
Aspects of Fault-Tolerant Quantum Computation

Thesis by
Joseph Kramer Iverson

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2020
Defended May 20, 2020

ii

© 2020

Joseph Kramer Iverson
ORCID: 0000-0003-4665-8839

All rights reserved

iii

ACKNOWLEDGEMENTS

I would like to thank my academic advisor, John Preskill, for his insightful guidance.
He planted the seeds of many of the ideas that appear in this thesis. I thank Oskar
Painter and themembers of his group, especially EunjongKim andXueyue “Sherry”
Zhang, for many interesting discussions and their different perspective on quantum
information. I thank Fernando Brandão and Xie Chen for serving on my thesis
defense committee alongside John and Oskar. I have greatly benefited from the
many researchers at Caltech, those who have visited Caltech, and those I have met
elsewhere too numerous to mention here, and I am grateful to each of them. I would
like to mention in particular a few with whom I have spoken many times: Victor
Albert, Michael Beverland, Thom Bohdanowicz, Aaron Chew, Richard Kueng, and
especially Aleksander Kubica. I gratefully acknowledge funding from ARO-LPS
(W911NF-18-1-0103) and NSF (PHY-1733907). I used the “vZome” software
(https://vzome.com/home/) to create several of the figures in Chapter 4. Finally, I
thank my family and friends for their constant support.

iv

ABSTRACT

This thesis is concerned with fault-tolerant quantum information processing using
quantum error-correcting codes. It contains two major pieces of work. The first is
a study of coherent noise in the context of stabilizer error-correcting codes. The
second is a proposed scheme for a universal set of fault-tolerant logical gates in a
particular code family built out of the 3D toric code.

Chapter 1 provides an introduction to quantum computation and fault tolerance.
Many basic concepts in error-correcting codes are defined. Special attention is paid
to the set of code properties that are most likely to determine how easily a given
fault-tolerant scheme might be implemented on a physical device. These include
the fault-tolerant noise threshold and the overhead.

In Chapters 2 and 3 we study the effectiveness of quantum error correction against
coherent noise. Coherent errors (for example, unitary noise) can interfere construc-
tively, so that in some cases the average infidelity of a quantum circuit subjected to
coherent errors may increase quadratically with the circuit size; in contrast, when
errors are incoherent (for example, depolarizing noise), the average infidelity in-
creases at worst linearly with circuit size. We consider the performance of quantum
stabilizer codes against a noise model in which a unitary rotation is applied to each
qubit, where the axes and angles of rotation are nearly the same for all qubits. In
Chapter 2 we introduce coherent noise and incoherent noise and a number of meth-
ods that are useful for the study of coherent noise. We study the repetition code as
a basic example, and we also study a correlated noise model. In Chapter 3 we show
that for the toric code subject to such independent coherent noise, and for minimal-
weight decoding, the logical channel after error correction becomes increasingly
incoherent as the length of the code increases, provided the noise strength decays
inversely with the code distance. A similar conclusion holds for weakly correlated
coherent noise. Our methods can also be used for analyzing the performance of
other codes and fault-tolerant protocols against coherent noise. However, our result
does not show that the coherence of the logical channel is suppressed in the more
physically relevant case where the noise strength is held constant as the code block
grows, and we recount the difficulties that prevented us from extending the result
to that case. Nevertheless our work supports the idea that fault-tolerant quantum
computing schemes will work effectively against coherent noise, providing encour-
aging news for quantum hardware builders who worry about the damaging effects

v

of control errors and coherent interactions with the environment.

Chapter 4 is connected to another aspect of fault tolerance, fault-tolerant logical
gates. The toric code is a promising candidate for fault-tolerant quantum compu-
tation because of its high threshold and low-weight stabilizers. A universal gate
set in the toric code generally requires magic state distillation, which can incur a
significant qubit overhead. In this work we construct an error-correcting code in
three dimensions based on the toric code that features a fault-tolerant T gate with
no magic state distillation required. We further describe a subsystem version of our
code which supports a universal set of fault-tolerant gates. This code can be con-
verted into the stabilizer version using gauge-fixing. We also argue that our code can
be converted to a (2+1)-D protocol, where a 2D lattice undergoes a measurement-
based protocol over time. In this way, a fault-tolerant logical T gate can be realized
in a 2D toric code structure.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] J. K. Iverson and J. Preskill. Coherence in logical quantum channels. New
Journal of Physics, 2020. doi: https://doi.org/10.1088/1367-2630/ab8e5c.
J.K.I was the primary contributor to this work.

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . vi
Bibliography . vi
Table of Contents . vi
List of Illustrations . ix
Chapter I: Introduction . 1

1.1 Quantum Error-Correcting Codes 2
1.2 Examples . 7

Chapter II: Coherent Noise in Error-Correcting Codes 11
2.1 Introduction . 11
2.2 Channel parameters . 16
2.3 Logical channel for the repetition code 27
2.4 Repetition code revisited . 31
2.5 Correlated unitary noise . 39
2.6 Conclusions . 49

Chapter III: The toric code against coherent noise1 51
3.1 Introduction . 51
3.2 Notation . 59
3.3 Coherent and Incoherent Logical Components 59
3.4 The Coherent Sum . 60
3.5 Sum Over Partitions . 66
3.6 The Disconnected Part . 74
3.7 Incoherent Sum . 77
3.8 The Incoherent Sum Over Strings 82
3.9 Noise Terms with Mismatched Weight 86
3.10 More General Rotation Angles . 92
3.11 Correlations . 98
3.12 Interpreting Bounds on Coherence 103
3.13 Conclusions . 105

Chapter IV: Fault-tolerant Universal Computation in the 3D Toric Code1 . . . 109
4.1 Introduction . 109
4.2 The Stabilizer Code . 111
4.3 Higher dimensional stabilizer code 125
4.4 Subsystem 3D toric code . 125
4.5 (2+1)-D protocol . 137
4.6 Conclusions . 143

Bibliography . 146
Appendix A: Chi matrix and Pauli transfer matrix for qubits 152

viii

Appendix B: Approximating sums . 154
Appendix C: Correlated Noise: Leading behavior for large = 156
Appendix D: The Shape of the Logical String 159
Appendix E: Disconnected Errors . 163
Appendix F: The Disconnected Part of the Incoherent Logical Noise 170
Appendix G: Physical . Errors . 175
Appendix H: Other Logical Maps . 177
Appendix I: More General Coherent Terms 180
Appendix J: Growth of Infidelity . 182
Appendix K: Diamond Distance Bound . 183

ix

LIST OF ILLUSTRATIONS

Number Page
1.1 In blue is a /-type stabilizer generator for the toric code. There are

/ generators on every plaquette in the lattice. In red is an --type
stabilizer generator. There are - generators at every vertex of the
lattice. 9

1.2 This figure illustrates two of the logical Pauli operators in the toric
code. - and / logical operators are shown for one of the two encoded
qubits. Each logical operator is a topologically non-trivial loop that
wraps around the torus. The logical operators for the other encoded
qubit are similar, but rotated by 90 degrees. 9

3.1 A guide to the proof. 53
3.2 In this coherent term, the uncorrectable error $* (acting on the

density operator from the left) is in red, while the correctable error
$� (acting from the right) is in blue. Only / errors are shown. The
connected logical string consists of the five qubits near the bottom
that are split between red and blue. In addition, there are disconnected
errors in the form of the closed loop containing two red edges and
two blue edges and the pair of cancelling single-qubit errors acting
on the left (in red) and right (in blue). 62

3.3 Here we have one logical string L of length 15 in an ! = 9 toric
code. Imagine the code size growing while Z remains fixed. The
likely strings will be those where the steps up and down are widely
separated. 69

3.4 Now we choose a subset of 7 of the errors in the logical string in
figure 3.3. The uncorrectable error $* is in red and the correctable
error $� is in blue. All three errors along the “cap” in the top right
appear on the correctable side. For this reason, the correctable error
has weight 8, which is higher than the uncorrectable error with weight
7. We call this a weight-7 exceptional term. 69

x

3.5 Again, one possible partition of the logical string in figure 3.3 is
illustrated. The uncorrectable error $* is in red, and the correctable
error$� is in blue. The correctable error includes all the errors along
both the cap in the top right and the bottommost cap of the logical
string. For this reason, the correctable error has weight 9, while the
uncorrectable error has weight 6. Therefore, we call this partition a
weight-6 exceptional term. 70

3.6 Here we have a partition ($*d $�) of a connected logical string
adorned in four different ways by added errors. The errors in red are
the uncorrectable part, $* , of the partition, while the errors in blue
form the correctable part, $� . The four added errors are labelled A,
B, C, and D. In A, the same error has been added to both$* and$� .
In B and D, three errors are added to one side of the partition and one
to the other. This produces a minus sign. In C, two errors are added
to each side. 75

3.7 A noise terms ($*d $′*) is shown with $* in red and $′
*
in blue.

The standard correction �B chosen by the minimal-weight decoder is
drawn as a dotted black line. The connected part of this noise term is
signified by the orange qubits, while the disconnected part contains
the black qubits. 79

3.8 This is a connected incoherent noise term, ($*d $′*). The operator
$* is drawn with the solid blue line. The operator $′

*
is drawn with

the dashed blue line. The standard correction �B for the syndrome
shared by$* and$′

*
is drawnwith the solid red line. Each connected

incoherent term is a configuration of loops where each loop is formed
by two segments with shared endpoints, one segment from $* and
one from $′

*
. The operator �B links together the loops like beads on

a string, so that $*�B and $′*�B are both continuous logical strings
spanning the code. 81

3.9 A partition of a length-13 logical string is shown in a toric code with
! = 9. The operator $* is shown in solid red. The operator $� is
shown in solid blue. The alternative operators with the same weight,
syndrome, and logical action, which we denoted $′

*
and $′

�
, are

drawn with dotted lines. For this partition |{$′
*
}| = 2 and |{$′

�
}| = 4. 85

xi

3.10 This is a partner of the partition shown in figure 3.9. It is another
partition of the same logical string, and the errors in $* and $� are
interchanged except for one qubit. In this case that qubit is the one
that lies on the farthest left vertical segment. The error on that qubit
is part of $* in both partitions. Once again, the operator $* is in
red and the operator$� is in blue. The alternative operators with the
same weight, syndrome, and logical action are given by the dashed
lines. For this partition |{$′

*
}| = 12 and |{$′

�
}| = 2. 86

4.1 The 2D toric code on the square lattice is drawn with the original
lattice in blue and the rotated lattice in green. In the original lattice,
the qubits were on edges, whereas in the rotated lattice, the qubits are
at vertices. 112

4.2 Pictured is the 3D cubic lattice with qubits on edges. Connecting the
qubits forms the rectified 3D cubic lattice. 112

4.3 In the rectified 3D cubic lattice, there are three choices of stabilizer
group to form the toric code. Here the red volume represents an -
operator on every qubit in the volume. We can choose either the A,
B, or C volumes to form the - part of the stabilizer group. The /
generators will be the faces not contained in the - volumes. 113

4.4 This tetrahedron of 3D toric code on the cubic lattice is bounded by
the planes G = 0, H = 0, I = 0, and G + H + I = !. The (1,1,1) plane
cuts through the lattice such that the boundary is made up of triangles
and hexagons. 114

4.5 On the left, we have the toric code on the cubic lattice that we have
cut along the I = 0 plane marked by the yellow square. This will
be the base facet of the lattice. We modify the lattice at the base
as shown on the right. Where the original lattice had one qubit, we
place two so that the original square is inflated into an octagon. At
the base we now have the square-octagonal color code lattice. 114

4.6 This is the lattice we use to construct a fault-tolerant T gate in the
3D toric code. The base is a 2D square-octagonal color code lattice.
Three pieces of the 3D toric code are fused at the base, so that the
qubits in the base are shared between three toric codes. The qubits
not in the base represent three physical qubits, one for each toric code. 115

xii

4.7 The stabilizer generators for the A, B, and C codes are shown in (a),
(b), and (c), respectively. The - volumes are in red, and the / faces
are in blue. This includes boundary stabilizers of weight 2, 3, or 4. . . 116

4.8 This logical / operator contains a single qubit in the base and a string
of qubits in each lattice connecting the qubit in the base to the rough
boundary of each lattice. 117

4.9 This logical - operator consists of a vertical plane in the A and B
lattices, perpendicular to each other and intersecting at the front edge
of the base. In the C code the operator contains a plane with normal
(1,1,1). Together the three planes define a triangle of qubits in the
base. The - logical operator includes - acting on each of the qubits
in this triangle. 118

4.10 A part of the bulk of the fault-tolerant cluster state that realizes the
C code in a measurement-based scheme is shown. Two times steps
are shown, corresponding to the two horizontal levels. Time moves
vertically. The links of the cluster state are in dark green. The edges
in blue outline the primal lattice. Certain qubits are colored blue to
indicate that these are ancillas in the 3D code, although in the cluster
state there is no distinction between code qubits and ancillas. 139

4.11 The bulk of the fault-tolerant cluster state for theA code is shown. The
volume on the left is anA code --type stabilizer. The / stabilizers are
three-body operators around the edges of the B code --type stabilizers.140

4.12 This is the fault-tolerant cluster state corresponding to the A code
defined on the lattice in figure 4.6. Timemoves downward, beginning
with the single qubit at the top and ending with the 2D color code on
the base. 141

4.13 This is the fault-tolerant cluster state corresponding to the B code
defined on the lattice in figure 4.6. Timemoves downward, beginning
with the single qubit at the top and ending with the 2D color code on
the base. 142

4.14 This is the fault-tolerant cluster state corresponding to the C code
defined on the lattice in figure 4.6. Timemoves downward, beginning
with the single qubit at the top and ending with the 2D color code on
the base. 143

xiii

4.15 This cartoon depicts a (2+1)-Dmeasurement-based protocol in progress.
The orange layer represents the qubits that are active at the present
time. The blue qubits have already been measured, and the gray
qubits have not yet been initialized. The just-in-time decoding al-
gorithm must predict the correction on the orange and blue qubits
without access to any of the measurement outcomes on the gray qubits.144

D.1 The logical string L has backtracking. Among short logical strings,
those with backtracking are unlikely relative to strings without. . . . 161

E.1 This figure shows a partition of a connected logical string together
with a disconnected error. The disconnected error is incoherent-
type, so �! = �'. The uncorrectable error $��' is in red, while
the correctable error $*�! is in blue. The two form a length-
5 connected logical string that runs left to right across the code.
Without the disconnected errors, $� would be correctable and $* ,
uncorrectable. Therefore, the added disconnected errors have flipped
the original partition. 165

E.2 Here is the partition of a connected logical string corresponding to
figure E.1, with the new uncorrectable error $* in red and the new
correctable error $� in blue. This term shares the same syndrome
as the one in figure E.1. We can always multiply right or left hand
sides by a stabilizer to produce different coherent terms. This term
is produced from figure E.1 by multiplying the correctable side in
blue by the stabilizer operator in gray crosshatching. Notice that the
connected logical string is longer, but the total weight of the term is
smaller. 166

E.3 Here we have a partition of a connected logical string together with
a disconnected error. The partition is the same as the one in figures
E.1 and E.2. The disconnected error is now a coherent-type error.
The uncorrectable error $��' is in red, while the correctable error
$*�! is in blue. Without the disconnected errors, $� would be
correctable and $* , uncorrectable. The added loop of disconnected
errors has flipped the original partition. 168

xiv

E.4 This is the connected string and partition that corresponds to figure
E.3, with the new uncorrectable error $* in red and the new cor-
rectable error $� in blue. We can always multiply right or left hand
sides by a stabilizer to produce different coherent terms. This term
is produced from figure E.3 by multiplying the correctable side in
blue by the stabilizer operator in gray crosshatching. The connected
logical string is longer than the one in figure E.3, but the total weight
of the term is less. 169

F.1 This figure illustrates a certain type of added error term. We start
with a short, typical logical string and partition it into operators $*
and $� . Then we would choose some operator $′

*
(not pictured)

with the same weight and syndrome as $* to produce an incoherent
term. The errors in the red circle are added to both $* and $′

*
.

The minimal-weight correction is shown as a black dashed line. The
added errors are not disconnected but form a new connected term. . . 172

F.2 This figure illustrates the idea of the proof that a certain type of added
error term contributes only a small error. Consider a connected
logical string that we partition into $* and $� , the solid red and
blue lines. The class of added errors we consider are those where
the added error lies along $� or one of the operators $′

�
with the

same weight and syndrome. The possible locations for such an added
error are marked by the × symbols. We prove that such terms are
negligible by comparing to the noise terms where the operator $′

*
is

chosen with weight 2 greater than $* . Three of the possible choices
for$′

*
are drawn with the dashed red lines. In this example there are

12 possible $′
*
operators and six possible added error terms. 174

H.1 Here are two examples of lowest-weight /1/2 logical strings, L1 and
L2, that act as / on both encoded qubits. Notice that red and green
connect the edge points in different (but topologically equivalent) ways.179

I.1 Here we have a /1 and a /2 logical string. They have an overlap of
two qubits, but if we fix one string and consider all possible paths for
the other string, we see that only order 1/! have any overlap. 181

1

C h a p t e r 1

INTRODUCTION

Quantum computing is still a relatively new field, but interest in the field has grown
greatly in the last twenty years, driven by the promise that a properly controlled
quantum system could perform computations beyond what can be achieved with
classical computers. Some early ideas about quantum computing appeared in the
1980’s [6, 58]. Feynman proposed a universal quantum simulator built out of
quantum-mechanical elements that could simulate any quantum system in the same
way that a universal classical computer can perform any computation that a classical
Turing machine can [35]. Later, algorithms were discovered for quantum computers
that performed certain tasks far more efficiently than any known algorithm on a
classical computer. These include Shor’s algorithm for factoring andGrover’s search
algorithm [38, 69]. There is not yet a rigorous proof that no classical algorithm can
achieve the same speedups for these tasks. In other words, it has not yet been proven
that quantum computation is more powerful than classical computation. However,
the algorithms already discovered give us good reason to believe that an ideal,
noiseless quantum computer would be able to solve problems that are intractable for
classical digital computers.

In the real world, we do not have access to ideal, noiseless quantum computers.
Any physical system has interactions with its surrounding environment. Also, in
order to perform a computation, we must interact with the system, and any effort
we make to control a physical system will introduce noise. There are many ways of
building resilience to noise into physical devices, but some form of error-correcting
code at the “software level” will very likely be required. The control pulses that
implement all of our operations on the physical device cannot be calibrated to
arbitrary precision. Further, there is a fundamental trade-off between isolating a
system from its environment to insulate it against noise and at the same time being
able to perform fast, well-controlled operations on the system. The coupling to the
control introduces noise to the system from the environment on the other end of the
control line. To have fast control, the coupling between control and system needs
to be large, which means that the introduced noise is also fairly large. “Hardware
level” protocols are useful to some extent, but they are not scalable in the sense that
they do not offer a path to arbitrarily long and accurate computations. Also, many

2

of the quantum algorithms that provide significant improvement over all known
classical algorithms require a large problem size before the computation is beyond
the best classical supercomputers. For example, with Shor’s algorithm for factoring
integers, a quantum computer would need to factor an integer of perhaps several
thousand bits to beat the best classical computers. This would require a circuit with
many thousands of qubits and gates and correspondingly low noise levels.

For these reasons, quantum error correctionwill be needed to overcome the noise and
reliably operate a large-scale quantum computer that can solve difficult problems.
Fortunately, the accuracy threshold theorem for quantum computation establishes
that quantum computing is scalable, assuming that the noise is neither too strong nor
too strongly correlated [1, 3, 36, 52, 67]. As long as the physical qubits satisfy a fixed
condition on the noise, error-correcting codes can be used to perform arbitrarily long
computations. However, in practice we do not have access to an unlimited number
of qubits. Then the performance of different codes against the specific noise present
in a given device becomes important. Also, we need to know how to perform the
logical gates that make up the computation in a noise-resistant, fault-tolerant way.
This thesis will discuss work on two major topics related to error-correcting codes:
the performance of codes against specific noise models and the implementation of
fault-tolerant logical gates.

1.1 Quantum Error-Correcting Codes
A quantum error-correcting code encodes a logical quantum state into a much
larger quantum system, such that the logical observables are non-local. In this way,
the logical state cannot be inferred from few local measurements. Equivalently,
the environment cannot alter the logical state with weak, local interactions. The
parameters of a code are often notated [=, :, 3], where = is the number of physical
qubits, : is the number of logical qubits, and 3 is the code distance. The code
distance is the weight of the minimal-weight operator that acts non-trivially on
the encoded state. Quantum error-correcting codes can be defined for almost any
quantum system, but for simplicity, both theoretically and in practice, a common
choice is a system consisting of many small two-level systems called qubits. This
choice is nicely analogous to the registers of bits used in classical computation and
is also a convenient framework for describing quantum algorithms. In what follows,
only the case of qubits will be considered.

Quantum error correcting codes for qubit systems is a well-studied subject. Sta-

3

bilizer codes were the first family of such codes to be described [22, 36, 71] and
they remain the best-studied class. These codes divide the Hilbert space of the
physical system into eigenspaces of a mutually commuting set of operators, called
stabilizers. The eigenspace that corresponds to +1 for all stabilizers is called the
“code space,” and it is here that the logical state is encoded. All other eigenspaces
are called “error subspaces.” The codes require active monitoring and correction.
This consists of three steps: measuring a generating set of stabilizers, computing
a correction predicated on the measurement outcomes, and finally applying the
correction operator.

Depending on the implementation, the measurement step may require ancilla qubits
in order to be fault-tolerant. The outcome of the stabilizer measurements is known
as the “syndrome” and the process of measuring the stabilizer generators is known
as “syndrome extraction.” The task of computing a correction for a given syndrome
is known as “decoding.” The optimal decoding calculates the most likely class of
error given the syndrome and some assumed noise model. This kind of decoding
is inefficient. However, many efficient decoding algorithms are known to exist for
certain classes of codes. The correction step undoes the error predicted by the
decoder. This returns the system to the code space. If the decoder was successful,
the correction matches the error that occurred up to stabilizer operators and the
logical state is unchanged, and if the decoder is unsuccessful, after applying the
correction the logical state has suffered an error.

The performance of error correcting codes is multi-faceted—it is a complicated
interplay between the code, including the scheme for fault-tolerant syndrome ex-
traction and decoding, the computation that will be performed, and the noise model.
The noise present in a quantum device is difficult to characterize because a quan-
tum channel acting on a � dimensional Hilbert space has �2(�2 − 1) independent
parameters in general. To fully characterize the noise channel acting on a quantum
system, a number of experiments where a state is prepared and measured is required
that is exponentially large in the number of qubits. Also, certain parameters of the
noise channel can be efficiently extracted mostly independent of additional assump-
tions on the noise model [33, 53]. This approach offers a full characterization of the
noise model only with strong assumptions on the noise model. Therefore, it is not
particularly meaningful to study an overly specific noise model. In what follows, we
will discuss general features of noise models, and when examples are necessary, we
will consider simple noise models rather than try to match the noise in a complicated

4

device. Similarly, the computation we may wish to perform on a quantum computer
can be very complex. We will not focus on the specific computation; instead the
focus will be on error correcting codes.

At the most basic level, there are two main aspects to the performance of a code:
the “fault-tolerant threshold” and the “overhead.” The fault-tolerant threshold for a
given code and specified noise model is a level of noise strength n0 such that as long
as the noise strength n is below n0, then a logical computation can be carried out with

a failure probability that is bounded above by
(
n
n0

)3
, where 3 is the code distance.

In other words, by choosing a sufficiently large code, the failure probability for a
logical computation can be made arbitrarily small. A sample threshold theorem has
the form:

Theorem 1. (Fault-Tolerant Threshold) Suppose that we have a particular family of
error correcting codes combined with a decoding scheme. Let the noise model be the
same single-qubit noise channel acting on each qubit with a noise strength bounded
by n . A fault-tolerant threshold n0 exists if the probability of a logical failure in a

member of the code family with code distance 3 is ≤ 2
(
n
n0

)3
for a constant 2.

Code thresholds have been proven for several code classes and local noise models
[1, 36, 52, 67] as well as noise models with long-range correlations as long as these
correlations are sufficiently small or decay sufficiently rapidly [3]. The overhead of
a code is the number of qubits required to encode a logical state and operate on it.
A code encodes a certain number of logical qubits into a certain number of physical
qubits. One contribution to the overhead of a code is characterized by the ratio =/: ,
which is the number of physical qubits required for each logical qubit. Operating
the code requires us to perform the error correction procedure that has already been
described, measuring stabilizer generators, decoding the syndrome, and applying
corrections. Measuring the syndrome fault-tolerantly requires ancilla qubits, which
adds to the overhead. In addition, we alsomust be able to perform the operations that
will implement a quantum computation. The set of fault-tolerant logical operations
and their implementations will depend on the code and will often require additional
ancilla qubits. These ancillas also contribute to the overhead of the code.

We have already used the term “fault-tolerant” without offering a definition. This
term signifies roughly that the noise in all of the elements that go into the quantum
information processing scheme are such that a threshold theorem applies. For
example, if a syndrome measurement protocol is fault-tolerant, then the logical

5

noise, or the cumulative effect of errors on the code qubits, the ancillas qubits, and
in each measurement and gate, can be made arbitrarily small by choosing a code that
is sufficiently large. This holds so long as the noise in each of the various elements
is sufficiently small. Fault-tolerant syndrome extraction often requires ancilla qubits
and many repeated measurements. Similarly, for a logical gate to be fault-tolerant,
this means that all of the resulting noise can be corrected arbitrarily well.

Quantum algorithms can be implemented in different ways, but a popular model
for quantum computation is the “gate model.” Here an algorithm is implemented
by a series of discrete gates acting on qubits. A gate is an elementary unitary
operation that may involve one or more qubits. Because of the feature of error
correcting codes that we will describe now, it is convenient to specify the gates
in a computation from a discrete gate set. Then in some cases the discrete set of
gates can be used to approximate any unitary operation to arbitrary accuracy. Such
a set is called a “universal gate set.” The idea of gates and universal gate sets is
directly analogous to logic gates and universal sets of logic gates from classical
computation. In the quantum case, we seek to implement logical gates within the
encoded logical subspaces of error correcting codes. The implementation of logical
gates in different codes is a rich field of study. The implementations we want are
those that not only perform the correct logical operation, but are also fault-tolerant.
Each code has a certain set of fault-tolerant logical gates. We would like a universal,
fault-tolerant gate set, but this turns out to be impossible with unitary operations on
a single code. The Eastin-Knill theorem [31] states:

Theorem 2. (Eastin-Knill) For any nontrivial local-error-detecting quantum code,
the set of logical unitary product operators is not universal.

To avoid spreading errors and breaking the fault-tolerance of the code, gate imple-
mentations should be “locality-preserving.” The noise present in the system will be
transformed by the gate implementation, which will itself be noisy. The locality-
preserving condition means that if the initial noise model is local, so that the noise
is well-handled by the code, the residual noise after the imperfect gates are applied
will remain local, and the code will be able to correct it. If the gate implementation
requires gates coupling some qubits tomany other qubits, errors will spread through-
out the code in a long-range correlated way. This will likely not be corrected by
the code. A stronger condition than locality-preserving is “constant depth,” which
means that the gate is implemented by a constant-depth circuit. If rounds of gates
are applied such that no more than one gate acts on each qubit in each round, then

6

the depth of a circuit is the minimum number of rounds required. A yet stronger
condition is that the logical gate is “transversal.” In this case each qubit is acted on
at most once. Transversal gate implementations are best, but locality-preserving is
a sufficient condition for fault-tolerance.

We have already defined universal sets of gates. There are many possible choices,
but some are particularly popular. A useful concept for discussing gates is the
“Clifford hierarchy.” The Pauli group P forms the first level of the hierarchy. The
second level of the hierarchy is called the “Clifford group,” which is defined as the
set of operators $ such that for every Pauli operator % ∈ P, $%$† ∈ P. Then the
8-th level of the hierarchy �8 is recursively defined as the set of operators $ such
that for every Pauli operator % ∈ P, $%$† ∈ �8−1. The level of the hierarchy to
which a gate belongs is roughly a measure of how universal a gate is. Some gates
are not contained in any level of the hierarchy. The second level of the hierarchy
is not universal, but the second level supplemented by any gate outside the second
level is a universal gate set. For many error correcting codes, some of the gates of
the second level of the hierarchy, called the Clifford group, are relatively easy to
implement fault-tolerantly. The Clifford group on any number of qubits (≥ 2) is
generated by three gates, called S, H, and CNOT. In matrix form, these are given by

(=

(
1 0
0 8

)
� =

1
√

2

(
1 1
1 −1

)
�#$) =

©­­­­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®®®¬
. (1.1)

If the Clifford group can be implemented transversally in a particular code, then the
gate outside the first level poses a special challenge.

To realize a universal set of fault-tolerant logical gates, a more complicated protocol
is necessary because of the Eastin-Knill theorem. A leading approach is magic
state distillation [16]. In a protocol called “gate teleportation,” logical gates can be
performed using ancilla qubits in specific states. A CNOT gate is applied between
ancilla and code qubit, and the ancilla is measured. Finally, a correction is applied
to the code qubit conditioned on the measurement outcome from the ancilla. The
idea of magic state distillation is to use a separate code to fault-tolerantly prepare
the required magic states, which are then introduced into the original stabilizer code
as needed to perform a universal set of gates. There are several types of protocols
that can prepare magic states. Each of them contributes substantial overhead,
and reducing this overhead has been a major focus of research for many years

7

[14, 42, 59]. Magic state distillation is not the only way to realize a universal set
of gates. Other promising ideas include code switching and gauge-fixing. These
methods are applicable to special classes of codes. We will discuss these ideas in
more detail in Chapter 4.

There are many factors that determine whether a given scheme for fault-tolerant,
universal quantum computation can be used to perform a given computation on
a given physical device. We have already discussed the overhead, which is the
number of qubits per logical qubit required to implement the protocol, and the noise
threshold. The level of noise in the device must be below the threshold value for
error correction to succeed. We also discussed logical gates. These gates require
certain physical gates to be realized with good fidelity. In addition, the locality
of the operations required is quite important. Certain codes require long range
gates coupling qubits, while other codes require only local operations. Topological
codes are an important example of this latter group. These codes have low-weight
stabilizer generators that are local in some dimension. This locality makes these
codes very promising for experimental implementation. In addition, these codes are
connected to topological states of matter and topological field theories that are of
independent interest. For topological codes, the dimension of the code is related to
the realizable constant-depth logical gates by the Bravyi-König theorem [17], which
states

Theorem 3. (Bravyi-König) Let � ≥ 2 and let ! be the code space of a topological
stabilizer code on a �-dimensional lattice. Suppose* is a constant-depth quantum
circuit that maps ! to itself. Then the restriction of* onto ! implements an encoded
gate from the �-th level of the Clifford hierarchy.

Topological codes also have some of the highest known fault-tolerant thresholds.

1.2 Examples
To help illustrate the concepts we defined in the previous section, we now provide
some examples.

The Five Qubit Code
The smallest error correcting code uses five physical qubits to encode one logical
qubit [57]. It is often referred to as the five qubit code. We will use - and / to
denote Pauli - and / operators and subscripts like -1 to denote which qubit the

8

operator acts upon. The stabilizer group is generated by the set of operators

S = 〈{-1/2/3-4, -2/3/4-5, -3/4/5-1, -4/5/1-2}〉. (1.2)

Five qubits and four independent stabilizer generators means that the code has one
logical qubit. The code corrects all single-qubit errors. Here the word “corrects”
means that the following condition (called the Knill-LaFlamme condition [51]) is
satisfied:

〈k |�1�2 |k〉 = 0 ∀ single-qubit operators �1, �2. (1.3)

This implies that the code distance 3 is 3. The five qubit code can be used to define
a family of codes using concatenated codes. Here the physical qubits of one code
are replaced by encoded qubits in another code. We can concatenate any number of
five qubit codes to produce an infinite code family. This family has a noise threshold
against local noise [3]. The value of the threshold depends on the decoder used.
For a basic level-by-level decoder, the threshold error probability of storage with
perfect syndrome extraction has been found to be 0.1376 [63]. More sophisticated
decoders employing message passing give higher thresholds, for example 0.1885
[61]. The threshold will be significantly lower for circuit-level noise. In the five
qubit code, the Pauli group is transversal. In addition, (is transversal. CNOT and
H both require high-depth circuits.

The Toric Code
We mentioned topological codes as a particularly useful class. The most famous
example of a topological code is the toric code [50]. This is a model originally
in 2D, but can be extended to any dimension. It can be defined on many lattices,
but the original and the simplest is the square lattice or its higher-dimensional
generalizations.

We will now describe the 2D toric code, which is defined on a square lattice with
qubits placed on edges. We choose a square patch of lattice with side length
! and identify opposite edges. (The toric code can be constructed on a lattice
with boundaries, but for simplicity, we choose periodic boundary conditions.) The
stabilizer group for the toric code is generated by the - and / generators shown in
figure 1.1. The logical Pauli operators of the toric code are topologically non-trivial
loops that wrap around the torus. Figure 1.2 shows two logical Pauli operators.

The toric code is parameterized by the linear dimensions of the lattice; when the side
length is !, the code distance (the minimum weight of a nontrivial logical operator)

9

Z

X

Figure 1.1: In blue is a /-type stabilizer generator for the toric code. There are /
generators on every plaquette in the lattice. In red is an --type stabilizer generator.
There are - generators at every vertex of the lattice.

Z

X

Figure 1.2: This figure illustrates two of the logical Pauli operators in the toric code.
- and / logical operators are shown for one of the two encoded qubits. Each logical
operator is a topologically non-trivial loop that wraps around the torus. The logical
operators for the other encoded qubit are similar, but rotated by 90 degrees.

10

is !. We will also sometimes refer to ! as the code “size.” The number of physical
qubits in the code block is 2!2, and there are two encoded logical qubits. To analyze
the logical channel, we must choose a decoding procedure. Decoding the toric
code is a well-studied problem and many good algorithms are known [18, 29, 30].
We will choose minimal-weight decoding, in which the applied recovery operation
has the lowest possible weight consistent with the measured error syndrome. This
recovery operation can be computed efficiently on a classical computer [32], and
corrects the error with a success probability that is exponentially close to 1 when !
is large and the noise is sufficiently weak.

11

C h a p t e r 2

COHERENT NOISE IN ERROR-CORRECTING CODES1

2.1 Introduction
In Chapter 1 we emphasized how the noise model affects the performance of a
code. The fault-tolerant noise threshold for the code depends sensitively on the
noise model. A fault-tolerant threshold is defined for particular noise models and
also only characterizes the residual logical noise channel by bounding the strength
of the noise channel, or in other words, its distance from the identity channel. It
does not specify what sort of channel describes the residual noise.

We have discussed the difficulty of characterizing the noise in a large, complicated
experimental device. Until we try to build an error correcting code and perform
fault-tolerant logical operations on a real device, we won’t know for sure whether
realistic noise is sufficiently benign for quantum error correction to work effectively.
A general noise channel acting on = qubits is extremely complexwhen = is large, so it
will not be practical to fully characterize the noise in a complex quantumdevice using
any feasible experimental protocol. A commonly used metric for the performance
of single-qubit and two-qubit quantum gates is the “average infidelity” A = 1 − �,
where � is the fidelity of the output from the gate relative to the output of an ideal
gate, averaged uniformly over all possible input states. This quantity A has the great
virtue that it can be feasibly measured using randomized benchmarking [33, 53],
but as a characterization of the noise strength, it has shortcomings. Assuming an
uncorrelated noise model, threshold theorems guarantee scalability if a different
metric, the diamond distance ��, is less than a critical value. Here �� denotes
the deviation of the noisy gate from the ideal gate as measured by the diamond
norm. For an incoherent noise channel like a Pauli channel, the diamond distance
�� is equal to the average infidelity A; in contrast, for a highly coherent channel, ��
scales like the square root of A. If we know only A, and have no information about
the coherence of the noise, we cannot estimate �� accurately, and therefore cannot
easily make sound predictions about how effectively any error-correcting code will
combat the noise [56, 68, 74]. The situation is even worse for correlated noise
models.

1The work in this chapter was carried out in collaboration with John Preskill.

12

The purpose of the next two chapters is to study further how well quantum error
correction performs against coherent noise models. To make the analysis manage-
able, we will make some simplifying assumptions. For one, we will not actually
consider quantum computation, but instead will focus on the easier task of operating
a quantum memory. We envision encoding a quantum state in the memory using
a quantum code; after the encoding step, the memory is subjected to noise, and
then the quantum state is decoded. As a further simplification, we will assume
that the encoding and decoding are noiseless. Therefore, the performance of the
code against the noise is captured by a logical channel, the result of composing the
encoding channel, noise channel, and decoding channel.

We will be interested in what happens to a quantum state which is stored in the
memory for a long time, and undergoes many rounds of error correction — that is,
we want to characterize the effect of applying the logical channel many times in
succession. For this purpose, we will need to understand the coherence properties of
the logical channel. If the logical channel is incoherent, then the diamond distance
of the decoded state from the ideal state grows linearly with the number of channel
repetitions, while for a highly coherent logical channel, it can grow quadratically.
Ourmain conclusion is that, even if the physical noise acting on the quantummemory
is highly coherent, the coherence of the logical channel becomes strongly suppressed
as the block length of the quantum error-correcting code increases, assuming that
the noise is sufficiently weak and sufficiently weakly correlated.

Although we can analyze the logical channel only in a simplified setting, and only
for particular code families, we believe that the lessons learned apply more broadly.
We expect, for example, that randomized benchmarking applied to logical gates
will accurately characterize logical noise even when the physical noise is highly
coherent, at least for large code blocks. This also suggests that for concatenated
coding schemes, in which the “physical” qubits of a higher-level code are themselves
the logical qubits of a lower-level code, the average infidelity of the lower-level code
should be a good predictor for the performance of the higher-level code.

