks Conditions 1 and 2, to determine if sticking is possible at each
point along the tether. Points that will slip are shown in red, and points that may
stick, with the right tension, are shown in black.
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Figure 3.11: Convexity of points on the surface.

Figure 3.12: Convexity of points on the surface, with arrows showing convex
directions for saddle points.

In Figure 3.14, the previous two tether-configuration conditions are checked, as well
as the tension on the tether. In this case, sticking is possible; Figure 3.15 shows that q
meets the arctan ` constraints, for ` = 0.4, near the middle of the tether. However, a
sufficiently high tension differential will cause the tether to slip, violating Condition
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Figure 3.13: A tether on a section of Shackleton crater. Places where sticking is
possible are marked in black.

3.

3.4 Frictional Tether Planning
As the preceding sections have shown, determining whether a frictional tether
will slip on terrain requires the terrain shape and friction coefficient, the tether
configuration, and the tension at either end of the tether. Algorithm 7 generates a
test SHP, which it uses as a tether configuration to test if a PTFO will hold.

3.4.1 Assumptions about Tether Tension
One common misconception about Axel’s tether configuration is that it will take the
same shape as Axel’s path. While this could happen for a robot trailing its slack
tether on a tether-free plane, this is not generally the case for Axel. Instead, because
Axel’s tether management systemwill attempt to keep the tether taut, it is reasonable
to assume that ) > 0.11 That taut tether will always take the shortest path back to
the proximal anchor point, regardless of how circuitous Axel’s path may be. This

11This is true in any static approximation. Dynamically speaking, it is possible for the tether to
suddenly go slack — perhaps by losing the anchor — and the motors will take some non-zero time
to draw the tether tight again.



103

Figure 3.14: An example of a tether on a friction anchor, or a convex patch of terrain.
Although the tether (in red) appears to go directly over the hill’s apex, it is actually
slightly off-center. The red vectors represent the tether normals, or Frenet-Serret
normals, while the green vectors are the surface normals.

is true even if the taut tether catches on the ground, in which case that terrain area
is a TFO and its tether contact point is the new proximal anchor. Because of this
behavior, the tether position when Axel is at E6 after a descent will be the SHP, and
after ascent the tether will be entirely reeled up. At any point partway down, the
tether configuration will look like the SHP, up to the proximal anchor point.

Let )� denote the Axel-side tether tension, measured where the tether enters Axel’s
arm. Given knowledge of Axel’s geometry and the slope, )� can be estimated.
Abad-Manterola gives the following equation for tether tension [58]:

)� =
<6AF sin [8

!2 sin \2 + [8 + \C + AF cos [8 − \C
, (3.32)

where < is Axel’s mass, AF is the wheel radius, !2 is the arm length, [8 is the slope
angle, \C is the tether angle, and \2 is the angle of the arm [58].

Let)0 denote the tension just after (downhill of) the initial anchor point 00, and)8 the
tension after anchor 08. Assume that the tether tension does not change appreciably
between anchor points. The tether may lie lightly on the ground between anchors,
or span the distance between them in the air. In either case, in the absence of ^=
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Figure 3.15: The angle q from Figure 3.14, plotted over tether length. While the
tether is at the top of the hill, q is between the friction constraints, meaning that
sticking is possible there.

and ^6 components the only contributer to the term 3)
3B

is the tether weight, as in
Figure 3.7. Unlike in that example, though, Axel’s tether is very light, so its weight
can be ignored. Therefore, it is a reasonable assumption that the tension just above
anchor 08 will be equal to )8−1.

To gain some intuition about how tether tension changes over time, depending
on )� (C), consider the following hypothetical situation. Imagine Axel driving on a
tether-demand plane, which implies a positive but likely time-varying tether tension,
)� (C). As it leaves 00 at time C0 = 0, )0(C0) = )� (C0). Axel then moves down past
anchor 01, where the tether makes contact at time C1. Right before that happens,
)0(C1−n) = )� (C1−n). Unless the tether slips,)0 will now stay constant at)� (C1−n).
After making contact with the anchor, )1(C1) = )� (C1). Now, like in the situation
described by the capstan equation, Axel can increase or decrease its tension within
certain limits without the tether slipping at 01. Because of capstan effect, different
segments of tether may stay at different tensions, especially if )� (C) varies wildly
during Axel’s movement.
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While it is possible to simulate tension everywhere along the tether, using this
logic and possibly measurements of )0(C), the process would be prohibitively
computation-intensive to include in a friction obstacle search. Instead, use some con-
servative estimates to group PTFOs into categories of solid TFOs, never-obstacles,
and those obstacles whose sticking/slipping is too unreliable to be depended on.
First, assume the maximum and minimum expected tensions are known, )<0G and
)<8=. For example, these could readily be computed from Axel’s mass, the grav-
itational constant, and the steepest and shallowest slope angles that Axel is likely
to experience on a given exploration campaign. Alternately, one could estimate
these constants from experimental tether tension measurements, such as those taken
during Axel’s field testing in Black Point, Arizona [58]. Assume, too, that because
of its tether management system Axel usually drives with some tether tension )3 ,
usually within some known deviation of that, n .

Based on these tensions, there are 3 basic categories for PTFOs:

1. If )<0G < )<8=4
∫
B
l3B, then the tether will stick even when subjected to the

most extreme tension difference that Axel could expect. This PTFO is a solid
TFO; it acts like an obstacle to the tether.

2. If)3+n ≮ )34
∫
B
l3B, then the the tether will slip at even a small tension change.

(Alternately, one could just as easily use the difference between )3 − n and )3 ,
or even )3 − n and )3 + n .) One can expect that the normal tension changes
of driving will cause the tether to slip, so this PTFO does not act as a tether
friction obstacle.

3. If neither of the others is true, this obstacle could be dangerously volatile.
While the tether will stick here at normal driving tensions, a sudden slip or
higher tension will cause the tether to slip, resulting in a sudden loss of anchor.
These should be avoided if at all possible.

The following algorithms both categorize the PTFO according to these criteria in
the CheckPTFOs() function.

3.4.2 The Algorithm
Like Algorithm 6 in Subsection 2.4.3, Algorithm 7 starts with a polygon with holes,
%, representing a map and its polygonal obstacles. Unlike in Subsection 2.4.3,
however, those holes or obstacles must first be labeled as either geometric obstacles
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Algorithm 7 Find a feasible ascent/descent path pair, with tether friction
Input: start EB, goal E6, polygonal map % of tether obstacles, labeled as geometric

or PTFO, friction coefficient `, tether tension cutoffs )<8=, )<0G , )3 , n
Output: (c0, c3) ascent and descent path pair
1: procedure Path Planning(EB, E6, %, )<8=, )<0G , )3 , n)
2: �← 5 8=3�)" (%)
3: global `
4: B40A2ℎ4A ← SptSearch(EB, E6, �) ⊲ Initialize search
5: while True do ⊲ Or while (2>D=C < 2DC> 5 5 )
6: c̄C4BC ← B40A2ℎ4A.64C#4GC�4BC ()
7: (c̄, �) ← CheckPTFOs(c̄C4BC , )<8=, )<0G , )3 , n)
8: if (c̄, �) then
9: F0H%CB← CheckIfFeasible2(c̄, �)
10: if F0H%CB then
11: find ascent path c0 through F0H%CB
12: find corresponding descent path c3
13: return (c0, c3)

or PTFOs. The latter can be achieved using the principal curvatures surface feature
analysis described in Subsection 3.3.3. From there, triangulate % to get the boundary
triangulated 2-manifold (BTM) �, as described in Subsection 2.2.2.

Like in the frictionless case, Algorithm 7 starts a search of the BTM, looking for
the best SHP. In this case, though, it treats the PTFOs as regular obstacles. Having
found an SHP, c̄C4BC , the algorithm uses that SHP as a tether configuration to test
if the tether will stick on any PTFOs, in Algorithm 8. As described in Subsection
3.4.1, this involves checking whether the tether will stick for several combinations
of tensions at either end of the tether.

Algorithm 812 checks each friction anchor in the SHP, to determine if the tether will
slip or stick. If it sticks at some tensions and slips at others, the path is considered
unsafe and the algorithm returns ‘False’. If the tether slips over the obstacle, the
SHP must be recomputed.

This is not a simple matter of removing that anchor 5 from the list. Instead, the
new sleeve must be computed, and a new shortest path segment found between the
anchor points on either side of 5 . Sometimes, that new shortest path segment will
actually include more anchors, if another obstacle lies on that shortest path. Section
3.5 describes how to find that new path. Essentially, after removing the false PTFO,

12This algorithm was developed with the help of Dr. Jeffrey Edlund.
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Algorithm 8 Check whether PTFOs act as obstacles
1: procedure CheckPTFOs(c̄, )<8=, )<0G , )3 , n)
2: (�, �) ← 5 8=3�=2ℎ>AB(c̄) ⊲ Or store anchor type in node of c̄
3: 3>=4 ← False
4: while not 3>=4 do
5: B;8??8=6 ← ∅
6: for 5 in � do
7: if TetherSlips( 5 , )3 , )3 + n) then
8: B;8??8=6 ← 5

9: break
10: else
11: if TetherSlips( 5 , )<8=, )<0G) then
12: return False
13: if B;8??8=6 then
14: �, �, c̄ ← UpdateWithSlipped(B;8??8=6, �, �, c̄)
15: else
16: 3>=4 ← True
17: break
18: return (c̄, �)

the area around it must be triangulated. One can then find the new sleeve, as a result,
and can use the funnel algorithm to find the shortest path in that new sleeve.

Additionally, since a path change will alter the configuration of the tether through
the surrounding anchors, those anchors must once again be checked for slipping
or sticking. Once Algorithm 8 has eliminated all slipping anchors, such that the
remaining anchors are geometric or are friction anchors that will definitely stick, it
returns the new path c̄ and new friction anchors �.

Algorithm 9 Check if tether slips at given end tensions
1: procedure TetherSlips( 5 , )B<0;; , )186)
2: Find tether configuration at point 5
3: Use tether configuration and ` to find q and l
4: if −` < tan q < ` then ⊲ Sticking possible
5: if )186 < )B<0;;4

∫
B
l3B then

6: return False
7: else
8: return True
9: else ⊲

10: return True

Condition 1 for sticking has already been checked, in the process of finding PTFOs.
Algorithm 9 checks Condition 2 and then, if it is true, checks Condition 3.
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Algorithm 10 Check if SHP is Feasible
Input: a shortest homotopic path c̄, and its friction anchors �
Output: F0H%CB, if ascent feasible. False if not feasible.
1: procedure CheckFeasibility2(c̄, �)
2: for 0 in c̄ do
3: if 0 is passable then
4: if 0 in � then ⊲ 0 is a friction anchor
5: Find visibility angle k8
6: for \ in A0=64( [±\<0G , k8]) do
7: if not TetherSlips(0 with angle \, )3 , )3 + n) then
8: return False
9: else
10: return False
11: Find waypoints F0H%CB
12: return F0H%CB

Even if the friction anchors are stable for the tether configuration given by the SHP,
they may not stick as Axel ascends, moving so as to remove each anchor. Axel’s
motions will alter the tether configuration around that anchor. Therefore, Algorithm
10 must check that the tether sticks for all the tether angles in the anchor reachable
set for that anchor. In the case of a friction cone, this ARS will be bounded by some
angle limit \<0G on one side, and by the visibility line at angle k8 on the other, past
which anchor 08 is no longer the proximal anchor.