Our main conclusion is not unanticipated [3], as the suppression of coherence in
the logical channel has an intuitive explanation. To decode, one measures the error
syndrome, and then applies a recovery operation conditioned on the syndrome. For
a large code, many different syndromes are possible, and only the errors which are
projected onto the same syndrome value can interfere constructively, while errors
projected onto different syndrome values add stochastically. The stochastic average

13

over many syndrome sectors suppresses coherence, leaving only small residual
coherent effects arising from summing coherently over errors which are projected
onto a given syndrome sector. That said, carefully analyzing the residual coherence
in the logical channel involves daunting combinatorics. It turns out that further
cancellations occur, resulting in even stronger suppression of logical coherence than
might be naively expected.

This discussion about averaging over all syndrome sectors highlights an important
issue. We will consider the logical channel obtained by averaging over error syn-
dromes, and then study the coherence of the resulting channel. One could make
a case for an alternative procedure: define a metric that characterizes coherence,
evaluate that metric for the logical channel conditioned on each syndrome, and then
average the value of the metric over syndromes by weighting each syndrome with its
probability. To argue in favor of this alternative procedure, one might note that the
experimentalist who executes the error correction protocol could know the syndrome
she measures in each run of the protocol, and might be interested in the properties
of the logical channel conditioned on that knowledge [45]. Our view is that proper-
ties of logical channels conditioned on the syndrome are potentially of interest for
near-term experiments using relatively small codes, particularly because it might
be feasible to postselect by retaining favorable syndromes and rejecting unfavorable
ones. In future experiments using larger codes, though, syndrome histories will
be quite complex, and it will be impractical to make useful inferences about the
logical channel conditioned on syndrome information. For long computations using
large codes, properties of the logical channel averaged over syndromes will most
likely provide more usable guidance regarding the features of the protected quantum
computation.

We should also note that methods have been proposed to suppress the coherence of
physical noise. One such method is randomized compiling, which, under certain
assumptions, can transform any single-qubit noise channel into an incoherent depo-
larizing channel [75]. The assumptions include a Markovian noise model and gate
independence of the noise for the “easy” gates in the scheme. These assumptions
may hold to a good approximation for some realistic cases, but they will not hold
exactly. We may then ask how the residual coherence is affected by error correction,
an issue that can be addressed using the methods in this paper. Other schemes for
mitigating coherent noise have been proposed in [21, 26–28]. These papers focus
on the strength of the logical noise, whereas we study the character of the logical

14

noise channel, specifically its degree of coherence.

Here we investigate the coherence of the logical channel in the case where the
physical noise is fully coherent unitary noise, a problem that has been previously
studied [5, 37, 44]. This chapter describes a number of basic concepts and methods
concerning coherent noise channels and applies the methods to calculate the logical
noise channel exactly in the case of the = qubit repetition code. The results in this
chapter go beyond past work on unitary noise in the repetition code primarily in
the way that the bounds on the coherence of the logical noise are stated and in the
correlated unitary noise calculation in Section 2.5. The next chapter applies the
methods to prove a bound on the coherence of the logical noise channel in the 2D
toric code with minimal-weight decoding. This case will prove considerably more
involved than that of the repetition code. However, in the end the form of the bound
will closely match the calculation for the repetition code in this chapter.

In our analysis we make extensive use of the chi-matrix formalism for describing
quantum channels. The chi matrix arises when the action of a channel on an input
density operator is expanded in terms of Pauli operators (tensor products of 2 × 2
Pauli matrices) acting on the density operator from the left and from the right. A
channel can be expressed as the sum of an “incoherent part” in which the Pauli
operators on left and right are equal, and a “coherent part” in which the Pauli
operators on left and right are distinct. Our main task will be to infer, in the case
of stabilizer codes, how the logical chi matrix which describes the logical channel
after error correction is related to the physical chi matrix which describes the noise
acting on physical qubits.

A related conclusion holds for a broad class of correlated noise models. We provide
a detailed analysis of correlated noise for the simpler case of the quantum repetition
code, under the assumption that the noise Hamiltonian commutes with the Pauli
operator - acting on each qubit, so that the repetition code provides effective
protection against the noise model. In a model in which the rotations acting on
pairs of qubits are strongly correlated, we find as expected that the correlations
significantly enhance the probability of an uncorrectable logical error. However,
the correlations enhance the coherent and incoherent parts of the logical chi matrix
by comparable factors. Therefore, our conclusion that the coherence of the logical
channel is heavily suppressed in the limit of large code length continues to apply
despite the strong pairwise correlations in the noise.

The rest of this chapter is organized as follows. Section 2.2 is a self-contained

15

review of quantum channels, emphasizing metrics for characterizing coherence and
relations among them. We study the logical channel acting on the code’s protected
qubits by deriving the chi matrix of this logical channel from the chi matrix of
the noise channel acting on the physical qubits. To interpret the meaning of the
logical chi matrix, we find it convenient to relate the chi matrix to another formalism
for describing quantum channels — the Pauli transfer matrix. We explain some
properties of the Pauli transfer matrix # of a channelN in Section 2.2, relating # to
the diamond distance ��(N) in equation (2.50) and to the average infidelity A< of
the <-times repeated channel (N)< in equations (2.40) and (2.43). Using Lemma
1 these expressions for the diamond distance and the average infidelity in terms of
the Pauli transfer matrix can be restated in terms of the chi matrix.

In Section 2.3 we study the performance of the quantum repetition code against
coherent noise, and prove Theorem 4 using explicit computation of the logical
channel combined with results derived in Section 2.2. This result shows that the
logical channel is highly incoherent when the code block is large. An alternative
proof of Theorem 4, making essential use of the chi matrix, is presented in Section
2.4, where we develop the key tools needed for the proof of Theorem 6. We also
prove Lemma 2, which is used to show that, for independent unitary noise acting
on the physical qubits, the coherence of the logical channel for the repetition code
is maximized when all qubits are rotated by the same angle. A similar idea can be
adapted for analyzing the coherence of the logical channel for the toric code.

In Section 2.5 we extend the analysis of the repetition code to the case of two-body
correlated coherent noise, culminating in the proof of Theorem 5, showing that the
coherence of the logical channel is heavily suppressed in this case as well. The
proof is a computation of the logical channel for this case, achieved by a detailed
combinatoric analysis. As expected, the noise correlations enhance the probability
of a decoding error, but it turns out that both the coherent and incoherent parts of the
logical channel are enhanced, so that the relationship between the two is not changed
much compared to the case of uncorrelated coherent noise. The same reasoning
used to prove Theorem 5 can also be applied to the toric code to show that, in that
case as well, two-body correlations in the noise do not enhance the coherence of the
logical channel.

16

2.2 Channel parameters
Pauli transfer matrix
We will use the Pauli transfer matrix representation to describe channels acting on
= qubits. For this purpose we expand the density operator d in the Pauli operator
basis {f8}:

d =

32−1∑
8=0

d8f
8, (2.1)

where
Tr

(
f8f 9

)
=

1
3
X8 9 , (2.2)

and f0 = (83)/3. Here 3 = 2= is the Hilbert-space dimension, and 83 denotes the
3 × 3 identity matrix. Note that Tr(d) = d0. A linear map N acting on density
operators defines a 32 × 32 matrix (the Pauli transfer matrix associated with N)
according to

N(d) =
∑
8, 9

(
#8 9 d 9

)
f8 . (2.3)

This matrix is real if N maps Hermitian operators to Hermitian operators. If the
map N is trace preserving, then

∑
8 #08d8 = d0; hence #08 = X08. If the map N is

unital (that is, N(83) = 83), then ∑
8 #8 9X 90 = X80; hence #80 = X80. Thus the matrix

representing the map N may be expressed as

=

©­­­­­«
1 0 0 · · ·

#= #D

ª®®®®®¬
. (2.4)

We say that the (32 − 1) × (32 − 1) matrix #D is the unital part of N and that the
length-(32 − 1) vector #= is its nonunital part. Altogether the trace-preserving map
N is specified by 32(32 − 1) parameters.

For a unitary map N(d) = *d*†, we have #= = 0 and (for 8 ≠ 0)

f8† =
32−1∑
9=1
(#D) 98f 9 , (2.5)

where

3 Tr
(
f8†*f:*†

)
= X8: = 3

∑
9 ,;≠0
(#D) 98 (#D);:Tr

(
f 9f;

)
=

∑
9≠0
(#D) 98 (#D) 9 : ;

(2.6)

17

hence #D is an orthogonal matrix.

The matrix representing N is diagonal if and only if the map is a convex sum of
Pauli operators

N(d) =
∑
8

?8f
8df8, (2.7)

in which case the diagonal entries are

9 9 =
∑
8

?8b8 9 , (2.8)

where f8f 9 = b8 9f
9f8; that is, b8 9 is the sign ±1 determined by whether the Pauli

operators f8 and f 9 commute or anticommute.

Average infidelity
The fidelity � of a channel N acting on a pure state |k〉 is defined by

� = 〈k |N (d) |k〉, (2.9)

and 1 − � is called the infidelity. The average infidelity A of N is

A = 1 −
∫

3* Tr
[
d†N(*d*†)

]
, (2.10)

where the integral is with respect to the normalized invariant Haar measure on the
unitary group, and d is any pure state. Equivalently, A is the infidelity of the averaged
channel

N̄ (d) =
∫

3**†N(*d*†)*. (2.11)

We may just as well define A as the infidelity ofN averaged over a unitary 2-design.
Hence A can be measured in randomized benchmarking experiments, in which* is
chosen by sampling uniformly from the Clifford group, which is a unitary 2-design.

The 3× 3 unitary matrix* defines an orthogonal (32−1) × (32−1) matrix #D = $
according to

f8† =
32−1∑
9=1

$ 98f
9 , *†f8* =

32−1∑
9=1

$)98f
9 , (2.12)

where $) denotes the transpose of $; therefore

*†N(*f8*†)* =

32−1∑
9=1

(
$)#D$

)
98
f 9 ; *†N(*f0*†)* = f0 +

32−1∑
8=1
($)#=)8f8 .

(2.13)

18

The uniform average of * over the unitary group becomes a uniform average of
$ over the orthogonal group. The nonunital part of N averages to zero, and the
average of the unital part can be evaluated using∫

3$ $)8 9$:; =
1

32 − 1
X 9 :X8; , (2.14)

which yields (
#̄D

)
8 9
=

Tr(#D)
32 − 1

X8 9 . (2.15)

Hence, the averaged channel is a completely depolarizing Pauli channel of the form

N̄ (d) = ?d + (1 − ?)
(
83

3

)
, (2.16)

where
? =

1
32 − 1

Tr(#D). (2.17)

Note that if this averaged channel is applied < times in succession, we obtain

N̄< (d) = ?<d + (1 − ?<)
(
83

3

)
; (2.18)

thus ? is called the benchmarking parameter because it determines the rate of
exponential decay of fidelity in benchmarking experiments. The average infidelity
A is given by

A = 1 − 〈k |N̄ (|k〉〈k |) |k〉 = 1 −
(
? + 1 − ?

3

)
=
3 − 1
3
(1 − ?) = 1

3 (3 + 1)Tr(�32−1 − #D) (2.19)

for any pure state |k〉. Here �32−1 denotes the (32 − 1) × (32 − 1) identity matrix.
Because #00 = 1, we may also express the infidelity as

A =
1

3 (3 + 1)Tr (�32 − #) , (2.20)

where �32 denotes the 32 × 32 identity.

Examples
Depolarizing channel

We have seen that ifN? is the depolarizing channel with benchmarking parameter ?,
then (N?)< = N?< . Using the relation A = 3−1

3
(1− ?), we can express the infidelity

A< of (N?)< in terms of the infidelity A of N?, finding

A< =
3 − 1
3
(1 − ?<) = <A − 3

2(3 − 1)<(< − 1)A2 +$ (<3A3). (2.21)

19

If <A is small, the infidelity accumulates linearly with <, the number of times the
channel is applied. A similar remark applies to more general Pauli channels.

We say that a channel with this property is incoherent. The interpretation is that (up
to a constant factor), the infidelity A may be regarded as a probability of error. If
the channel is applied < times, where <A is small, any one of the < instances of the
channel could be faulty, so that the total probability of error is <A + higher-order
terms.

Qubit rotation

In contrast, consider the case of a unitary rotation of a single qubit about the --axis

*- (\) = exp
(
−8 \

2
f-

)
(2.22)

which rotates the Bloch sphere by \. For this channel the Pauli transfer matrix is

(\) =

©­­­­­«
1 0 0 0
0 1 0 0
0 0 cos \ sin \
0 0 − sin \ cos \

ª®®®®®¬
; (2.23)

therefore, the infidelity is

A =
1
6

Tr (� − #D) =
1
3
(1 − cos \) = 1

6
\2 − 1

72
\4 +$ (\6). (2.24)

Applying this channel < times, we obtain # (\)< = # (<\), a rotation by an angle
< times larger. Therefore,

A< =
1
3
(1 − cos<\) = <2A − 1

2
<2(<2 − 1)A2 +$ (<6A3). (2.25)

Here, for<2A small, the infidelity accumulates quadratically with<; it is the rotation
angle, rather than the error probability, that increases linearly. We say that a channel
like this one, for which the infidelity increases faster than linearlywith<, is coherent.

Rotation/Dephasing channels

The distinction between a coherent and incoherent channel is not always clearcut,
and we will need measures that quantify the degree of coherence. As an example,
consider the case where a qubit either dephases in the --basis (with probability @�)
or is rotated by angle \ about the --axis (with probability @'):

N(d) = (1 − @� − @')d + @�f-df- + @'*- (\)d*- (\)†. (2.26)

20

The Pauli transfer matrix is

=

(
� 0
0 "

)
, (2.27)

where � is the 2 × 2 identity, and " is the 2 × 2 matrix

" =

(
1 − n X

−X 1 − n

)
, (2.28)

with
n = 2@� + @' (1 − cos \), X = @' sin \. (2.29)

The infidelity is

A =
1
6

Tr (� − ") = 1
3
n =

2
3
@� +

1
3
@' (1 − cos \). (2.30)

The eigenvalues of " are
_± = 1 − n ± 8X, (2.31)

and therefore the infidelity of N< is

A< =
1
6

Tr (� − "<) = 1
6
[2 − (1 − n + 8X)< − (1 − n − 8X)<]

=
1
3
<n − 1

6
<(< − 1)

(
n2 − X2

)
+$ (<3n3, <3nX2, <4X4). (2.32)

Here the degree of coherence depends on the relative value of n and X. In the
case of a unitary rotation, we have n = $ (X2), which means that the term growing
quadratically with < can dominate. On the other hand, for n ≥ X, there is no
quadratically growing term at all.

A generalization of this channel will be useful in Section 2.3. Instead of a single
rotation by \ occurringwith probability @', wemay consider an ensemble of possible
rotations, where a rotation by \0 occurs with probability @0. In that case A< is still
given by equation (2.32), but now

n = 2@� +
∑
0

@0 (1 − cos \0), X =
∑
0

@0 sin \0 . (2.33)

Unitarity and the coherence angle
We have seen that #D is an orthogonal matrix if (and only if) the channel N is
unitary. Hence a deviation from orthogonality of #D indicates a deviation from
unitarity of N . With that in mind, following [74] we define the unitarity D(N) of
the channel N as

D(N) = 1
32 − 1

Tr
(
#)D #D

)
, (2.34)

21

which is 1 for unitary channels and strictly less than 1 for nonunitary channels. For a
fixed value of the infidelity A, the unitarity achieves its minimum for the depolarizing
channel [76], where

D(N) = 1
32 − 1

(
Tr #2

D

)
= ?2 =

(
1 − 3A

3 − 1

)2
. (2.35)

The unitarity D and the benchmarking parameter ? together provide a useful char-
acterization of the coherence of a channel. We will be primarily interested in the
case where the infidelity A is small, so that the diagonal elements {#88} of the Pauli
transfer matrix are close to one, and it makes sense to expand in the small quantity
1 − #88. Writing

(#D)288 = (1 − (1 − (#D)88))2 = 1 − 2 (1 − (#D)88) + (1 − (#D)88)2 , (2.36)

we see that

D(N) = 1
32 − 1

∑
8, 9

(#D)28 9 = 1 − 2(1 − ?) + 1
32 − 1

∑
8, 9 |8≠ 9

(#D)28 9

+ 1
32 − 1

∑
8

(1 − (#D)88)2 . (2.37)

Expanding the square root of D, we find√
D(N) = ? + 1

2(32 − 1)
∑
8, 9 |8≠ 9

(#D)28 9 + · · · , (2.38)

where the ellipsis indicates terms that are fourth order in the off-diagonal entries
(#D)8 9 and terms that are quadratic order in (1 − (#D)88).

The coherence angle Θ is defined as

Θ = arccos
(
?/
√
D
)
, (2.39)

which for ? and D close to one, can be expressed as

Θ2 = 2
(
1 − ?
√
D

)
+ · · · = 1

32 − 1

∑
8, 9 |8≠ 9

(#D)28 9 + · · · . (2.40)

Apart from a normalization factor, and neglecting the higher-order terms, Θ2 is the
sum of squares of all off-diagonal terms in #D. It quantifies the coherence in the
channel.

22

For the qubit rotation channel in equation (2.23), the coherence angle is related to
the rotation angle \ by

Θ2 ≈ 2
3

sin2 \ ≈ 2
3
\2. (2.41)

For the dephasing/rotation qubit channel in equation (2.28), our truncated power
series expansion used to derive equation (2.40) is justified if n is negligible compared
to X, in which case we find

Θ2 ≈ 2
3
@2
'\

2. (2.42)

For the depolarizing channel, D = ?2 and hence Θ = 0.

In [25] Carignan-Dugas et al. derived a bound on A<, the infidelity when a unital
channelN is applied< times in succession, in terms of the infidelity A and coherence
angle Θ of N :

A< ≤ <A +
3 − 1

23
<(< − 1)Θ2 + · · · , (2.43)

where the ellipsis indicates terms higher order in A and Θ2. In this sense (for unital
channels), the coherence angle controls the quadratic growth of A< as a function of
<, when A and Θ2 are small.

Diamond distance
In some versions of the quantum accuracy threshold theorem, the strength ofMarko-
vian noise is characterized by the deviation of a noisy gate from the corresponding
ideal gate in the diamond norm [49]. This diamond norm deviation is useful for
quantifying the damage inflicted when the noisy gate acts on qubits which are en-
tangled with other qubits in a quantum computer. The diamond norm ‖E‖� of a
linear map E is defined as the !1 norm of the extended map E ⊗ I:

‖E‖� = max
d
‖E ⊗ I(d)‖1. (2.44)

If E acts on Hilbert space H with dimension 3, then I denotes the identity acting
on another Hilbert space H ′ with dimension 3; the maximum is over all density
operators on H ⊗ H ′. A measure of noise strength for a noisy channel N is the
diamond distance of N from the identity channel,

��(N) := ‖N − I‖�. (2.45)

If N is applied < times in succession, we have

��(N<) ≤ <��(N). (2.46)

23

Upper and lower bounds on the diamond distance can be expressed in terms of the
benchmarking parameter ?(N) = 1 − A (N)3/(3 − 1) and the unitarity D(N) [56]:

√
32 − 1
23

5 (?, D) ≤ �� ≤
3
√
32 − 1
2

5 (?, D), (2.47)

where
5 (?, D) =

√
(1 − 2? + D). (2.48)

For the depolarizing channel, we have D = ?2 and 5 = 1 − ? = A3/(3 − 1); the
diamond distance scales linearly with the infidelity A. But for a unitary channel, we
have D = 1 and 5 =

√
2(1 − ?); then the diamond distance scales like

√
A.

From equation (2.37), we see that

5 (?, D)2 = 1 − 2? + D = 1
32 − 1

©­«
∑
8, 9 |8≠ 9

(#D)28 9 +
∑
8

(1 − (#D)88)2
ª®¬ , (2.49)

which, together with equation (2.47), provides upper and lower bounds on the
diamond distance written in terms of Pauli transfer matrix elements:

��(N) ≥
1
3

©­«
∑
8, 9 |8≠ 9

(#D)28 9 +
∑
8

(1 − (#D)88)2
ª®¬

1/2

��(N) ≤ 3
©­«

∑
8, 9 |8≠ 9

(#D)28 9 +
∑
8

(1 − (#D)88)2
ª®¬

1/2

. (2.50)

We will be mostly interested in the upper bound on the diamond distance for a
logical channel with a fixed number of encoded qubits; therefore, the unfavorable
scaling of the upper bound with the dimension 3 need not cause us great concern.

Coherence in the chi-matrix representation
The Pauli transfer matrix representation is useful for proving the preceding rela-
tionships between channel components, the growth of average infidelity, and the
dependence of the diamond distance from identity on the average infidelity. When
we analyze error correction, we will make use of a different representation of the
noise channel. Any channel N has an expansion in terms of Pauli operators. Con-
sider a completely positive mapN with Kraus operators { U}, and expand each U
as

 U =

32−1∑
8=0

2U8f
8, (2.51)

24

where all Pauli operators {f8} are chosen to be Hermitian, and the {2U8} are complex
numbers. Then

N(d) =
∑
U

 Ud
†
U =

32−1∑
8, 9=0

j8 9f
8df 9 , (2.52)

where
j8 9 =

∑
U

2U82
∗
U 9 = j

∗
98 . (2.53)

This is called the chi-matrix representation of the channel. The map N is trace
preserving if ∑

8 9

j8 9f
9f8 = 83, (2.54)

and unital if ∑
8, 9

j8 9f
8f 9 = 83. (2.55)

Note that f8f:f 9 = ±f: if and only if 8 = 9 ; therefore, in the Pauli transfer matrix
language, the terms in equation (2.52) with 8 = 9 contribute to the diagonal entries
in #01, while the terms with 8 ≠ 9 contribute to the off-diagonal entries.

To be more concrete, consider the single-qubit rotation about the --axis *- (\) =
exp(

(
−8\f-/2

)
, for which

d → *- (\)d*- (\)† = cos2(\/2)d + 8 cos(\/2) sin(\/2)df-

− 8 cos(\/2) sin(\/2)f-d + sin2(\/2)f-df- ; (2.56)

hence (
j� � j�-

j-� j--

)
=

(
1
2 (1 + cos \) 8

2 sin \
− 82 sin \ 1

2 (1 − cos \)

)
. (2.57)

More generally, for the channel with Pauli transfer matrix

=

©­­­­­«
1 0 0 0
0 1 0 0
0 0 1 − n X

0 0 −X 1 − n

ª®®®®®¬
, (2.58)

as in equation (2.28), we have(
j� � j�-

j-� j--

)
=

(
1 − n/2 8X/2
−8X/2 n/2

)
. (2.59)

There is a simple general relationship between the off-diagonal entries of the Pauli
transfer matrix #01 and the chi matrix j8 9 , namely:

25

Lemma 1. The off-diagonal elements of the Pauli transfer matrix #01 and the chi
matrix j8 9 are related by ∑

0,1 |0≠1
#2
01 = 3

2
∑
8, 9 |8≠ 9

|j8 9 |2, (2.60)

where 3 = 2= is the Hilbert space dimension.

Because of this identity, we may quantify the coherence of a channel using the
off-diagonal entries in either #01 or j8 9 . The case 3 = 2 is explained explicitly in
Appendix A.

Proof. To prove the claim, note that, for any Hermitian Pauli operators f8, f 9 , f0,
we have

f8f0f 9 = [018 9 f
1 (2.61)

for some Hermitian Pauli operator f1 and some phase [01
8 9
. By taking Hermitian

adjoints of both sides, we also have

f 9f0f8 = [01∗8 9 f
1 . (2.62)

The phase is [01
8 9
= ±1 if f8f0f 9 is Hermitian, and it is [01

8 9
= ±8 if f8f0f 9 is anti-

Hermitian. Furthermore, for each fixed 8 ≠ 9 , as f0 ranges over the 32 Hermitian
Pauli operators, f8f0f 9 is Hermitian for 32/2 choices of f0, and anti-Hermitian
for the remaining 32/2 choices. (If f8 and f 9 commute, then f8f0f 9 is Hermitian
if and only if f0 commutes with f 9f8. If f8 and f 9 anticommute, then f8f0f 9 is
Hermitian if and only if f0 anticommutes with f 9f8.) Note that 1 ≠ 0 if 8 ≠ 9 .

The entries in the Pauli transfer matrix are (for 0 ≠ 1).

#01 =
∑
8, 9 |8≠ 9

[018 9 j8 9 =
∑
8, 9 |8< 9

(
[018 9 j8 9 + [01∗8 9 j 98

)
, (2.63)

where the sum is restricted to {8, 9} such that f8f0f 9 ∝ f1. The summand is
(±1)

(
j8 9 + j 98

)
if f8f0f 9 is Hermitian, and it is (±8)

(
j8 9 − j 98

)
if f8f0f 9 is anti-

Hermitian. Suppose now that, for fixed 8, 9 , we collect all the terms in
∑
0≠1 #

2
01

which are quadratic in {j8 9 , j 98}. Because f8f0f 9 is Hermitian for half the choices
of f0 and anti-Hermitian for half the choices, we have

32

2
(
j8 9 + j 98

)2 − 3
2

2
(
j8 9 − j 98

)2
= 232j8 9 j 98 = 3

2
(
|j8 9 |2 + |j 98 |2

)
, (2.64)

where we have used j8 9 = j∗98, which is required by complete positivity.

26

To complete the proof of the claim, we must verify that all the multilinear terms of
the form j8 9 j:; (where {8, 9} and {:, ;} are disjoint) cancel in the sum

∑
0≠1 #

2
01
.

Such a cross term of the form
[018 9 [

01
:; j8 9 j:; (2.65)

arises in #2
01

when we have

f8f0f 9 = [018 9 f
1,

f:f0f; = [01:; f
1 . (2.66)

We will consider all such terms with 8, 9 , :, ; fixed, as we vary f0 and f1 over the
possible Hermitian Pauli operators. Multiplying both sides on the left by Hermitian
Pauli operator f2, we obtain(

f2f8f2
)
(f2f0) f 9 = [018 9

(
f2f1

)
,(

f2f:f2
)
(f2f0) f; = [01:;

(
f2f1

)
. (2.67)

Given a standard sign choice for the 32 Hermitian Pauli operators, we may write

f2f0 = q0
′
20f

0′, f2f1 = q1
′

21f
1′; (2.68)

here e.g. q0′20 is a phase, which is ±1 if f0 and f2 commute and ±8 if f0 and f2

anticommute. We also have

f2f8f2 = b82f
8, f2f:f2 = b:2f

: ; (2.69)

here b82 = ±1 is a sign indicating whether f2 and f8 commute or anticommute.
Therefore

f8f0
′
f 9 =

(
b82q

0′∗
20 q

1′

21[
01
8 9

)
f1

′
,

f:f0
′
f; =

(
b:2q

0′∗
20 q

1′

21[
01
:;

)
f1

′
, (2.70)

and the corresponding cross term arising from #2
0′1′ is

b82b:2

(
q0
′∗
20 q

1′

21

)2
[018 9 [

01
:; j8 9 j:; . (2.71)

Now suppose that either f2 commutes with both f0 and f1 or anticommutes with

both; in either case
(
q0
′∗
20 q

1′

21

)2
= 1. As we vary f2 over the 32/2 Pauli operators

with this property, the sign b82b:2 has the value +1 for the 32/4 choices of f2 such

27

that f2 commutes with both f8 and f: or anticommutes with both, while b82b:2 has
the value −1 for the 32/4 choices of f2 such that f2 commutes with one of f8 and
f: and anticommutes with the other. Therefore, as we vary 0′ and 1′ over these
32/2 possible choices for f2, with 8, 9 , :, ; fixed, the cross terms cancel.

Alternatively, suppose that f2 commutes with one of f0 and f1 and anticommutes

with the other; then
(
q0
′∗
20 q

1′

21

)2
= −1. Again, as we vary 0′ and 1′ over the 32/2

possible choices for f2, with 8, 9 , :, ; fixed, b82b:2 = +1 for half of the terms and
b82b:2 = −1 for the other half; therefore, the cross terms cancel. This completes the
proof. �

2.3 Logical channel for the repetition code
From now on we will use the streamlined notation for single-qubit Pauli operators:

� =

(
1 0
0 1

)
, - =

(
0 1
1 0

)
, . =

(
0 −8
8 0

)
, / =

(
1 0
0 −1

)
. (2.72)

Consider the repetition code, which protects one logical qubit against bit flip (-)
errors, but provides no protection against phase (/) errors. Let us analyze how well
this code protects against coherent errors, in which each physical qubit in the code
block rotates about the --axis. Similar calculations were carried out in [37, 44].
Understanding this example will prepare us for an analysis of more general stabilizer
codes.

To be as concrete as possible, we will start with the simplest interesting case, the
3-qubit repetition code spanned by |000〉 and |111〉. Our goal is to determine the
logical channel that results when rotation errors applied to the physical qubits are
followed by error correction. We will assume for now that the same rotation is
applied to each of the three qubits; this will be generalized later.

Suppose that each physical qubit is subjected to the unitary rotation

*- (\) = 2� − 8B-, 2 = cos(\/2), B = sin(\/2); (2.73)

thus the product unitary map applied to the three physical qubits is

*- (\)⊗3 = 23� � � − 822B (-�� + �-� + � �-)
− 2B2 (--� + -�- + �--) + 8B3---. (2.74)

To perform error correction we measure the operators //� and �// to obtain two
syndrome bits. If the syndrome is trivial (both measurements yield +1), no further

28

action is required. If the syndrome is nontrivial, - is applied to one of the three
qubits, returning the state to the code space. Thus the terms in the expansion in
equation (2.74) with weight 0 or 1 (where the weight is the number of -’s) are error
corrected to the logical operator �̄ = � � �, while terms with weight 2 or 3 are error
corrected to the logical operator -̄ = --- . We conclude that the logical channel
N! is a convex combination of two unitary transformations,

N! (d) = ?0*
- (\0)d*- (\0)† + ?1*

- (\1)d*- (\1)†, (2.75)

where

?0 = 2
6 + B6, \0/2 = arctan(−B3/23)

?1 = 3
(
24B2 + 22B4

)
, \1/2 = arctan(B/2) = \/2. (2.76)

A logical rotation by \0 is applied when the syndrome is trivial (weight 0), and a
logical rotation by \1 is applied when the syndrome is nontrivial (weight 1).

The logical channel has the form specified in equation (2.28), where

n = ?0(1 − cos \0) + ?1(1 − cos \1), X = ?0 sin \0 + ?1 sin \1. (2.77)

These expressions for n and X can be simplified using trigonometric identities. In
terms of B/2 = C = tan \/2, we have

?0 = 2
6(1 + C6), 1 − cos \0 =

2C6

1 + C6
, sin \0 =

−2C3

1 + C6
,

?1 = 326C2(1 + C2), 1 − cos \1 =
2C2

1 + C2
, sin \1 =

2C
1 + C2

; (2.78)

therefore we find

n = 2B6 + 622B4, X = −2B323 + 6B323 = 4B323. (2.79)

Expanding to leading order for small \, we have

n ≈ 3
8
\4, X ≈ 1

2
\3. (2.80)

Here, because n is higher order in \ than X, equation (2.40) applies, and therefore
the coherence angle is

Θ2 ≈ 2X2/3 ≈ \6/6. (2.81)

From equation (2.32), we see that if this logical channel N! is applied < times, the
infidelity becomes

A< ≈
1
3
<n + 1

6
<(< − 1)X2 ≈ 1

8
<\4 + 1

24
<(< − 1)\6. (2.82)

29

Note that the term quadratic in < actually matches the upper bound in equation
(2.43). Equation (2.82) reveals that the coherence of the logical channel is somewhat
suppressed, as it takes a number of repetitions < = $ (\−2) for the quadratically
growing contribution to A to “catch up” with the dominant linear term.

Now let’s do a similar analysis for the length-= repetition code (where = is odd),
which corrects up to (= − 1)/2 bit-flip errors. In this case the logical channel is a
convex combination of (= + 1)/2 unitary rotations,

N! (d) =
(=−1)/2∑
F=0

?F*
- (\F)d*- (\F)† (2.83)

where F ranging from 0 to (= − 1)/2 indicates the weight of a correctable -
error occurring in the expansion of (2 − 8B-)⊗=. When the (=−1)-bit syndrome is
measured, syndromes pointing to a weight-F error occur with total probability

?F =

(
=

F

) [
22(=−F)B2F + 22FB2(=−F)

]
=

(
=

F

)
22=C2F

[
1 + C2(=−2F)

]
, (2.84)

and the logical rotation angle conditioned on a weight-F syndrome is

\F/2 = (−1) (=−1−2F)/2 arctan
[
(B/2)=−2F]

=⇒ 1 − cos \F =
2C2(=−2F)

1 + C2(=−2F) , sin \F = (−1) (=−1)/2(−1)F 2C=−2F

1 + C2(=−2F) .

(2.85)

Summing over the weight of the syndrome, we find

n =

(=−1)/2∑
F=0

?F (1 − cos \F) =
(=−1)/2∑
F=0

(
=

F

) (
22

)F (
B2

)=−F
,

X =

(=−1)/2∑
F=0

?F sin \F = (−1) (=−1)/22=B=
(=−1)/2∑
F=0
(−1)F

(
=

F

)
= 2

(
= − 1
=−1

2

)
2=B=. (2.86)

In Appendix B we use Stirling’s approximation to evaluate the sum in the expression
for n . Applying Stirling’s approximation to our expression for X as well, we have
proven

Theorem 4. Consider the length-= repetition code which protects against bit flip
(-) errors, subject to the independent unitary noise map

* = ((cos \/2) � − 8 (sin \/2) -)⊗= , (2.87)

30

where sin2 \/2 < 1/2. Let N! (d) = R
(
d†

)
be the logical map, where d is a

code state and R decodes using majority voting. ThenN! has Pauli transfer matrix
of the form given in equations (2.27) and (2.28), with n and X given by

n =

√
2
c=

(
sin=+1 \

cos \

) (
1 +$

(
1
=

))
,

X =

√
2
c=

sin= \
(
1 +$

(
1
=

))
=

(
cos \
sin \

)
n

(
1 +$

(
1
=

))
. (2.88)

Therefore, using equation (2.32) and approximations that are well justified (accord-
ing to Theorem 4) when = is large and sin2 \/2 < 1/2, we can estimate the infidelity
when the logical channel is applied < times is succession, finding

A< ≈
1
3
<n + 1

6
<(< − 1)X2 ≈ 1

3

√
2
c=

[
<

(
sin=+1 \

cos \

)
+ 1
√

2c=
<(< − 1) sin2= \

]
.

(2.89)
The scaling of the infidelity A = $ (\=+1) arises because a bit flip error must have
weight at least F = (= + 1)/2 to cause a logical error. The scaling $ (\2=) of the
term quadratic in < indicates that the coherence of the logical channel is suppressed
when \ is small. It takes < ≈

√
2c=/\=−1 successive applications of the logical

channel N! for the quadratic term in A< to become comparable to the linear term.
This suppression arises because larger logical rotations occur with only smaller
probability; for example a logical rotation by \ occurs with probability $ (\=−1).

Keeping only the leading-order terms in equation (2.86), we obtain

n ≈ 2
(
=
=−1

2

) (
\

2

)=+1
, X ≈ 2

(
= − 1
=−1

2

) (
\

2

)=
=⇒ X ≈ = + 1

=
\−1n, (2.90)

generalizing equation (2.80). We derived the relationship

n ≈ =

= + 1
(\X) (2.91)

using the identity

(=−1)/2∑
F=0
(−1)F

(
=

F

)
= (−1) (=−1)/2

(
= − 1
=−1

2

)
, (2.92)

which can be proved by induction. For drawing the conclusion that \X/n is bounded
above by an =-independent constant, the oscillating minus sign in this expression
is important — if not for the oscillating sign, the sum would be 2=−1, hence larger
than equation (2.92) by a factor which scales like

√
=. This would mean that average

31

infidelity A< in equation (2.32) would have a large quadratic component relative to
the linear component as the code length = becomes large. In other words, the logical
noise channel would have significant coherence.

2.4 Repetition code revisited
In this section we will compute the logical channel for the repetition code using a
different method than in Section 2.3. This new method can be extended more easily
to general stabilizer codes.

Stabilizer formalism
We now briefly review the structure of stabilizer codes, as this will be used in our
analysis. Let {6U, U = 1, 2, . . . , = − :} denote the = − : stabilizer generators for
an [[=, :, 3]] stabilizer code. These generators are mutually commuting Hermitian
Pauli operators such that 62

U = �. The syndrome B(f8) of Pauli operator f8 is a
length-(= − :) binary vector such that B(f8)U = B8U where

6Uf
8 = (−1)B8Uf86U . (2.93)

Note that the syndrome of a product of Pauli operators is additive: B(f8f 9)U =
f8U + f

9
U, where the addition is modulo 2.

The code space is the simultaneous eigenstate with eigenvalue 1 of all the stabilizer
generators. If |k̄〉 is a pure state in the code space, then

6U
(
f8 |k̄〉

)
= (−1)B8Uf86U |k̄〉 = (−1)B8Uf8 |k̄〉. (2.94)

Therefore, the syndrome of f8 can be identified by measuring all of the stabilizer
generators. Hence wemay say that B

(
f8

)
is the syndrome of the statef8 |k̄〉. A Pauli

operator that commutes with the stabilizer generators preserves the code space and
is said to be logical. We may define a complete set of orthogonal projectors {ΠB}
on the =-qubit Hilbert space, where ΠB projects onto the subspace with syndrome B.
Then

ΠBΠC = XBCΠB,
∑
B

ΠB = � . (2.95)

An encoded density operator d̄ (one supported on the code space) has the property

ΠB d̄ΠC = XB0, XC0 d̄, (2.96)

where B = 0 denotes the trivial syndrome.

32

To construct the error recovery map R, we first perform an orthogonal measurement
to identify the syndrome B. Then for each syndrome B, a particular Pauli operator
�
†
B is applied, which returns the measured state to the code space; therefore,

R(d) =
∑
B

�†BΠBdΠB�B . (2.97)

One says that �B is the standard error associated with the syndrome B. In the case
of minimal-weight decoding, �B is chosen to be a minimal-weight Pauli operator
with syndrome B. By the weight F(f) of the =-qubit Pauli operator f, we mean the
number of qubits to which a nontrivial Pauli matrix - , . , or / is applied, while � is
applied to the remaining = − F qubits.