The CheckFeasibility2() function must still check whether a friction anchor
is passable. However, while a robot must be able to drive around the side of a
geometric anchor, that same robot may drive over a friction anchor. For the point
robot used in Chapter 2, this does not actually change any definitions; the anchor
point must still lie inside the previous anchor’s friction cone. In practice, however, a
geometric anchor would require some padding around the side that a friction anchor
would not. For similar reasons, the waypoints are slightly different. In Chapter
2, waypoints were chosen along an anchor’s visibility line, and to the side of that
anchor point. For a friction anchor, though, the anchor itself is the ideal waypoint.
In fact, attempting to remove a friction anchor by driving around that tether obstacle
may result in the the tether sticking on that obstacle.

3.5 Impact of Changing Obstacles
The algorithm reviewed in Chapter 2 assumed a known, stationary map of the
terrain prior to the planning process. However, PTFOs introduce the possibility of
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the map changing during planning, a characteristic also shared by online motion
planning. In the case of the former, a PFTOmay seem to disappear when Algorithm
8 determines that the tether will slip over that patch of terrain. In the case of online
motion planning, the robot may receive new information as it starts down a path,
forcing it to update its map to account for previously unseen or wrong obstacles.
This section presents an online tethered motion planning algorithm that maintains
path homotopy constraints in light of these errors and changes. It also describes
how to change BTMs, sleeves, and paths when the map updates. After reviewing
these concepts, the resulting addition to Algorithm 7 is given in Subsection 3.5.5.

The text in the rest of this section was modified from [53].

3.5.1 The Pre-Planning Algorithm
Our online path planning algorithm starts similarly to Algorithm 6 and Algorthm
7 . We first triangulate the tether-demand plane(s) into a BTM. We then carry out
an A* search, using the complex analysis concepts described in Subsection 2.2.1 to
constrain that search byH -value. Having found a path to the goal, we use this path
to identify a sleeve, as classified by itsH -value. Using Hershberger and Snoeyink’s
algorithm, we find the SHP for the sleeve, and identify the anchor points. After
checking if the desired sleeve has a feasible path, we choose ascent and descent
paths from the set of feasible paths. We can ensure backtrackability if we choose
a descent path from the set of feasible ascent paths, such that the robot can always
return to its anchor point at the top. If there is no feasible path in this sleeve, we add
this sleeve’sH -value to the list of constraints and continue the A* search in regions
of different H -values. This continues until we find a feasible path, or terminate
without finding any path.

The ascent path feasibility check remains much the same as that given by Abad-
Manterola et al., but is described here as a separate function for clarity. For each
anchor point on the SHP, we construct the anchor reachable set based on the terrain
and the robot’s capabilities. If robot can move so as to remove its tether from contact
with the obstacle at that anchor point, that anchor point is considered passable. A
series of passable anchor points means that the robot can reach a series of positions
that allows it to ascend. If one of the anchor points is not passable, we add this
sleeve’s H -value to the list of constraints, and return to the main block of code to
continue looking for feasible sleeves.
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Algorithm 11 Offline Pre-Planning Algorithm
procedure Preplan(EB, E6, �)
H2 ← ∅ ⊲ Initialize list ofH -value constraints
D?30C4B← ∅
5 40B81;4%0CℎB← ∅

5: c ← ∅
while not 5 40B81;4%0CℎB do

while not c do
c = �∗(�,H2, 0) ⊲ Run A* with the given constraints, and no

updates
Find ((c) and itsH -value

10: Find c̄ and identify anchor points �
if CheckFeasibility3(c̄) then

Find 5 40B81;4%0CℎB ⊲ Pick a pair of ascent/descent paths that pass
through all the anchor reachable set

Algorithm 12 Check if SHP is Feasible
procedure CheckFeasibility3(c̄)

Find list of anchor points, �
2>=C8=D4 ← True
@ ← 6

5: 9 ← ;4=6Cℎ(�)
?0Cℎ�G8BCB← False
while 2>=C8=D4 do

Construct � 9 (@) ⊲ Construct anchor reachable set
0 9 ← �[ 9]

10: if 0 9 is passable then
9 ← 9 − 1
if 9 == 0 then

2>=C8=D4 ← False
?0Cℎ�G8BCB← True ⊲ Feasible ascent path exists

15: else
@ ← SHP edge of � 9 (@)

else
H2 ← {H2,H} ⊲ AddH -value to list of constraints
2>=C8=D4 ← False

20: return ?0Cℎ�G8BCB
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3.5.2 Adjusting the BTM
Assume that the robot has carried out the aforementioned offline planning, selecting
a sleeve and its associated SHP, and an ascent/descent path pair. However, as it
starts down the prescribed descent path, it receives new information, indicating that
the original map is in error. A simple analysis shows that all of the possible errors
fall into one or more of the following categories:

1. An entirely new, unforeseen, obstacle appears.

2. A map obstacle is found to be a phantom (i.e., the obstacle “disappears”).

3. An obstacle has shifted location.

4. The boundaries of an obstacle or of the planning region are found to be
different from those used to construct the preliminary plan.

Each of these changes will require a modification of the boundary triangulation of
the descent slopes. Can this modification be handled in an online fashion? The
answer to this question depends upon how changes in obstacle and terrain geometry
affect the boundary triangulation. The classes of errors described above can be
reduced to two simple classes of modifications: any error can be accommodated
by adding and removing obstacles from the map — an existing obstacle or terrain
boundary that has changed shape or position can simply be removed and replaced
by a new, slightly different obstacle. Therefore, let us assume that we are changing
BTMs only to reflect added or removed obstacles.

As proven in Lemma 3.5.1 below, the effects of bounded map errors can be localized
to a small region, which we term the affected region. This region consists of
all the BTM triangles that contain all or part of the added or removed obstacle
components. Since the boundary of the affected region consists of edges and
vertices, which themselves must be boundary segments due to the properties of the
original boundary triangulation, the affected area can be retriangulated as a BTM.

Lemma 3.5.1 Any boundary triangulated 2-manifold (BTM) can be locally retri-
angulated in the affected region around a new or removed obstacle to construct a
proper boundary triangulation (see Subsection 2.2.2) which seamlessly meshes with
the boundary triangulation outside the affected region. The resulting triangulation
is a BTM.
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Figure 3.16: Left: New obstacle added to BTM. Center: Triangulate affected area.
Right: New BTM.

Proof: We assume that a new obstacle added to the map, or the obstacle to be
removed from the map, is a bounded polygon. First consider the case of an added
polygonal obstacle. This polygon will intersect a finite number of triangles in
the boundary triangulation. The union of these triangles is termed the affected
region, and is naturally a polygon. By the properties of boundary triangulation
(Subsection 2.2.2), the vertices bounding the affected region are boundary vertices.
As such, when a polygonal hole representing an obstacle is added to the BTM, a
retriangulation of the affected region (incorporating the presence of the newobstacle)
using de Berg’s algorithm [89] results in a BTM of the affected region. Since the
vertices of the affected area are, by definition, boundary vertices of the overall map,
the retriangulation within the affected region maintains the BTM requirements for
the overall map. Similarly, if an obstacle is removed, let the affected region consist
of the union of the triangles whose edges or vertices are incident on the polygonal
hole formed by the removed obstacle. Again, the boundary of the affected region
satisfies the properties of a boundary triangulation, and thus the affected region can
be retriangulated to form a BTM which naturally integrates with the existing BTM.
�

Figure 3.16 illustrates how the process of adding an obstacle affects the triangulation.
In the left panel, the new triangular obstacle added to the existing BTM lies wholly
within a triangular simplex. That triangle is the affected region, and it is triangulated
to form a local BTM (center diagram). Since all of the boundary vertices of this
affected region are also boundary vertices of the larger map, the union of the
retriangulation and the unaffected region forms a BTM (right panel of Figure 3.16).
The case of an obstacle falling into multiple simplices is illustrated inFigure 3.17.
The two triangles incident to the obstacle become the affected region, and the entire
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Figure 3.17: Left: New obstacle added to BTM. Right: Retriangulate affected area
for new BTM.

square containing both simplices, as well as the newly discovered obstacle, are
retriangulated (right-hand diagram of Figure 3.17). As in Figure 3.16, the overall
BTM remains a BTM, due to this specific retriangulation of the affected region.

The case for removing an obstacle is much the same, as can be seen by reading
Figure 3.16 and Figure 3.17 backwards. The affected region consists of the removed
obstacle plus its adjacent simplices. The affected region is retriangulated to form a
BTM, which conserves the BTM of the larger map.

3.5.3 Adjusting the Sleeve and Paths
Let the current sleeve denote the sleeve in which the robot’s evolving descent path
lies. When an unexpected obstacle is encountered, it may affect the geometry of the
current sleeve, or it may not. In the most drastic effect, the current sleeve can be
split into two sleeves, which will have coincident simplices up to the affected region.
If there is no effect on the current sleeve, then the original plan can be continued
until the next map error is encountered. The retriangulation may be useful later if
the robot needs to backtrack.

If the newly observed obstacle intersects the current sleeve, it can have one of several
effects:

1. The current sleeve is blocked. The robot must ascend until it finds a junction
with an as-yet unexplored sleeve.
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2. The sleeve geometry may be altered, but it does not alter the shortest ho-
motopic path. In this case, there are no homotopy effects due to the map
errors. The original plan will not be altered unless the obstacle blocks access
to terrain whose trafficability is necessary for robot safety and controllability
on the ascent or descent path.

3. The sleeve is not split into two pieces, but the shortest homotopic path is
altered. The robot must reassess the feasibility of the new SHP. If the path
is feasible, the robot can continue. Otherwise, the robot must backtrack to a
junction with an as yet unexplored sleeve.

4. The current sleeve is split into two sleeves. The two sleeves will contain
the same simplices up until the affected region. In the affected region, the
new obstacle will force a leftward and rightward (with respect to downward
movement) sleeve around the obstacle. The robot must then find and evaluate
the feasiblility of the SHPs for each sleeve.

Similarly, removing an obstacle might free up a new sleeve, but it could also change
the anchor points to make a path infeasible. Therefore, we must check for path
intersection and feasibility. Algorithm 13 describes when to recompute sleeves and
feasibility.