By summing over all values of the syndromes B to construct the error recovery chan-
nel, we are averaging over all the possible outcomes of the syndrome measurement,
with each syndrome weighted by its probability. We discussed in the introduction
how to justify performing this average when computing the logical channel.

Recovery in the chi-matrix representation
For any such noise channel N acting on an encoded density operator d̄, we would
like to find the error corrected map R ◦ N(d̄). Using the chi representation of the
noise channel, it evidently suffices to compute

R
(
f8f̄:f 9

)
(2.98)

for each pair of physical Pauli operators f8, f 9 and each logical Pauli operator f̄: .
Because the syndrome is additive, we have

ΠB%CΠB = XC0%0ΠB (2.99)

if %C is any physical Pauli operator with syndrome C, and therefore

R
(
f8f̄:f 9

)
=

∑
B

�†BΠBf
8f̄:f 9ΠB�B = 0

unless B

(
f8f̄:f 9

)
= B

(
f8f 9

)
= 0. (2.100)

That is, only the terms for which f8 and f 9 have the same syndrome survive when
the error recovery map is applied. This property will be crucial in our analysis of
the logical channel.

Now let’s understand the action of R in more detail. An [[=, :, 3]] stabilizer code
has 4: logical Pauli operators. The physical Pauli operator ! representing a logical

33

Pauli operator is not unique, because ! and !� act in the same way on the code
space, where � is any element of the stabilizer group. But let us by convention
choose standard physical operators {!0, 0 = 0, 1, 2, . . . 4: − 1} representing each of
the logical Pauli operators. Since we have also assigned a standard error operator
�B to each syndrome B, any Hermitian Pauli operator has a unique decomposition
of the form

f(B, 0, G) = [B0G�B!0�G , [B0G ∈ {±1,±8}, (2.101)

where �G is an element of the stabilizer group, and [B0G is a phase. Since there
are 2=−: stabilizer group elements (up to phases), 2=−: distinct syndromes, and 22:

logical Pauli operators, we see that this decomposition accounts for all 4= physical
Pauli operators. We conclude that if d̄ is an encoded density operator, then

R (f(B, 0, G) d̄f(B′, 0′, G′)) = XBB′�†B ([B0G�B!0�G) d̄
(
�
†
G ′!
†
0′�
†
B [
∗
B′0′G ′

)
�B

= XBB′ [B0G[
∗
B′0′G ′ !0 d̄!

†
0′, (2.102)

where we have used the property that f(B′, 0′, G′) is Hermitian. In the logical
channel, the terms with !0 = !0′ are incoherent – they contribute to the on-diagonal
elements of the logical Pauli transfer matrix. The terms with !0 ≠ !0′ are coherent
– they contribute to the off-diagonal elements.

When the noise channelN is weak, the dominant terms in the chi-matrix expansion
in equation (2.52) are those such that f8f 9 has minimal weight, and we have also
seen that the only terms that survive when the recovery map is applied are those such
that f8f 9 is a logical operator (has trivial syndrome). Now let’s suppose that the
code distance is 3 and that minimal-weight decoding is performed. This means that
we choose �B such that !0 = � (up to multiplication by an element of the stabilizer)
whenever f(B, 0, G) has weight no larger than (3 − 1)/2, assuming 3 is odd.

To get a contribution to the incoherent part of the logical channel, we will need both
f8 and f 9 to have weight at least (3 + 1)/2, so that the total weight must be at least
3+1. In that case it is possible for bothf8 andf 9 to be error corrected to a nontrivial
logical operator. But there are also weight-3 contributions to the coherent part of the
logical channel, arising from the terms in which F(f8) + F(f 9) = 3, where F(f)
denotes the weight of Pauli operator f. In that case one of the two Pauli operators
has weight less than or equal to (3 − 1)/2, hence is error corrected to the identity,
while the other has weight greater than or equal to (3 + 1)/2, hence is corrected to a
nontrivial logical operator !. The resulting term in the logical channel is either !d̄
or d̄! (up to a phase), depending on whether f8 or f 9 has higher weight.

34

If we choose the standard errors {�B} differently, then the action of the recovery
operator may be modified. But it is evident from equation (2.102) that if we make
the replacement �B → �′B = qB�B�H, where�H is an element of the stabilizer and qB
is a phase, then R (fd̄f′) is not changed. In particular, when we perform minimal-
weight decoding, there may be more than one minimal-weight Pauli operator with
syndrome B, so that the choice of �B is ambiguous. However, as long as any two
minimal-weight Pauli operators �B and �′B with syndrome B have the property that
�
′†
B �B is an element of the code stabilizer, then the logical channel will not depend

on how the minimal-weight standard errors are chosen. This will certainly be the
case if the code distance is 3 and the standard errors have weight not larger than
(3 − 1)/2, since then �′†B �B has weight at most 3 − 1 and cannot be a nontrivial
logical operator.

Analysis of repetition code using the chi-matrix formalism
To illustrate this method, we return to the length-3 repetition code, where the noise
channel is as in equation (2.74). We write out the chi-matrix expansion of N(d) in
equation (2.52), and then apply the recovery operator R to find the logical channel
N! = R ◦ N . The task of applying R is simplified by the observation that, if the
state d is supported on the code space, then R annihilates all terms in which f8f 9

is not logical. We may write

N(d) = Nincoh(d) + Ncoh(d) + Nnull(d), (2.103)

where Nnull is the sum of terms such that f8f 9 is not logical (hence R ◦ Nnull = 0
acting on encoded density operators), Nincoh is the sum of terms such that f8f 9

is the logical identity, and Ncoh is the sum of terms such that f8f 9 is a nontrivial
logical operator. Then R ◦ Nincoh is the incoherent part of N! and R ◦ Ncoh is its
coherent part. Explicitly,

Nincoh(d) = 26� � �d� � � + 24B2 (-��d-�� + �-�d�-� + � �-d� �-)
+ 22B4 (--�d--� + -�-d-�- + �--d�--) + B6---d---,

(2.104)

and

Ncoh(d) = 823B3 (---d�� � − � � �d---) + 823B3 (-��d�--
+�-�d-�- + � �-d--� − �--d-�� − -�-d�-� − --�d� �-) .

(2.105)

35

The code has two syndrome bits, given by the measured values of //� and �// ,
and for a minimal-weight decoder we choose the standard errors to be

�00 = � � �, �01 = � �-, �10 = -��, �11 = �-�, (2.106)

while the nontrivial logical operator is -̄ = --- . Each of the Pauli operators in
equations (2.104) and (2.105) can be expressed as a product of a standard error and
a logical operator which is either �̄ = � � � or -̄ , so the logical map becomes

N!,incoh(d) = R ◦ Nincoh(d) =
(
26 + 324B2

)
d +

(
322B4 + B6

)
-̄ d-̄,

N!,coh(d) = R ◦ Ncoh(d) = 823B3 (
[-̄, d] − 3[-̄, d]

)
. (2.107)

To compare with our previous calculation of the logical channel, we note that

N!,incoh(�̄) =
(
22 + B2

)3
�̄ = �̄ ,

N!,incoh(-̄) =
(
22 + B2

)3
-̄ = -̄,

N!,incoh(.̄) =
[(
22 + B2

)3
− 622B4 − 2B6

]
.̄ =

(
1 − 622B4 − 2B6

)
.̄ ,

N!,incoh(/̄) =
[(
22 + B2

)3
− 622B4 − 2B6

]
/̄ =

(
1 − 622B4 − 2B6

)
/̄ , (2.108)

and

N!,coh(�̄) = N!,coh(-̄) = 0,

N!,coh(.̄) = −2823B3 [-̄, .̄] = 423B3/̄ ,

N!,coh(/̄) = −2823B3 [-̄, /̄] = −423B3.̄ . (2.109)

In the notation of equation (2.28), we have found that the logical channel is param-
eterized by

n = 622B4 + 2B6, X = 423B3, (2.110)

in agreement with the result found in equation (2.79).

Now consider the length-= repetition code, for = odd, where the noise is the product
unitary transformation*- (\)⊗=. The incoherent partN!,incoh of the logical channel
arises from the diagonal terms {f8df8} in the chi-matrix expansion ofN(d). Here
f8 can be any one of the 2= Pauli operators contained in {�, f- }⊗=. The code can
correct C = (= − 1)/2 f- errors, so f8 is error corrected to �̄ if its weight F(f8) is C

36

or less, and is error corrected to -̄ if its weight is C + 1 or more. Therefore, if d is
an encoded density operator, then

N!,incoh(d) =
(
C∑

F=0

(
=

F

)
22(=−F)B2F

)
d +

(
=∑

F=C+1

(
=

F

)
22(=−F)B2F

)
-̄ d-̄, (2.111)

where the binomial coefficient
(=
F

)
counts the number of weight-F (or weight-(=−F))

operators. Using
=∑
F=0

(
=

F

)
22(=−F)B2F =

(
22 + B2

)=
= 1, (2.112)

we see that N!,incoh(�̄) = �̄ and N!,incoh(-̄) = -̄ , and furthermore

N!,incoh(.̄) =
(
1 − 2

=∑
F=C+1

(
=

F

)
22(=−F)B2F

)
.̄ ; (2.113)

hence

n = 2
=∑

F=(=+1)/2

(
=

F

)
22(=−F)B2F (2.114)

in agreement with equation (2.86). To leading order in B ≈ \/2, this becomes

n ≈ 2
(
=
=+1

2

) (
\

2

)=+1
, (2.115)

as in equation (2.90).

The coherent part N!,coh of the logical channel arises from the terms in the Pauli
operator expansion ofN(d) such that f8f 9 = -̄ . There are 2= such terms— f8 can
be any operator among {�, -}⊗=, and f 9 is then the complementary operator with
- and � interchanged. If f8 has weight ≤ C, and so is error corrected to �̄, then f 9

has weight ≥ (C + 1), and so is error corrected to -̄ . We obtain

N!,coh(d) =
(
C∑

F=0

(
=

F

)
2F (−8B)=−F2=−F (8B)F

)
-̄ d

+
(
C∑

F=0

(
=

F

)
2=−F (−8B)F2F (8B)=−F

)
d-̄

= (−8)=2=B=
(
C∑

F=0
(−1)F

(
=

F

))
[-̄, d] . (2.116)

Therefore,

N!,coh(.̄) = 2(−8)=−1(2B)=
(
C∑

F=0
(−1)F

(
=

F

))
/̄; (2.117)

37

hence

X = 2(−8)=−1

((=−1)/2∑
F=0
(−1)F

(
=

F

))
(2B)= ≈ 2

(
= − 1
=−1

2

) (
\

2

)=
, (2.118)

in agreement with equation (2.90).

Inhomogeneous --axis rotations
Now let’s consider the logical channel obtained by decoding the length-= repetition
code, in the case where the rotation angle varies from qubit to qubit. That is, the
unitary noise channel is

*- (\1, \2, . . . \=) =
=⊗
U=1

(
2U − 8BUf-

)
, (2.119)

where 2U = cos \U/2 and BU = sin \U/2. As in our previous derivation for the case
where all angles are equal, we can calculate the incoherent and coherent parts of the
logical channel by expanding this tensor product and isolating the terms inN(d) of
the form f8df 9 where f8f 9 is either a trivial logical operator (for the incoherent
part) or a nontrivial logical operator (for the coherent part). The only difference
from the previous calculation is that, while previously all terms in the expansion
of *- with the same weight occurred with equal amplitudes, now operators of the
same weight may have different amplitudes.

Still, the derivation goes through in much the same way as before. Let (denote
a subset of the = qubits, let |(| denote the size of (, and let (̄ denote the subset
complementary to (. Extending our previous argument to the case of unequal angles
yields

n = 2
∑

(,|(|≥C+1

∏
U∈(

∏
Ū∈(̄

22
ŪB

2
U,

X = (−28)
∑
(,|(|≤C

∏
U∈(

∏
Ū∈(̄

2Ū (−8BU)2U (8BŪ)

= (−28)
=∏
U=1
(82UBU)

∑
(,|(|≤C

(−1) |(| . (2.120)

Note that the sum in the expression for X does not depend on the angles. To leading
order in the small {BU}, we find

n = 2
∑

(,|(|=(=+1)/2

∏
U∈(

B2
U + · · · ,

X = 2
(
= − 1
=−1

2

) =∏
U=1

BU, (2.121)

38

where we have used the identity∑
(,|(|≤ =−1

2

(−1) |(| =
(=−1)/2∑
F=0
(−1)F

(
=

F

)
= (−1) (=−1)/2

(
= − 1
=−1

2

)
. (2.122)

As before we find n = $ (B=+1) and X = $ (B=). Furthermore, the expression for X is
very simple — the same as our previous formula, but with B= replaced by

∏
U BU.

The formula for n depends in a more complicated way on the set of angles {\U}. But
we can show that for fixed X, n is minimized when all the BU are equal. Therefore,
we have a lower bound on n , namely

n ≥ 2
(
=
=+1

2

)
B=+1 + · · · (2.123)

where the ellipsis indicates terms higher order in B, and we have defined

B= =

=∏
U=1

BU . (2.124)

Correspondingly, using (
=
=+1

2

)
=

2=
= + 1

(
= − 1
=−1

2

)
, (2.125)

we have the upper bound on X:

X ≤ = + 1
2=

(n
B

)
+ · · · . (2.126)

Therefore, for inhomogeneous as well as homogeneous rotations, we conclude that
the coherent part of the logical channel is suppressed. In fact, the case where all
rotation angles are equal is the worst case, where equation (2.126) is saturated.

Now let’s prove that n is minimized (for fixed X), when all {BU} are equal.

Lemma 2. Consider minimizing the function

5< (G1, G2, . . . , G=) =
∑

(,|(|=<

∏
U∈(

GU (2.127)

subject to the constraint
∏=
U=1 GU = 2 > 0, where all GU are nonnegative. Here (

denotes a subset of the = variables, and |(| is the size of (. The minimum occurs for
G1 = G2 = · · · = G= = 21/=.

39

Proof. Note that 5< is a symmetric function, invariant under permutations of its =
arguments, and can be decomposed as

5< (G1, G2, . . . , G=) = 5< (G3, . . . G=) + G1 5<−1(G3, . . . G=)
+ G2 5<−1(G3, . . . G=) + G1G2 5<−2(G3, . . . G=). (2.128)

Using the constraint we write

G1 =
2

G2G3 . . . G=
, (2.129)

and regard 5< as a function of the =−1 independent variables G2, G3, . . . , G=; then

m

mG2
(G1G2) = 0,

m

mG2
(G1) =

−G1
G2
. (2.130)

Therefore, setting the gradient of 5< equal to zero, we find

m

mG2
5< (G1, G2, . . . , G=) =

(
1 − G1

G2

)
5<−1(G3, . . . , G=) = 0. (2.131)

The constraint requires that all GU are positive; therefore 5<−1(G3, . . . G=) is positive
and we find that G1 = G2. From the symmetry of 5<, we conclude that G1 = GU = 2

1/=

for U = 2, 3, . . . , =, when 5< is stationary. This is the unique stationary point of
5< (G1, G2, . . . G=) when all GU are positive; furthermore 5< is smooth and bounded
below. Therefore it must be the minimum of 5<. �

2.5 Correlated unitary noise
Now let’s consider unitary noise acting on = qubits which does not factorize into a
product of single-qubit unitaries. Since we still wish to consider noise that can be
corrected by the repetition code, assume that the =-qubit unitary* has an expansion
in terms of --type Pauli operators:

* =
∑
(

k(()- ((), (2.132)

where (denotes a subset of the = qubits and - (() = ⊗U∈(-U is the --type operator
supported on (. (-U means - acting on the Uth qubit, and it is implicit that � acts
on qubit U for U ∉ (.) Unitarity of* implies∑

(

|k(() |2 = 1, (2.133)

and ∑
(

k(()∗k((+ (′) = 0, (2.134)

40

where (′ is a nonempty set and (+ (′ = (∪ (′ \ (∩ (′ is the disjoint union of (and
(′. To make the analysis of the noise more tractable, let’s also suppose the noise is
invariant under permutations of the = qubits. In that case k(() = k(|(|); that is,
the amplitude k depends only on the weight F = |(| of the error operator - ((). A
tensor product of = identical unitary - rotations, * = (2� − 8B-)⊗=, is the special
case where

k(F) = 2=
(
−8B
2

)F
, (2.135)

an exponential function of the weight F.

The symmetric unitary transformation may also be expressed as* = 4−8� where �
is a symmetric =-qubit Hamiltonian of the form

� =

=∑
F=0

ℎF
©­«

∑
(,|(|=F

- (()ª®¬ . (2.136)

We are assuming that there is no geometric locality constraint on the interactions
among the qubits — the strength of a weight-F term in the Hamiltonian depends
only on the weight, not on which set (of F qubits are interacting. Since ℎF is the
coefficient of a sum of

(=
F

)
terms, it is implicit that ℎF decays as a function of F. It

is natural to assume that
(=
F

)
ℎF = $ (=), as only in that case do we expect (for ℎF

sufficiently small) the probability of a logical error to drop rapidly as = gets large.
For example, if ℎ2 = $ (1), then each qubit has $ (1) coupling strength with =−1
other qubits, so the strength of the noise acting on each qubit grows linearly in =,
and error correction fails for = sufficiently large. We will elaborate on this point in
the discussion below of two-body correlated noise. In a more realistic noise model,
the higher-weight terms in the Hamiltonian would have $ (1) strength (independent
of system size) but would decay sufficiently rapidly as the distance between qubits
increases so that the effective single-qubit noise strength is also $ (1) [2, 62].

The structure of the noise correlations is determined by how ℎF falls off as the
weight F increases. In particular, if =F−1ℎF = $

(
ℎF1

)
, then k(F) in equation

(2.132) is a sum of $
(
ℎF1

)
terms; in that case the parameters of the logical channel

will be n = $ (ℎ=+11) and X = $ (ℎ
=
1), so the coherent and incoherent parts of the

logical channel qualitatively resemble what we found for uncorrelated noise. On
the other hand, in the extreme case where ℎ= ≠ 0 and ℎF = 0 for 0 ≤ F ≤ = − 1,
the code provides no protection against logical errors and there is no suppression of
coherence. Instead we find X = $ (ℎ=) and n = $ (ℎ2

=) so that n = $ (X2) just as in
equation (2.23).

41

To be concrete, consider the 3-qubit repetition code and noise Hamiltonian

� = ℎ1 (-1 + -2 + -3) + ℎ2 (-1-2 + -2-3 + -3-1) + ℎ3 (-1-2-3) . (2.137)

The unitary noise has the expansion

* = 4−8� = (1 + · · ·) � + (−8ℎ1 + · · ·) (-1 + -2 + -3)

+
(
−8ℎ2 − ℎ2

1 + · · ·
)
(-1-2 + -2-3 + -3-1)

+
(
8ℎ3

1 − 3ℎ1ℎ2 − 8ℎ3 + · · ·
)
-1-2-3, (2.138)

where only the leading terms are shown in the coefficient of each Pauli operator.
Repeating the analysis of the logical channel as in Section 2.4, but now using this
modified unitary noise operator, we find

N!,incoh(d) = d +
(
3ℎ4

1 + 3ℎ2
2 + ℎ

2
3 + · · ·

)
-̄ d-̄,

N!,coh(d) =
(
8ℎ3

1 − 8ℎ3

)
[-̄, d] − 3ℎ1ℎ2

(
-̄ d + d-̄

)
− 38ℎ3

1 [-̄, d] + 3ℎ1ℎ2
(
-̄ d + d-̄

)
+ · · ·

= −8(2ℎ3
1 + ℎ3) [-̄, d], (2.139)

(showing only the leading terms), which yields

j̃-- = n/2 = 3ℎ4
1 + 3ℎ2

2 + ℎ
2
3 + · · · , j̃-� = −8X/2 = −8

(
2ℎ3

1 + ℎ3 + · · ·
)
, (2.140)

where j̃ denotes the logical chi matrix after error correction. (We don’t find any
contribution to the coherent part of the logical channel depending only on ℎ2,
because the ℎ2 term in the Hamiltonian has even - parity, while the logical operator
-̄ has odd parity.) Now whether coherence is suppressed hinges on the strength
of the ℎ3 term in the Hamiltonian. In particular, if ℎ3 is large compared to ℎ2

1 and
ℎ2, then highly correlated noise dominates, and coherence of the logical channel is
unsuppressed.

As another instructive example, consider the length-= repetition code, where the
Hamiltonian contains only single-qubit and two-qubit terms. We will compute the
coherent and incoherent parts of the logical channel following the same reasoning
as in Section 2.4. Again, we’ll need to sum over all the possible values of the
syndrome weight, which we’ll now denote by : . For each value of : , we’ll find a
contribution to the chi matrix for the error-corrected logical channel, with logical
operators acting on the encoded density operator d from the left and from the right.

42

Each such operator can be obtained in many ways as a product of one-body and
two-body terms in the Hamiltonian, and we’ll have to do some combinatorics to
sum up those contributions. By computing the logical chi matrix, and comparing
its coherent and incoherent parts, we can prove the following:

Theorem 5. Consider the bit flip code with = qubits, and let the noise model be
given by the =-qubit unitary map

* = exp(−8�), where � =
∑
8

ℎ1-8 +
∑
8< 9

ℎ2-8- 9 . (2.141)

After error correction, the logical noise channel satisfies the following bound relat-
ing the coherent and incoherent components:

j̃-- ≥
2=
= + 1

(tan ℎ1) | j̃-� |, (2.142)

where j̃ denotes the logical chi matrix. Equation (2.142) holds for any odd =, and for
any ℎ1, but we have made the approximation =ℎ2 � 1, neglecting a multiplicative
(1 +$ (=ℎ2)) correction on the right-hand side.

Theorem 5 implies that, even for this correlated unitary noise model, the coherence
of the logical noise channel is heavily suppressed for large =. In fact, the ratio of the
coherent to incoherent components of the logical noise channel is similar to what
we found for the uncorrelated case, where ℎ1 ≈ \/2, c.f. equation (2.91).

Proof. To prove the lemma, we’ll compute first the coherent component of the
logical channel, then the incoherent component, and finally we’ll compare the two
to obtain equation (2.142).

The unitary operator* = 4−8� can be expressed as

* =
∏
8

(21 − 8B1-8)
∏
8< 9

(22 − 8B2-8- 9)

= 2=12
=(=−1)/2
2

∏
8

(1 − 8C1-8)
∏
8< 9

(1 − 8C2-8- 9), (2.143)

where B1 = sin ℎ1, 21 = cos ℎ1, C1 = tan ℎ1, and likewise for ℎ2. In our computations,
we will suppress the prefactor 2=12

=(=−1)/2
2 , which is implicit in all formulas, and we

will expand * in a collisionless approximation. That is, we will neglect terms in
the expansion in which operators such as -8 and -8- 9 or -:-8 and -8- 9 act on
a qubit in common. The terms we are neglecting are systematically suppressed

43

by powers of =ℎ2 compared to the terms we are keeping. More precisely, these
corrections can be absorbed into a multiplicative renormalization of ℎ1 and ℎ2 by a
factor (1 +$ (=ℎ2)).

Coherent component
Let us look first at the coherent component j̃-� of the logical chi matrix. For each
syndrome of weight : , the physical error contributing to this logical component
consists of an uncorrectable - error of weight =− : on the left of d and a correctable
- error of weight : on the right, where : ranges from 0 to (= − 1)/2. The operators
on the left and right are supported on disjoint sets of qubits. When we write these
operators as products of one-body and two-body terms we will need to count the
number of ways of dividing a set of 2? - errors into distinct combinations of ?
two-body terms. We denote this number by ^? where

^? =
(2?)!
2??!

. (2.144)

Let us count the terms with :! factors of C2 on the left and :' factors of C2 on the
right. In addition, there will be some number F of factors of C1 on the right and
=−2:!−2:'−F factors of C1 on the left to fill out the coherent term. First we choose
the 2:! qubits on the left where the C2 terms act; these qubits can be chosen in

(=
2:!

)
ways. Once these 2:! qubits have been chosen, there are ^:! ways to divide up
the qubits into pairs where the two-body terms act. Next we choose the 2:' qubits
on the right where the C2 terms act. Because the operators on the left and right are
supported on disjoint sets of qubits, these 2:' qubits can be chosen in

(=−2:!
2:'

)
ways.

Once these 2:' qubits have been chosen, there are ^:' ways to divide up the qubits
into pairs where the two-body terms act. Of the remaining = − 2:! − 2:' qubits
where no two-body terms act, we choose F qubits on the left where the one-body
terms acts; these can be chosen in

(=−2:!−2:'
F

)
ways. As usual, this contribution to

the logical channel has a phase, which is determined by including a factor of −8 for
each term in the Hamiltonian which acts from the left and a factor of 8 for each term
in the Hamiltonian which acts from the right. By combining all these factors, we
find a contribution to j̃-�

(8)=−F−2:'−:! (−8)F+:' C=−2:!−2:'
1 C

:!+:'
2

(
=

2:!

) (
= − 2:!

2:'

) (
= − 2:! − 2:'

F

)
^:! ^:' .

(2.145)

Next we sum over F, taking care to note the F-dependent phase in equation (2.145).
Fortunately, this sum can be evaluated explicitly using an identity satisfied by

44

binomial coefficients, just as we saw in Section 2.3. The sum ranges from F = 0 to
F = (= − 1)/2 − :', so we have

(=−1)/2−2:'∑
F=0

(−1)F
(
= − 2:! − 2:'

F

)
= (−1) (=−1)/2−2:'

(
= − 2:! − 2:' − 1
(= − 1)/2 − 2:'

)
.

(2.146)

To complete the evaluation of j̃-� , it remains to sum over :! and :' in

j̃-� =
∑
:! ,:'

Ω(:! , :')C:!+:'2 C
=−2:!−2:'
1 , (2.147)

where from equations (2.145) and (2.146) we have

Ω(:! , :') = (8)=−:!−:' (−1):' (−1) (=−1)/2

×
(
=

2:!

) (
= − 2:!

2:'

) (
= − 2:! − 2:' − 1
(= − 1)/2 − 2:'

)
^:! ^:' . (2.148)

In the sum in equation (2.147), 2:' can be any nonnegative integer less than or
equal to (=− 1)/2, and 2(:' + :!) can be any nonnegative integer less than or equal
to = − 1.

Our goal is to compare this coherent component with the incoherent component,
which can also be expressed as a sum. Instead of performing an unrestricted sum
over :! and :', we will consider the sum over :! where :! + :' = @ is fixed.
This collects all the terms in j̃-� of order C@2 . Then we will follow a similar path
to compute the incoherent component j̃-- to order C@2 , so that we can compare the
coherent and incoherent components in each order.

Let us isolate the parts of Ω(:! , @ − :!) that depend on @ only (not on :'), and let
us introduce the shorthand < = (= − 1)/2, finding

Ω(@ − :', :') =
(8)=−@ (−1)< (< + 1)
(= − 2@)2@

(
=

<

)
(<!)2

(2< − 2@)!@!
× (−1):'

(
2< − 2@
< − 2:'

) (
@

:'

)
,

(2.149)
where we have used equation (2.144). Now we need to sum :' from :' = 0 to
:' = @, and then sum @ from @ = 0 to @ = (= − 1)/2.

We observe that, due to the oscillating sign (−1):' , the sum over :' vanishes when
@ is odd. This cancellation occurs because if we replace :' by @− :', the summand
remains the same except for a change in phase (−1)@. What’s happening is that for
each term contributing to j̃-� with ; factors of 8C2 on the right and @ − ; factors of
−8C2 on the left, there is a corresponding term with @ − ; factors of 8C2 on the right

45

and ; factors of −8C2 on the left. These two terms have equal magnitude but opposite
sign, if @ is odd. Similar cancellations occur in the computation of the incoherent
component j̃-- .

Incoherent component
Now we can use similar reasoning to compute the incoherent component j̃-- of
the logical channel. In this case, though, we will not perform a sum over all
syndromes; instead we will keep only the contribution of lowest order in C1 and
C2, arising from the syndrome of highest weight. This will suffice for deriving the
lower bound in equation (2.142), because the contributions to j̃-- higher order in C1
and C2 are nonnegative. Furthermore, keeping only the lowest-order term is a good
approximation when C1 and C2 are sufficiently small.

For = odd, this leading-order contribution arises from terms with - acting (=+ 1)/2
times from both the left and the right. In a term with :! factors of C2 on the left and
:' factors of C2 on the right, there will also be (= + 1)/2 − 2:! factors of C1 on the
left, and (= + 1)/2 − 2:' factors of C1 on the right. Summing over :! and :', and
arguing as in our discussion of the coherent contribution, we find

j̃-- =
∑
:! ,:'

Δ (:! , :')C:!+:'2 C
=+1−2:!−2:'
1 + · · · . (2.150)

Here

Δ (:! , :') = (8)<+1−:! (−8)<+1−:'
(
=

<

) (
< + 1
2:!

) (
< + 1
2:'

)
^:! ^:' , (2.151)

we have defined < = (= − 1)/2, and the ellipsis indicates nonnegative higher-
order corrections. We can again introduce @ = :! + :' and isolate the portion of
Δ (@ − :', :') that depends only on @:

Δ (@− :', :') =
(8)@
2@

(
=

<

)
((< + 1)!)2

(2< − 2@ + 2)!@!
× (−1):'

(
2< − 2@ + 2
< − 2:' + 1

) (
@

:'

)
; (2.152)

here :' is to be summed from 0 to @, followed by a sum over @ from 0 to (= + 1)/2.
As for the coherent component, the sum over :' with @ fixed vanishes when @ is
odd, due to the oscillating minus sign (−1):' .

Comparing the coherent and incoherent components
Now we are ready to compare j̃-� and j̃-- . In both cases there is a sum over :' to
perform for each even value of @, and by inspecting (2.149) and (2.152) we see that
the :'-dependent factors in Ω(@, :') and Δ (@, :') are nearly the same; the factor

46

in Δ is obtained from the factor in Ω if we replace < by < + 1. Because this factor
grows rapidly with <, we see that the factor in Δ is larger than the factor in Ω for
each value of @ and :', but that by itself does not suffice for comparing j̃-� and
j̃-- , due to the alternating sign (−1):' in the sum over :'.

To compare the coherent and incoherent logical noise components properly, we
must perform the sum over :'. We will make use of the generalized hypergeometric
function �3 2 . This function is defined

�3 2

[
0, 1, 2

3, 4
; I

]
=

∞∑
:=0

(0): (1): (2): I:
(3): (4): :!

, (2.153)

where (0): denotes the Pochhammer function or the rising factorial

(0): = 0(0 + 1) (0 + 2) (0 + 3) . . . (0 + : − 1). (2.154)

If 0 is a negative integer, then

(0):
:!

= (−1):
(
−0
:

)
, (2.155)

and the sum over : in equation (2.153) terminates — instead of 0 to ∞, the sum
runs from 0 to −0. The same is true if 1 or 2 is a negative integer.

Using this definition of �3 2 , we can write the sum over :' of Ω or Δ in terms of
�3 2 . We will have to distinguish the two cases 2@ < < and 2@ ≥ <, although we
will see at the end that the final expressions will coincide for the two cases. Take
the second term in equation (2.149). Supposing that 2@ < <, we can write∑
:'

(−1):'
(
2< − 2@
< − 2:'

) (
@

:'

)
=

(
2< − 2@
<

) ∑
:'

(
@

:'

)
<(< − 1) . . . (< − 2:' + 1)
(< − 2@ + 2:') . . . (< − 2@ + 1)

= �3 2

[
−@, 1−<

2 , −<
2

<+1
2 − @,

<
2 − @ + 1

; 1

] (
2< − 2@
<

)
.

(2.156)

Then we can apply Dixon’s identity for the hypergeometric function �3 2 . This reads

�3 2

[
0, 1, −2

1 + 0 − 1, 1 + 0 + 2
; 1

]
=
Γ(1 + 0

2)Γ(1 +
0
2 − 1 − 2)Γ(1 + 0 − 1)Γ(1 + 0 − 2)

Γ(1 + 0)Γ(1 + 0 − 1 − 2)Γ(1 + 0
2 − 1)Γ(1 +

0
2 − 2)

; (2.157)

47

c.f. equation (2.3.3.5) in [70]. Applying this formula to equation (2.156), we get∑
:'

(−1):'
(
2< − 2@
< − 2:'

) (
@

:'

)
=
(−@/2)!
(−@)!

Γ(< − @/2 − 1/2)Γ(</2 − @ − 1/2)Γ(</2 − @)
Γ(< − @ − 1/2)Γ(</2 − @/2 − 1/2)Γ(</2 − @/2) ×

(
2< − 2@
<

)
.

(2.158)

We need to do something about the first factor on the right hand side (−@/2)!/(−@)!
because the gamma function has poles at each negative integer. However, this ratio
can still be defined:

(−@/2)!
(−@)! = lim

@/2→Integer

Γ(−@/2 + 1)
Γ(−@ + 1) = (−@)@/2 = (−1)@/2 @!

(@/2)! . (2.159)

We can substitute this into equation (2.158) and we find that we can simplify the
expression ∑

:'

(−1):'
(
2< − 2@
< − 2:'

) (
@

:'

)
=
(−1)@/2(2< − @)!@!
(< − @/2)!(@/2)!<!

. (2.160)

Up until now we have assumed 2@ < <. If we instead assume 2@ ≤ <, we find that
the intermediate steps look different, but we arrive at the same final answer as in
equation (2.160).

Now we can compute the sum of equation (2.149) as :' goes from 0 to @ using what
we found in equation (2.160). We can also apply our result to perform the sum over
:' for equation (2.152). This gives:

Ω(@) ≡
∑
:'

Ω(@ − :', :') =
(2< − @)!(< + 1)!

(< − @/2)!(@/2)!(2< + 1 − 2@)!2@

(
=

<

)
,

Δ (@) ≡
∑
:'

Δ (@ − :', :') =
(2< + 2 − @)!(< + 1)!

(< − @/2 + 1)!(@/2)!(2< + 2 − 2@)!2@

(
=

<

)
.

(2.161)

The ratio of these quantities is

Ω(@)
Δ (@) =

(2< + 2 − 2@) (< − @/2 + 1)
(2< − @ + 2) (2< − @ + 1) =

= + 1 − 2@
2= − 2@

≤ = + 1
2=

. (2.162)

Now we can sum over @; because all terms are nonnegative and the bound holds for
every @, we conclude

j̃-- >
2=
= + 1

C1 j̃-� , (2.163)

thus proving the lemma. �

48

Summary
By setting @ = 0, we can check that the result in equation (2.161) matches what we
found in Section 2.3 for the uncorrelated case. It is also instructive to consider the
expansion of j̃-� in powers of C2, under the assumption @ � <. From equation
(2.161) we see that

Ω(@) =
(
<@/2(2<)2@

2@ (@/2)!(2<)@ + · · ·
)
Ω(0) =

(
<3@/2

(@/2)! + · · ·
)
Ω(0), (2.164)

where the ellipsis indicates $ (@/<) corrections.

Restoring the factors of C1 and C2 from equation (2.147), we see that this expansion
in C2 generates a multiplicative correction to j̃-� which exponentiates:∑

@ even

1
(@/2)!

(
<3C22

C41
+ · · ·

)@/2
≈ exp

(
<3C22/C

4
1

)
. (2.165)

Since the sum over @ is dominated by terms with<3C22/C
4
1 ∼ @, this exponential series

should be a good approximation for <3C22C
4
1 � <, or <C2 � C21, since in that case

neglecting the terms higher order in @/< can be justified. Under this condition, the
two-body terms in the Hamiltonian in equation (2.162) make a small contribution
to the total energy, suppressed by $ (C1) compared to the one-body terms. Recall
that we also needed <C2 � 1 to justify the collisionless approximation used in the
proof of Theorem 5; this condition is subsumed by <C2 � C21 if C1 = $ (1).

We see that there is a regime

1
<
� C2

C21
� 1
<3/2 (2.166)

in which our approximations are reliable, yet the multiplicative corrections to j̃-�
are large. That large corrections occur, even when the two-body terms make a small
contribution to the total energy, is not a surprise; we have found as expected that the
noise correlations can substantially enhance the probability of a logical error. The
important point established by Theorem 5 (at least for the simple noise model we
have analyzed) is that even when the correlated noise produces large corrections to
the logical channel, the corrections occur in both the coherent part and the incoherent
part of the channel, so that our conclusion that the coherence is strongly suppressed
for large = continues to apply.

It is not immediately obvious why the leading power of< in equation (2.164) should
be <3@/2, because higher powers of < occur in Ω(@ − :', :') and Δ (@ − :', :')

49

for each fixed :' and @. It turns out that these higher powers of < all cancel when
we do the sum over :'. In Appendix C we explain why these cancellations occur,
providing a useful check on our results.

2.6 Conclusions
Noise channels on = qubits are in general parameterized by 2= (2= − 1) independent
real parameters. This very large space of possibilities makes it impractical to fully
characterize the noise in a large experimental device and also hard to determine the
performance of error-correcting codes against completely general noise channels.
It is common to study the performance of error-correcting codes against simplified
noise models like depolarizing noise. Many of these simple noise models are
incoherent noise models, where an error operator is applied with a given probability.
In the Pauli transfer matrix representation and the chi matrix representation, these
noise channels are diagonal. In this work we have studied a broader class of noise
models—unitary noise models and convex combinations of unitary noise models.
Unitary noise models are maximally coherent. Fault-tolerant threshold theorems do
apply to local coherent noise; however, we set out to answer a different question
that is also closely related to the practicality of error correction. Rather than asking
about the strength of the residual logical noise, we ask how the coherence of the
logical noise channel is suppressed relative to the coherence of the physical noise
channel.

We have described coherent and incoherent quantum noise channels in the Pauli
transfer matrix and chi matrix representations. The coherence of a noise channel can
be characterized by studying the growth of the average infidelity A of the cumulative
channel while the noise is applied repeatedly. For incoherent noise channels, A grows
linearly with the number of channel applications. For highly coherent channels, A
grows quadratically. We also discussed a second diagonostic for coherence. The
diamond distance from the identity of an incoherent noise channel scales with A,
while for the most coherent noise channels it scales with

√
A. We described how

error correction transforms the noise channel to produce the logical noise channel,
and we calculated the logical noise channel in the repetition code subject to unitary
noise.