Every map change invokes a local retriangulation— this is a computationally cheap
operation. We ignore those changes that happen outside the current sleeve, placing
them in a list of updates to be propagated when necessary. For those changes that
affect the current sleeve, we update the sleeve to reflect the new triangulation, and
recompute the SHP if necessary. If the SHP has changed, then the paths have been
materially altered and we must replan from the affected region down to the goal. If
there is no feasible path forward, this sleeve is marked as as infeasible by adding
its L-value to the list of constraints. Similarly, if the SHP remains the same, but
an obstacle blocks a path or comes between the ascent and descent paths, we must
select new paths or block A* in that sleeve by adding that new L-value constraint.
Note that L-values are only computed as A* expands that node.

We then run the A* search algorithm again, propagating map updates as we go.
Having found a promising sleeve, the robot backtracks to the junction of the two
sleeves, and starts down the new sleeve. If there is a feasible path, we must again
select an ascent and descent path. By selecting a descent path within the set of
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Algorithm 13 Online path planning algorithm
procedure Online Planning

D?30C4B← ∅
repeat

if <0?�ℎ0=643 then
5: D?30C4�)" ()

D?30C4B← {D?30C4B, <0?�ℎ0=64B}
if affected area is in the current sleeve then

c̄>;3 ← c̄

update sleeve around c̄
10: recompute c̄ and anchor points

if c̄ ≠ c̄>;3 then
if not CheckFeasibility3(c̄) then
H2 = {H2,H} ⊲ AddH -value to constraints
�∗(H2, D?30C4)

15: Backtrack to go down that sleeve
select ascent and descent paths

else
if Obstacle blocks ascent or descent paths or H0B24=C ≠

H34B24=C then
if CheckFeasibility3(c̄) then

20: select new ascent and descent paths
else
H2 = {H2,H}
�∗(H2, D?30C4)
Backtrack to go down that sleeve

25: until goal reached

feasible ascent paths, we ensure that the robot can always safely backtrack to its
starting position.

This algorithm isn’t optimal; because it doesn’t recompute sleeves and paths globally,
a removed or moved object may open up a more optimal sleeve, but the robot prefers
to stay in the current sleeve when possible. However, it will eventually find a path
to the bottom, if there is one.

3.5.4 Multiple Changed Obstacles
Numerous simultaneous updates to the map do not significantly change the online
path planning algorithm. The updates can be processed in sequence by simply
inserting a for loop before line 6 in Algorithm 3, with an end after line 28, running
the intervening code for every affected region.
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3.5.5 Update for Removed PTFOs
With the understanding of how to update a BTM or sleeve for a removed obstacle,
Algorithm 14 becomes obvious. First, find the obstacle that the slipping anchor ? is
part of. Since the tether will slip over ?, leave that vertex off the list of that obstacle’s
vertices, essentially clipping off a triangle. If the tether has slipped over all the other
vertices of that obstacle, that obstacle will disappear entirely. Either way, the BTM
must then be retriangulated to account for the difference in or disappearance of that
obstacle. The new sleeve ( can be found by tracing the old SHP through the new
BTM.

Algorithm 14 Update BTM and sleeve for slipping over a PTFO
1: procedure UpdateWithSlipped(?, �, �, c̄)
2: Find 08−1 and 08+1, anchors around ? on c̄
3: Find PTFO >1BC = [E1, E2, E3...] for which ? was an anchor point
4: if ;4=(>1BC) > 1 then
5: 83G ← >1BC. 5 8=3 (?) ⊲ Clip off ? from >1BC

6: >1BC ← >1BC.A4<>E4(83G)
7: else
8: Remove >1BC
9: Retriangulate BTM
10: Find new sleeve ( through which c̄ passes
11: c̄?0AC ←Funnel(08−1, 08+1, ()
12: c̄′← [c̄[0 : 08−1], c̄?0AC , c̄[08+1 : 4=3]]
13: Find new �, � in c̄′
14: return (�, �, c̄′)

At that point, one could run the Funnel Algorithm from Chapter 2 on the entire
sleeve, from EB to E6. That isn’t necessary, though. Instead, find the portion of the
sleeve between the 2 anchor points neighboring ?. Use the Funnel Algorithm to
find the shortest path between them, and then concatenate this with the ends of the
old SHP. This new SHP is returned, along with the possibly-changed list of anchors
and friction anchors, � and �.

3.6 Summary and Discussion
This chapter has developed methodologies to support tethered motion planning with
the complication of frictional tether-terrain interaction. If the tether sticks on the
terrain, it forms a tether friction obstacle (TFO), and any terrain object where this is
a possibility is called a PTFO. In order to identify PTFOs, the terrain was modeled
as a locally-smooth surface. Analysis of its principal curvatures at every point
determined where that surface was convex.
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The tether was modeled as a frictional rope, represented by an arc-length parameter-
ized curve x(B) along its centerline. Section 3.2 reviews the rope physics literature
in which Maddocks and Keller and Konyukhov derived the conditions necessary
for the rope to stay in static equilibrium, using a Coulomb friction model. A given
tether configuration on a known terrain with known tension can then be evaluated
to determine if that tether will stick. Section 3.3 showed how to compute tension
for tethers in static equilibrium or how to check for sticking in tethers with known
tension, and gave a few examples. Section 3.4 combined these static equilibrium
checks with the tethered planning algorithm in Chapter 2, resulting in an algorithm
for determining if a taut tether will stick on a PTFO, and for planning or replanning
accordingly.

If a tether will slip on a PTFO, it forces the BTM to be retriangulated; to the planner,
that obstacle has suddenly disappeared. Section 3.5 describes how to adjust a BTM,
sleeve, and path to account for map changes, resulting in an algorithm for online
tethered motion planning. These concepts allowed me to present in Subsection 3.5.5
the last piece necessary to complete Algorithm 7.