The repetition code provided a simple example of a code for which it is not too
difficult to exactly calculate the logical noise channel. This direct calculation ap-
proach can be applied to any fixed code, although the number of terms in the sum

50

scales with the number of independent stabilizer generators in the code. When the
repetition code is subject to unitary single-qubit rotations, the logical noise channel
is less coherent than the physical noise channel. As the size of the repetition code
grows, the logical noise channel is increasingly incoherent. The basic calculation in
the proof of Theorem 4 is similar to calculations in, for example, [37] and [44]. We
go beyond the previous calculations for the repetition code by stating our bounds
on the coherence of the logical channel in terms of the growth of average infidelity
and the relation between diamond distance from identity and average infidelity and
additionally by considering a correlated unitary noise model. In Theorem 5 we
assumed that a repetition code was subject to a unitary noise model generated by a
Hamiltonian consisting of one-body terms and all-to-all two-body terms. We found
that even in this case, the coherence of the logical noise is suppressed relative to
that of the physical noise, and moreover, this suppression increases with the size of
the repetition code.

While it does provide a useful example calculation, the repetition code is not a
quantum error-correcting code because it only corrects one type of Pauli error.
For quantum computation, families of quantum error-correcting with fault-tolerant
thresholds are required. This is the context in which the question of the suppression
of logical coherence is most important. In the next chapter, we shift our focus from
the toy model of the repetition code to the case of the 2D toric code. This code
family represents the first class of topological error-correcting codes to be described
[50] and remains among the best studied.

51

C h a p t e r 3

THE TORIC CODE AGAINST COHERENT NOISE1

3.1 Introduction
We now analyze the logical channel for the two-dimensional toric code on an
! × ! square lattice, where ! is odd. We will continue in the same vein as in the
previous chapter, making use of our characterizations of the coherence of a noise
channel as well as our technique for calculating the logical noise channel. We’ll
consider uncorrelated unitary noise acting on the 2!2 qubits, and suppose that error
correction is performed using minimal-weight decoding. Our goal is to show that,
when the noise is sufficiently weak, the coherence of the logical noise channel is
highly suppressed for large !.

In the introduction to the previous chapter, we mentioned that the coherence of the
logical noise channel in the presence of unitary noise has been previously studied
[5, 37, 44]. Ourwork in this chapter improves on these past results in that we consider
a family of codes with an accuracy threshold (toric codes without boundaries) and
prove bounds on the logical coherence which apply in the limit of a large code
block. By specializing to a particular code family, we also find better bounds on
the logical coherence for finite code length. Other authors have obtained numerical
results for sufficiently small codes in the case where all physical qubits are rotated
about a fixed axis [19, 39, 72], including analyses of logical channels conditioned
on particular error syndromes [45]. We focus instead on investigating asymptotic
properties for large codes, using analytic methods. Some asymptotic statements
about the performance of concatenated codes were proven in [34].

In Chapter 2 the repetition code calculation was exact. Now in the case of the toric
code, we estimate the coherent component of the logical chi matrix up to order !+2Z
in the rotation angle \, where is any !-independent constant, and relate this coherent
component to the incoherent component of the logical channel. Our main theorem
states that the strength of the coherent part of the logical channel is bounded above
by strength of the incoherent part times a factor of 1/\. (Here \ is the rotation angle
applied to each of the physical qubits — our result also holds for rotation angles and
axes that vary somewhat from qubit to qubit.) From this statement, we may infer

1The work in this chapter was carried out in collaboration with John Preskill.

52

that when the logical channel is applied< times in succession, the average infidelity
grows linearly with <. (There is a small contribution to the infidelity that grows
quadratically with<, but this contribution is highly suppressed by a factor that scales
as !−! .) Stated differently, our result says that after < applications of the logical
channel, the accumulated distance from the identity channel, as measured by the
diamond norm, grows linearly with <, apart from a correction which is negligible
for large !. To reach this conclusion it is necessary to assume that the rotation angle
\ scales with the block size as 1/!. Therefore, unfortunately, we are not able to
make a definitive statement about the coherence of the logical channel in the more
physically relevant case where ! becomes large with \ fixed; the combinatoric task
required exceeds our ability.

In this chapter, we build on lessons learned from the analysis of the repetition code
to prove our main result, which asserts that, for an independent unitary noise model,
the coherence of the logical channel is strongly suppressed by the toric code when
the code block is large, assuming that the noise strength scales like 1/!. The proof
mainly consists of a combinatoric analysis which allows us to bound the coherent
and incoherent components of the logical chi matrix. We have divided the proof into
a series of lemmas; figure 3.1 indicates how these lemmas fit together to build our
main theorem. The appendices provide various supplementary details to accompany
this chapter. Furthermore, our analysis of two-body correlated noise in the repetition
code can be extended to the toric code assuming the noise is sufficiently weak for
error correction to succeed with high probability; therefore we conclude that the
coherence of the logical channel is highly suppressed even in the case of strongly
correlated two-body noise. Section 3.13 contains our conclusions. There we recount
some of the obstacles that prevented us from extending our main theorem to themore
physically relevant case where the noise strength is a constant independent of !.

Overview of the proof of Theorem 6
Here we provide some additional guidance regarding how the different parts of
this chapter fit together to build our main result, Theorem 6 in Section 3.11. The
structure of our argument is also summarized in figure 3.1. To prove the theorem
we compute first the coherent part of the logical channel and then the incoherent
part, after which we can make an inference about how the two are related. For this
purpose, upper bounds on the logical noise strength would not suffice. Instead, we
compute both the coherent and incoherent part of the logical channel up to an error
which we show is small if the physical noise is sufficiently weak.

53

A Guide to the Proof

Theorem 3: Coherence is
suppressed in the toric code.

Lemma 10: The transverse steps
are likely separated by 𝛾𝐿.

Lemma 9: Most short strings
have transverse steps of one
lattice site.

Shape of Short Strings

Lemma 16: Diamond distance
from identity bound in terms of 𝜒
matrix.

Lemma 1: Off-diagonal elements
of 𝜒 matrix and Pauli transfer
matrix.

𝜒 Matrix and Coherence

Coherent Components

Lemma 4: Exceptional terms are
unlikely.

Lemma 3: We can neglect high
weight connected terms.

Lemma 11: The disconnected part
≈ 1.

Lemma 7: We can neglect terms
with mismatched weight.

Incoherent Components

Lemma 6: We express the
incoherent noise components in a
form that allows easy comparison
to the coherent noise.

Lemma 5: We can neglect high
weight connected terms.

Lemma 12: The disconnected
part ≈ 1.

Theorem 2: For a specific model
of correlated unitary noise, our
bound on the coherence of the
logical noise channel continues to
hold.

Correlated Unitary Noise

Lemma 8: The coherence is
maximized when all angles are
equal.

General Rotation Angles

Lemma 13: Physical Y errors are
negligible.

Lemma 14: Logical Y error and
errors that act on both encoded
qubits are negligible.

Things We Neglect

Lemma 15: Coherent noise
components with two non-trivial
logical operators are negligible.

Figure 3.1

54

Our arguments in this chapter make use of observations, discussed in Section 2.4,
which apply to any stabilizer code. We may assign a “standard error” �B to each
error syndrome B, and define a decoder which returns the damaged state to the
code space by applying �†B when the syndrome is measured to be B. This �B is a
Pauli operator acting on the code block. Furthermore, each logical Pauli operator
!̃0 acting on the code may by convention be associated with a particular standard
physical Pauli operator !0 — the choice of !0 is not unique, and therefore must be
fixed by convention, becausewe have the freedom tomultiply !0 by an element of the
code’s stabilizer group without changing its logical action. Once the standard error
for each syndrome, and the physical Pauli operator corresponding to each logical
Pauli operator, are determined, any physical Pauli operator acting on the code block
has a unique decomposition of the form (up to a phase factor) f(B, 0, G) = �B!0�G ,
where �B is a standard error, !0 is a standard logical Pauli operator, and �G is an
element of the code stabilizer.

In the chi matrix formalism, the resultN(d) of applying noisy channelN to density
operator d is expanded as a sum of terms of the form f(B, 0, G) d f(B′, 1, H)†. As
explained in Section 2.4, if d is a logical density operator, then a term of this form
is annihilated by the error recovery operation for B ≠ B′, and for B = B′ is mapped to
!0d!

†
1
, up to a phase. (That phase is important, and we will need to keep track of it

carefully.) Recovery is successful if !0 and !1 are both logical identity operators.
The terms in the logical channel with !0 = !1 are said to be incoherent, and the
terms with !0 ≠ !1 are said to be coherent.

The key point is that we have a conceptually simple algorithm for computing the chi
matrix for the logical channel, and for identifying its coherent and incoherent parts.
To find the coefficient of !0d!†1 in the logical channel, we just need to sum up the co-
efficients of all terms in the physical chi matrix of the form f(B, 0, G) d f(B, 1, H)†,
being mindful of phase factors, for all possible values of B, G, H. Unfortunately,
in general this algorithm is too complex to carry out in practice, but under suit-
able conditions we can estimate logical chi matrix with sufficient accuracy for our
purposes.

For the case of the toric code, we can begin by noting some helpful simplifications.
We choose standard errors defined by minimal-weight decoding. Because of the
code’s CSS structure, we can analyze the logical - and logical / errors separately,
and in fact a single analysis applies to errors of both types. We don’t need to worry
about logical . errors or about logical errors acting nontrivially on more than one

55

of the code’s logical qubits (Lemma 14 in Appendix H) because these are so highly
suppressed; the same goes for coherent errors in which both !0 and !0′ are nontrivial
(Lemma 15 in Appendix I). We can assume that the coherent noise rotates physical
qubits about an axis in the -−/ plane (Lemma 13 in Appendix G); otherwise the
logical noise would be even less coherent. We are left with the task of estimating
two nontrivial elements of the logical chi matrix — the coherent term /̃1d�̃ term
and the incoherent term /̃1d/̃1, where /̃1 denotes the logical / operator acting on
one of the code’s two encoded qubits. In the proof of Theorem 6, we estimate both
quantities using a series of approximations, and verify that these approximations are
trustworthy when the physical noise is sufficiently weak.

First consider the coherent part of the logical chi matrix. We need to sum up all
the terms in the physical chi matrix which contribute to /̃1d�̃ after the action of the
decoding map. Each such term has the form �B/1�Gd �

†
H�
†
B , where �B denotes a

standard correctable Pauli error,�G and�H are Pauli operators in the code stabilizer,
and /1 is the standard physical Pauli operator whose logical action matches /̃1. For
the purpose of our computation, we may assume that all the Pauli operators are
of the / type — that is, each applies / to a subset of the qubits and applies � to
the complementary set. For the purpose of enumerating all such contributions, it
is convenient to note that the product �†H/1�G of the Pauli operators acting on the
density operator from the right and from the left is a logical operator, one commuting
with the code stabilizer. This logical operator can be decomposed into a connected
path that winds once around on the periodically identified square lattice — what we
call a “logical string” — and a collection of homologically trivial closed loops on
the lattice — what we call the “disconnected part” of the logical Pauli operator.

We can therefore enumerate all the contributions to /̃1d�̃ by this procedure:

1. Consider all possible logical strings.

2. For each logical string, consider all possible “partitions” of that string into an
uncorrectable error acting from the left and a correctable error acting from
the right.

3. For each logical string and partition, consider all possible choices for the
disconnected part. We compute /̃1d�̃ by summing all these contributions.
Though we can’t perform this sum exactly, we can approximate the sum and
estimate the resulting errors.

56

It is for the purpose of approximating this sum that we need the assumption that
the rotation angle \ scales like 1/!, where ! is the linear system size. Under this
assumption, we show that we make a small error by truncating the sum to include
only relatively short logical strings (Lemma 3 in Section 3.4) which have a typical
shape (Lemmas 9 and 10 in Appendix D). Summing over all partitions of a fixed
logical string is similar to the computation we performed for the repetition code,
but with a few new subtleties. Specifically, there are some “exceptional” partitions
such that the uncorrectable error acting from the left actually has lower weight than
the correctable error acting from the right. Fortunately, we can show that we make
a small error by ignoring this effect (Lemma 4 in Section 3.5), simplifying the sum
over partitions.

For a fixed connected logical string and partition of that string, we need to sum
over disconnected closed loops and partitions of those loops. Performing this
sum is almost equivalent to adding up all possible error patterns weighted by their
probabilities, which trivially sums to unity. The only complication is that, for some
closed loops that closely approach the logical string, and for some special partitions,
the additional loop can flip how the error is decoded. It turns out, though, that we
make only a small error by ignoring this effect (Lemma 11 in Appendix E).

With all the above simplifications in hand, we can estimate the coherent part of the
logical chi matrix. In particular, the sum over partitions for a fixed logical string
can be evaluated much as in the proof of Theorem 4 for the repetition code. It then
remains to estimate the incoherent part and compare the two.

In the incoherent part, /̃1 acts from both the left and the right; therefore, there are
two logical strings to keep track of, one on each side. These two logical strings have
segments in common, determined by the intersection of the string with the standard
error, but are free to fluctuate independently away from those segments (figure 3.8 of
Section 3.7). To approximate the sum over contributions from these logical strings
to the incoherent part of the logical chi matrix, we may truncate the sum as in the
computation of the coherent part, limiting our attention to relatively short strings
with a typical shape (Lemma 5 in Section 3.7 and Lemma 6 in Section 3.8), and
ignoring complications arising from the disconnected part of the error (Lemma 12
in Appendix F). Furthermore, we may also ignore contributions with “mismatched
weight,” confining our attention to minimal-weight uncorrectable errors on the
logical string acting from both the left and the right (Lemma 7 in Section 3.9). With
these approximations, the incoherent part of the logical chi matrix may be expressed

57

in a form which can be conveniently compared with the coherent part.

As for the repetition code, we can justify considering unitary noise such that all
physical qubits are rotated by the same angle— rotating different qubits by different
angles only makes the logical channel less coherent (Lemma 8 in Section 3.10). For
such a coherent noise model with uniform rotation angles, we compare the coherent
and incoherent parts of the logical chi matrix, proving Theorem 6 (Section 3.11).
Using the findings from Section 2.2, these results can be translated into statements
about the diamond distance of the logical channel and about the average infidelity
of the <-times repeated logical channel. We also observe (Section 3.11), that
our analysis of the performance of the repetition code against two-body correlated
coherent noise (Theorem 5) is applicable with few modifications to the toric code
as well.

Our conclusion that the coherence of the logical channel is heavily suppressed
applies in the limit of large code size !, and under the assumption that the physical
qubits are rotated by an angle \ scaling like 1/!. In Section 3.13 we discuss the
difficulties that have prevented us from extending the result to larger values of \.

Related work
The performance of stabilizer codes against fully coherent unitary noise has been
previously studied in [5, 37, 44]. Huang, Doherty, and Flammia [44] derived an
inequality which relates the diamond distance �� of the logical channel from the
identity to the rotation angle \ for independent unitary noise, finding

�� ≤ 2=,: | sin \ |3; (3.1)

here 3 is the code distance, = is the code length, and : is the number of encoded
qubits. Their result applies to any stabilizer code, but 2=,: grows exponentially
with = (it is bounded above by 23=+:+1), so their result is not very informative for
large codes. In contrast, we derive a bound relating the coherent and incoherent
components of the logical channel which does not involve any exponentially large
factors. We achieve this improved result by specializing to the toric code, and by
assuming sin \ < 1/!. Furthermore, to obtain equation (3.1) the authors of [44]
bounded a sum of contributions to the logical channel using the triangle inequality,
hence obtaining a bound that would apply even if all the terms in the sum had a
common phase. Instead, we sum the contributions with the appropriate phases; the
resulting cancellations among terms yield a much smaller result than we would have
obtained by merely invoking the triangle inequality. We are able to carry out this

58

more detailed analysis because our assumption sin \ < 1/! allows us to restrict
our attention to short logical strings, for which approximating the sum becomes a
manageable task.

Beale, Wallman, Guttiérrez, Brown, and Laflamme [5] also studied the performance
of stabilizer codes against independent unitary noise, and they concluded that the
coherence of the logical channel is suppressed. For a fixed code length, they study
the limit of small rotation angle \. If the logical channel is expanded in powers of
\, then for sufficiently small \ the leading term in this expansion dominates, and
they draw their conclusions by analyzing this leading term. In effect, they (like us)
investigate the case in which the noise strength deceases as the code length increases,
but their assumption about the noise strength is much stronger than ours. We (unlike
them) include all corrections to the logical channel higher order in \ that are needed
to accurately approximate the logical channels for sin \ < 1/!, albeit only for the
special case of the toric code.

Bravyi, Engelbrecht, König, and Peard [19] have studied the performance of the toric
code against independent unitary noise numerically, using a clever mapping from
qubits to Majorana fermions, for code distance up to 3 = 37, and they found that the
coherence of the logical channel becomes negligible as the code length increases,
provided that the rotation angle \ is smaller than a nonzero constant threshold value
\0. Their numerical method applies to a noise model in which all qubits are rotated
about the / axis, which according to our analysis is the worst case that maximizes
the coherence of the logical channel. The numerical results support a value of \0

greater than 0.25 and less than 0.32, while for the largest code sizes they consider
our analytic results apply only for \ less than about 0.027. They characterize the
coherence of the logical channel by sampling from the distribution governing the
logical rotation angle \logical conditioned on the measured error syndrome, finding
that this distribution becomes strongly peaked around \logical = 0 for large code
length when \physical is smaller than \0. They also consider, as we do, the logical
channel averaged over syndromes, and show that the “twirled” logical channel has
an error probability close to the error probability of the untwirled logical channel
for large code length, a further indication of suppressed logical coherence. Their
numerical findings appear to be at least notionally consistentwith our analytic results,
though it is difficult to make a quantitative comparison because our formulas are
accurate only for asymptotically large ! and for ! sin \ sufficiently small compared
to 1.

59

3.2 Notation
Our analysis will draw heavily on the toolswe developed in our study of the repetition
code in Chapter 2. Before proceeding further, we will review some notation. We
will use the chi matrix to describe the physical noise channel N acting on the 2!2

qubits in the code block:
N(d) =

∑
8, 9

j8 9f
8df 9 , (3.2)

where {f8} is a basis of Pauli operators.

Definition 1. When we speak of a “noise term,” we will mean a component of the
chi matrix for the physical noise channel acting on the qubits in the code block. We
will find it convenient to use the notation (f8df 9) for the number j8 9 , the coefficient
of f8df 9 in the chi-matrix expansion in equation (3.2).

Wemay choose the index that labels a Pauli operator to be (B, 0, G), wheref(B, 0, G) =
�B!0�G; here B denotes the error syndrome, �B is the standard error associated with
the syndrome B, !0 is a standard choice for the physical Pauli operator that acts as the
logical Pauli operator !̃0, and �G is an element of the code stabilizer. To compute
the logical chi matrix, we sum over the syndrome B and the stabilizer elements,
observing that the standard error �B is removed by the recovery procedure. Hence
we find that a term in the logical chi matrix can be expressed in our notation as

j̃01 ≡ (!̃0 d̃ !̃†1) =
∑
B,G,H

(�B!0�Gd �
†
H!
†
1
�†B). (3.3)

We say that the diagonal components of the logical chi matrix j̃01 with 0 = 1 are
“incoherent” noise terms. and that the off-diagonal terms with 0 ≠ 1 are “coherent.”

3.3 Coherent and Incoherent Logical Components
We are going to analyze the coherent and incoherent sums separately at first. Using
path counting and assuming the noise is sufficiently weak, we will prove that in both
cases the logical chi matrix is dominated by “short logical strings” (logical Pauli
operators of relatively low weight), those with length ≤ ! + 2Z for a constant Z .
Then by summing up the contributions due to these short logical strings, we will
derive an inequality relating the coherent and incoherent components of the logical
channel.

Our argument will use equation (3.3), where we have expressed the logical chi
matrix as a sum of terms in the physical chi matrix. In the next several sections we

60

will analyze the sums contributing to coherent and incoherent components of j̃01.
We will make a series of approximations to simplify the sums by neglecting certain
terms. In the end we will demonstrate that the two sums are related by a constant
factor.

3.4 The Coherent Sum
First, consider the coherent sum. The coherent components of the logical noise
channel are sums of terms from the physical noise channel. We want to upper bound
the magnitude of these coherent logical components. Before we go any further, we
will make some simplifications. For one, we will neglect certain coherent logical
noise components. We focus on the components of the logical noise j̃01, where
exactly one of the operators !0 and !1 is identity and the other is either an - or a
/ error on one of the two encoded qubits. These components of the logical noise
channel can be expressed as a sum over physical noise terms:

j̃0� =
∑
B,G,H

(�B!0�Gd �
†
H�
†
B), (3.4)

where !0 is either an - or / logical error on one of the two encoded qubits of
the toric code. In Appendix I we prove that we can neglect the coherent terms
with non-trivial logical operators on both sides of d, and in Appendix H we prove
that we can neglect . logical operators and operators that act non-trivially on both
encoded qubits. The proof comes down to showing that terms with a non-trivial
error on both sides of d, that act on both encoded qubits, or that apply a . to one
of the logical qubits, have high weight relative to the terms we keep. A further
simplification concerns the structure of the noise model. Our result applies to a
noise model in which the single-qubit unitary operator acting on each qubit has
an axis of rotation and angle of rotation that varies somewhat from qubit to qubit.
However, we will prove that the most coherent logical channel is one in which the
same unitary operator is applied to each qubit, so we may confine our attention to
that case for the purpose of deriving a bound on the relative strength of the coherent
and incoherent parts of the logical channel.

We will make use of another way of writing the coherent sum. Each coherent term
in the form of equation (3.4) can be unambiguously associated with a logical string.
The product of the Pauli operators acting on the left-hand and right-hand sides is
the logical operator !0�G�H, which in general consists of a connected logical string
wrapping around the code block, accompanied by some number of closed loops. To
be concrete, if !0 is a logical - error, then the logical string contains only physical

61

- errors, the closed loops are either loops of - errors which are disjoint from the
logical string, or closed loops of / errors which may or may not intersect with the
logical string or with the closed loops of - errors (the intersections are the. errors).

Definition 2. For a given noise term (�B!0�Gd �
†
H�
†
B), we can extract a connected

logical string by removing the topologically trivial loops from !0�G�H. Call this
logical string L. We define the “connected part” of the noise term as the restriction
to the qubits in L. The connected part of (�B!0�Gd �

†
H�
†
B) is a noise term given by

((�B!0�G) |L d (�†H�†B) |L), (3.5)

where the symbol |L denotes the restriction of an operator to the support of L.

Definition 3. For a noise term (�B!0�Gd �
†
H�
†
B) the “disconnected part” is the part

of the noise term not in the connected part. Once again, we can define a continuous
logical string L by removing all topologically trivial closed loops from !0�G�H.
The disconnected part of (�B!0�Gd �

†
H�
†
B) is given by

((�B!0�G) |L� d (�†H�†B) |L�), (3.6)

where the symbol |L� denotes the restriction of an operator to the qubits in the
complement of the support of L.

Furthermore, we will be able to assume that all of the physical single-qubit errors
in the connected part are - or / type. For example, in the case of a logical --type
error, we may neglect terms in which a closed loop of / errors intersects with the
logical string. To justify this assumption, we show in Appendix G that allowing .
errors along the logical string will only make the logical noise channel less coherent.

A coherent term contributing to the logical chi matrix element j̃/1� , which includes
disconnected errors, is illustrated in figure 3.2. The disconnected part includes
identity on the qubits without errors in addition to the the disconnected errors. /
errors acting on the density operator from the left are shown in red, and / errors
acting from the right are shown in blue. Because the errors acting from the left and
right have the same syndrome B, the product of the left and right logical operators
is logical. The connected logical string crosses the code block near the bottom of
the figure. Associated with the syndrome B is the corresponding standard error �B,
the / error of minimal weight with that syndrome. (If the minimal-weight error is
not unique, we arbitrarily choose �B to be one of the errors of minimal weight by

62

Qubits

OU

OC

Figure 3.2: In this coherent term, the uncorrectable error $* (acting on the density
operator from the left) is in red, while the correctable error $� (acting from the
right) is in blue. Only / errors are shown. The connected logical string consists of
the five qubits near the bottom that are split between red and blue. In addition, there
are disconnected errors in the form of the closed loop containing two red edges and
two blue edges and the pair of cancelling single-qubit errors acting on the left (in
red) and right (in blue).

convention.) To evaluate the logical chi matrix element j̃/1� as in equation (3.3),
we need to sum over the syndrome B and the stabilizer elements �G and �H. To
facilitate estimating the sum, it will be helpful to organize it in an appropriate way.

To this end, we introduce the following definition:

Definition 4. For a logical string L with no topologically trivial closed loops, the
word “partition” denotes a connected noise term ($1d $2) such that $1$2 = L
and $1 and $2 are disjoint. In other words, each partition is a way of dividing the
single-qubit errors in L into two subsets,$1 and$2. By definition$1 and$2 share
the same syndrome. Because the code size ! is odd, exactly one of $1 and $2 will
be corrected to a logical operator with the same action as L and the other will be
corrected to the logical identity.

For each fixed logical string, the sum over all partitions of the logical string will
produce the full set of connected terms derived from that logical string. The sum
over partitions, for a fixed logical string, is directly analogous to the sum over
syndromes we encountered in our analysis of the repetition code in Section 2.4. In
the case of the toric code, we compute the coherent part j̃/1 � of the logical channel

63

by summing over all possible logical strings, and for each choice of logical string
we sum over all partitions of the logical string. In addition, for each chosen logical
string, we sum over the possible disconnected pieces, the additional closed loops of
/ errors which are disjoint from the logical string.

Schematically, the coherent component of the logical chi matrix is

j̃/1 � =
∑

strings

∑
partitions

(Connected Part) (Disconnected Sum) . (3.7)

This form will allow us to approximate the coherent sum. Assuming that the noise
is sufficiently weak, we will prove that we can truncate the sum over logical strings,
including only short strings. Furthermore, most of the short logical strings have a
particular shape. To complete the argument, we will show that the disconnected
sum is approximately the same for each short logical string and for each partition of
the logical string.

Counting of Logical Strings
We want to find an upper bound on the magnitude of the coherent component of the
logical noise channel. We have already put the sum over physical noise terms into a
convenient form by factoring out the disconnected piece of each term. Next we will
simplify the sum by restricting the set of connected pieces we need to consider; we
will neglect the long logical strings in favor of those strings with length no larger
than than ! + 2Z , where Z is an !-independent constant. To justify this truncation
we will require a strong assumption on how the physical noise strength scales with
!; namely, the single-qubit rotation angles must scale as 1/!.

In equation (3.7), we wrote the contribution of a given logical string to the coherent
logical noise as a product of a connected and disconnected part as described in
Definitions 2 and 3. The connected part summed over partitions as defined in
Definition 4. The sum over partitions contains 2F−1 terms for a weight-F logical
string (one containing F lattice edges). Suppose that the unitary rotation */ (\) =
exp

(
−8 \2/

)
is applied to each physical qubit in the toric code block. We can upper

bound the sumusing the number of terms times themagnitude of each term. Then the
contribution of each logical string is upper bounded by 2F−1(| sin(\/2) | cos(\/2))F

times the factor from the disconnected part. We will prove in Section 3.6 and
Appendix E that the disconnected piece is 1 plus a higher weight correction that we
can neglect for short logical strings.

64

There is a regime where we can upper bound the number of logical strings as a
function of the string’s length. Asymptotically, the number 2F of self-avoiding
random walks with length F was proven in [43] to satisfy

2F = `
F+>(F) , (3.8)

where ` ≈ 2.64 for the 2D square lattice. We can start a walk from a fixed point
along one edge of the toric code. Logical strings will be the self-avoiding walks that
wrap around the torus and end at the starting point. We can use equation (3.8) to
show that the contribution to the coherent logical noise from logical strings of length
ℓ is exponentially decaying with ℓ as long as |\ | < arcsin 1/` ≈ 0.39. This statement
applies only for logical strings with length much greater than the minimum of !, the
code distance. We do not have a precise estimate indicating at what length above !
the number of logical strings begins to scale like equation (3.8). This means we do
not know at what string length ℓ the contribution will begin to decay exponentially,
and therefore we do not know where to truncate the sum if we wish to use equation
(3.8) to bound the terms we are neglecting. In any case, in our subsequent analysis
we will truncate the sum over the string length ℓ at ! + 2Z for some constant Z . In
this regime the asymptotic estimate in equation (3.8) is not helpful and we will not
make use of it. Instead, we will assume that |\ | is sufficiently small that we can use
the following lemma to bound the terms we neglect.

Lemma 3. Suppose that | sin \ | < 1/!. In equation (3.7), we wrote j̃/1 � as a sum
over logical strings. If we truncate the sum to include only logical strings of length
F ≤ ! + 2Z , then magnitude of the difference between the truncated sum and the
complete sum is

≤ U!2Z+1 | sin \ |!+2Z , (3.9)

where U = (1 − ! | sin \ |)−1.

Proof. We begin by fixing a point along one edge of the code block, which can be
chosen in ! ways. We will count the number of logical strings that wrap around
the torus and pass through that fixed point on the edge. Let ℓ denote the logical
string length. At minimum length ℓ = !, there is only one logical string. At length
ℓ = ! + 2, if the logical string runs left to right across the code, then the string
features one step up and one step down. There are ! (! − 1) such logical strings.
At longer string lengths, there are many steps up and down. We can upper bound
the number of such logical strings by supposing we choose any of the ! positions

65

to place each of the steps up and steps down. We divide by ((ℓ − !)/2)! to capture
the fact that the (ℓ− !)/2 steps up are all identical, and the same for the steps down.
This encompasses all possible combinations of steps up and down including cases
where the several steps up are placed at the same point creating a step up of more
than one. It does not encompass strings that backtrack, but in Lemma 9 we show
that among strings of length ! + 2Z , those that feature backtracking are suppressed
by $ (1/!). Also, the number of strings grows most quickly near minimum and
eventually approaches the asymptotic value, where the number of strings grows like
`! . In the asymptotic regime, the number of strings grows much slower than !ℓ−! .
We conclude that

number of logical strings of length ℓ ≤ !!ℓ−! . (3.10)

In equation (3.7), for each logical string in the sum, the contribution to the logical
noise is a sum over partitions of the connected part times a disconnected part. We
will discuss the sum over partitions in detail in Section 3.5, but for now it is enough
that we know that the sum over partitions contains 2ℓ−1 terms for each connected
logical string of length ℓ. These terms have different phases and in general the sum
can be complicated. We can obtain a simple bound by multiplying the number of
terms by the magnitude of each term, in other words treating all the phases as if they
are the same. For each weight F string,∑

partitions
(Connected Part) ≤ 2ℓ (| sin \/2| cos \/2)ℓ . (3.11)

We still have to handle the disconnected piece. In Section 3.6 we will argue
that the disconnected sum decreases as the length of the logical string increases.
Furthermore, the disconnected part equals 1 up to corrections which are small for
logical strings with length ≤ ! + 2Z for a constant Z . This means that we can upper
bound the coherent logical noise component j̃/1 � by

ℓmax∑
ℓ=!

!ℓ−!+1 | sin \ |ℓ, (3.12)

where ℓmax is the longest /1 logical string supported on the code. If | sin \ | < 1/!,
the contribution from logical strings of length ℓ decreases exponentially with ℓ.

If we truncate the sum over logical strings to those with weight F ≤ ! + 2Z , the
error we make is equal to the total contribution of strings with weight F > ! + 2Z .

66

The contribution at weight F is exponentially decreasing with F, so we can bound
the sum over the long logical strings using

∞∑
ℓ=2

Vℓ =
V2

1 − V = UV
2 0 < V < 1, (3.13)

where U = 1
1−V . We conclude that the absolute error we make by truncating the

series is
≤ U!2Z+1 | sin \ |!+2Z (3.14)

where U = (1 − ! | sin \ |)−1. Therefore, the error due to truncation is exponentially
small in both ! and Z .

�

In Lemma 3 we proved an upper bound on the absolute magnitude of the error due
to truncation in the coherent sum. However, so far we have not described any lower
bound on the terms that we have kept, arising from the logical strings with length
≤ !+2Z . Therefore, we have not yet justified that the errorwe have neglected is small
relative to the coherent noise contributions that we kept. However, we will prove in
Section 3.9 that the incoherent logical noise component is at least !

(!
!+1

2

)
(sin \

2)
!+1;

compared to this incoherent component the contribution in equation (3.14) to the
coherent component due to strings of length > ! + 2Z is suppressed by a factor
(! sin \)2Z . This means that the error we make in truncating the sum in Lemma
3 is negligible compared to the incoherent component, an observation which will
be helpful for showing that the coherence of the logical channel is suppressed. For
now, we will restrict our attention to connected logical strings with length ≤ ! + 2Z
for a constant Z . We will refer to these as “short logical strings.”

Definition 5. A “short logical string” is a nontrivial logical Pauli operator with no
topologically trivial closed loops and length ≤ ! + 2Z , where ! is the code size and
Z is our chosen cutoff constant.

3.5 Sum Over Partitions
In the previous section we restricted our attention to short logical strings, which
have length ≤ ! +2Z where ! is the code size and Z is a constant. We can go further
by characterizing the shape of a logical string, and arguing that logical strings with
shape meeting certain criteria give a dominant contribution to the logical channel.

67

Definition 6. Among short logical strings, we will speak of those with “typical
shape.” This means two things. First, supposing that the logical string in question
runs left to right across the code block, then the steps up and down along the
string are by one lattice spacing at a time. Furthermore, the string contains no
backtracking steps that move from right to left. Second, the individual steps up and
down are separated from each other by at least W

√
!, where W is a small constant we

may choose. This constant W will appear in the error term in many of our subsequent
estimates.

In Lemmas 9 and 10 in Appendix D, we prove that most short strings have a typical
shape. Among short strings with length ≤ ! + 2Z , the fraction of atypical strings
relative to the total number of logical strings of the same length is

Atypical strings
Total strings

=
8WZ2
√
!
+$

(
1
!

)
. (3.15)

Figure 3.3 illustrates a string with typical shape for some small W. Short logical
strings with typical shape are simple, which makes our analysis easier, particularly
when we discuss the sum over partitions.

Let’s revisit the sum over partitions for a fixed connected logical string. That is,
for a given logical string contributing to j̃/1 � , we wish to enumerate all the ways to
divide the / errors along the string into an uncorrectable error acting on the density
operator from the left and a correctable error acting from the right. This sum over
partitions of a fixed logical string is analogous to the sum we encountered when we
summed over syndromes in our analysis of the repetition code. In the case of the
repetition code of length =, there is just one length-= “logical string” to consider,
and summing over syndromes is equivalent to summing over all ways of choosing a
(correctable) error acting on the right that has weight at most (= − 1)/2 (where = is
odd).

In the toric code, although the sum over partitions is similar to the sum over syn-
dromes in the repetition code, there is a complication.

Definition 7. An “exceptional term” is a partition of a connected logical string L
such that the uncorrectable error has lower weight than the correctable error.

In some cases, depending on the geometry of the logical string, we will have some
number of exceptional terms. These exceptional terms complicate our analysis of
the logical channel. Fortunately, because we need only consider contributions to the

68

logical channel arising from short logical strings when the noise is weak enough, we
will be able to fully characterize the exceptional terms and show they are negligible.

How exceptional terms can occur is illustrated in figure 3.4. Here, for the toric code
with ! = 9, we consider the logical string of length 15 shown in figure 3.3, and we
have chosen a partition such that the uncorrectable error shown in red has weight
7, while the correctable error shown in blue has weight 8. Note that the minimal-
weight standard error associated with the error syndrome on the logical string has
weight 6 — it follows nearly the same path as the correctable error, but achieves a
lower weight than the correctable error by taking a “shortcut” across the blue notch
on the logical string. Another example of an exceptional term for this same logical
string is shown in figure 3.5, where this time the weight of the uncorrectable error
is 6, and the minimal-weight error has weight 5. Again, the minimal-weight error
takes a shortcut, avoiding the excursions up and down followed by the correctable
error.

For all these examples, the correctable error contains the qubits along the logical
string that make the furthest excursions up and down. This turns out to be a universal
rule, at least among the typical short logical strings — for exceptional terms, the
uncorrectable error has no support on the outermost steps along the string. In the
next lemma we count the number of exceptional terms and find that relative to the
total number of partitions of a typical short logical string, these exceptional terms
are exponentially unlikely in !.

Lemma 4. Fix a logical string of length ℓ ≤ ! + 2Z , where Z is a specified !-
independent constant, with a typical shape according to Definition 7. This means
that if the string runs left to right across the code block, it has steps up and down
by one lattice spacing at a time and the steps are separated by at least W

√
! for

some constant W. To keep the fraction of atypical strings small in equation (3.15),
we will choose W to be a sufficiently small constant. Now consider all the ways of
partitioning this typical logical string into a correctable error and an uncorrectable
error. Then the fraction of exceptional partitions relative to all partitions of this
string is bounded by

Exceptional
Total

< (Z + 1) exp(W2) (2)−W
√
! (1 +$ (1/!)) . (3.16)

Exceptional terms are exponentially rare for typical short logical strings and large
!.

69

Qubits
L

Figure 3.3: Here we have one logical string L of length 15 in an ! = 9 toric code.
Imagine the code size growing while Z remains fixed. The likely strings will be
those where the steps up and down are widely separated.

Qubits
OU

OC

Figure 3.4: Now we choose a subset of 7 of the errors in the logical string in figure
3.3. The uncorrectable error$* is in red and the correctable error$� is in blue. All
three errors along the “cap” in the top right appear on the correctable side. For this
reason, the correctable error has weight 8, which is higher than the uncorrectable
error with weight 7. We call this a weight-7 exceptional term.

70

Qubits
OU

OC

Figure 3.5: Again, one possible partition of the logical string in figure 3.3 is
illustrated. The uncorrectable error $* is in red, and the correctable error $� is
in blue. The correctable error includes all the errors along both the cap in the top
right and the bottommost cap of the logical string. For this reason, the correctable
error has weight 9, while the uncorrectable error has weight 6. Therefore, we call
this partition a weight-6 exceptional term.