3.6.1 Observations on Modeling Assumptions
Given both the size of the tribology research community and the amount of research
still being done on the mechanics of rope and ribbon, it is perhaps not surprising
that frictional tethers are complicated and difficult to model. In order to make the
problem tractable, I made a number of assumptions in this chapter. However, each of
those assumptions introduces another layer of uncertainty and thus another potential
point of failure, each of which would pose a concern for any potential flight mission.
While none of these limitations constitute a project-ending hazard, they should be
carefully considered and all reasonable steps taken to mitigate the risks.

Risk Mitigation via a Conservative Model

Using a Coulomb friction model and assuming a known friction coefficient were
perhaps the most impactful assumptions made in this work, since all the tether-
sticking calculations depend on friction. In reality, the friction coefficient for
an unknown regolith on a far-away planet can be difficult to estimate. However,
Algorithm 7 can easily be altered to account for a range of friction coefficients.

As described in Subsection 3.4.1, PTFOs are classified as TFOs if)<0G < )<8=4
∫
B
l3B.

If )3 + n ≮ )34
∫
B
l3B, they are ignored as terrain which the tether can slide over. If
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neither is true, the PTFO’s status depends on the tether tension and configuration.
These PTFOs are discarded by the algorithm as being too unpredictable.

To ensure that the algorithm works over a range of friction coefficients, simply use
the minimum ` in the calculation of l2 in the first equation. This is testing that
the tether will stick on an obstacle when the tether is at the lowest possible tension
on one side, and the highest possible tension on the other, with the lowest possible
friction coefficient. Similarly, use the maximum possible ` in calculating the second
equation. This ensures that, even in the highest-friction case, the tether will still
slide smoothly over non-obstacle terrain. The result of this conservative alteration
is to place more PTFOs in the category of unstable obstacles to be avoided. It may
result in fewer feasible paths for the robot to travel, but in return, all of those paths
will be stable despite any friction-modeling errors.

Operational Risk Mitigation Strategies

Other modeling assumptions bear further investigation in future work. Until that
time, risk from the following assumptions can be mitigated in operation and design:

• The contact mechanics between the tether and the terrain are straightforward.
I’ve assumed the terrain acts as a solid, cohesive mass; in reality, a heavy or
tensioned tether on loose granulated material might sink into that substrate.
The resulting higher friction would prevent that tether from slipping. The
model is conservative with regard to contact mechanics because it would
never predict a TFO where none exists. However, the tether might stick in
unexpected places. In practice, this could be avoided by maintaining higher
tether tension.

• The robot has perfect knowledge of the terrain. This includes knowing the
size, shape, and elevation of any potential obstacles. In reality, small obstacles
or protrusions on a larger obstacle may not show up on a low-resolution DEM
taken from orbit.

• The robot has perfect knowledge of its tether’s position, and a reasonably
accurate estimate of its tension. Sticking is very dependent on friction and
tether position, so even a small error in any of these estimations could cause
Axel to unexpectedly lose a friction anchor and slip.
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• Axel and its terrain are quasi-static. Thismeans that there is nowind or shifting
rocks, and any dynamic tether loads orwaves across the tether caused byAxel’s
movements are ignored. In reality, the caster arm and tether’s perturbations
while driving may cause Axel to lose a friction anchor, especially as Axel
draws near that anchor.

• The tether is weightless, perfectly flexible, and inextensible. The weightless
assumption is reasonable for short distances but becomes less so for long
traverses, where the tether’s inertia becomes significant. All ropes in the air
form a catenary curve, which must be accounted for when the tether leaves
the ground.

While some of these problems may be solved in future work (which I discuss in
Chapter 4), there are a number of possible mitigation strategies that can be used
in the interim. Every tether strength or weight improvement makes the weightless
assumption more accurate. On the design side, the tether management system has
already made Axel more robust by acting as a shock absorber for sudden falls. In
addition, there are several software and hardware improvements that could give the
algorithm or operator a more accurate estimate of the tether tension and position:
“smart” tethers that return curvature or tension information, tether-position esti-
mators or anchor-estimators, tension-measuring sensors, or even a tension estimate
based on the output of any motors opposing it.

Operationally, the simplest mitigation strategy is to keep a human in the loop, using
the algorithms in this chapter as tools to advise, but also applying common sense
and intuition. More low-level autonomy might allow the robot to gracefully handle
minor errors, occlusions, or inconsistencies in data, or to recover gracefully from
an unexpected slip or lost anchor. The team has previously discussed creating a set
of motion primitives that could be useful when the robot gets “stuck”: lifting the
caster arm to unstick the tether, rolling back and forth to get out of a rut, or pushing
down with the caster arm to climb a large rock unassisted.

Alternately, an operator may choose to reduce the risk of a slipped anchor by
avoiding PTFOs as much as possible, choosing a path where the SHP relies only on
geometric obstacles. This may be the most reliable strategy, but it also loses some
of the potential benefits of friction anchors. As was mentioned in Subsection 3.1.1,
using a friction anchor on a gentle slope may allow Axel to move farther laterally
on a steeper slope, below. Although avoiding PTFOs entirely might reduce risk,
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it would come at enormous cost to the mobility and operation flexibility for which
Axel was designed.

Figure 3.18: The lip of Andapa crater, from its DEM. With a slight upward slant,
it’s ideal for leveraging the capstan effect to allow a weak anchor holding force.

Tether friction played a huge role in Axel’s design and will continue to matter in
its operations. Axel’s configuration, with the onboard reel paying out tether behind
it, was specifically designed to minimize wear and tear on the tether. It also takes
advantage of the capstan effect. For example, Axel could set a very weak initial
anchor at the top. If it then wrapped the tether around a few more anchors before
dropping onto a steeper slope, it can be assured that the initial anchor will hold
under even very high Axel-side tension. This can be an effective strategy even
without obstacles. As Attaway shows, laying a rope over a cliff edge like the one in
Figure 3.18 will magnify the holding force, allowing a weak anchor to stay secure
against higher forces below [75]. Whether it hurts or helps, a tethered robot cannot
afford to ignore the effects of friction on its tether.
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C h a p t e r 4

CONCLUSION

4.1 Review
For rappelling rovers likeAxel, tethermanagement is a key issue. To prevent its tether
fromgetting tangled or stuck, the outgoing and return paths of any tethered rovermust
be homotopic. My thesis contributed to our understanding of tether management
by showing how shortest-path algorithms from computational geometry can be
combined with graph search to quickly and efficiently find the shortest paths in all
the homotopy classes of a map. I implemented a program that can read in terrain
data, detect tether obstacles, triangulate a map between those obstacles, and search
that map for the shortest path or paths between start and goal points. It can then
check that class of paths to ensure that Axel will be able to ascend, and generate
waypoints for ascent and descent paths. Results from this program are shown in
Section 2.5.

While the algorithmand results fromChapter 2 assumed a frictionless tether, Chapter
3 revisited this assumption. I defined tether friction obstacles, which result when
a frictional tether sticks to convex terrain, and used existing force equations for
static equilibrium in a rope to identify the conditions under which a tether friction
obstacle might form. My thesis contributed an algorithm and the tether-tension
assumptions necessary to find a path and check if the tether will catch on any tether
friction obstacles. This algorithm describes how to alter the path as a result of the
dynamic reclassification of PTFOs as TFOs, non-obstacles, or dangerous PTFOs.
If it determines that the resulting path is unsafe or infeasible, it replans.

4.2 Future Work
4.2.1 Limitations and Assumptions
As detailed in Section 3.6, the complexity of the tethered planning problem com-
pelled me to make a number of assumptions, especially where friction was involved.
Chapter 2 relies on the assumption that the terrain is known to the appropriate level
of detail. The tether is modeled as an idealized weightless inextensible rope, which
is a reasonable approximation over short distances.

Revisiting the aforementioned assumptions could improve the algorithm’s precision
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and robustness. For example, how should incomplete and poor-resolution terrain
data be handled? The Garni Crater DEM used in Section 2.5 had a resolution of
approximately 1m, which is insufficient for detecting many potentially problematic
tether obstacles. However, an on-site autonomous robot could perform online
mapping, incorporating new sensor data into that larger satellite map. Even if the
terrain data is available at a small enough scale, it is still pixelated. All of the
existing tether physics equations are for continuous surfaces.

The terrains in Section 2.5 were treated as flat planes, and obstacles defined by their
difference from that plane. Ideally, though, the tether’s status could be analyzed
against the original surface. This could be accomplished by smoothing out the
surface, perhaps using splines. Alternately, itmay be possible to translate the existing
tether statics equations into the their discrete differential geometry counterparts.
Doing so would allow the pixelated terrains to be used without modification.

While an idealized rope is a decent approximation of the tether over short distances,
over long distances the tether’s weight matters. While a weightless rope could easily
be pulled forward along flat ground, a heavier rope — or a long section of relatively
light tether — could not. Although the current algorithm only deals with a convex
series of flat planes, later versions may extend to the full 3 dimensions. In that case,
a tether hanging between 2 points forms a catenary curve, another example of how
a real-life tether differs from the straight line of the weightless ideal.

Real tethers are not perfectly flexible, either. Axel’s tether has a minimum recom-
mended bend radius; if the tether bends too sharply under pressure, it may break.
The existing algorithm could be modified to constrain acceptable paths to those that
do not exceed the minimum bend radius by disqualifying any paths with too-sharp
obstacle geometry near an anchor.

The relative stiffness of Axel’s tether means that it does not tend to kink or twist
like other cables. Its wire core makes it inextensible. However, more elastic tethers
would better protect a climbing robot from the shock of an arrested fall. In this case,
the existing rope model could be extended to better model real tethers.

Throughout this work, the robot is approximated as a point mass, and both robot
and terrain are assumed to be quasi-static. These approximations are reasonable for
a small rover moving slowly around a sparse obstacle field. The tethered planning
algorithm produces a homotopy class of paths, providing a general guide for the
robot. The robot’s exact motions should be chosen in a more precise way, such as
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planning in a configuration space that accounts for its dimensions or optimizing its
poses on a point-cloud-based map [99]. Similarly, a more sophisticated feasibility
check could be implemented using a non-holonomic robot model to account for
wheel constraints.

At the moment, geometric tether obstacles are all assumed to be robot obstacles,
although in practice there may be obstacles that the robot can climb and the tether
cannot. Ultimately, better performance could be obtained if the two sets of obstacles
could be detected separatelywith differentmodels, since the tether and the robot have
different limitations. It may also be useful to revisit the assumption that obstacles
are polygonal and symmetric, and determine how relaxing these assumptions could
change the available solutions.

Chapter 3 adds the assumption that some approximation of the tether tension and
configuration are known. The tether-terrain interactions are simplified to a Coulomb
friction model, i.e., with a known friction coefficient, on solid ground. The accuracy
of the existing algorithm could be improved by adding a more nuanced friction
model, and using a terramechanics-based ground contact model.