Proof. Take a logical string of length ℓ ≤ ! + 2Z with typical shape. Each step
is separated from the others by at least W

√
! for some W. Now, consider taking a

subset of ℓ−1
2 of the qubits in the logical string. We would expect such a subset to

be correctable. If not, this partition is exceptional.

Choose a partition of a connected logical string and let $* be the uncorrectable
error and $� be the correctable error. $* and $� share a syndrome by definition.
Denote that syndrome by B. The decoding algorithm, which in our case is minimal-
weight decoding, applies some correction to this syndrome to return it to the code
space. Call this correction �B. �B is by definition a correctable error in the code,
and therefore, because we are using minimal-weight decoding, �B must have lower
weight than $* . The fact that we chose our code size ! to be odd ruled out the case
where the two might be equal. Now if the partition we are considering happens to
be exceptional, this means by definition that $� has higher weight than $* , and we
have

Exceptional Term ($*d $�) =⇒ |$� | > |$* | > |�B |. (3.17)

We will use this condition to bound the number of exceptional terms for a given

71

connected logical string.

What does it mean for $� to have higher weight than �B? For connected logical
strings of typical shape as in Definition 6, this happens only if on some subset
or subsets of the logical string, the correctable error $� contains errors on qubits
arranged in a “cap.” By this we mean a configuration of errors where the errors
form three edges of a rectangle. The minimal-weight decoder will choose the fourth
edge of the rectangle as part of the correction �B. This is illustrated in figure 3.4
and figure 3.5. If the connected logical string has length greater than !, then it has
steps up and down if it crosses the code block left to right. In every exceptional
term, the correctable error$� will contain the outermost qubits around some of the
steps, forming a cap.

Now that we have a simple necessary condition for an exceptional term, we will
bound the number of exceptional terms for each short logical string with a typical
shape according to Definition 6. Start with a logical string of length ℓ. Consider first
the partitions into ℓ+1

2 and ℓ−1
2 . Of course, those partitions for which the weight- ℓ+12

error is correctable will be exceptional. Every exceptional term like this will have
the property that the correctable error contains some number of “caps” where all
of the qubits around three sides of a rectangle are part of the correctable error. To
bound the number of exceptional terms, we will count the number of partitions with
this property.

Each partition of a weight-ℓ connected logical string into weight- ℓ+12 and ℓ−1
2 errors

is formed by choosing ℓ−1
2 out of the ℓ errors in the logical string. This is what we

mean by a partition. We want to count the number of ways of choosing these errors
such that the correctable error (of weight ℓ+12 because we are counting exceptional
terms) contains all the errors along a “cap.” This means that the subset of ℓ−1

2 errors
contains no errors along one or more of the “caps.” A typical short logical string
running left to right across the code consists of horizontal segments separated by
single steps up and down. The outermost of these steps form “caps.” The number of
such “caps” depends on the particular pattern of steps in the logical string. However,
we can bound the number of exceptional terms by counting the number of ways of
choosing no qubits along one of the horizontal segments of length W

√
!. This is

because every “cap” consists of an outermost horizontal segment combined with
the up and down steps on either side. This counting gives((ℓ − W√!)

ℓ−1
2

)
(3.18)

72

ways of choosing no qubits along a horizontal segment of length W
√
!. We want the

number of ways of choosing no qubits along at least one of the horizontal segments.
There are ≤ 2Z steps up and down along the logical string. Therefore, there are
≤ 2Z horizontal segments. We can use a union bound to write

Number of weight-
(
ℓ + 1

2
,
ℓ − 1

2

)
exceptional terms ≤ 2Z

(
ℓ − W

√
!

ℓ−1
2

)
. (3.19)

This is relative to the total number of
(
ℓ+1

2 ,
ℓ−1

2

)
partitions for our logical string of

length ℓ, which is

Total number of
(
ℓ + 1

2
,
ℓ − 1

2

)
partitions =

(
ℓ
ℓ−1

2

)
. (3.20)

We can expand the ratio of exceptional terms to the total using Stirling’s approxi-
mation. This gives

2Z
(
ℓ − W

√
!

ℓ−1
2

)
/
(
ℓ
ℓ−1

2

)
=

2Z
(
ℓ − W

√
!

)
! ℓ+12 !

ℓ!
(
ℓ+1

2 − W
√
!

)
!

≈ 2Z

√√√√ (ℓ + 1) (ℓ − W
√
!)

2ℓ
(
ℓ+1

2 − W
√
!

) (ℓ − W√!)ℓ−W√! (
ℓ+1

2

) ℓ+1
2

ℓℓ
(
ℓ+1

2 − W
√
!

) ℓ+1
2 −W

√
!
. (3.21)

This approximation holds up to corrections $ (1/ℓ). We can rewrite this as

= 2Z

√
(ℓ + 1) (ℓ − W

√
!)

ℓ(ℓ + 1 − 2W
√
!)

(
1 − W

√
!

ℓ

)ℓ (
1 − 2W

√
!

ℓ + 1

)− ℓ+12
(
ℓ − W

√
!

ℓ+1
2 − W

√
!

)−W√!
.

(3.22)
Next we square the (1 − W

√
!

ℓ
) term in order to combine terms:

= 2Z

√
(ℓ − W

√
!)

ℓ

©­­«
1 − 2W

√
!

ℓ
+

(
W
√
!

ℓ

)2

1 − 2W
√
!

ℓ+1

ª®®¬
ℓ/2 (

ℓ − W
√
!

ℓ+1
2 − W

√
!

)−W√!
. (3.23)

We upper bound the term inside the radical and also the term raised the power ℓ/2:

< 2Z

(
1 + W2

ℓ − 2W
√
ℓ

)ℓ/2 (
ℓ − W

√
!

ℓ+1
2 − W

√
!

)−W√!
. (3.24)

The second of the three terms is exponentially decaying to exp(W2/2). As long as
ℓ ≥ 4, we can bound it by (

1 + W2

ℓ − 2W
√
ℓ

)ℓ/2
< exp W2. (3.25)

73

Now, we bound ℓ−W!
(ℓ+1)/2−W! > 2 and assemble one term raised to the power ! and

another to the power (ℓ − !)/2:

< 2Z exp(W2)2−W
√
! . (3.26)

We chose some small value for W in Lemma 10, and then the number of exceptional
terms with a weight- ℓ−1

2 logical error on one side and a weight- ℓ+12 correctable error
on the other is exponentially small in !.

For the chosen connected logical string of weight ℓ, we have calculated the fraction
of exceptional terms among the partitions into ℓ−1

2 and ℓ+1
2 . We will also have

exceptional terms among the partitions into other weights, possibly all the way
down to partitions into weight !+12 and ℓ − !+1

2 . Above, we applied the condition
in equation (3.17) that for every exceptional term the correctable error must have
higher weight than the minimal-weight correction. If we apply this same method
to bound the number of exceptional terms among partitions into ℓ−3

2 and ℓ+3
2 , we

find that the correctable error must be at least 4 longer than the minimal-weight
correction. This means we want to count the number of configurations where at
least two of the “caps” are contained in the correctable error. This is clearly far
fewer than the number of configurations where one “cap” is contained. Therefore,
the ratio of exceptional terms to total partitions is bounded by the ratio we found for
partitions into ℓ−1

2 and ℓ+1
2 .

In the end we see that number of weight- ℓ−1
2 exceptional terms is exponentially small

in ! for fixed Z and further that the weight- ℓ−3
2 exceptional terms are exponentially

small in ! relative to the higher-weight exceptional terms, and so on. Then for large
!, exceptional terms are negligible. �

Lemma 4 allows us to approximate the sum over partitions for a typical, short
logical string L. Neglecting exceptional terms, the sum over partitions resembles
the calculation of what we called X in the repetition code in equations (2.86) and
(2.118). Let L have length ℓ. Each partition contributes

(sin \
2

)ℓ with a phase. The
sum over partitions is given by

∑
partitions

(Connected Part) = ©­«
ℓ−1

2∑
9=0
8ℓ (−1) 9

(
ℓ

9

) (
sin \

2

)ℓª®¬ (1 + n)
=

(
8

(
ℓ − 1
ℓ−1

2

) (
sin \

2

)ℓ)
(1 + n), (3.27)

74

where n is the error from exceptional terms, which is upper bounded

|n | < 4Z exp(W2)2−W
√
! . (3.28)

This is two times the expression in equation (3.26), because each exceptional term
contributes to the sum over partitions with the opposite sign relative to a non-
exceptional term.

3.6 The Disconnected Part
In the preceding subsections, we analyzed the coherent component of the logical
noise channel, expressed as a sum over many physical noise terms. So far we have
only considered the connected logical string associated with each coherent term. In
this subsection, we will analyze the disconnected errors in more detail, and describe
more rigorously how they affect the evaluation of the coherent terms in the logical
channel. In Section 3.4 we described how to decompose a contribution to j̃/1 � into
a connected piece and some number of disconnected pieces. The left and right hand
side of each coherent term can be expanded as the product of the errors contained
in the connected logical string and the errors outside of it; schematically,

(Conn!Disc! d Conn'Disc') = (Conn! d Conn') Disconnected. (3.29)

The factor “Disconnected” means the contribution to the coherent term from dis-
connected components that appeared in equation (3.7). The product of the two
(disjoint) factors Conn! and Conn' yields the connected logical string, with no
additional disjoint loops included. The connected factor includes sin \/2 cos \/2
for each qubit along the connected logical string. The disconnected factor includes
(cos \/2)2 on every qubit not in the connected logical string in addition to a sum
over all possible disconnected errors.

Fix a partition ($*d $�) of a short, typical logical string, and consider dressing it
with disconnected errors. We can distinguish two types of added errors: incoherent
and coherent. If the disconnected error is �! acting on the density operator from
the left, and �' acting from the right, then if a particular qubit is hit by the same
error contained in both �! and �', we say that the disconnected error acting on
that qubit is incoherent. If a particular qubit is hit by distinct errors contained in
�! and �', then the error is coherent. The product �!�' of the errors added on
right and left must be a non-identity stabilizer operator, i.e. a closed loop or a set of
disjoint closed loops. (Here, because we are investigating the encoded / errors in
the logical channel, only the /-type physical errors are considered.) The two types

75

A B

C D

Qubits

OU

OC

Figure 3.6: Here we have a partition ($*d $�) of a connected logical string adorned
in four different ways by added errors. The errors in red are the uncorrectable part,
$* , of the partition, while the errors in blue form the correctable part, $� . The
four added errors are labelled A, B, C, and D. In A, the same error has been added
to both $* and $� . In B and D, three errors are added to one side of the partition
and one to the other. This produces a minus sign. In C, two errors are added to each
side.

of added error — incoherent and coherent — are shown in figure 3.6, where (A) is
an incoherent-type added error and (B)-(D) are coherent-type.

Let us first treat the case of incoherent-type added errors, where �! = �' ≡ �.
These are the ones with the same disconnected error added to both operators in the
partition, for example (A) from figure 3.6. These terms do not change the phase of
the original partition, and they multiply the magnitude by (sin \/2)2< if < is the
weight of the error added on each side. The disconnected part contains cos2 \/2
on each qubit corresponding to no disconnected errors plus many configurations
of disconnected errors. The incoherent-type added errors on each qubit in the
disconnected part supply the sin2 \/2 term to give 1 on the qubits not contained in
the connected logical string. This reasoning applies to each incoherent-type added
error that does not change how the operators $* and $� are decoded. In other
words, if � is the disconnected error we add to $* and $� , we require that �$* is
an uncorrectable error.

We must be careful because in some cases the added incoherent-type errors can

76

change how the correctable and uncorrectable errors in the partition are decoded.
The added error can “flip” the uncorrectable error to a correctable one. This means
that the noise term that contributes to the logical j̃/1 � component is not (�$*d�$�)
as we would have expected but is instead (�$�d�$*). This term has the opposite
sign relative to the expected term. This is only possible when the added error � is
located very near the connected logical string and only for special partitions. We
prove in Lemma 11 in Appendix E that the contribution from these disconnected
terms is negligible.

What of the coherent-type added errors? Again, fix a partition of a connected logical
string. Let $* and $� be the correctable and uncorrectable errors. Now consider
choosing a stabilizer operator or a closed loop, ℓ that is disjoint from the connected
logical string. Let the length of the loop be |ℓ |. Now choose a subset of ? of the
qubits in the loop, and let the disconnected error �! act on these ? qubits from the
left, while the disconnected error �' acts on the remaining |ℓ | − ? qubits from the
right. Suppose further that the qubits in the loop and the partition are such that the
uncorrectable error $* plus the additional error �! remains uncorrectable. This
need not always be true; we will consider the case where the $*�! is correctable
in a moment.

Supposing that the disconnected error �! does not change the decoding, we can
perform a sum over all the ways of choosing the ? errors in �! from among the
|ℓ | errors in the loop. The number of ways of choosing ? errors is given by a
binomial coefficient, and the magnitude of each term is suppressed by (sin \/2) |ℓ |

relative to the original partition of the connected logical stringwithout any additional
disconnected errors added. The phase of each term depends, as always, on the
relative weight of the errors on the right and the left. The disconnected part
contributes a phase of (8)? (−8) |ℓ |−?, and ℓ is a closed loop so |ℓ | is even. The sum
yields

(connected part)
|ℓ |∑
?=0
(−1)? (−1) |ℓ |/2

(
|ℓ |
?

)
(sin \/2) |ℓ | = 0. (3.30)

When we sum over all ways of forming disconnected terms out of the original loop
ℓ, the sum is 0. This holds for any loop such that the disconnected part does not
change how the connected part is decoded.

In the examples we considered in figure 3.6, the additional disconnected errors did
not change how the connected part was decoded. This is the same condition we
encountered in the discussion of incoherent-type added errors. In certain cases the

77

error �! that we add to the $* side of the partition can be such that �!$* is a
correctable operator. This means the partition is “flipped” by the disconnected error.
We account for this case in Lemma 11 and prove that the contribution to the logical
noise from these special disconnected terms is negligible for short logical strings.

Using Lemma 11 we can neglect the added errors that change how the partition is
decoded. Then we can conclude that the net contribution from coherent-type added
errors is 0 and the incoherent-type added errors contribute a sin2 \/2 factor on each
qubit not in the connected logical string. This implies that the “Disconnected Sum”
term in equation (3.7) is equal to 1 plus a small correction. This implies that

j̃/1 � =

[∑
L

∑
partitions

($*d $�)
]
(1 + E) + High Weight, (3.31)

whereL is a connected, short, typical logical string, partitions refers to the partitions
of L denoted ($*d $�), and E is a noise term. The error term satisfies

E ≤ 16WZ2
√
!
+$ (1/!). (3.32)

This error term is from Lemma 11 and comes from the added errors that change how
the partition is decoded. The term “High Weight” in equation (3.31) is the error
from Lemma 3 corresponding to the contributions of logical strings with length
> ! + 2Z . We have not yet justified that this error is small relative to the short
strings. This is because we do not have a lower bound on the short strings. The
justification comes from our subsequent discussion of the incoherent logical noise
components.

3.7 Incoherent Sum
Now that we have simplified the sum for the coherent components of the logical
noise channel, factored out the disconnected pieces, and performed the sum over
syndromes for the connected pieces, we turn our attention to the incoherent logical
noise components. We start by making several of the same simplifications we made
in the coherent sum. Of the incoherent logical components (!̃0 d̃ !̃†0), we neglect
all the terms where !0 is a logical . operator or acts non-trivially on both encoded
qubits. We retain only the terms where !0 is a logical - or / on one of the two
encoded qubits. The reason is the same as for the coherent sum. The neglected
terms are much higher weight, such that the path counting excludes them. Then we
have the sum (

!̃0 d̃ !̃
†
0

)
=

∑
B,G,H

(
�B!0�Gd �

†
H!
†
0�
†
B

)
, (3.33)

78

where !0 is an - or / logical operator on one of the encoded qubits and identity on
the other. Again, we suppose that all the angles are equal to some fixed \ for each
single-qubit rotation. We will extend to general rotations in Lemma 8.

Again, we will divide each term into connected and disconnected pieces. In this dis-
cussion of the incoherent logical noise components, Definition 2 must be modified.
The noise terms that enter into the incoherent logical noise contain an uncorrectable
error on both sides of d. We will need to consider two logical strings in our
definition.

Definition 8. The “connected part” of a noise term (�B!0�Gd �H!0�() is a noise
term defined in the following way: let L1 equal !0�G with all topologically trivial
closed loops removed and L2 equal !0�H with all trivial closed loops removed.
Then let � denote the set of qubits ⊂ L1 ∪ L2 where either �B!0�G or �B!0�H, or
both, act non-trivially. The connected part of (�B!0�Gd �

†
H!
†
0�
†
(
) is given by

((�B!0�G) |� d (�†H!†0�†() |�), (3.34)

where |� denotes the restriction of an operator to the set of qubits �.

If the incoherent term is ($*d $′*), then this definition captures the set of qubits
in the support of $* or $′

*
that lie along the two logical strings formed by $*

and �B and $′* and �B pruned of all trivial closed loops. Figure 3.7 illustrates
the connected and disconnected part of a noise term that enters into the incoherent
logical noise. The connected part of the noise term in the figure features factors of
sin \/2 cos \/2 for the qubits that appear in exactly one of $* or $′

*
and sin2 \/2

for the qubits that appear in both $* and $′
*
. We can lower bound the connected

part of each incoherent noise term by (sin \/2 cos \/2) |$* |+|$ ′* |. This will be useful
later on when we sum over many possible choices for the operators $* and $′

*
.

Definition 9. The “disconnected part” of a noise term (�B!0�Gd �
†
H!
†
0�
†
B) is the

restriction of the noise term to the qubits not in the connected part. In Definition
8 we constructed the set �, which contained the qubits in the connected part. The
disconnected part is given by

((�B!0�G) |�� d (�†H!†0�†B) |��), (3.35)

where |�� denotes the restriction of an operator to the complement of the set �.

79

Disconnected Part

Connected Part
OU

O′
U

Es

Figure 3.7: A noise terms ($*d $′*) is shown with $* in red and $′
*
in blue. The

standard correction �B chosen by the minimal-weight decoder is drawn as a dotted
black line. The connected part of this noise term is signified by the orange qubits,
while the disconnected part contains the black qubits.

For the example in figure 3.7, the disconnected part features factors of sin \/2 cos \/2
for the six qubits along the trivial closed loop near the top of the figure and cos2 \/2
for the rest of the qubits. For a given connected part, we can imagine adding
disconnected errors to formmany different noise terms. The connected part contains
factors of sin \/2 cos \/2 for each qubit that appears in one of the uncorrectable
errors and sin2 \/2 for each qubit that appears in both errors. The disconnected
term includes cos2 \/2 for each qubit not in the connected part plus a sum over all
possible coherent and incoherent-type disconnected error. Just as in Section 3.6,
when the disconnected errors do not change how the connected term is decoded, the
incoherent-type errors give cos2 \/2 + sin2 \/2 = 1 on qubits not in the connected
part. The coherent-type disconnected errors, which form loops split between left
and right, sum to zero because of the alternating signs.

Just as in the case of the coherent logical noise components, some disconnected
errors will not be allowed because they change how the connected term is decoded.
We will set the disconnected part equal to 1 plus an error term that comes from
these disallowed disconnected errors. In Lemma 12 we justify this by proving that
the error term is small. This is analogous to Lemma 11, where we prove that the
disconnected part of the coherent logical noise components is equal to 1 up to small

80

corrections.

We want to continue to follow a similar argument to the one for the coherent terms.
The next step is restricting the set of connected terms we consider. We will break
up each error into connected and disconnected pieces and restrict ourselves to noise
terms with low-weight connected part, where the total weight of the connected part
is bounded by ! + 2Z + 1; here Z is the same !-independent cutoff as in the coherent
sum. Just as for the analysis of the coherent logical noise in Section 3.4, we will
require \ to scale like 1/! to justify this truncation of the noise terms contributing
to the connected part.

Lemma 5. Consider an incoherent logical noise component, say j̃/1/1 . We write
this logical noise component as a sum over physical noise terms ($*d $′*). Then
if | sin \ | < 1/!, we can truncate the sum to include only those noise terms where
|$* | + |$′* | ≤ ! + 2Z + 1, where Z is the same cutoff constant as in Lemma 3. In
other words,

j̃/1/1 =
∑

$* ,$
′
*

: |$* |+|$ ′* |≤!+2Z+1
($*d $′*) ×Disconnected ×

(
1 +$

(
(! sin \)2Z

))
.

(3.36)

Proof. We split each noise term into connected and disconnected parts. We show
in Lemma 12 that the disconnected part is decreasing as the weight of the connected
part increases. Moreover, the disconnected part is approximately equal to 1 for
connected terms with total weight ≤ ! + 2Z + 1. Therefore, we need only consider
the connected part as we proceed to truncate the sum and upper bound the error.

Let us denote the connected part of a noise terms that enter into the logical j̃/1/1

component by ($*d $′*). All such noise terms have the shape drawn in figure 3.8.
The connected part is supported on a series of loops. The loops are joined by the
minimal-weight correction. Denote the minimal-weight correction of $* and of
$′
*
by �B. Let F be the weight of$* and F′ the weight of$′

*
. Suppose F ≤ F′. If

not, then swap $* and $′
*
in what follows. Let �B$* = L. Then L is a connected

/1 logical string with length at most 2F − 1. The number of such logical strings
is upper bounded by !2F−! using our bound on the number of logical strings in
equation (3.10).

The number of ways of choosing a weight F operator $* as a subset of L is upper
bounded by 22F−2. Now that$* is fixed, the number ofways of choosing the operator

81

OU

O′
U

Es

Figure 3.8: This is a connected incoherent noise term, ($*d $′*). The operator$*
is drawn with the solid blue line. The operator $′

*
is drawn with the dashed blue

line. The standard correction �B for the syndrome shared by $* and $′
*
is drawn

with the solid red line. Each connected incoherent term is a configuration of loops
where each loop is formed by two segments with shared endpoints, one segment
from $* and one from $′

*
. The operator �B links together the loops like beads on

a string, so that $*�B and $′*�B are both continuous logical strings spanning the
code.

$′
*
is upper bounded by$ (!F′−F). This is because the lowest-weight operator with

the same syndrome and logical action has weight ≤ F. Then $′
*
consists of this

lowest-weight operator combined with a number of additional deviations like we
considered to derive equation (3.10). (Here we are neglecting a factor which is
polynomial in F and F′; bounding the exponential dependence on F′ − F will
suffice for what follows.) All together we have the following upper bound on the
number of noise terms with fixed F and F′:

≤ 22F−2!2F−!!F
′−F . (3.37)

Each of these terms has magnitude at most (sin \/2)F+F′, which is positive because
F + F′ is even. As in Lemma 3, we will truncate the sum and keep only those
connected noise terms with F + F′ ≤ ! + 2Z + 1. If we let F + F′ = Ftotal, for each
Ftotal there are several combinations of F and F′ with the same total. Because F
and F′must be > (! +1)/2, there are less than Ftotal− ! combinations. We perform

82

a sum over Ftotal from ! + 2Z + 1 up to the maximum weight. Therefore, if we let n
denote the contribution from the higher weight connected terms to j̃/1/1 , then n is
bounded by

n ≤ $ ((2 sin(\/2))!+2Z+1!2Z+2). (3.38)

Herewe have estimated the sumoverFtotal using the samemethod as in the derivation
of equation (3.14). We will compare this error n to the contribution from the lowest
weight noise terms. These terms have F = F′ = (! + 1)/2, and contribute at least
b, where

b = ! (sin \)!+1. (3.39)

Then the relative error associated with our truncation is given by

n

b
≤ $ ((! sin \)2Z). (3.40)

We have neglected a polynomial factor in ! in our counting of noise terms. Never-
theless, as long as ! | sin \ | < 1, the relative error is exponentially small in : , and
the higher-weight connected terms are negligible.

�

3.8 The Incoherent Sum Over Strings
The connected part of the incoherent components is not as simply expressed as
a sum over strings as the coherent components because each uncorrectable error
�B!0�G can generally be completed to many different logical strings by multiplying
by different correctable errors. Nevertheless, we can rewrite the sum in a similar
way. This will form our primary tool for comparing coherent and incoherent logical
noise components. We will write a sum over each logical string with logical action
!0. For each string, we will sum over different ways of choosing the uncorrectable
subset $* . We will restrict the subsets we consider for each logical string in
order to control the over-counting factor that we will describe shortly. Then for each
operator$* , wewill sum over all possible uncorrectable operators$′

*
with the same

syndrome and logical action. Fix a connected logical string L with length ℓ and
choose an uncorrectable subset of the logical string $* with weight F. We impose
two constraints on $* : first that F ≥ (ℓ + 1)/2 and second that the complement of
$* has the same weight as the minimal-weight correction �B. The complement of
$* is $*L, which we will denote $� . Note that the name $� is chosen in analogy
to the way the errors were labelled in the coherent noise terms, but $� is not a part
of the incoherent noise term, which is notated ($*d $′*). Now that $* is fixed,

83

choose a second uncorrectable error $′
*
with the same syndrome and with weight

F′. This will produce every incoherent connected term ($*d $′*). However, each
uncorrectable error$* will appear many times as a subset of many different logical
strings. This is the over-counting we mentioned above.

Each operator $* can be completed to a logical string in many ways. Because of
the constraints we imposed on the subset $* , the complement, which we called
$� , must have the same weight as the minimal-weight correction to $* , denoted
�B. Let {$′�} be the set of possible complements. Then each possible complement
$′
�
∈ {$′

�
} defines a logical string$*$′� , whichwill appear in the sum over strings.

For each operator $* in the sum over strings, we need to divide by the number of
complements $′

�
with weight |�B |. Each incoherent logical noise component can

be written as a sum over connected logical strings L times a disconnected factor.
This form of the sum will allow us to compare with equation (3.7). We sum over
logical strings, and for each logical string we sum over possible choices of $* and
$′
*
. We divide by the over-counting factor for each $* . This gives

j̃/1/1 =
∑
L

∑
$*⊂L

1
|{$′

�
}|

∑
$ ′
*

($*d $′*) × Disconnected ×
(
1 +$

(
(! sin \)2Z

))
,

(3.41)
where

|L| = ℓ, |$* | ≥
ℓ + 1

2
, |$′� | = |�B |. (3.42)

To reiterate, equation (3.41) expresses an incoherent logical noise component as a
sum over connected logical strings. For each string L with weight ℓ, we sum over
all uncorrectable subsets $* of weight ≥ (ℓ + 1)/2 such that the complement $�
has weight equal to the minimal-weight correction of $* , namely �B. For each $*
we must divide by the number of correctable errors$′

�
with the same syndrome and

weight as$� in order to cancel the over-counting. {$′
�
} is the set of such operators,

and |{$′
�
}| is its cardinality. Finally, we sum over all uncorrectable operators $′

*

with the same syndrome to produce the complete set of incoherent terms. We will
prove the following lemma, which provides a lower bound on the contribution of
each logical string to the incoherent logical noise component. We will apply this
lemma to lower bound the incoherent logical noise strength in terms of the coherent
logical noise strength.

Lemma 6. As long as | sin \ | < 1/!, we can apply Lemma 5. This means that in
equation (3.41) we can restrict to the case where |$* | + |$′* | ≤ ! + 2Z + 1. Let us
also suppose that |$* | = |$′* |. This assumption will be justified by Lemma 7. Then

84

we can pick a connected logical string L with |L| = ℓ such that ℓ ≤ ! + 2Z . L is
a /1 logical string if we are calculating the j̃/1/1 logical noise component. $* is
subset of L such that$* is corrected to a logical /1 operator and |$* | = (ℓ +1)/2.
$′
*
is an operator with the same weight, syndrome, and logical action as $* . For

each fixed L with length ℓ ≤ ! + 2Z , the following holds:∑
$*

1
|{$′

�
}|

∑
$ ′
*

1 ≥
∑
$*

1. (3.43)

Proof. For each short logical string L with length ℓ, we partition it into an uncor-
rectable operator $* of weight F = (ℓ + 1)/2 and a correctable operator $� of
length |$� | = |�B |. Then we consider the alternative uncorrectable and correctable
paths, $′

*
and $′

�
, with weight F and |�B |, respectively. The logical string L is

short, so we can use Lemmas 9 and 10. Say the logical string runs right to left across
the code. We observe by studying figure 3.10 that we have multiple possible strings
of the same weight exactly when both a vertical error and some number of adjacent
horizontal errors are contained in either the correctable or uncorrectable part.

Suppose that for some partition consisting of an uncorrectable operator $ (1)
*

and
a correctable operator $ (1)

�
, denote the operators with the same weight, syndrome,

and logical action by $′ (1)
*

and $′ (1)
�

. Suppose |{$′ (1)
�
}| > |{$′ (1)

*
}|. We construct

a new operator $ (2)
*

by exchanging all but one of the errors in $ (1)
*

with the errors
in $ (1)

�
, so that $ (2)

*
is equal $ (1)

�
plus one additional error. This is shown in figure

3.9, where we have kept the error on the farthest left vertical segment fixed and
flipped the rest relative to the term in figure 3.10. For every$* there are F possible
mappings, one for each of the F choices of the single-qubit error that remains fixed.
In the same way, every $* is mapped onto by F different mappings acting on F
other operators with the same logical action as $* . Then there exists a convention
that selects exactly one partner for each $* .

We assumed that for the original $ (1)
*

|{$′ (1)
�
}| > |{$′ (1)

*
}|. (3.44)

The mapping we described constructs a partner $ (2)
*

such that

|{$′ (2)
*
}| ≥ |{$′ (1)

�
}| > |{$′ (1)

*
}| ≥ |{$′ (2)

�
}|. (3.45)

85

Qubits
OU
OC

O′
U

O′
C

Figure 3.9: A partition of a length-13 logical string is shown in a toric code with
! = 9. The operator $* is shown in solid red. The operator $� is shown in
solid blue. The alternative operators with the same weight, syndrome, and logical
action, which we denoted$′

*
and$′

�
, are drawn with dotted lines. For this partition

|{$′
*
}| = 2 and |{$′

�
}| = 4.

Then for each pair $ (1)
*

and $ (2)
*

, we can lower bound the contribution to the
incoherent logical noise using

|{$′ (1)
*
}|

|{$′ (1)
�
}|
+
|{$′ (2)

*
}|

|{$′ (2)
�
}|

≥
|{$′ (1)

*
}|

|{$′ (1)
�
}|
+
|{$′ (1)

�
}|

|{$′ (1)
*
}|

=
|{$′ (1)

*
}|2 + |{$′ (1)

�
}|2

|{$′ (1)
*
}| |{$′ (1)

�
}|

≥ 2. (3.46)

Finally, we apply the lower bound to the entire sum over $* to conclude∑
$*

|{$′
*
}|

|{$′
�
}| ≥

∑
$*

1. (3.47)

86

Qubits
OU
OC

O′
U

O′
C

Figure 3.10: This is a partner of the partition shown in figure 3.9. It is another
partition of the same logical string, and the errors in $* and $� are interchanged
except for one qubit. In this case that qubit is the one that lies on the farthest left
vertical segment. The error on that qubit is part of$* in both partitions. Once again,
the operator $* is in red and the operator $� is in blue. The alternative operators
with the same weight, syndrome, and logical action are given by the dashed lines.
For this partition |{$′

*
}| = 12 and |{$′

�
}| = 2.

The number of terms in the sum over $* is at most
(ℓ
F

)
, where ℓ is the length of the

logical string L. For typical, short logical strings the binomial coefficient will be
the number of terms in the sum over $* up to a small correction.

�

3.9 Noise Terms with Mismatched Weight
We have already shown that we can neglect the high-weight noise terms in the
incoherent logical noise components, and we can also write the incoherent logical
noise components as a sum over logical strings. Next we will show that among
the low-weight noise terms, we may neglect the terms with different weight errors
on each side of d. This is crucial to our proof that the coherence of the logical
noise is suppressed. We will construct a lower bound on the incoherent logical
noise components and an upper bound on the coherent logical noise components.
The noise terms with mismatched weight enter with a phase of −1 whenever the

87

difference between the weights on left and right = 2 mod 4. A large contribution
from noise terms with mismatched weight could spoil our lower bound on the
incoherent logical noise. Fortunately, no such contribution occurs.

Lemma 7. If | sin \ | < 1/!, then the incoherent logical noise component j̃/1/1 can
be written

j̃/1/1 ≥
∑
L

∑
$*

1
|{$′

�
}|

∑
$ ′
*

($*d $′*) × Disconnected ×
(
1 +$

(
! sin \)2Z

))
.

(3.48)
The sum over L includes all typical, short logical strings with length ℓ such that
ℓ ≤ ! + 2Z . The sum over $* includes uncorrectable subsets of L with weight
(ℓ + 1)/2 such that the complement $� has minimal weight. The sum over $′

*
has

the same syndrome and the same weight as$* . The error term comes from the high
weight terms we neglected in Lemma 5.

Proof. Using Lemma 5 we can truncate the sum over noise terms in the incoherent
logical noise component j̃/1/1 to include only those noise terms with total weight
≤ ! + 2Z + 1. In doing so we make an error that is exponentially small in the cutoff
Z , assuming that the single-qubit angle of rotation \ satisfies | sin \ | < 1/!. We will
use equation (3.41) to express the incoherent logical noise components as a sum
over strings. We will begin by reviewing how we construct that form of the sum.

We denote the weight of $* by F and $′
*
by F′. We upper bound the mismatched-

weight terms where F ≠ F′ by letting F > F′ and multiplying by two. As in
equation (3.41), we can generate the complete set of connected incoherent terms
with fixed F and F′ by summing over connected logical strings L. Denote the
length of the logical string by |L| = ℓ. To produce the incoherent terms with fixed
F + F′, it will suffice to sum over logical strings with ℓ < F + F′. We already
restricted to low-weight terms, so F + F′ ≤ ! + 2Z + 1. For each logical string,
we sum over the uncorrectable subsets $* with weight F. We will also require
that the complement of $* , which we denoted $� , has minimal weight. This is to
control the over-counting of each incoherent term ($*d $′*). Then for each$* , we
sum over the operators $′

*
with weight F′ that have the same syndrome and logical

action as $* . As discussed in Section 3.8, we must also divide by an over-counting
factor 1/|{$�}| that is a function of $* and equals one over the number of times
$* appears in the sum over L. The contribution to the incoherent logical noise is

88

lower bounded by

Contribution from string L ≥
∑
$*

|{$′
*
}|

|{$′
�
}|

(
sin \

2

)F+F′
. (3.49)

The inequality comes from the cosine factors. If the operators$* and$′
*
act on the

same set of qubits, then we have (sin \/2)2F with no cosine factors in the connected
part. The lower bound corresponds to the case where $* and $′

*
act on disjoint

sets of qubits, and we pick up a cosine factor on each qubit in the connected part.
We also have an upper bound:

Contribution from string L ≤
∑
$*

|{$′
*
}|

|{$′
�
}| (sin(\/2))F+F′ . (3.50)

In this bound, we have (sin(\/2))F+F′. This corresponds to the case when $* and
$′
*
act on the same qubits, yielding no cosine terms.

Consider first the terms with F = F′. These are generated from logical strings of
length ℓ ≤ 2F − 1. Some strings L with length ℓ such that ! ≤ ℓ ≤ ! + 2Z have
typical shape and some do not. We will prove first that the contribution from a given
string of atypical shape is no greater than that of a string of typical shape, in fact
it will be less. We will conclude that we can safely neglect the contribution from
strings of atypical shape (because there are fewer such strings). This is the same
simplification we made in our discussion of the coherent logical noise components
in Section 3.5.

We require that $* is an uncorrectable error, so we cannot choose any subset of F
qubits in L. We ignore the subsets that correspond to exceptional partitions like
we discussed in Section 3.5. Now, if we have two connected logical strings of the
same length, one with a typical shape and one with an atypical shape, we want to
compare the terms with F = F′. The first thing we notice is that exceptional terms
are exponentially unlikely for the string with typical shape, while for the atypical
string, exceptional terms may be a significant fraction of the total partitions. This
tells us that in the sum over$* there are many more terms for the typical string than
for the atypical string. We have argued about the number of terms in the sum in
equations (3.49) and (3.50), but we must also consider the magnitude of each term,
which is given by the ratio of |{$′

*
}| over |{$′

�
}|.

We must argue that after summing the ratio of {$′
*
} and {$′

*
} over $* , the result

is less for an atypical string than for a typical string. {$′
*
} here is the set of

89

uncorrectable operators with the same weight and syndrome as $* and {$′
�
} is the

set of correctable weight-ℓ − F operators with the same syndrome. Suppose the
logical string runs left to right across the code. The set {$′

*
} contains more than

one element whenever $* contains a set of contiguous qubits around one or more
of the vertical steps in the logical string. This was discussed in detail in Section
3.8. |{$′

*
}| and |{$′

�
}| are large when either $* or $� contain contiguous sets

of qubits around the vertical steps. The typical logical string has at least W
√
!

horizontal steps around each of the vertical steps. The atypical string does not. This
means that the typical string has more possible sets of qubits around each vertical
step that make |{$′

*
}| or |{$′

�
}| large. Therefore, |{$′

*
}| and |{$′

�
}| will tend to

be larger for the typical string. The ratio of |{$′
*
}| to |{$′

�
}| is what determines the

contribution to the incoherent logical noise. In Lemma 6 we showed how we can
match up terms such that for each $* satisfying |{$′

*
}|/|{$′

�
}| = 2, the partner

has |{$′
*
}|/|{$′

�
}| ≥ 1/2. If 2 is large, then 2 + 1

2
� 2. It follows that because

the typical string has more operators $* in the sum and the |{$′
*
}|/|{$′

�
}| factors

tend to be larger, the contribution to the incoherent logical noise is smaller for an
atypical string than the contribution from a typical string. When we combine this
fact with the fact that the atypical strings represent an small minority, this means we
can neglect the atypical strings among the F = F′ terms in the incoherent logical
noise. The error is given by Lemma 10.