4.2.2 Other Suggested Improvements
There are a number of potential improvements to the existing software implementa-
tion related to usability and design. At present an operator inputs a start point and
desired goal. Sometimes, though, a science team is interested in a series of goals.
Determining the best start point to reach a goal or goals, and allowing the program
to plan paths between multiple goals would make the program easier to operate.

Algorithms 7 and 13 in Chapter 3 handle planning with a frictional tether and
online planning, respectively. However, their common basis of addressing possible
changes to the obstacle map means they could be combined into an online frictional-
tether planning algorithm. Most of the algorithms computed in this thesis will loop
forever if a suitable path is not found. This is because there are an infinite number of
homotopy classes for any non-simple polygon, with ever-higher numbers of loops.
A good next step would be to define some cutoff conditions, such as constraining
the algorithm to only return simple homotopy classes.

4.2.3 Fully 3-D Surfaces
Althoughmywork in this thesis hasmodeled the terrain as a series of planes, it should
be possible to use a truly 3-dimensional surface. First, assuming a weightless and
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frictionless tether, one could determine where a tether will leave a concave surface,
and what path it will take to the next contact point. This would allow tethered
motion planning on any series of planes, regardless of their relative angles.

Furthermore, Hershberger and Snoeyink’s theory applies to anything that can be
represented as a BTM. This should allow the use of 3-D triangle chains which can
be isometrically flattened, as in the 3-D geodesic literature [92], [91]. Since SHPs
on a convex surface are geodesics, it may be possible to adapt the Funnel Algorithm
and SPT Algorithm to truly 3-D surfaces, or to use some of the geodesic-finding
algorithms to find SHPs on a 3-D surface.

4.3 Applications
The tethered motion planning algorithm in this thesis can be used to plan Axel’s
general strategy for descending and ascending a steep slope. A feasible path found
by the algorithm could act as a general guide for human teleoperation, to ensure that
safe ascent is possible while maintaining the advantages of keeping a human in the
loop. If some event causes the robot to halt partway down the slope, the program
can offer alternative routes. Alternately, the sleeve or homotopy class for that path
can be passed to a more detailed robot motion planner, giving the assurance that the
resulting motions will not tangle the tether. In this case, tether and robot motion
planners acting together would allow Axel to operate autonomously.

Although this tethered planning algorithm was designed with Axel in mind, it can
be applied to many other tethered climbing robots. Dante II, discussed in Section
1.3, could use it to plan a new route into a volcanic caldera without tipping over.
A robot descending into a mine or scouting a cave could use its sensors to map
terrain and plan a feasible ascent/decent path pair to ensure that it can autonomously
find its way out without human intervention. By autonomously charting decent and
ascent paths, Forest Service robots could automatically place sensors on mountains
to check for potential rock slides or avalanches. Mining robots could probe the
stability of the sides of open-pit mines, without risking human lives.

There are many other reasons for robots to use tethers, as discussed in Section 1.4.
Any ground-traveling robot with a tether, cable, hose, or other flexible rope-like
structure could use the method described in Subsection 2.2.4 for motion planning
in a tether-free plane. This includes robots using a cable for power or communica-
tion, such as a one entering a radiation-heavy disaster zone. Autonomous tethered
planning capability would allow that robot to make faster decisions without human
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input, potentially freeing up human operators to help with the disaster response.
This algorithm may also prove useful for other robots dealing with ropes, like an
ROV traversing the ocean floor to lay fiber optic cable, or a robot using a hose to
water a garden. In general, such a robot should constrain its motions to outgoing
and incoming path pairs that are homotopic, however that is achieved.

Although the algorithm described in Chapter 2 is most efficient for Axel’s use, other
motion planning architectures might favor checking 2 generated potential paths
for homotopy, or by otherwise applying the algorithms and principles outlined in
this thesis. One such application would be the case when 2 robots are connected
together as they move — a robot towing a vehicle, or two robots dragging a net
between them. In either case, the two elements must take homotopic paths, and
stay within the length of the connecting tether. Even JPL’s TRESSA could check
potential sites to analyze where it can travel: although its 2 tethers form a closed
loop rather than a single path, it must still operate within the homotopy class formed
by those 2 tethers.

Even more broadly, homotopy-constrained search may be useful for any applications
in which which it matters not only that a robot reach its goal, but the path it takes to
get there. An autonomous car could use online identification of homotopy classes
on a freeway, as a way to generate alternate routes in a different homotopy class.
Perhaps a traveling salesman could take the longest simple homotopic path, or a
vacuuming robot in an open-floorplan house could ensure that it has covered every
homotopy class. With further research, wemight someday see tethered drones in the
skies, tethered robot vaccuum cleaners in our houses, and yes, tethered rappelling
robots on other planets.

The tractability of tethered path planning has the potential to make tethered robots
more common in our daily lives. Using algorithms based on the work in this thesis,
tomorrow’s robots will have the ability to plan around tethers in order to water a
garden with a hose or hook an electric vehicle up to a charging station. Even the
fiber arts might benefit from advances in the field. While large commercial knitting
machines and looms require no understanding of homotopy, a smaller robot knitting
custom, made-to-order pieces could become feasible with proper extensions to this
work. I hope the reader, upon setting down this thesis, will begin to observe the
ubiquity of ropes, tethers, and cords in our daily lives. As robots likewise become
more common, their interactions with these rope-like objects will almost certainly
remain a area of important research, even as the casual observer remains unaware of
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the important path planning algorithms being seamlessly executed all around them.
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