Now, consider the mismatched-weight terms that are the subject of this lemma. Fix
F + F′ and suppose F > F′. For each L we can construct a number of incoherent
terms with mismatched weight depending on the length and shape ofL. Let |L| = ℓ.
Once again $* is an uncorrectable subset of the logical string L with weight F.
Then for each $* we have the possibility that there may exist an operator $′

*
with

the same syndrome as $* and lower weight. We sum over the set of $* such that
for each $* there exists an $′

*
with weight F′. If we sum over all logical strings

of length < F + F′, we produce every connected incoherent term with |$* | = F
and |$′

*
| = F′. We will proceed by fixing a logical string and upper bounding the

sum over F of the noise terms derived from this logical string with F + F′ fixed. In
this sum the terms will alternate sign as F increases. The terms with F = F′ have
a positive sign. As we seek to bound the contribution of these mismatched-weight
terms to the incoherent logical noise, there are two things we need to bound. First,
we must understand the combinatorics that govern the number of operators $* that
permit lower-weight$′

*
. Second, we must bound the factor |{$′

*
}|/|{$′

�
}| for each

such $* .

90

Suppose that the logical string L has a typical shape. To be concrete, consider the
set of operators $* with weight F = (ℓ + 3)/2. If there exist lower-weight $′

*
,

then $* must contain all of the qubits around a “cap,” which is similar condition
to the one we discussed in Section 3.5. Each cap has width at least W

√
! because

the string is typical. This means that such $* are exponentially few relative to the
total set of uncorrectable $* with weight F. This is the same calculation as in
Lemma 4. We compare these terms to the terms with |$* | = (ℓ + 1)/2 = |$′

*
|.

There are exponentially more of these terms where |$* | = |$′* |. This means that
in equations (3.49) and (3.50) the sum over $* contains exponentially more terms
when F = F′ for a typical logical string. The summand also tends to be less for the
F > F′ terms. The argument is similar to the one we used earlier when we were
discussing the F = F′ terms from typical and atypical strings. |{$′

*
}| is large when

$* contains many qubits around several of the different steps up and down along the
logical string. In this case the terms with F > F′ feature operators $* that contain
at least one of the “caps” along the logical string. This removes at least two of the
vertical steps. These steps cannot contribute to |{$′

*
}|. Then by the argument we

used above, the ratio |{$′
*
}|/|{$′

�
}| tends to be less for the F > F′ terms relative to

the F = F′. We chose F = (ℓ + 3)/2, but we could have chosen any F > (ℓ + 1)/2
and any F′ < F. We would find that there are 2W

√
! (F−F′) fewer of the mismatched

weight terms. We have a factor of 2W
√
! for each cap contained in $* . We conclude

that the mismatched-weight terms are negligible for strings of typical shape.

Finally, consider a logical string L with an atypical shape. Fix F + F′. We already
neglected the contribution of atypical strings to the F = F′ terms. We seek a
bound on the contribution from the terms with F > F′ for atypical strings. We
will compare two sets of terms for fixed L with length ℓ. On the one hand, take
the terms with F = F1 for some F1 > (ℓ − 1)/2 and F′ = F2 < F1. On the other
hand, take the terms with F = F1 + 1 and F′ = F2 − 1. We will show that the
latter set of terms contribute less than the former. This will tell us that the sum over
mismatched-weight terms for the fixed string L is bounded by the contribution from
terms with |$* | = |$′* |.

When $′
*
has lower weight than $* , $* must contain all the qubits along a cap. If

$* − $′* = 2 9 , then $* must contain at caps with total height at least 9 . Because
the logical string L has an atypical shape, these caps may have width one or height
greater than one. It will not be exponentially unlikely that all qubits around a small
cap are contained in $* . For the terms with F = F1 and F′ = F2, relative to $′* ,

91

$* contains all the qubits around F1−F2 of the caps. These terms will be a fraction
of the

(ℓ
F1

)
subsets of F1 qubits in the logical string L. We compare these terms to

the ones with F = F1 + 1 and F′ = F2 − 1 keeping our logical string L fixed. These
terms include all the qubits around an additional cap. On one of the caps, instead of
containing at least one and less than all of the qubits, $* contains all of the qubits
around that cap. This stricter condition of $* means that the fraction of the total(ℓ
F1+1

)
weight F1 subsets of L that feature an $′

*
operator with weight F2 − 1 is

smaller than the fraction of the total
(ℓ
F1

)
weight F1 subsets of L that feature an $′

*

operator with weight F2. This means that in equations (3.49) and (3.50) in the sum
over $* for our fixed logical string, the number of possible $* at a given weight
F > (ℓ + 1)/2 is given by a binomial coefficient times a function that decreases
monotonically as F increases. As for the summand |{$′

*
}|/|{$′

*
}|, we apply the

same reasoning as above. For each cap contained in $* , there are fewer vertical
steps to create many operators $′

*
. This implies that the summand will tend to be

smaller as F increases. The sum over the different values of F has the form

ℓ∑
F=2

(−1)F 5 (F)
(
ℓ

F

)
<

(
ℓ

2

)
, (3.51)

where 2 ≥ (; + 1)/2 and 5 is a monotonically decreasing function. The inequality
in equation (3.51) is proven by pairing the adjacent terms in the sum, positive and
negative, to produce small positive contributions bounded by the contributions in the
case where 5 (F) = 1 for all F. It follows that the sum over the mismatched-weight
terms derived from the logical string L is positive, and moreover is bounded by the
F = F′ terms. We already argued that the F = F′ terms from atypical strings are
negligible relative to those terms from typical strings. Finally, we can lower bound
the incoherent logical noise component by neglecting the atypical strings and for
the typical strings, neglecting the mismatched-weight terms. This yields equation
(3.48). �

We are left with only the incoherent terms that have the sameweight of uncorrectable
error on each side and the weight is ≤ !+2Z+1

2 . These terms all have the same phase
+1, so the incoherent terms with different weights will add constructively. This
gives us lower bounds on the logical incoherent noise strength. Each logical string
with length ℓ ≤ ! + 2Z contributes at least

(ℓ
ℓ+1

2

) (sin \
2

)ℓ+1. When ℓ is much larger
than the minimum logical string length, !, the number of logical strings is given by
equation (3.8).

92

In particular, the incoherent logical noise components must be larger than the
lowest order term. This at last completes the argument begun in Section 3.4 about
neglecting the contribution to the coherent logical noise from connected logical
strings with length > ! + 2Z for a cut-off constant Z . In Lemma 3 we proved that
the contribution from long logical strings is upper bounded by U!2Z+1 | sin \ |!+2Z ,
where U is (1 − ! | sin \ |)−1. This bound is exponentially small in Z relative to the
lowest order incoherent logical noise component, !

(!
!+1

2

) (sin \
2

)!+1. Our aim is to
compare the logical coherent and incoherent noise components, and we have shown
that the contribution to the coherent logical noise from long strings is small relative
to the incoherent logical noise components. Therefore, we can safely neglect the
long connected logical strings. The same applies for the truncation error in Lemma
5. The truncation error is negligible relative to the lowest order incoherent terms
for large enough Z .

3.10 More General Rotation Angles
In Sections 3.4 and 3.7, we simplified the problem by assuming that all qubits are
rotated by the same single-qubit unitary rotation. Now we want to extend our result
to more general single-qubit rotations. We will allow the magnitude of the rotation
angle to vary from qubit to qubit and will also allow different axes of rotation for
different qubits. Here we will assume that each rotation axis is contained in the --/
plane. Physical . errors are treated in Appendix G, where we prove that rotations
partly along the . -axis produce less coherent logical noise channels than those
arising from rotations along axes in the --/ plane.

The idea of the proof is the same as that of Lemma 2. We will consider the coherent
and incoherent logical noise components as functions of individual qubit rotation
angles and prove that the coherent component ismaximized relative to the incoherent
component when all rotation angles are equal.

Lemma 8. Consider the toric code with qubits subject to single-qubit rotations,
where each rotation axis lies in the --/ plane, and both the rotation axis and angle
of rotation may vary from qubit to qubit. The bound on the coherence of the logical
noise channel proved in Theorem 6 continues to apply if the rotations are sufficiently
close to uniform; that is, provided that each rotation axis and angle deviates from a
fixed constant value within a bounded region.

Proof. Suppose at first that all rotations are about the /-axis and denote the rotation
angle for the 8th qubit by \8. Each logical coherent or incoherent component is

93

a sum of physical noise terms, which are functions of all the angles \8. We will
refer to the coherent or incoherent logical noise strength; by this we mean the sum
of norms squared of the off-diagonal or diagonal components of the chi matrix for
the logical noise channel. We are interested in the coherence of the logical noise
channel, that is, the relative magnitude of the coherent and incoherent logical noise
strength. Our approachwill be to fix the coherent logical noise strength and calculate
how the incoherent logical noise strength varies as we change rotation angles while
remaining in the submanifold with constant coherent logical noise strength.

We begin at a point where all single-qubit rotation angles are equal. Suppose that
this rotation angle is > 0. The proof will be similar if the angle is < 0. We will
perturb away from this point, moving along the submanifold with fixed coherent
logical noise strength. These perturbations can be built out of small elementary
steps, in which two qubits, 8 and 9 , are selected. We require that \8 ≥ \ 9 . Then the
elementary step consists of increasing \8 by some amount and decreasing \ 9 such
that we remain on the submanifold with constant coherent logical noise strength. We
will prove that such elementary steps increase the incoherent logical noise strength.
Therefore, we will conclude that the coherence of the logical noise is maximized
when all single-qubit rotation angles are equal. Our calculation will be limited to
configurations of angles not too far from the point where all angles are equal.

In Lemmas 3 and 5, we proved that when all the rotation angles are equal and
satisfy | sin \ | < 1/!, the logical noise is dominated by the contributions of the
low-weight connected terms. We bounded the absolute magnitude of the sum over
high-weight connected terms. These high-weight terms were negligible relative
to the low-weight connected terms in the incoherent logical noise. If the rotation
angles are allowed to differ, so long as all the angles \8 satisfy | sin \8 | < 1/!, our
upper bound on the absolute magnitude of the error from the high-weight terms
continues to hold. We require that this error is negligible relative to the low-weight
terms we keep in the incoherent logical noise components. This was true when all
angles were equal and will continue to be true for a wide range of configurations;
only certain edge cases will violate this condition. For instance, one such edge case
arises if all the rotation angles are 0 except for the qubits along a long logical string
with a shape such that it contains no low-weight uncorrectable subsets.

We previously defined the connected and disconnected parts of a noise term (Defi-
nitions 2, 3, 8, and 9). As we described in Section 3.6 and Lemmas 11 and 12, the
disconnected part has a value of 1 up to corrections. These corrections are small

94

for low-weight connected terms when all rotation angles are equal. If the angles
are different, we can still apply our analysis, so long as the absolute error from the
corrections is small relative to the low-weight connected terms in the incoherent
logical noise components. This holds in a region around the point where all angles
are equal. Hence, in this proof we will compare only the connected terms in the
coherent and incoherent logical noise components with the understanding that the
error terms we are neglecting are small relative to the low-weight connected terms
we have kept.

We can build any general perturbation out of an elementary (non-infinitesimal)
perturbation where we increase one rotation angle \8 and decrease a second angle,
\ 9 , such that the connected contribution to the coherent logical noise strength is
unchanged. The perturbation will look different depending on how the two qubits
are positioned. If the qubits 8 and 9 are adjacent to each other and aligned in the
correct direction, they will appear together in many short logical strings. Otherwise,
8 and 9 will not appear together in short logical strings. Throughout this section, we
will approximate sin \8/2 ≈ \8/2 to simplify the equations. We will incur a relative
error of \2

8
/4, that will always be small, since we have assumed that | sin \8 | < 1/!

for every 8. Then the contribution to the coherent logical noise strength from the
low-weight connected terms as a function of \8 and \ 9 is

coherent = W0 + W1(\8 + \ 9) + W2\8\ 9 . (3.52)

The coherent logical noise strength is a sum of norms squared and is therefore
positive. This implies that W0 > 0. Moreover, the sum over partitions has the same
phase for every short logical string as in equation (3.27). This means that each
logical string makes a positive contribution to the noise strength. Therefore, W1 and
W2 are both non-negative. The relative size of W1 and W2 depends on how close the
two chosen qubits 8 and 9 are. When 8 and 9 are both along the same horizontal
or vertical line, many low-weight logical strings will contain both qubits. These
strings contribute to W2, so that the W2 term may be comparable to the W1 term. On
the other hand, if qubits 8 and 9 are not along a horizontal or vertical line, then
none of the minimal-weight logical strings contain both qubits. Also, for any fixed
length ℓ ≤ ! + 2Z , the number of logical strings of length ℓ that contain both qubits
8 and 9 is negligible relative to the number of length ℓ logical strings that contain
qubit 8 and not qubit 9 . In this case the W2 term is negligible relative to the W1 term.
In either case, we can write down the perturbation that leaves the coherent logical
noise strength unchanged. Let \8 = 28\ and \ 9 = 2 9\ for some \, and then we will

95

solve for 2 9 such that the connected coherent sum is constant. This yields

2 9 =
(2 − 28)W1 + W2\

W1 + 28W2\
, (3.53)

so that when W2 = 0, we have 2 9 = 2 − 28.

We can expand the incoherent logical noise strength in the same way. The noise
terms that enter into the incoherent logical noise have the form ($*d $′*). As we
expand in the angles \8 and \ 9 , we have cases where the qubits 8 and 9 are contained
in neither, one of, or both $* and $′

*
:

incoherent = X0+X1(\2
8 +\2

9)+X2\
2
8 \

2
9 +X3(\8+\ 9)+X4\8\ 9 +X5(\2

8 \ 9 +\8\2
9). (3.54)

ByLemma5 the contributions of high-weight logical strings to the logical incoherent
noise components are negligible. The contributions for each short logical string are
positive due to Lemma 7. If we fix a short logical string that contains both qubit
8 and qubit 9 and require that $* and $′

*
both contain 8 and 9 or one of 8 and 9 ,

then the same proof as in Lemma 7 implies that these contributions are positive.
Therefore, the coefficients X1 and X2 are positive when all rotation angles are equal.
We can now substitute the perturbation from equation (3.53) into each of the terms
in equation (3.54). We compute the perturbed value of the incoherent logical noise
strength and subtract the initial value when all the angles of rotation are equal. Let
incoherent(0) denote the value of the incoherent term in equation (3.54) with 28 = 0.
The difference between the perturbed and initial values is

incoherent(28) − incoherent(1)

= X1
(28 − 1)2(2W2

1\
2 + 2(2 + 28)W1W2\

3 + (22
8
+ 228 + 1)W2

2\
4)

(W1 + 28W2\)2

− X2
(28 − 1)2

(
W2

1\
4(2 − (28 − 1)2) + 228W1W2\

5)
(W1 + 28W2\)2

+ X3
(28 − 1)2(W1W2\

2 + 28W2
2\

3)
(W1 + 28W2\)2

− X4
(28 − 1)2(W2

1\
2 + 28W1W2\

3)
(W1 + 28W2\)2

− X5
(28 − 1)2(2W2

1\
3 + 22

8
W1W2\

4 − 28W2
2\

5)
(W1 + 28W2\)2

. (3.55)

We see that the X1 term is positive for all 28 > 1. Wewill show that the positive terms
are larger than the other terms for all 28 > 1. Each term has the same denominator

96

and contains a factor of (28 − 1)2 in the numerator. This means immediately that
the first derivative with respect to 28 vanishes at the point 28 = 1. We pull out the
shared factors of (28−1)2

(W1+28W2\)2
and rearrange terms in equation (3.55):

=
(28 − 1)2
(W1 + 28W2\)2

×(
W2

1 (2\
2X1 − 2\4X2 − \2X4 − 2\3X5)

+ W1W2(4\3X1 + \2X3)
+ W1W2(228\3X1 − 228\5X2 − 28\3X4)
+ W2

2 (228\
4X1 + 28\3X3 + 28\5X5)

+ W2
1 (28 − 1)2\4X2 + W2

2 (2
2
8 + 1)\4X1 − W1W22

2
8 \

4X5

)
. (3.56)

If the conditions,

2\2X1 > 2\4X2 + \2 |X4 | + 2\3 |X5 |,
4\3X1 > \

2 |X3 |,
\4X1 > \

3 |X3 | + \5 |X5 |,
and W2

2 (2
2
8 + 1)\4X1 + W2

1 (28 − 1)2\4X2 > W1W22
2
8 \

4 |X5 |, (3.57)

are satisfied, then each line of equation (3.56) is greater than 0. Recall that W1, W2,
X1, and X2 are non-negative. Each elementary perturbation increases the value of 28.
Therefore, if the conditions in equation (3.57) are satisfied, then each elementary step
along the submanifold with constant coherent noise strength increases the incoherent
logical noise strength. It remains for us to argue that these conditions are satisfied
when the rotation angles are close to equal.

Consider two cases for the relative positions of qubits 8 and 9 . In the first case,
suppose qubits 8 and 9 are positioned so that no short logical strings contain both.
Then the strings that contribute to W2 as well as X2, X4, and X5 are all long. Such
strings do not appear in the sum over low-weight connected terms, so W2 = 0 in
equation (3.56). Therefore, the only condition is the first line of equation (3.57). In
this inequality X2, X4 and X5 are 0, and the condition is satisfied.

In the other case, qubits 8 and 9 are in a horizontal or vertical line so that both qubits
are contained in several short logical strings. In this case \W2 is comparable to W1.
Now consider the incoherent contribution from the strings that contain both qubits
8 and 9 . For each weight-(2F − 1) logical string containing both qubits 8 and 9 ,
the errors $* are weight-F subsets of the logical string. Nearly half will contain

97

exactly one of qubits 8 and 9 and one quarter will contain both qubits 8 and 9 . This
means that more terms contribute to \2X1 and \X3 than to \4X2, \2X4, and \3X5. In
particular, \2X1 > 2\4X2. For each $* , the set {$′

*
} contains operators with the

same syndrome, logical action and weight. $′
*
differs from $* only near certain

transverse steps along the logical string as we described in Section 3.8. For most
logical strings, if $* does not contain qubit 8, then most of the operators $′

*
also

will not. If $* contains qubit 8, most operators $′
*
will as well. This implies that

\2X1 � \ |X3 |,
\4X2 � \2 |X4 |,
\4X2 � \3 |X5 |,

and \2X1 � \3 |X5 |. (3.58)

Together with our earlier statement that \2X1 > 2\4X2, this implies that even when 8
and 9 are near to each other, the conditions in equation (3.57) are satisfied.

We have proven that each of the elementary perturbations starting from uniform an-
gles increases the incoherent logical noise strength. However, we must also consider
elementary perturbations that are applied after a different elementary perturbation
has taken us away from uniform angles. In that case in equations (3.52) and (3.54) we
would no longer have exact symmetry between \8 and \ 9 . In other words, equation
(3.52) would read

coherent = W0 + W (8)1 \8 + W (9)1 \ 9 + W2\8\ 9 , (3.59)

where W (8)1 and W (9)1 are different coefficients. However, as long as we are not too
far from uniform angles, W (8)1 ≈ W

(9)
1 , and the change in the incoherent logical noise

strength will be almost the same as in equation (3.55). We have argued that the
conditions in equation (3.57) are satisfied by a large margin. Therefore, there exists a
region around the point with uniform angles where every elementary perturbation on
the submanifold with fixed coherent logical noise strength increases the incoherent
logical noise strength. We conclude that in a region around the symmetric point
where every single-qubit rotation is by the same angle \, this symmetric point
gives the largest coherent logical noise strength relative to the incoherent logical
noise strength. This means that the connected contribution to the incoherent logical
noise strength has a local minimum at the point with uniform rotations within the
submanifold with constant connected contribution to the coherent logical noise
strength. This implies that the upper bound on logical coherence we derive in

98

Theorem 6 for the case where all angles are equal also upper bounds the logical
coherence in a region around the point where all angles are equal.

Now consider changing the axes of rotation while keeping the total rotation angle
the same. Let the noise model be a rotation in the --/ plane such that the rotation
angles are \- and \/ for every qubit. We show that . rotations on the qubits will
produce less coherent logical noise in Lemma 13. The - and / rotations contribute
to independent components of the logical noise channel. Then each noise term that
enters into the --type logical noise components depend on at least ! powers of \- .
Similarly, the /-type logical noise depends on at least ! powers of \/ . Therefore, if
the total rotation angle for each qubit,

√
\2
-
+ \2

/
, is fixed, the logical noise strength is

greatest when either \- or \/ is 0. Also, because the -- and /-type errors contribute
to different logical noise components, we can apply our analysis of coherent and
incoherent logical noise components to the two types of errors separately. If both
| sin \- | and | sin \/ | are < 1/!, then Lemmas 3 and 5 imply that the logical coherent
and incoherent - and / noise is dominated by the contributions of short logical
strings. With this noise model, we will in general expect logical. noise, but Lemma
14 implies that logical . -type errors are negligible relative to -- and /-type errors.
The \- rotations contribute to the -1 and -2 logical noise, while the \/ rotations
contribute to the /1 and /2 logical noise. The bounds we proved for coherent and
incoherent logical noise components apply equally well to the -- and /-type noise
separately in this noise model. �

Lemma 8 states that among noise models consisting of single-qubit rotations where
each rotation is close to the same, the coherence of the logical channel is greatest for
the noise model consisting of /-axis rotations on every qubit by the same angle. The
same does not necessarily hold for noise models consisting of single-qubit rotations
with wildly different angles of rotation on each qubit. This is not surprising because
if we allow for wildly different rotation angles, we encounter the case where all the
rotation angles are 0 except for the qubits along some very long logical string. This
kind of high-weight connected term is beyond the scope of the present work, cf.
Lemmas 3 and 5.

3.11 Correlations
We can apply Theorem 5 to study the toric code with minimal-weight decoding
subject to correlated unitary noise. In the repetition code, we found that adding
two-body correlations did not change the relation between coherent and incoherent

99

components of the logical noise when the code size = is large. We can transfer
that to the toric code using what we have already proven. Consider a single logical
string. We can sum over its partitions. With correlated unitary noise, instead of
sin \/2 cos \/2 for each qubit in the logical string, we have a sum over the one- and
two-body couplings in the Hamiltonian, ℎ1 and ℎ2. The model of correlated noise
that we considered in Theorem 5 included two-body coupling terms between every
pair of qubits in the code. Therefore, the magnitude of each multi-qubit error is a
function only of its weight. We found that the coherent and incoherent logical noise
in the toric code is dominated by the contributions from short logical strings with
typical shape. In Theorem 6 we will finish proving a relation between the coherent
and incoherent terms that is based on the number of terms and their magnitudes,
which we always assumed to be sin \/2 raised to the weight of the terms. In the
correlated case we alter the magnitude of each term, but Theorem 5 tells us that
string by string we can bound the coherent logical noise contribution in terms of the
incoherent logical noise contribution.

Main Theorem
Theorem6. Consider the !×! toric codewithout boundaries subject to single-qubit
unitary noise acting on each qubit. We chose minimal-weight decoding and assume
that syndrome extraction is perfect. Suppose that each qubit is rotated by an angle
\ about some axis and that | sin \ | < 1/!. Our conclusion will also hold for angles
and axes that differ among the qubits, so long as the deviation is small as discussed
in Lemma 8. Let Ñ be the logical noise channel produced by encoding into the
toric code, acting with single-qubit unitary noise, and then decoding. Denote by j̃
the chi matrix for the logical noise channel Ñ . Then the coherent and incoherent
components of the logical channel are related by

∑
8, 9 |8≠ 9

��j̃8, 9 ��2 < 2
(sin \)2

©­«
∑
; |;≠0

j̃;,;
ª®¬

2

(1 + E), (3.60)

where
|E | ≤ 24WZ2

√
!
+$

(
1
!

)
+$

(
(! sin \)2Z

)
, (3.61)

and Z is an arbitrary !-independent constant. We denote the diamond norm distance
of Ñ from the identity channel by �♦(Ñ). It follows that

�♦(Ñ) ≤ 2Ã, (3.62)

100

for a constant 2 given by

22 =
(3! + 1)2

2

(
1 + 1
(sin \)2

)
(1 + E), (3.63)

where 3! is the dimension of the code space (3! = 4 for the 2D toric code without
boundaries). Here Ã is the average infidelity of the logical noise channel Ñ , and
E is the error term bounded in equation (3.61). (If the logical noise channel Ñ
were unitary, then �♦(Ñ) would be proportional to

√
Ã.) We can also consider the

growth of the average infidelity as we apply the logical noise channel many times in
succession. Let Ã< be the average infidelity after < applications of Ñ ; then using
equation (3.60), we can write

Ã< = <Ã

(
1 + 3!

(3! + 1) sin2 \
(< − 1)Ã (1 + E)

)
, (3.64)

where 3! = 4 for the 2D toric code without boundaries, E is the error term that
is upper bounded in equation (3.61), and Ã is the average infidelity for a single
application of the logical noise channel. As long as the physical noise strength is
below the fault-tolerant threshold, Ã will be exponentially small in the code distance
!. Therefore, equation (3.64) states that the term growing quadratically in < is
exponentially small in ! relative to the term growing linearly with <. In this sense,
the coherence of the logical channel is heavily suppressed.

Proof. We start with a noise model consisting of / rotations by angle \ on every
qubit in the ! × ! block of toric code. We seek to approximate the coherent
logical noise component j̃/1 � and relate it to the incoherent logical noise component
j̃/1/1 . First, let us calculate the coherent component. We write j̃/1 � as a sum over
strings and partitions with a connected and disconnected part as in equation (3.7).
Applying Lemma 3 to the connected part, we neglect high-weight terms, leaving
only the logical strings with length ≤ ! + 2Z for a fixed Z , and making an error
which is exponentially small in Z . For this step, the magnitudes of the sines of the
single-qubit rotation angles are required to be below a threshold value 1/!. We
apply Lemma 11 to argue that the disconnected part is equal to 1 up to a small
correction. Lemmas 9 and 10 tell us that we can treat all short logical strings L as
typical and make another small error. Now that we have only short typical logical
strings, we apply Lemma 4 to perform the sum over partitions. We conclude that

j̃/1 � =
∑
L
8ℓ

(
ℓ − 1
ℓ−1

2

) (
sin \

2

)ℓ (
1 + E(ℎ0?4

)
+ E!>=6, (3.65)

101

where the sum is over all connected logical /1 strings L with length ℓ such that
ℓ ≤ !+2Z . The error from logical strings with length greater than !+2Z is bounded��E!>=6�� ≤ U!2Z+1(sin \)!+2Z , (3.66)

where U = (1 − ! sin \)−1. This error is from Lemma 3. The other error term from
Lemmas 10 and 11 is bounded��E(ℎ0?4�� ≤ 16WZ2

√
!
+$ (1/!). (3.67)

A further error due to neglecting exceptional partitions is subdominant according to
Lemma 4, and is not shown in equation (3.65).

Now, we will lower bound the incoherent logical noise component j̃/1/1 . Lemma
5 implies that we can neglect the contributions of noise terms ($*d $′*) such that
|$* | + |$′* | > ! +2Z +1. The error we make by truncating the sum is exponentially
small in Z , so long as the rotation angle \ satisfies |\ | < 1/!. The incoherent logical
noise component can be put in the form of a sum over logical strings as in equation
(3.41). Using Lemma 7 we restrict to the connected terms where the logical string
L is short and has typical shape and |$* | = |$′* |. We can also keep only the
terms with |$* | = (ℓ + 1)/2, because just as in the repetition code, these higher-
weight partitions are suppressed by factors of sin \2 and the binomial coefficients
are decreasing as we consider higher-weight $* . The disconnected part is equal to
1 up to small correction according to Lemma 12. Finally, Lemma 6 gives a lower
bound on the contribution of each logical string to the incoherent logical noise. All
together, we have the following lower bound on j̃/1/1:

j̃/1/1 ≥
∑
L

(
ℓ
ℓ+1

2

) (
sin \

2

)ℓ+1 (
1 − 8WZ2
√
!
+$ (1/!) +$

(
(! sin \)2Z

))
. (3.68)

The error terms come from Lemmas 10, 5, and 12. A subdominant error term from
Lemma 4 is suppressed in equation (3.68).

Putting together equation (3.65) and equation (3.68), we conclude the following
about how the coherent and incoherent terms in the logical chi matrix are related:

| (!̃0 d̃) |
| (!̃0 d̃ !̃0) |

≤ 1
| sin \ | (1 + E), (3.69)

where
|E | ≤

(
24WZ2
√
!

)
+$

(
1
!

)
+$

(
(! sin \)2Z

)
. (3.70)

102

We used (
ℓ
ℓ−1

2

)
≈ 2

(
ℓ − 1
ℓ−1

2

)
(3.71)

to arrive at equation (3.69).

We have restricted our attention to the coherent logical component (!̃0 d̃) and the
corresponding incoherent component (!̃0 d̃ !̃0), where !0 was either - or / on one
of the two encoded qubits. We did this because these are the largest components
in the logical noise. This is proven in appendices H and I. In Lemma 14 we prove
that we can neglect the logical noise components (!̃0 d̃) where !0 is a logical . or
a non-trivial operator on both encoded qubits. In Lemma 15 we prove that we can
neglect coherent terms of the form (!̃0 d̃ !̃1) with 0 ≠ 1. Using these results, we
can bound the sum of all coherent logical terms relative to the sum of all incoherent
logical terms. There are two off-diagonal terms for each diagonal term, e.g. j̃/1 �

and j̃� /1 are matched with j̃/1/1 , so we have

∑
8, 9 |8≠ 9

��j̃8, 9 ��2 < 2
(sin \)2

©­«
∑
: |:≠0

j̃:,:
ª®¬

2

(1 + E). (3.72)

We have proven equation (3.60). The term on the right hand side is proportional to
the infidelity by equation (K.9). Going back to Lemma 1 and equation (2.43), we
can write

Ã< ≤ <Ã + <(< − 1) 3!

2(3! + 1)
∑
8, 9 |8≠ 9

j̃2
8, 9 , (3.73)

where 3! is the dimension of the physical Hilbert space, which is 4 for the toric
code without boundaries. We can combine this with equation (3.72).

Ã< ≤ <Ã
(
1 + 3!

(3! + 1) sin2 \
(< − 1)Ã (1 + E)

)
. (3.74)

Finally, we can use Lemma 16 with equation (3.72) to derive equation (3.62).

So far we have considered a noise model consisting of the same / rotation by angle
\ on every qubit in the code block. We can use Lemma 8 and Lemma 13 to prove
that this noise channel produces maximally coherent logical noise in a region around
uniform rotations. The single-qubit rotation angles are allowed to differ so long as
the deviation is not too great. Therefore, the relation we found between coherent
and incoherent logical noise components for the / rotation noise model bounds the
coherence of the logical noise channel for small rotations about any axis, so long as
the rotations are close to uniform across the qubits. �

103

There are some subtleties in the interpretation of Theorem 6. We address these in the
next subsection, but first we will make a remark about the error bound in equation
(3.61). This error bound is satisfactory for finite code size !; however, we will need
make a small modification before the bound is suitable for the ! →∞ limit. This is
because the term $

(
(! sin \)2Z

)
in equation (3.61) contains a factor polynomial in

!. If the single qubit rotation angle \ satisfies | sin \ | ∝ 1/!, then this polynomial
factor would make the truncation error large as ! → ∞. The polynomial factor
comes partly from the fact that the truncation error in equation (3.65) has a factor of
2! relative to the factor of

(!
!+1

2

)
that appears in the lowest-weight incoherent noise

terms. The ratio is proportional to
√
!. The other contribution to this polynomial

factor comes from the path counting in Lemma 5, where we neglected a factor
polynomial in F + F′ in equation (3.37). We can cancel the polynomial factor by
slightly modifying our truncation procedure. Denote this polynomial factor ?(!).
Instead of neglecting noise terms with weight > ! + 2Z in the coherent logical noise
components, we neglect noise terms with weight > ! + 2dZ ′ log(!)e for a constant
Z ′. We perform a similar truncation for the incoherent logical noise components.
Then we can choose Z ′ large enough that (! sin \)2Z ′?(!) is decreasing with !.
The minimum value for Z ′ such that this is decreasing depends on the degree of
?(!) and the magnitude of ! sin \. If Z ′ is greater than this minimum value, then
(! sin \)2Z ′?(!) is bounded above by 0 |! sin \ |_Z ′ log(!) , where 0 is a constant that
is determined by the coefficients in the polynomial ?(!), and _ is a constant that
depends on Z ′, the degree of ?(!), and the magnitude of ! sin \. Our new truncation
rule slightly alters the other error terms in equation (3.70). The new error term is

|E | ≤ 24WZ ′2(log !)2
√
!

+$
(

1
!

)
+ 0 |! sin \ |_Z ′ log(!) , (3.75)

where 0, Z ′, and _ are constants. 0 and _ are determined as we described above.
We are free to choose Z ′, so long as it is greater than a minimum value. Now, if we
take the limit ! → ∞, we find that the error term in equation (3.75) remains small.
Therefore, we may apply Theorem 6 in the limit of ! → ∞ with equation (3.75)
replacing equation (3.61).

3.12 Interpreting Bounds on Coherence
We have proved a relation between the diagonal and off-diagonal components of
the chi matrix of the logical noise channel. The interpretation is a bit subtle, so
it is worth commenting on here. We upper bounded the off-diagonal components
by 1/| sin \ | times the diagonal components, and we were forced to assume that

104

| sin \ | < 1/! because our analysis only applies to logical strings with length
≤ ! +2Z where Z is a constant. With this assumption, the factor of 1/| sin \ | implies
that the coherent component of the logical channel may be ! times larger than the
incoherent component. This might seem to indicate that the coherence of the logical
channel is not suppressed for large !, but that is not the best way to think about the
comparison.

In equation (3.64), the term quadratic in< has a coefficient proportional to Ã/(sin \)2

relative to the linear term. But the average infidelity Ã is exponentially small in !.
Thus the coefficient of the quadratic term is really exponentially smaller in ! relative
to the coefficient of the linear term. In equation (3.62), the constant 22 is not really
a constant, since it scales like !2 if \ scales like 1/!. The point is that if the logical
noise channel were fully coherent, i.e. unitary, then 2 would scale like 1/

√
Ã , but

we find that 1/
√
Ã scales like !!/2, which is vastly greater than !2. We conclude

that, although the logical noise channel is not exactly incoherent, it is quite close to
an incoherent channel as measured by our statements about the growth of average
infidelity and the relation between diamond distance and average infidelity.

We could also consider writing our logical noise channel as a product of a unitary
rotation and a Pauli channel. We can solve for the single parameter in each of these
two channels. In the limit of low logical noise strength, the angle of rotation of the
unitary channel approximately equals one of the off-diagonal chi matrix elements,
and the probability of error in the Pauli channel is comparable to one of the diagonal
components of the chi matrix. Theorem 6 implies that the logical channel can
be written as a product of a unitary channel and a Pauli channel where the angle
of rotation of the unitary is larger than the error probability of the Pauli channel
by a factor which is approximately 1/| sin \ |, and therefore enhanced by a factor
of ! if \ scales like 1/!. Again, this might make it seem like the coherence is
not suppressed; however, the coherent channel makes a contribution to the average
infidelity proportional to the rotation angle squared. This is why we find that the
growth of average infidelity becomes nearly linear in < as the code size ! increases.
As the code block becomes large, the diamond distance for the logical noise channel
is much smaller than what one would expect for a coherent channel based on the
value of the average infidelity A. This is another way of making the same point as in
the previous paragraph.

One might wonder whether a tighter upper bound than Theorem 6 can be derived on
the strength of the coherent part of the logical channel relative to the incoherent part.

105

In fact, a substantially tighter upper bound is not possible, if we want this bound to
hold for arbitrary small rotation angles. For instance, we could choose to set every
rotation angle equal to zero except for the qubits along a single length ! logical string.
For this case, the computation of the logical channel is similar to our computation
for the repetition code, where we were able to compute the logical channel quite
precisely. Alternatively, for a fixed code size we could choose sufficiently small
uniform rotation angles \ such that the lowest-weight terms dominate in the logical
noise. In this case the computation of the logical channel is again similar to that of
the repetition code. Since the bound we proved for the toric code nearly matches
what we found for the repetition code, we know that our result is optimal in this
special case. Of course, for some other particular set of single-qubit rotations, the
logical noise channel may be less coherent than our upper bound predicts.

3.13 Conclusions
We have studied characterizations of coherence in quantum channels. One useful
method for diagnosing the coherence of a channel N is to consider applying N <

times in succession, and to investigate how the average infidelity A of the composite
channel N< increases with <. For incoherent channels A is linear in <, while for
highly coherent channels it can growquadraticallywith<. Another useful diagnostic
is provided by the relationship between A and �♦(N), the distance between N and
identity channel as measured by the diamond norm. For incoherent channels this
distance scales linearly with A, while for highly coherent channels it scales like

√
A.

Using these criteria we have investigated the coherence properties of logical chan-
nels. To define a logical channel, we choose a particular quantum error-correcting
code and decoding method; then we consider encoding an initial input state, sub-
jecting the physical qubits to a noise model, and finally applying the decoder to
obtain the channel’s output. Our main conclusion is that, for the code families we
examined, even if the physical noise model is highly coherent, the coherence of the
logical channel is heavily suppressed in the limit of a large code block.

For the case of the quantum repetition code, we can compute the logical channel
precisely, and verify that the logical channel is highly incoherent for large block
size. Most of this paper was devoted to the analysis of a more challenging case, the
! × ! two-dimensional toric code subject to independent unitary noise. Our main
conclusion about this case is encompassed by Theorem 6. Regrettably, for the case
of the toric code we were able to prove that the coherence of the logical channel

106

is suppressed only under an unrealistic assumption: that as the size ! of the code
block increases, the rotation angle \ applied to each qubit scales like 1/!.

Under this assumption, we can estimate the logical channel well enough for our
purposes by expanding it to a constant (!-independent) order in \, and argue that
the higher-order terms we ignore make a contribution that can be safely neglected.
A key step in our argument is the observation, backed up by Lemmas 9 and 10, that
for ! | sin \ | < 1, the logical channel is dominated by logical strings with an easily
characterized typical shape. For the logical strings of this typical shape, Lemmas 4,
7, 11, and 12 provide a sufficiently accurate estimate of the logical channel to prove
Theorem 6.

Our main conclusion, that the coherence of the logical coherence is heavily sup-
pressed, applies to unitary physical noise such that each qubit is rotated indepen-
dently, even if the rotation axis and rotation angle vary from qubit to qubit, as long
as the rotations are close to the same and sufficiently small. It also applies for some
highly correlated noise models. The result also extends to physical noise channels
which are convex combinations of unitary channels, or convex combinations of uni-
tary channels and depolarizing channels. (Depolarizing physical noise is mapped
to an incoherent depolarizing logical channel under error correction.)

We emphasize that our result is an asymptotic statement in the limit of large code
size !, albeit under the assumption that the noise strength scales like 1/!. For codes
of fixed size, our results may not be tight; the coherence of logical channels for finite
code blocks has been studied elsewhere [19, 37, 45]. Our goal was to study a family
of codes with an accuracy threshold instead. When the noise is below threshold,
the logical channel approaches the identity as the code block increases in size. In
addition, under conditions where Theorem 6 applies, the coherent component of the
logical channel vanishes much more rapidly than the incoherent component.

It is reasonable to expect that our conclusion — that the logical channel becomes
increasingly incoherent as ! grows — continues to hold even if we allow ! to
increase while the rotation angle \ has a fixed constant value. But proving this will
be challenging. For one thing, if \ is a constant, we cannot accurately estimate the
logical channel by expanding to a constant order in \. Instead, logical strings with
length ≤ ! (1+ V) need to be included for some constant V. These logical strings are
not easy to count. A logical string can be regarded as a self-avoiding walk on the
square lattice whose endpoints are a distance ! apart, but previously derived upper
bounds on the number of self-avoiding walks with specified length [40, 41, 43] do

107

not treat the case where the distance between the endpoints differs from the length
of the walk by an$ (1) multiplicative factor. And even if we could count the logical
strings accurately, we would still need to overcome some additional obstacles to
prove that the coherence of the logical channel is suppressed.

First, to prove Theorem 6, we disposed of the “exceptional” terms (Definition 7),
those in which the uncorrectable error on a logical string has lower weight than
the correctable error, by arguing that these terms are sufficiently rare as to make a
negligible contribution to the coherent part of the logical channel. But for logical
strings with length ! (1 + V), exceptional terms will be far more common.

Second, when we calculated the contribution to the coherent or incoherent logical
noise, we separated the computation into a sum over a connected part and a discon-
nected part, and argued in Lemmas 11 and 12 that the disconnected part contributes
a multiplicative factor close to 1. But the proofs of these lemmas required the logical
strings to be short, of length !+2Z for constant Z ; these proofs don’t apply for longer
logical strings of length ! (1 + V).

Third, and even more dauntingly, our proof of Theorem 6 made use of a relationship
between the physical noise terms that contribute to the coherent and incoherent
logical noise. But as the logical string length increases, the contributions to the
coherent and incoherent component of the logical channel become less and less
alike. Each contribution to the coherent logical noise is associated with a logical
string. In contrast, each contribution to the incoherent logical noise is associated
with a pair of logical strings; these strings have segments in common, but they
fluctuate relative to one another apart from those shared segments. For short logical
strings, these fluctuations are relatively mild, and did not prevent us from relating
the incoherent and coherent logical noise, as described in Section 3.8. For longer
logical strings, the combinatorics become much harder to handle.

Unable to overcome these obstacles ourselves, we settled for proving a weaker result
that applies for ! | sin \ | < 1 rather than constant \. Perhaps a more ambitious
combinatoric analysis can push the proof through even for constant \. Or perhaps
a completely different approach will be more successful. Conceivably, it’s not true
that the coherence of the logical channel becomes heavily suppressed for large !
and sufficiently small constant \, though we consider that possibility unlikely.

Further numerical studies of logical coherence may also prove to be instructive. The
problem has already been studied numerically [19, 39, 45, 72]; however, ourmethods

108

for organizing the estimate of the logical channel suggest different approaches to
numerically simulating the logical channel. Numerics could help to resolve the
issues that prevented us from extending Theorem 6 to the case where \ is an !-
independent constant.

In our analysis of the toric code subject to single-qubit unitary rotations, we used
minimal-weight decoding because it can be systematically analyzed. However,
we don’t expect our conclusion about suppression of logical coherence to be very
sensitive to the choice of decoding method. The suppression arises from averaging
overmany error syndromes, and therefore should occur for other families of stabilizer
codes with good decoders. Many of the elements from which we built the proof
of Theorem 6 can be applied to more general stabilizer codes, including “logical
strings,” “partitions,” “exceptional terms,” and the decomposition into connected
and disconnected parts.

We analyzed the toric code because it has an accuracy threshold, and we aspired
to study the coherence of the logical channel for a fixed nonzero value of \ as the
linear size ! of the code block gets large. That aspiration eluded us, so we settled
for investigating the logical coherence in the regime ! | sin \ | < 1. In that regime,
asymptotic results similar to ours, derived using similar methods, may be applicable
to other code families that do not have an accuracy threshold. For example, for the
Bacon-Shor code family subjected to depolarizing noise with error probability ?, the
optimal logical failure probability, computed analytically in [60], is achieved by the
code with distance 3 = $ (1/?). We anticipate that, for unitary noise, decoding the
optimal Bacon-Shor yields a logical channel with strongly suppressed coherence,
though we have not done a careful analysis.

It has long been suspected that error correction suppresses the coherence of noise.
Such suppression had been observed numerically for the toric code [19], but no
rigorous argument supporting this conclusion had been previously known for any
code family with an accuracy threshold. Our goal in this project was to prove that,
for the toric code subject to sufficiently weak independent or weakly correlated
unitary noise, the logical channel after decoding is highly incoherent in the limit of
a large code block. We fell short of this goal, settling for a proof that coherence is
suppressed in the case where the noise strength decreases as the code block grows.
Nevertheless, we hope and expect that the tools we have developed will prove to be
useful in future studies of quantum error correction.

109

C h a p t e r 4

FAULT-TOLERANT UNIVERSAL COMPUTATION IN THE 3D
TORIC CODE1

4.1 Introduction
As discussed in the general introduction in Chapter 1, finding a fault-tolerant im-
plementation of a set of logical gates that allows for universal quantum computation
is one of the primary challenges in the study of quantum error-correcting codes.
According to the Eastin-Knill theorem [31], an error-correcting code cannot sup-
port a universal set of gates implemented with unitary, transversal operations. This
means that in order to perform a universal encoded computation, some additional
protocol is required. One possibility is to use magic state distillation [16]. This
is when a separate code block is used to prepare high-fidelity encoded versions of
special states known as magic states. With gate teleportation these states can be
used to perform particular logical gates on the original error-correcting code. This
technique can be used to implement a T gate in the 2D toric code, for example. At
the same time, this approach incurs a significant overhead cost. Over the last several
years many alternative approaches have been proposed.

One is to combine two different codes with different fault-tolerant gate sets in such
a way that it is possible to perform a universal set of gates. This is possible by
concatenating a pair of codes [47]. This has the significant drawbacks that even if
both codes are topological, the resulting code has non-local, high-weight stabilizer
generators. Also, the scheme sacrifices much of the code distance in an ordinary
concatenated code. The number of qubits is the product of the number of qubits in
the two codes. This means that for a given code distance, a relatively large number
of qubits is required.

Another way of combining two codes is to construct a protocol to allow an encoded
state in one code to be transformed into an encoded state of the other code. This is
called code-switching, and it can be used to achieve a universal set of fault-tolerant
gates [4]. The color codes [11] provide a convenient family of topological codes for
this purpose. 2D and 3D color codes can be combined into a single code structure
that exhibits a universal set of fault-tolerant, logical gates [9, 12, 46]. These schemes

1The work in this chapter was carried out in collaboration with Aleksander Kubica.

110

often include high-weight stabilizer generators.

A universal set of fault-tolerant gates can also be realized in a small fixed stabilizer
code by performing the logical gates in many steps with interspersed error correction
[77]. This idea is called “pieceable fault-tolerance.” The primary disadvantages of
this approach are that it is not clear how widely applicable it is and that it is slow,
requiring a number of error correction steps that increases with the code size.

Another idea that in a sense also combines different error-correcting codes to achieve
universal fault-tolerant computation is gauge-fixing in subsystem topological codes.
These codes are similar to stabilizer codes, but some number of the logical operators
have been demoted to gauge operators, the values of which are no longer considered
to contain logical information. For each fixed state of the gauge qubits, the code is a
stabilizer code, and by changing the state of the gauge, different stabilizer codes can
be reached. The gauge group G is a set of Pauli operators that are not required to
commute with each other. The stabilizer group S is contained in G and is defined as
the center of the gauge groupG. Just as for a stabilizer code, error correction consists
of measuring a set of generators for the stabilizer group, decoding the syndrome,
and applying the calculated correction. Subsystem codes support a gauge-fixing
procedure, where a subset of gauge generators is measured, fixing the value of the
gauge qubits. Certain logical gates may be realized fault-tolerantly in the subsystem
code with the gauge unfixed, while different logical gates may be realized fault-
tolerantly after the code is fixed to a particular gauge. This can be used with the
3D gauge color codes to achieve universal computation without ever involving a 2D
code [7].

Many of these approaches for a universal gate set require 3D codes. This is because
the Bravyi-König theorem [17] implies that only the Clifford group of logical gates
can be realized with constant depth circuits in 2D topological codes. A way of
realizing a 3D topological code as a 2D lattice of qubits that undergoes a protocol
over time was recently proposed [10]. This is a type of “measurement-based”
quantum computation protocol. The measurement-based model of computation
is another framework like the gate model, and it is equivalent to the gate model
[64–66]. In the measurement-based model computations are carried by a series of
single-qubit measurement performed on a large resource state. A 3D topological
code can be realized as measurements performed on a resource state of which only
a single 2D layer is present at any given time step.

The toric code (or the surface code) offers some advantages over the color codes.

111

For one, the weight of the stabilizer generators tends to be lower in the toric code,
which means that the fault-tolerant threshold tends to be higher than for the color
codes [24, 55]. The two codes are, however, closely related. It has been shown that
every color code is equivalent up to local unitary operations to a number of folded
copies of the toric code [54]. This connection means that some of the things that
can be done in the color code may be translated to the toric code. For example,
the 2D color code has a transversal implementation of the S logical gate, while
the 2D toric code does not. However, it is possible to construct a fault-tolerant
implementation of the S gate in the 2D toric code by braiding twist defects. In this
work we present a family of 3D topological stabilizer codes built out of the 3D toric
code that feature a fault-tolerant implementation of the logical T gate. Then we show
how to construct a subsystem version of this code that can be gauge-fixed to recover
the original stabilizer code. This subsystem code allows for universal fault-tolerant
computation. Further, our code is compatible with a (2+1)-D measurement-based
scheme, in which the logical operations happen on a 2D array of qubits that goes
through a protocol in time.

4.2 The Stabilizer Code
The Lattice
We will begin by constructing the lattice on which our code will be defined. We
begin with the 2D example of the toric code on the square lattice. This code is
traditionally defined with qubits along edges of the square lattice [50]. The rotated
toric code is defined on a different lattice formed by connecting each qubit to its
four neighbors. This new lattice is a 2D square lattice rotated by 45 degrees. Now
the qubits are located at vertices and the X and Z stabilizer operators are generated
by alternating X and Z plaquettes in a checkerboard pattern. We can perform the
same transformation in the 3D toric code defined on the cubic lattice. The resulting
lattice is called the “rectified” lattice [73]. If we put qubits on the edges of the 3D
cubic lattice, and then we join the midpoints of the edges, this gives us the cells
shown in figure 4.2.

There are three different choices we can make for the stabilizer group of the 3D toric
code on the rectified lattice. These are illustrated in figure 4.3. One choice is to put
weight-6 - stabilizer generators on the octahedrons. In this case there are weight-4
/ generators on faces of the cubic lattice. This corresponds to - stabilizer generators
on vertices and / stabilizer generators on faces in the original cubic lattice. We
could also choose weight-12 - operators on every other 12 vertex volume of the

112

Figure 4.1: The 2D toric code on the square lattice is drawn with the original lattice
in blue and the rotated lattice in green. In the original lattice, the qubits were on
edges, whereas in the rotated lattice, the qubits are at vertices.

Figure 4.2: Pictured is the 3D cubic lattice with qubits on edges. Connecting the
qubits forms the rectified 3D cubic lattice.

lattice and weight-3 / operators around the faces of the alternate volumes. We could
choose either set of volumes for our - generators in a checkerboard fashion. In total
we have three independent choices of stabilizer group for a given cubic lattice. The
conditions we require from a lattice so that we can construct a 3D toric code can be
summarized as follows.

Definition 10. Fix a 3D lattice L and choose a subset of the volumes �. This choice
of lattice and subset of volumes supports a 3D toric code if both of the following

113

Figure 4.3: In the rectified 3D cubic lattice, there are three choices of stabilizer
group to form the toric code. Here the red volume represents an - operator on every
qubit in the volume. We can choose either the A, B, or C volumes to form the -
part of the stabilizer group. The / generators will be the faces not contained in the
- volumes.

hold:

a) Every vertex E ∈ L is contained in exactly two different volumes, 11, 12 ∈ �.

b) For every 1 ∈ � and face 5 not contained in 1, the intersection 5 ∩ 1 is either
empty or an edge in L.

In the 3D cubic lattice, the sets of stabilizer operators described above are three
possible choices that satisfy these conditions.

We will build our 3D toric code on the rectified lattice using one copy of toric code
for each of the three possible choices of stabilizer group. These three copies of toric
code are each defined on an identical piece of rectified lattice. Start with a block
of cubic lattice and slice it along the G = 0 plane, the H = 0 plane, the I = 0 plane,
and the G + H + I = ! plane, where ! characterizes the code size. This gives us a
tetrahedron of cubic lattice like the one in figure 4.4. Our lattice will consist of one
copy of the tetrahedron of cubic lattice for each of the three possible toric codes on
the rectified lattice. Let’s call these A, B, and C. These three copies of toric code
are joined at the base, or in other words, each qubit in the base of the A lattice is
identified with the matching qubits in the bases of the B and C lattices. We can
view this as one tetrahedron of cubic lattice with three qubits at each vertex except
in the base. The qubits from the A code are coupled to the qubits in the B or C
codes only via the base. Now, we modify the lattice at the base, so that this layer
becomes a 2D color code. To do this we need to double the qubits in the base, so that
the original square lattice becomes a square-octagonal lattice. This is illustrated in
figure 4.5. The lattice above the base remains unchanged. The 2D square octagonal
lattice and the 3D cubic lattice are compatible with each other in a way that will

114

Figure 4.4: This tetrahedron of 3D toric code on the cubic lattice is bounded by the
planes G = 0, H = 0, I = 0, and G + H + I = !. The (1,1,1) plane cuts through the
lattice such that the boundary is made up of triangles and hexagons.

allow a simple implementation of a fault-tolerant T gate. The C lattice volumes in
the base no longer intersect with each other after doubling the qubits in the base. We
characterize the size of the code using !, the number of C volumes (octahedrons)
along each of its linear dimensions.

Figure 4.5: On the left, we have the toric code on the cubic lattice that we have
cut along the I = 0 plane marked by the yellow square. This will be the base facet
of the lattice. We modify the lattice at the base as shown on the right. Where the
original lattice had one qubit, we place two so that the original square is inflated
into an octagon. At the base we now have the square-octagonal color code lattice.

The 3D stabilizer toric code is supported on the lattice in figure 4.6, where each
vertex above the base represents 3 qubits, A, B, and C. The stabilizer generators for

115

the code are depicted for a version with size ! = 3 in figures 4.7a, 4.7b, and 4.7c.
The - stabilizer generators on the C lattice consist of - on the six qubits of each
octahedron. Half of the weight-12 volumes in alternating, checkerboard fashion
will be the - generators for the A, and the other half will be - generators for the B
lattice. The / generators for each lattice are the faces formed from the intersection
of the - volumes for the other two lattices. This yields weight-4 / generators for the
C lattice and weight-3 / generators in the A and B lattices. The stabilizer generators
near the base are modified along with the lattice. The A and B - volumes that have
weight-12 in the bulk are expanded to weight-16 along the base. The / operators
along the base in the A and B lattices remain weight-3, with two of the qubits in the
base, but in the C lattice the weight-4 / operators become weight-5 with two qubits
in the base. There are also boundary stabilizer generators. These are discussed in
the next section.

Figure 4.6: This is the lattice we use to construct a fault-tolerant T gate in the 3D
toric code. The base is a 2D square-octagonal color code lattice. Three pieces of the
3D toric code are fused at the base, so that the qubits in the base are shared between
three toric codes. The qubits not in the base represent three physical qubits, one for
each toric code.

Boundary Conditions
Each copy of the toric code has three boundaries corresponding to the three facets
at G = 0, H = 0, and G + H + I = ! in addition to the base at I = 0 where the three
copies coincide. Of the three boundaries for each code one will be rough and the
other two smooth. At each boundary we retain all the faces that are contained in

116

(a) (b)

(c)

Figure 4.7: The stabilizer generators for the A, B, and C codes are shown in (a), (b),
and (c), respectively. The - volumes are in red, and the / faces are in blue. This
includes boundary stabilizers of weight 2, 3, or 4.

the boundary. In addition, at the smooth boundaries we add the intersection of the
boundary with the - volumes that would lie outside the boundary if the lattice were
extended. At the rough boundaries we do the same for / faces. Along the edges
of the tetrahedron where rough and smooth meet, we apply the rough boundary
condition. At the base, we add no additional stabilizers. In figure 4.7 we chose the
rough boundary to be the facet on the left in the A lattice, the right facet in B, and
the front facet in C.

Logical Pauli Gates and Code Distance
The logical / operators in the code are string-like, and they must terminate on rough
boundaries. The logical - operators are membrane-like and intersect two smooth

117

boundaries in each copy of the code. Both types of operators can be supported
entirely on the base. There are logical / operators that run along each of the three
sides of the triangular base. - acting on every qubit of the base is logical. Moreover,
the logical Pauli group can also be represented on any of other three facets of the
tetrahedron. Each of the three codes has one rough boundary. We have already
said that there is a logical / operator supported on each of the three edges of the
base. There is also a logical - operator consisting of - on every qubit of the
rough boundary for each of the codes. Except for these extreme cases, each logical
operator will be supported in all three lattices as well as the base. A representative
/ logical operator is illustrated in figure 4.8. A representative - logical operator
consists of a plane or set of planes in each lattice defining a region of - operators
in the base, for example see figure 4.9.

Rough (A lattice)

Rough (B lattice)

Rough (C lattice)
Base

Figure 4.8: This logical / operator contains a single qubit in the base and a string
of qubits in each lattice connecting the qubit in the base to the rough boundary of
each lattice.

The minimal-weight logical operator is of / type. Notice that the three qubits at
each of the three corners of the base are checked by only one --type stabilizer
generator. Therefore, there exist /-type logical strings that start from one of these
three base corner qubits and pass through only one of the three lattices. For instance,
we could start at the qubit at the back corner of the base which is checked only by an
- stabilizer generator from the C lattice and draw a line of / errors up the “spine”

118

A lattice

B lattice

C lattice

Base

Figure 4.9: This logical - operator consists of a vertical plane in the A and B
lattices, perpendicular to each other and intersecting at the front edge of the base.
In the C code the operator contains a plane with normal (1,1,1). Together the three
planes define a triangle of qubits in the base. The - logical operator includes -
acting on each of the qubits in this triangle.

of the tetrahedron. In figure 4.6 this string has weight 4. The length of this logical
string is equal to the code distance. In general, if we measure the lattice by how
many C volumes are along one linear dimension, so that the lattice in figure 4.6 has
size ! = 3, then the code distance is ! + 1 = 4.

Logical CZ and CNOT gates
Two copies of stabilizer toric code on the tetrahedron support a transversal CZ gate
along the facets of the tetrahedra. Suppose we have two tetrahedra of our 3D toric
stabilizer code. If we apply CZ gates between corresponding pairs of qubits in the
bases of the two tetrahedra, this is a transversal logical CZ gate. Also, there are
transversal logical CZ gates supported on many pairs of non-base facets. In figure
4.6 the three non-base facets appear at the front (the equilateral triangle facet) and at
the back on the left and right (the two right triangle facets). There exists a transversal
CZ gate between each pair of corresponding facets. On the front facets, the logical
CZ gate consists of CZ on each pair of corresponding qubits in the front facet of the
C lattice only. For the back left facet, the CZ gates are applied between the qubits in

119

the A and C lattices only. On the back right facet, the transversal CZ gate acts only
on qubits in the B and C lattices.

Proposition 1. For two copies of stabilizer 3D toric code on the tetrahedron, there
exist transversal logical CZ gates supported on the bases of the two tetrahedra as
well as on any of the following pairs of corresponding facets

Tetrahedron 1 Tetrahedron 2 Number of CZ gates
base base 2!2 + 4! + 1

front C lattice front C lattice 3
2 (!

2 + !) + 1
back left C lattice back left A lattice

2!2 + 2! + 1and
back left A lattice back left C lattice
back right C lattice back right B lattice

2!2 + 2! + 1and
back right B lattice back right C lattice
back right C lattice back left A lattice

2!2 + 2! + 1and
back right B lattice back left C lattice
back left C lattice back right B lattice

2!2 + 2! + 1and
back left A lattice back right C lattice

The facets are named front or back and left or right based on figure 4.6. CZ gates
act between the sets of qubits listed in the same horizontal line. For example, in the
first case each qubit in the base of tetrahedron 1 is acted on by a CZ gate with the
corresponding qubit in the base of tetrahedron 2. Notice that logical CZ is supported
on each facet of the tetrahedron. The number of physical CZ gates required differs
depending on the facet, but for a large code the number of gates is small compared
to the total number of qubits in the code, which is given by 3

2!
3 + 7

2!
2 + 4! + 1.

Proof. We will argue first that the stabilizer group is preserved by the CZ gates
acting transversally on each pair of facets. Then we will show that a representative
of each logical Pauli gate is mapped correctly.

We check the base first. The intersection of each - stabilizer and the base is equal
to the support of a / stabilizer, so CZ acting transversally on the bases of the two
tetrahedra maps stabilizers to stabilizers. On the other facets we note that along the

120

rough boundaries of each lattice, if we take the intersection of the facet with the -
stabilizer generators, the intersection is contained in the boundary / generators for
that lattice. This means that CZ applied transversally along any facet preserves the
stabilizer group. Let S denote the stabilizer group. Then

CZ1,2
facet (8 CZ1,2

facet ∈ S ∀(8 ∈ S. (4.1)

CZ1,2
facet denotes CZ acting between corresponding qubits in tetrahedra 1 and 2 on a

given facet.

Next we check the action on logical Pauli operators. - on every qubit in the base
is a logical - operator. If we act transversally with CZ gates along the base, this
is mapped to / on every qubit in the base of the other tetrahedron, which is a
logical / operator. Alternatively, if we act transversally with CZ along one of the
non-base facets of the tetrahdron, the - logical operator is mapped to a line of /
operators in the second tetrahedron. These / operators run along the intersection
of the chosen facet and the base. This line of / operators is a logical / . Therefore,
we conclude that CZ applied transversally to the sets of facets in the table has the
correct commutation with logical operators. �

The stabilizer 3D toric code on the tetrahedron is a CSS code, meaning that the
stabilizer generators can be divided into a set of - operators and a set of / oper-
ators. This means that we also have a transversal CNOT acting on every pair of
corresponding qubits in the two tetrahedra.

Fault-tolerant T gate
The stabilizer 3D toric code we have constructed supports a fault-tolerant logical T
gate that is given by alternating T and T† gates on the qubits in the base combined
with CCZ between the triple of qubits at each site away from the base. The square-
octagonal base is a bipartite graph, so we can partition the qubits into sets U and V
such that every neighbor of each qubit in U is in V and vice versa. There are an odd
number of qubits in the base, so let the set U contain one more qubit than set V. We
apply T to the U qubits and T† to the V qubits. That way when the logical gate acts
on the all 0 or all 1 states, the net phase from the T and T† is correct.

An operation on the physical qubits is a logical gate if each logical state of the code
remains in the logical space and moreover is mapped to the correct logical state.
We will make use of a simple condition to check that our proposed T gate is, in fact,
correct.

121

Theorem 7. The base of the 3D lattice is a 2D square octagonal lattice. This is
bipartite, so let us partition it into U and V such that each qubit in U shares an edge
only with qubits in V and vice versa. The total number of qubits in the base is odd,
so let the set U be one larger than V. Then the gate given by

* = TUT†
V
CCZBulk (4.2)

is a logical T gate. Here we have used a shorthand notation where TU means a
tensor product of T gates acting on each qubit in the set U and identity on qubits not
in U.

Proof. We will make use of a condition on the commutators of our gate with the
stabilizer generators of our code to show that our gate is a logical T. Here we use
the group commutator [�, �] = ���†�†. T commutes with / , and for - there is a
simple formula for all / rotations:

[T, -] = S [S, -] = / [R(\), -] = R(2\), (4.3)

where

R(\) =
(
exp(−8\) 0

0 exp(8\)

)
. (4.4)

The logical state |0̃〉 is constructed by projecting the product state |0〉⊗= onto the
code space. The projector onto the code space is a uniform sum over all stabilizer
operators. We can write this sum as a sum over all products of stabilizer generators:

* |0̃〉 = *
∑

81,...,8<∈{0,1}
(81 . . . (8< |0〉⊗=. (4.5)

The /-type stabilizer generators acting on the state |0〉⊗= give 1, so we may remove
them leaving only the --type stabilizer generators. Now we begin to commute the
operator* towards the right:

=
∑

81,...,8<∈{0,1}
(81

[
(81 ,*

]
*(82 . . . (8< |0〉⊗=. (4.6)

We continue to move* to the right and we also commute [(81 ,*] to the right:

=
∑

81,...,8<∈{0,1}
(81(82

[
(82 ,

[
(81 ,*

]] [
(81 ,*

] [
(82 ,*

]
*(83 . . . (8< |0〉⊗=. (4.7)

122

We continue until * and all commutators are all the way to the right. We are left
with

=
∑

81,...,8<∈{0,1}
(81 . . . (8< ∗ Commutators ∗* |0〉⊗=, (4.8)

where the term called “Commutators” consists of products of the single commutators
of * with each stabilizer generator and multiple commutators of * with all strings
of stabilizer generators in ascending order. Now we must apply what we know about
the commutators of our gate and the stabilizer generators.

Let us compute the commutator [*, (8]. If (8 is a /-type stabilizer generator, then
it commutes with *. Next suppose it is an --type generator. Let us rename the
generator (-

8
as a reminder that it is --type. We can decompose (-

8
into base sites

& and bulk sites '. The bulk sites will lie in one of the three lattices A, B, and C.
Suppose that

(-8 = -&∪'� & ⊂ Base ' ⊂ Bulk '� = A lattice qubits in '. (4.9)

Then the T and T† gates along the base in * will give (and († gates in the
commutator on qubits in &. On the qubits in '�, the inner commutator is between
CCZ on corresponding qubits in the A, B, and C lattices with - operators on the
qubits in '�. This will give CZ between the corresponding qubits in the B and C
lattices, specifically the qubits in '� and '� . In total the single commutator gives[

*, (-8
]
= S&∩US†

&∩VCZ('� ,'�) . (4.10)

Recall that U and V were our bipartite decomposition of the base. The base is such
that every stabilizer generator that intersects the base has even weight on the base.
Moreover, the qubits in each stabilizer that lie on the base are connected by edges,
so that the intersection of each stabilizer consists of the same number of qubits in
U and V. When this commutator acts on the all 0 state, it yields a net phase of 1
because of the equal number of S and S† gates.

Next the double commutators
[[
*, (-

8

]
, (-

9

]
will be non-identity only if (-

9
inter-

sects &, '�, or '�. Suppose that the support of (-9 can be decomposed into &′ in
the base and '′

�
in the B lattice. The commutator of S and - gives / , while the

commutator of - on one qubit with CZ gives / on the other qubit. Then the double
commutator can be written[[

*, (-8
]
, (-9

]
= /&′∩&/'′

�
∩'� = /

(
supp (-

8
∩ supp (-

9

) . (4.11)

123

This is a / operator in the C lattice along the intersection of the two - stabilizer (-
8

in the A lattice and (-
9
in the B lattice. The stabilizers in our lattice were defined

such that the / stabilizers in the C lattice are supported on the intersections of -
stabilizers in the A and B lattice. The same holds if we permute A, B, and C. In
equation (4.8) the single commutators all give 1 and the double commutators are all
stabilizer group elements. This means that all the higher commutators vanish. The
stabilizer elements from the double commutators are all /-type and give 1 when
acting on the all 0 state. Finally, we conclude:

* |0̃〉 = *Proj |0〉⊗= = 48c/8Proj |0〉⊗= = 48c/8 |0̃〉. (4.12)

For the |1̃〉 state, we can multiply by an - logical operator consisting of - acting on
every qubit in the base:

* |1̃〉 = *-̃ |0̃〉 = -̃ [-̃,*]* |0̃〉 = -̃ [-̃,*]* |0̃〉. (4.13)

The commutator is given by

[-̃,*] = [-,T]U [-,T†]V = S†USV. (4.14)

Then we have
* |1̃〉 = -̃4−8c/448c/8 |0̃〉 = 4−8c/8 |1̃〉. (4.15)

�

Disjointness
We can use the disjointness to bound the accessible levels of the Clifford hierarchy
[48]. We find that the disjointness bound matches the bound from the Bravyi-König
theorem [17]. We do this by constructing a set of logical operators with limited
intersections.

Proposition 2. In the 3D stabilizer code we have constructed that features a fault-
tolerant T gate, no logical gate beyond the third level of the Clifford hierarchy can
be realized by a constant-depth circuit.

Proof. To make use of the disjointness bound [48], we will construct families of
logical Pauli operators.

/ Operators: For the / operators, we choose a family of operators with support on
exactly one qubit in the base. We define the family of / operators by picking one of
the qubits from each of the C volumes in the base. Then the string rises vertically

124

in the C lattice. In the A and B lattice, the string angles upwards towards the one
rough boundary. There are 1

2 (!
2 + !) non-intersecting operators in this family.

- Operators: For - logical operators, we will compute the 2-disjointness. Here
we allow each qubit to be part of the support of two members in our family of Pauli
operators. We construct a family of logical - operators by choosing a plane in the
A and B lattice. These planes are perpendicular to each other and to the base. In
the base the two planes form an “L” shape. The corner of the “L” intersects the front
edge of the base. In the C lattice we choose a surface that ends on the “L” in the
base. There are ! + 1 operators in this family.

. Operators: We construct a family of 2-disjoint . operators starting from our
family of - operators. For each - operator, we multiply by a / logical operator
that intersects the base at the corner of the “L” shaped - operator. This / operator
is a member of the family of / operators we constructed above. This gives ! + 1
2-disjoint . operators.

To use the disjointness bound, we need the maximum and minimum code distance
for different types of logical Pauli operators. For this code, the minimum distance
is ! + 1 for / logical operators and the maximum distance is !2 + 2! for - logical
operators. The disjointness is a maximum over all families of logical operators of
the quantity

Δ2 =
max{|�| : at most 2 elements 0 ∈ � have support on any one qubit }

2
.

(4.16)
We found

Δ1(/) =
1
2
(!2 + !)

Δ2(-) =
1
2
(! + 1)

Δ2(.) =
1
2
(! + 1). (4.17)

This allows us conclude that
Δ ≥ !/2. (4.18)

Then the disjointness gives a bound on the maximum level of the Clifford Hierarchy
attainable in a given code via constant depth circuits. We have the following
inequality:

3<0G < 3<8= (Δ)"−1 =⇒ !2 + 2! < (! + 1) (!/2)"−1. (4.19)

125

If this holds for an integer " , then all transversal logical gates are in the "th level
of the Clifford hierarchy. For us this gives" = 3, so the fault-tolerant T gate we find
in our 3D toric code scheme represents the highest level of the Clifford hierarchy
attainable. �

4.3 Higher dimensional stabilizer code
We can extend our construction to higher than three-dimensional toric codes. In
3 dimensions, the base will be a 3 − 1-dimensional color code. We will have 3
copies of toric code in the bulk. The simplest higher dimensional extension is for
the lowest distance (3 = 2) version of the code. In 3D this code has a seven qubit
base and three qubits above the base, one each for the A, B, and C codes. In higher
dimensions, we continue to have a single qubit in each copy of toric code. The base
will be a 3 − 1-dimensional color code. We can construct the code by starting with
a 3 − 1-dimensional color code and add one extra qubit to each 3 − 1-dimensional
cell. The - stabilizer for each cell is the product of - on each qubit in the cell and -
on the one bulk qubit in the cell. The / stabilizers consist of / on 3−2-dimensional
faces in the base times / on the bulk qubit in an adjacent 3-dimensional cell. This
gives a family of 3-dimensional error detecting codes.

This family of error-detecting codes will exhibit a fault-tolerant '(c/3) gate for
3 > 2, where '(\) is defined in equation (4.4). The form of the gate is directly
analogous to the fault-tolerant T gate in the 3D example. It consists of '(c/3)
acting on the qubits of the base and �3−1/ acting on the 3 qubits of the bulk.

4.4 Subsystem 3D toric code
We can define a subsystem version of our 3D stabilizer toric code. We will introduce
gauge generators that recover the larger stabilizer generators for the A and B codes.
For the C code, the gauge generators will be the same as the stabilizer generators.
This will allow us to perform a fault tolerant Hadamard gate. We can then use a
standard gauge-fixing procedure to map back to the stabilizer version, where we
have a fault-tolerant T gate. This gives a scheme for universal fault tolerant quantum
computation in 3D.

We need a modification to the stabilizer generators to achieve a fault tolerant
Hadamard gate. We must change some of the operators in the base to be . in-
stead of - and / . The resulting code will no longer be CSS. (A CSS code is one
where there exists a generating set of stabilizer operators such that every operator
is either - on each qubit in its support or / .) The gauge group for the code con-

126

tains every / stabilizer operator from the original stabilizer code with the following
modification: each operator acts as . on the qubits in the intersection of its support
and the base. Then at the base we have many triangles with a / operator in the A
or B lattice and two . operators in the base. In the stabilizer version, the C lattice
stabilizers included six-body / operators at the base, which will become gauge gen-
erators with two . operators in the base and four / operators above. In addition, we
take the /-type gauge operators from the A lattice and replace / by - to get a set of
gauge generators in the B code. We do the same with the /-type generators of the B
lattice to get --type gauge generators in the A lattice. These gauge generators break
up the large - volumes in the original stabilizer code into three-body operators, so
that - and / gauge operators have the same form in the bulk. Next we add the -
stabilizers of the C code to the gauge group without modification. This is not quite
enough yet. We also add - and / along the base on faces of the A and B volumes.

The stabilizer generators of this code will include all of the gauge generators in the
C lattice and 12-body - and / volume operators in the A and B lattices. . operators
on every face of the base are also stabilizers. In addition, around the base there are
stabilizer generators that consist of fused volumes, where we have the product of
two adjacent volumes in the A and B lattices, respectively, times - or / on the base
face.

Fault-tolerant Hadamard
In the 3D subsystem toric code version, a logical Hadamard gate consists of H
applied transversally to all qubits in the A and B lattice including the base but
excluding the qubits in the C lattice. Then we swap the A and B codes. We
constructed the subsystem toric code in the A and B lattices such that the - gauge
generators in one lattice are the / gauge generators in the other. The C lattice does
not have any additional gauge generators. That code is still a stabilizer code and has
no symmetry between - and / generators. The modification we made at the base,
when we changed the operators at the base to be . operators for many of the gauge
generators, is essential for our Hadamard gate. This is what allows us to act only on
the qubits in the A and B lattices and remain in the code space.

Proposition 3. The gate
H̃ = SWAP�,� H�∪� (4.20)

is a logical Hadamard gate in the 3D subsystem toric code built out of three code
copies A, B, and C joined at the base of the tetrahedron. �∪ � denotes the union of

127

the qubits in the A and B codes.

Proof. We will prove that this gate is a logical Hadamard by arguing first that our
map preserves the gauge group under conjugation and second that our map takes a
representative of logical - to logical / under conjugation. Our subsystem 3D toric
code is constructed such that the A and B codes are dual to each other in the sense
that the - gauge generators of the A code are the same as the / gauge generators
of the B code. When we apply Hadamard on each qubit in the A and B lattices, we
exchange - and / gauge generators. Then the swap gates applied between the A
and B lattices exchange the A and B codes. Overall the - gauge generators of the A
code are mapped to / generators of the B code, and similarly for the / generators. In
the C code, only the generators intersecting the base are affected. The / generators
along the base are unchanged because these generators act on the base qubits with
Y operators. The - generators along the base are mapped to - above the base in
the C code and / in the base. However, . operators acting on the qubits of each
face in the base are stabilizer generators. If we take the C code - generators in the
base, act with Hadamard in the base, and multiply by . operators in the base face,
we recover the original C code - generator. We conclude that the logical Hadamard
gate preserves the gauge group.

Now we must show that our proposed logical Hadamard gate maps a representative
of logical - to a logical / operator and vice versa. We will choose the logical -
and / operators supported entirely on the base. - applied to every qubit in the base
is a logical - operator, and / on every qubit in the base is logical /:

Swap�,�H�∪�-�∩�H�∪�Swap�,� = /�∩�. (4.21)

The label � ∪ � refers to the union of the qubits in the A and B codes, and � ∩ �
refers to the intersection, i.e. the base of the tetrahedron. We conclude that the gate
Swap�,�H�∪� is a logical Hadamard on our 3D subsystem toric code. The gate is
fault-tolerant because it is implemented by a constant-depth circuit. The depth is
two. �

Gauge-Fixing
The gauge-fixing implementation of the T gate in our subsystem code has the
following steps:

1. Measure /-type gauge generators.

128

2. Compute corrected gauge syndrome.

3. Apply gauge-fixing operator (an --type gauge operator).

4. Apply H†
.,/

T H.,/ and H†
.,/

T†H.,/ in alternating fashion to the base and
CCZ�,�,� to the qubits above the base.

5. Measure --type stabilizer generators.

Here the gate H.,/ is given by

H.,/ =
1
√

2

(
1 8

−8 −1

)
. (4.22)

This rotates / to . and vice versa. First, we will consider the noiseless case to
show that our protocol is correct. Then we will move on to the noisy case and
analyze each step individually, with a focus on how the noise is transformed. We
will prove that this protocol is fault-tolerant by considering initial qubit noise and
noisy measurement outcomes and calculating the output noise distribution.

Noiseless Case

When we measure all of the /-type gauge generators, we recover the stabilizer code
previously discussed (albeit with . - and /-type operators on the base instead of
- and /). In our subsystem construction, every /-type gauge generator matched
exactly the /-type stabilizers of the stabilizer code. In addition, we recover the
--type stabilizers of the stabilizer code. In the bulk, none of the three-body --type
gauge generators commute with the nearby /-type gauge generators. However, the
product of four --type generators in the A and B codes forms an --type volume,
that matches the stabilizer generators in the original stabilizer version of the code.
These volumes commute with all / gauge generators. Around the non-base facets
of the code, the --type gauge generators that commute with the /-gauge generators
are exactly the --type boundary terms in our stabilizer code. At the base, we
recover . acting on all the base faces from the /-type gauge generators (remember
these were modified to have . operators in the base). Also, the fused volume type
stabilizer generators along the base in the subsystem code are broken up by the /
gauge generators into single volumes in the A or B lattice adjacent to the base. In
this way we recover the original stabilizer code, albeit with some . operators in the
base.

129

The outcome of the /-type gauge generator measurements will be random. The
arrangement of gauge generators in the lattice gives constraints on the observable
gauge syndromes. The first is that the / gauge generators around an octahedron
multiply to identity. This means the product of the measurement outcomes must
be +1 for a valid gauge syndrome. This further means that if one of the / gauge
generators is violated, then at least one other generator around the octahedron
must also be violated. This implies that the gauge-fixing operator will consist of
closed loops. The smooth boundaries of each code allow - gauge-flux loops to
condense, the same way that an --type logical operator can terminate there. For
this reason, the smooth boundaries of the code are valid endpoints for loops of
gauge-flux. Second, we observe that the /-type stabilizer generators in the gauge
code, which are weight-12 volumes, can be recovered from two disjoint sets of
gauge generators. The stabilizer measurement must yield +1 in the ideal case, so
the product of the gauge measurement outcomes in each of the two disjoint sets
must give +1. It follows that we can bipartition the /-type gauge generators, and
within each subset, the gauge syndrome must form closed loops. We choose the
following bipartition: two-color the octahedral volumes in the lattice—call them
white and black. Then the two sets of /-gauge generators are those that lie at the
faces of white octahedra and those in black octahedra. Valid gauge syndromes will
consist of closed loops connecting only black octahedra and only white octahedra.
The gauge-fixing operator will form a membrane with a boundary fixed by the loop
of violated /-type gauge generators. Gauge-fixing does not require us to apply any
corrections to the C lattice. The C code is unchanged from the previous stabilizer
version of our code. All the gauge generators are stabilizer generators, so that part
of the code is automatically in the correct gauge. The gauge fluxes will be in the A
and B code only.

The gauge flux can be represented on the gauge flux graph. This graph is dual to the
original code lattice and is constructed by placing vertices at the center of each cell
and edges intersecting each face. Each violated /-type gauge generator appears as a
highlighted edge in the flux graph. The highlighted edges must form cycles. We can
define two subgraphs. Recall that we two-colored the octahedra in a checkerboard
fashion. One subgraph is formed by removing all the vertices corresponding to black
octahedra and the edges touching those vertices. The other is formed by removing
all the vertices corresponding to white octahedra. The error syndrome is generated
by the points where the gauge flux loops pass from one subgraph to the other. The
trivial error syndrome corresponds to the case where each gauge flux is contained

130

in one of the two subgraphs.

In order to reach the code state of the stabilizer code, we must apply a gauge-fixing
operator that enforces the condition that every /-type gauge measurement gives
+1. This gauge-fixing operator will be a product of --type gauge generators. Once
the gauge-fixing operator is applied, the / gauge generators have been upgraded
to stabilizer generators. These stabilizers match the stabilizer code we described
previously except that we now have some . operators acting on qubits in the base.
We perform a rotation on the base qubits given by equation 4.22, which maps . to
/ , / to . , and - to −- . This rotation modifies the stabilizer generators in the base,
such that we recover exactly the stabilizer version of our code. Then we can apply
the T gate from Section 4.2. After the gate, we rotate the qubits in the base back to
return to the gauge code. In total we have applied a logical T gate to the subsystem
code.

Noisy Case

The question remains whether this process can be done fault-tolerantly in the pres-
ence of qubit errors and measurement errors. These faults will mean that the
gauge-fixing operator we apply will differ from the ideal one, and as a result the
code will not be in exactly the correct gauge as we apply the T gate. First, we will
analyze how physical qubit and measurement errors appear in our gauge syndrome.
Second, we will describe how to correct the measured gauge syndrome. Next we
will calculate how errors in the gauge-fixing propagate under our T gate operation.
Finally, we will prove that local noise on qubits and measurements will give rise
to local noise with a slightly higher error rate after we perform our fault-tolerant T
gate.

We will suppose that the code is subject to local Pauli noise and local measurement
noise. This means that in each time step the code block undergoes a Pauli error
% ∈ P with probability prob(%) ≤ ? |% |, where |% | denotes the weight of the
Pauli operator % and ? is a parameter called the local noise strength. Also when
measurements are performed, a set of measurements � has a probability of being
wrong that satisfies prob(�) ≤ ? |�|< , where |�| denotes the cardinality of the set �
and ?< is a parameter called the local measurement noise strength.

Theorem 8. Suppose that the gauge-fixing protocol defined at the start of Section
4.4 is used on the subsystem code defined above subject to local Pauli noise on the

131

code qubits and local noise on the gauge generator measurement outcomes. Then
the residual noise after the gauge-fixing procedure is local.

Proof. - errors acting on the code qubits will cause the surrounding /-type gauge
generators to give the opposite measurement outcome. A single, isolated - error
will appear as a loop that joins a white and a black vertex on the gauge syndrome
graph. Valid gauge syndromes consist of closed loops within the black or white
subgraphs. Therefore, in the case of - errors on code qubits, we will correct the
gauge syndrome by forming independent closed loops in the two subgraphs. Qubit
errors lead to broken loops when the subgraphs are viewed separately. Measurement
errors change the parity of the octahedron to which they belong. In other words,
the flux conservation of gauge syndrome loops is violated. The closed loops in the
gauge syndrome are broken at the positions where measurement errors occur. To
recover a valid gauge syndrome, we must correct the faulty syndrome by closing
all loops within the white and black subgraphs. We do this with a minimal-weight
matching procedure. We flip the minimum number of /-type gauge measurement
outcomes to produce a valid gauge syndrome. For a single, isolated - error, the
lowest-weight gauge correction will lead to no gauge flux in both subgraphs. For
more complicated configurations of - errors, a non-trivial gauge flux may result.
Similarly, a single, isolated measurement fault will be corrected, but a configuration
of many faults will in general lead to an erroneous gauge flux.

Using minimal-weight matching for our gauge syndrome correction implies a bound
on the weight of the erroneous gauge flux in terms of the weight of the measurement
faults and code qubit errors. The weight of the corrected gauge flux will differ from
the true gauge flux by no more than double the number of measurement errors.
The gauge syndrome correction always has a trivial error syndrome, i.e. the flux
loops are closed within the black or white subgraphs. Therefore, qubit - errors are
equivalent to four measurement errors, two in each subgraph. In order for qubit -
errors to lead to an erroneous gauge flux, the errors must fill most of an - gauge
operator with gauge flux equal to the erroneous gauge flux. The number of qubit
errors required will be much larger than the number of measurement faults required
to produce the same erroneous gauge flux.

This is all directly analogous to 3D gauge color codes [7]. In those codes, the gauge
syndrome consists of color-flux conserving closed loops. Measurement errors lead
to color-flux non-conservation, which breaks up the gauge syndrome loops. The
syndrome correction closes the loops to produce a valid gauge syndrome. Finally,

132

the error syndrome is the set of branching points where a string with one coloring
turns into two differently colored strings.

We have described how the faulty gauge syndrome is corrected and how after
correction qubit errors and measurement faults lead to a gauge syndrome that differs
from the true gauge syndrome. The error after gauge syndrome correction is the
product of whatever qubit errors were present before gauge-fixing and the erroneous
gauge flux. These errors are transformed by our fault-tolerant T gate. Recall that
our T gate protocol involves applying T and T† gates in an alternating pattern on
the qubits in the base of the tetrahedron. Above the base, we apply CCZ gates on
corresponding qubits in the A, B, and C codes. The T gates map - errors to S
errors under conjugation. The CCZ gates map - errors in one code to CZ errors on
the corresponding qubits in the other two codes. The final step of the gauge-fixing
protocol is to measure --type stabilizers. This measurement will transform the
non-Pauli errors introduced by our T gate implementation into random Pauli errors.

Suppose that we have an erroneous - gauge flux in the A code after the first three
steps of our gauge-fixing T gate protocol. In step four this erroneous gauge flux
will be transformed into a non-Pauli error that spans all three codes. The final step
is to measure --type stabilizer generators. Consider two types of - stabilizers:
one stabilizer intersects the interior of the erroneous gauge flux (the membrane-
like - operator) and the other intersects the gauge flux loop (the boundary of the
membrane). We will show that the first stabilizer is never violated, but the second
stabilizer has a 1/2 chance of being violated.

In the first case, consider the intersection of the bulk of the - gauge flux surface,
�-
�
in the A code and an - stabilizer operator in the B code. Call this stabilizer

operator (-
�
. If the intersection is non-empty, then the intersection will match the

support of a /-type stabilizer operator in the C code. Call this operator (/
�
. We will

calculate the expectation value of the stabilizer (-
�
in the state produced from the

maximally mixed code state with an erroneous - gauge flux acted on by the logical
T gate. This gives

〈(-1 〉83 = Tr
(
(-� CCZ�,�,� �-

� %�
-
� CCZ�,�,�

)
, (4.23)

where CCZ is a CCZ gate between each set of corresponding qubits in the A, B,
and C codes and % is the projector onto the code space, which includes a projector
onto the +1 eigenspace of both (-

�
and (/

�
. The CCZ gates transform the erroneous

- gauge flux in the A code into CZ gates between the B and C codes with support

133

on the qubits in �-
�
:

CCZ�,�,� �-
� = �

-
� CZ�,� , (4.24)

whereCZ�,� acts on the support of�-
�
. Then the code space projector is transformed

to

CZ�,� %CZ�,� = CZ�,� (1 + (-�) (1 + (/�) . . .CZ�,� = (1 + (-�(/�) (1 + (
/
�)

(4.25)
Finally, we are left with

〈(-1 〉83 = Tr
(
(-��

-
�

(
(1 + (-�(/�) (1 + (

/
�) . . .

)
�-
�

)
= Tr

((
((-� + (-�(/� + (

/
� + 1) . . .

))
= 1. (4.26)

The outcome of measuring the stabilizer generator (-
�
is +1 with certainty.

Now, consider a stabilizer generator in the B code that borders the edge of the
erroneous gauge flux operator. Denote this operator (-

�
. The difference between

this case and the previous one is that here the intersection of the geometric supports
of�-

�
and (-

�
does not match a stabilizer operator in the� code. Let /�∩(

�
denote /

operators acting in the C code on each element of the intersection of the geometric
supports of �-

�
and (-

�
. In this case equation 4.26 reads

�83 ((-1) = Tr
(
(-��

-
�

(
(1 + (-�/�∩(�) . . .

)
�-
�

)
= Tr

((
((-� + /�∩(�) . . .

))
= 0. (4.27)

The outcome of measuring the stabilizer generator (-
�

in this case is ±1 with
probability 1/2. The many --type stabilizer generators in the B code that lie in
the region around the boundary of the - gauge flux in the A code are subject to
a constraint. The intersections of all --type stabilizers in the B code with the
boundary of the gauge flux loop multiply to the identity. Therefore, the number of
violated --type stabilizers in the B code around the erroneous gauge flux loop must
be even, or in other words, charge neutral. Precisely the same statements hold if we
permute the A, B, and C codes in the preceding discussion.

We have shown how local noise on the qubits and the gauge measurement outcomes
leads to a particular kind of residual noise after the gauge-fixing protocol. Next we

134

will prove that this residual is local, and therefore there exists an efficient decoding
scheme with a fault-tolerant threshold against this type of noise.

Consider a configuration of residual / errors. These errors could arise from / errors
on the code qubits or from - gauge measurement errors in another code (/ errors
in the B code result from gauge measurement errors in the A code). Let us bound
the probability of this error configuration. Supposing that the errors arise from
local / qubit errors, the probability would be bounded by ?FI where ?I is the local
noise strength and F is the number of errors in the error configuration. If instead
the error configuration arises from gauge measurement errors, the probability of the
error configuration is a sum over errant gauge flux loops. Each errant flux loop can
be produced in several ways from combinations of gauge measurement errors and
our minimal-weight syndrome corrections. We can bound the number of loops and
ultimately the number of configurations of gauge measurement errors that could
lead to our given error configuration.

Fix a configuration of F errors that come entirely from measurement errors that
are propagated by the gauge-fixing procedure. These errors must result from a
loop length ≥ 2F. Let the length of the loop be 2ℓ. Then the number of such
loops of length 2ℓ starting at the first error, say, is ≤ `2ℓ, where ` is the lattice
connective constant. Each loop can be split into many configurations of gauge
measurement errors that could be corrected by minimal-weight decoding to produce
the given loop. We can bound the number by 4ℓ, that is the total number of ways
of subdividing the loop. Then there are many possible random configurations of /
errors that might result from each loop. The desired configuration is only one of
many. For a fixed loop, there are 2

(2ℓ
F

)
possible syndromes produced by errors on the

qubits in the loop. The factor of 2 comes from the fact that each error along the loop
has a partner with the same syndrome produced by multiplying by a membrane-like
stabilizer operator that terminates on the loop. The probability of recovering the
given error configuration from a fixed loop of length 2ℓ is ≤ 2

(2ℓ
F

)
/4ℓ.

We must sum over possible loop lengths with ℓ > F. The number of measurement
errors required is at least ℓ, so we have a factor of ?ℓ<:

∞∑
ℓ=F

2?ℓ<`2ℓ
(
2ℓ
F

)
/4ℓ ≤

∞∑
ℓ=F

2(`2?<)ℓ ≤ 4(`2?<)F, (4.28)

assuming that `2?< ≤ 1/2. In total the probability for our fixed error configuration
is ≤ ?̃F for ?̃ = ?I + (2`2?<). This implies that the residual noise is local. �

135

We can decode the residual noise after step 5 using none of the information from step
1. However, we expect that we can achieve a much larger fault-tolerant noise thresh-
old if we make use of the measurement outcomes from step 1 and our knowledge
of the gauge-fixing operator that we applied in step 3. We propose the following
modified version of the cluster decoder [13, 15] that we expect to perform well
against the particular noise model left over after our gauge-fixing procedure. The
decoder operates by grouping errors at many different length scales. The decoder
proceeds through length scales &8 for 8 = 1, . . . , <, where < is a fixed maximum
level. At each level, the decoder constructs clusters of violated stabilizer generators.
A “&8-connected component” is defined as a set of violated stabilizer generators
such that the set cannot be divided into two sets separated by a distance that is at
least &8. For each connected component, the decoder checks to see if a local error
contained within the one-neighborhood of the connected component could produce
the combination of violated stabilizer generators in that connected component of the
syndrome. If such an error exists, then the error is added to the predicted correction
that is the output of the decoder, and that connected component of the syndrome
is removed. Then after all @8-connected components are considered at level 8, the
decoder moves to level 8 + 1. In this way the measured syndrome is broken up
level by level and a predicted correction operator is calculated. Our modification to
this decoder is that we make use of our knowledge from the previous steps of the
gauge-fixing protocol in the following way: when the neighborhood of each error is
searched and&8 connected components are computed, the sites along the correction
to the gauge syndrome that we compute in step two of the gauge-fixing protocol are
considered to be a distance 0 apart. This is a modification to the metric used to
define the distance between violated stabilizer generators in the lattice. Whenever
we correct the gauge syndrome to recover from measurement errors, we run the
risk of introducing erroneous gauge flux. This decoder takes this fact into account.
Because the noise is local, we know that this decoder will exhibit a threshold. To
estimate how well this decoder performs will likely require extensive numerics,
which we have not performed in this work.

Counting Logical Qubits
We need to prove that both our stabilizer code and our subsystem code contain one
encoded qubit. We characterize the size of the code using !, the number of C
volumes (octahedra) along each of its linear dimensions. Our convention here is
that we count the C code generators first. Then we count the additional independent

136

generators in the A and B codes. We will also count the number of generators
that are boundary terms. This will be the maximum independent set of boundary
stabilizer generators.

First, in the stabilizer code we will count - and / for each code separately. Then
we will add the base. We will count only independent stabilizer generators. In the
C code each - stabilizer is an octahedron that will be truncated around the facets of
the code. The number of independent C code - stabilizer generators is

�- =
1
6
(!3 + 3!3 + 2!). (4.29)

Of these, 1
6! (!

2 − 1) lie above the base, and 1
2 (!

2 + !) lie along the base. We
can also count the A and B volumes. There are several types of - terms in the A
and B codes. In addition to the volumes, we have a number of 2-, 3-, and 4-body
boundary - stabilizer generators. In total, the number of independent A and B code
- stabilizer generators is

�- + �- = 1
6
(!3 + 6!2 + 5!). (4.30)

Of these, ! (! −1) are boundary terms. The non-boundary terms include 1
2! (! +3)

- volumes that intersect the base.

The / operators for the C code are the faces at the intersection of the A and B code
- volumes. The number of independent ones is

�/ =
1
3
(!3 + 3!2 + 5!). (4.31)

This includes ! (! − 1) boundary terms—these are all along the front facet of the
tetrahedron, see figure 4.7c. Also, ! (! + 3) of the non-boundary / stabilizer
generators intersect the base. The set of C code / stabilizer generators includes in
their linear span the set of faces that lie in the base. When we count the independent
A and B code / stabilizer generators, we must remember that the base faces have
already been counted. The A and B / stabilizer generators are the faces of C code -
volumes. We want to count only the independent generators. This means that in the
bulk, each tetrahedron or C code - volume contributes 5 independent generators.
There are 8 faces, but the tetrahedron and each of its adjacent volumes has the
property that the product of the set of faces gives identity. This leaves 5 independent
generators. In total the number of / stabilizer generators in the A and B codes
independent of the generators we already counted for the C lattices is

�/ + �/ = 1
6
! (5!2 + 6! + 7). (4.32)

137

This includes 1
2 (3!

2−5! +2) independent two-body boundary terms and !2+ !−1
independent generators intersecting the base.

All together the number of independent stabilizer generators in the code is

Independent stabilizer generators =
1
2
(3!3 + 7!2 + 8!), (4.33)

and the number of qubits is

= =
1
2
(3!3 + 7!2 + 8! + 2). (4.34)

The number of logical qubits is equal to the number of qubits = minus the number
of independent stabilizer generators. Therefore, our stabilizer code has one encoded
logical qubit.

The subsystem version includes every stabilizer generator from the C code as sta-
bilizer (and gauge) generators. In addition, the number of gauge generators in the
A and B code that are independent of each other and of the stabilizer generators we
counted for the C code is

A + B code gauge generators independent of C code =
1
3
(5!3 + 6!2 + 4! + 6).

(4.35)
These gauge generators include boundary terms that match the / boundary terms in
the stabilizer code and - operators on the octagonal faces of the base. The number
of independent stabilizer generators in the A and B codes not contained in the span
of the C code generators is

A + B code stabilizer generators independent of C code =
1
3
(!3 + 6!2 + 2!).

(4.36)
These stabilizer generators include boundary terms that look like the - boundary
terms in the stabilizer code and fused volumes at the base of the type we described
in the first part of Section 4.4. The number of encoded qubits in a subsystem code
is given by

: = = − 1
2
(log2 |G| + log2 |S|), (4.37)

where G is the gauge group and S is the stabilizer group. Then the number of
encoded qubits : is 1.

4.5 (2+1)-D protocol
We can follow Bombin [10] and Brown [20] and convert our 3D subsystem toric
code on the tetrahedron to a (2+1)-D measurement-based protocol. Cluster states

138

and measurement-based quantum computation are a way of implementing compu-
tations and error-correcting codes using an initial resource state and single-qubit
measurements [64–66]. The idea here is to implement a measurement-based ver-
sion of the 3D code by progressing through subsequent 2D layers. The key element
is just-in-time decoding. In a (2+1)-D scheme, we are limited by causality. We do
not have access to the full set of measurement outcomes but only to the ones in the
past and present. This limitation is bound to make our decoding worse. We will
introduce extra errors, but what we must show is that even with these extra errors,
we still have a fault-tolerant accuracy threshold against stochastic noise. We will
discuss decoding in Section 4.5.

The 3D color code can be defined on tetrahedra called colexes [7, 11]. Many
colexes can be stacked in columns within a measurement-based network. This is
called the “twister architecture” [10]. It allows (2+1)-D computation on any number
of encoded qubits. A similar twister architecture can be built of 3D subsystem toric
code tetrahedra. We have already described all the relevant logical operations. Pauli
gates, S, Hadamard, and T can all be realized on each tetrahedron. CZ gates can
be realized on the faces where two neighboring tetrahedra meet. This allows for
universal computation on many qubits in a (2+1)-D measurement-based scheme.

The measurement-based protocol proceeds as follows: three qubits are initialized in
the plus state. These are the qubits at the top of figures 4.12, 4.13, and 4.14 for the A,
B, and C codes. Then the second layer of qubits is introduced. This layer contains
several qubits. CZ gates are applied between the first and second layer along each
of the links in the figures. Then the first layer is measured in the - basis. The third
layer is introduced for each code, and the process continues until each code reaches
the base. The base qubits are shared among the three codes, so the bases of the three
figures are identified. After the final measurement step, the resulting state is a code
state of the 2D color code on the base. Because the boundary / stabilizers and the
modified lattice at the base somewhat obscure the pattern in the bulk, we illustrate
the bulk of the A, B, and C lattices in the measurement-based protocol in figures
4.11 and 4.10.

Our measurement-based protocol is flexible in that once we have translated our three
code into a 3D fault-tolerant cluster state, the (2+1)-D protocol can be run any any
direction to prepare a state on one of the facets of the 3D code. We will restrict
ourselves to protocols that prepare a state on the base of the 3D code. The base is
encoded in a 2D triangular color code.

139

This protocol is fault-tolerant for different reasons for - and / errors. All single-
qubit measurements are in the - basis. The value of --type stabilizers is determined
by combining the appropriate single-qubit measurement outcomes, so measurement
errors directly translate to physical qubit errors. This means the protocol is fault-
tolerant for errors in the - stabilizer measurements. Note, that we will always
refer to stabilizers of the (3D) code rather than the stabilizers that are sometimes
defined for the cluster state [64]. The fault-tolerance against - errors comes from
the structure of the 3D code. The 3D toric code has the “single-shot property” for
- errors [8, 23]. Single-shot error correction refers to an error-correcting code such
that the code has a threshold in the presence of noisy measurements using only a
single round of syndrome extraction. This resistance to measurement noise comes
from redundancy in the stabilizer operators that are measured. In the 3D toric code,
the A, B, and C codes all have redundancy built into the stabilizer generators we
defined. The / stabilizers surrounding the C volumes in the A and B codes and
the A and B volumes in the C code multiply to the identity. This is a constraint
on the valid syndrome measurement outcomes and is the source of the single-shot
property.

Figure 4.10: A part of the bulk of the fault-tolerant cluster state that realizes the
C code in a measurement-based scheme is shown. Two times steps are shown,
corresponding to the two horizontal levels. Time moves vertically. The links of the
cluster state are in dark green. The edges in blue outline the primal lattice. Certain
qubits are colored blue to indicate that these are ancillas in the 3D code, although
in the cluster state there is no distinction between code qubits and ancillas.

140

Figure 4.11: The bulk of the fault-tolerant cluster state for the A code is shown. The
volume on the left is an A code --type stabilizer. The / stabilizers are three-body
operators around the edges of the B code --type stabilizers.

Preparation of the T magic state
Using the (2+1)-D version of our toric code on the tetrahedron, we can fault-
tolerantly prepare a T magic state. Start with one qubit in the plus state for each
of the three code copies. These qubits form the tip of the tetrahedron, opposite
the base. Use the (2+1)-D protocol to apply the transversal T gate to the encoded
plus state as we move towards the base. To prepare a T magic state, the protocol is
nearly the same as the one we discussed in the previous section, except that here we
additionally apply CCZ across corresponding code qubits in the three codes before
measuring the qubits. Recall that the code qubits are the off-white balls in figures
4.12, 4.13, and 4.14. When the protocol reaches the base, T and T† gates are applied
to each of the base qubits. The fault-tolerance of this protocol to prepare the Tmagic
state depends on the ability to apply corrections based on the ancilla measurements
at each time step. To apply a logical Pauli operator, the ancilla measurements could
be saved and a correction could be applied at the end, but the logical T gate couples
the codes such that errors will propagate. Therefore, it is necessary to compute
corrections at every time step throughout the process. For this purpose, just-in-time
decoding [10] is required.

141

Figure 4.12: This is the fault-tolerant cluster state corresponding to the A code
defined on the lattice in figure 4.6. Time moves downward, beginning with the
single qubit at the top and ending with the 2D color code on the base.

Just-In-Time Decoding
The (2+1)-D protocol is equivalent to the 3D measurement-based protocol, except
in (2+1)-D we are limited in that we can only apply corrections in the preset
and future. This means that we are forced to decode the error that has occurred,
including measurement errors, using only the partial information available from the
past measurement. We do not yet have access to the future measurements. This
limitation means that the just-in-time (JIT) decoding will never be as good as the
3D decoding. Nevertheless, Bombin [10] and Brown [20] were able to prove that
JIT decoding will succeed if the error rate is small enough.

The JIT decoder saves a history of all measurement outcomes. At each time step, it
will receive a new layer of measurement outcomes, and it will compute a correction
to apply to qubits in the current layer. For our purposes JIT decoding has two steps:
first, the decoder looks at the syndrome over all of the past and, armed with the
new measurement outcomes in the present, it computes the most likely correction.
Because of the new information, this correction might differ from the correction we
applied in the past. In the present we apply a correction to correct the product of

142

Figure 4.13: This is the fault-tolerant cluster state corresponding to the B code
defined on the lattice in figure 4.6. Time moves downward, beginning with the
single qubit at the top and ending with the 2D color code on the base.

the new syndrome prediction and the past corrections. The second step is to apply
a correction to the syndrome defects in the present. The JIT decoder will choose to
either pair the defects in the present or to propagate them into the future, whichever
is lower weight.

These two rules mean that the JIT decoder will wait to pair two isolated defects
distance ℓ apart until after ℓ time steps. Viewed in 3D with full knowledge of the
syndrome, the most likely correction is the line connecting the two defects. JIT
decoding has introduced an error supported on the surface bounded by a loop with
side length ℓ.

The analysis of the errors spread by JIT decoding is carried out in [10] and [20].
Bombin proves that a just-in-time decoder based on minimal-weight decoding ex-
hibits a fault-tolerant noise threshold for a class of topological codes and lattices
that include our toric code on the 3D cubic lattice. Brown proves that a just-in-time
decoder based on a renormalization group decoder similar to [15] has a fault-tolerant

143

Figure 4.14: This is the fault-tolerant cluster state corresponding to the C code
defined on the lattice in figure 4.6. Time moves downward, beginning with the
single qubit at the top and ending with the 2D color code on the base.

noise threshold for the 3D toric code on a cubic lattice.

4.6 Conclusions
To perform universal quantum computation on a physical devicewill require families
of error-correcting codes that support universal sets of fault-tolerant logical gates.
Moreover, these codes will need to be easy to realize experimentally. They should
have high fault-tolerant thresholds, low overhead, and low-weight local stabilizers.
The toric codes in two or three dimensions are known to have high thresholds
against local Pauli noise. The stabilizer generators are low-weight on the cubic
lattice. These features, along with the simplicity of the model, make the toric code
a leading candidate for fault-tolerant quantum information processing.

Past work has shown that a fault-tolerant CCZ gate can be realized in a special 3D
toric code configuration [73]. It was later shown that this logical CCZ gate in the
3D code can be implemented as a protocol in time on a two dimensional lattice [20].
In this work we constructed a 3D toric code that features a fault-tolerant T gate. The
T gate and CCZ gate are both in the third level of the Clifford hierarchy. The T gate

144

time

future

present

past

Figure 4.15: This cartoon depicts a (2+1)-D measurement-based protocol in
progress. The orange layer represents the qubits that are active at the present
time. The blue qubits have already been measured, and the gray qubits have not yet
been initialized. The just-in-time decoding algorithm must predict the correction
on the orange and blue qubits without access to any of the measurement outcomes
on the gray qubits.

along with the Clifford group is perhaps the most commonly used universal gate
set. We describe the 3D cubic lattice and the tetrahedral geometry that supports
our code. The rectified lattice construction of [73] is used to define three different
3D toric codes. We construct the stabilizer version of our code by joining the three
toric codes into one at the base of the tetrahedron and prove that the resulting code
supports a fault-tolerant logical T gate (theorem 7) in addition to logical CZ gates
supported on facets (Proposition 1).

We go on to define a subsystem code on the same lattice analogous to the subsystem
color codes [7]. Our subsystem 3D toric code features a fault-tolerant Hadamard
gate (Proposition 3). When the gauge is fixed so that the /-type gauge generators
are promoted to stabilizer generators, the original stabilizer code with fault-tolerant
T gate is recovered. We proved that the gauge-fixing protocol is fault-tolerant
(theorem 8), so that our 3D subsystem toric code supports a universal set of fault-
tolerant logical gates. The 3D toric code-based scheme presented here offers a
promising approach for universal fault tolerant quantum computation. We also
described how our 3D stabilizer code with fault-tolerant T gate can be converted to
a (2+1)-D protocol, in which a 2D lattice of qubits undergoes a measurement-based
protocol and the time steps take the place of the third dimension of the original code.
This type of protocol might be easier to realize because individually controlled 3D
arrays of qubits tend to be more difficult to build and control than 2D arrays. The
(2+1)-D operation of our toric code is also a promising direction for fault-tolerant

145

quantum computation.

The code we presented here is also interesting from the perspective of defect bound-
aries in topological phases. In the 2D toric code, a type of defect line called a “twist
defect” is intimately related to the 2D color codes. In this work a novel kind of
defect exists on the base of the tetrahedron where the three copies of 3D toric code
are joined. This defect can be thought of as arising from the unfolding of a 3D color
code. Constructions like ours may be a path to studying or classifying defects in 3D
topological phases.

146

BIBLIOGRAPHY

[1] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with con-
stant error. Proc. 29th Ann. ACM Symnp. on Theory of Computing, page 176,
1998.

[2] D. Aharonov, A. Kitaev, and J. Preskill. Fault-tolerant quantum computation
with long-range correlated noise. Physical Review Letters, 96(5):050504,
2006.

[3] P. Aliferis, D. Gottesman, and J. Preskill. Quantum accuracy threshold for con-
catenated distance-3 codes. Quant. Inf. Comp., 6:97–165, 2006. arXiv:quant-
ph/0504218.

[4] J. T. Anderson, G. Duclos-Cianci, and D. Poulin. Fault-tolerant conversion
between the steane and reed-muller quantum codes. Physical review letters,
113(8):080501, 2014.

[5] S. J. Beale, J. J. Wallman, M. Gutiérrez, K. R. Brown, and R. Laflamme.
Quantum error correction decoheres noise. Physical review letters, 121(19):
190501, 2018.

[6] P. Benioff. The computer as a physical system: A microscopic quantum me-
chanical hamiltonian model of computers as represented by turing machines.
Journal of statistical physics, 22(5):563–591, 1980.

[7] H. Bombín. Gauge color codes: optimal transversal gates and gauge fixing in
topological stabilizer codes. New Journal of Physics, 17(8):083002, 2015.

[8] H. Bombín. Single-shot fault-tolerant quantum error correction. Physical
Review X, 5(3):031043, 2015.

[9] H. Bombín. Dimensional jump in quantum error correction. New Journal of
Physics, 18(4):043038, 2016.

[10] H. Bombín. 2d quantum computationwith 3d topological codes. arXiv preprint
arXiv:1810.09571, 2018.

[11] H. Bombín and M. A. Martin-Delgado. Topological quantum distillation.
Physical review letters, 97(18):180501, 2006.

[12] S. Bravyi and A. Cross. Doubled color codes. arXiv preprint
arXiv:1509.03239, 2015.

[13] S. Bravyi and J. Haah. Analytic and numerical demonstration of quan-
tum self-correction in the 3d cubic code. december 2011. arXiv preprint
arXiv:1112.3252, 2011.

147

[14] S. Bravyi and J. Haah. Magic-state distillation with low overhead. Physical
Review A, 86(5):052329, 2012.

[15] S. Bravyi and J. Haah. Quantum self-correction in the 3d cubic code model.
Physical review letters, 111(20):200501, 2013.

[16] S. Bravyi and A. Kitaev. Universal quantum computation with ideal clifford
gates and noisy ancillas. Physical Review A, 71(2):022316, 2005.

[17] S. Bravyi and R. König. Classification of topologically protected gates for
local stabilizer codes. Physical review letters, 110(17):170503, 2013.

[18] S. Bravyi, M. Suchara, and A. Vargo. Efficient algorithms for maximum
likelihood decoding in the surface code. Phys. Rev. A, 90:032326, Sep 2014.
doi:10.1103/PhysRevA.90.032326.

[19] S. Bravyi, M. Englbrecht, R. Koenig, and N. Peard. Correcting coherent errors
with surface codes. arXiv preprint arXiv:1710.02270, 2017.

[20] B. J. Brown. A fault-tolerant non-clifford gate for the surface code in two
dimensions. arXiv preprint arXiv:1903.11634, 2019.

[21] Z. Cai, X. Xu, and S. C. Benjamin. Mitigating coherent noise using pauli
conjugation. npj Quantum Inf, 6(17), 2020. DOI:10.1038/s41534-019-0233-
0.

[22] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist.
Physical Review A, 54(2):1098, 1996.

[23] E. Campbell. A theory of single-shot error correction for adversarial noise.
Quantum Science and Technology, 2019.

[24] E. T. Campbell, B. M. Terhal, and C. Vuillot. Roads towards fault-tolerant
universal quantum computation. Nature, 549(7671):172–179, 2017.

[25] A. Carignan-Dugas, J. J. Wallman, and J. Emerson. Efficiently characterizing
the total error in quantum circuits. arXiv preprint arXiv:1610.05296, 2016.

[26] C. Chamberland, J. Wallman, S. Beale, and R. Laflamme. Hard decoding
algorithm for optimizing thresholds under general markovian noise. Physical
Review A, 95(4):042332, 2017.

[27] C. Chamberland, P. Iyer, and D. Poulin. Fault-tolerant quantum computing in
the pauli or clifford frame with slow error diagnostics. Quantum, 2:43, 2018.

[28] D.M. Debroy, M. Li, M. Newman, and K. R. Brown. Stabilizer slicing: Coher-
ent error cancellations in low-density parity-check stabilizer codes. Physical
review letters, 121(25):250502, 2018.

148

[29] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum mem-
ory. Journal of Mathematical Physics, 43(9):4452–4505, 2002.

[30] G. Duclos-Cianci and D. Poulin. Fast decoders for topological quantum codes.
Phys. Rev. Lett., 104:050504, 2010. DOI:10.1103/PhysRevLett.104.050504.

[31] B. Eastin and E. Knill. Restrictions on transversal encoded quantum gate sets.
Physical review letters, 102(11):110502, 2009.

[32] J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:
449–467, 1965.

[33] J. Emerson, R. Alicki, and K. Życzkowski. Scalable noise estimation with
random unitary operators. J. Opt. B: Quantum Semiclass. Opt., 7(10):S347–
S352, 2005. doi:10.1088/1464-4266/7/10/021.

[34] J. Fern, J. Kempe, S. N. Simic, and S. Sastry. Generalized performance of con-
catenated quantum codes—a dynamical systems approach. IEEE transactions
on automatic control, 51(3):448–459, 2006.

[35] R. P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6/7), 1982.

[36] D. Gottesman. Stabilizer codes and quantum error correction. Caltech Ph.D.
thesis, 1997. arXiv:quan-ph/9705052.

[37] D. Greenbaum and Z. Dutton. Modeling coherent errors in quantum error
correction. Quantum Science and Technology, 3(1):015007, 2017.

[38] L. K. Grover. Quantummechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett., 79:325–328, Jul 1997.

[39] M. Gutiérrez, C. Smith, L. Lulushi, S. Janardan, and K. R. Brown. Errors and
pseudothresholds for incoherent and coherent noise. Phys. Rev. A, 94:042338,
2016.

[40] A. J. Guttmann. On two-dimensional self -avoiding random walks. J. Phys. A,
17:455–468, 1984. DOI: 10.1088/0305-4470/17/2/030.

[41] A. J. Guttmann and A. R. Conway. Square lattice self-avoiding walks and
polygons. Annals of Combinatorics, 5:319–345, 2001.

[42] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker. Magic state distillation
with low space overhead and optimal asymptotic input count. Quantum, 1:31,
2017.

[43] J. M. Hammersley. The number of polygons on a lattice. Mathematical
Proceedings of the Cambridge Philosophical Society, 57:516–523, 1960.
doi:10.1017/S030500410003557X.

149

[44] E. Huang, A. C. Doherty, and S. Flammia. Performance of quantum error
correction with coherent errors. arXiv preprint arXiv:1805.08227, 2018.

[45] P. S. Iyer and D. Poulin. A small quantum computer is needed to opti-
mize fault-tolerant protocols. Quant. Science and Tech., 3(3):030504, 2018.
arXiv:1711.04736v1.

[46] T. Jochym-O’Connor and S. D. Bartlett. Stacked codes: universal fault-tolerant
quantum computation in a two-dimensional layout. Physical Review A, 93(2):
022323, 2016.

[47] T. Jochym-O’Connor and R. Laflamme. Using concatenated quantum codes
for universal fault-tolerant quantum gates. Physical review letters, 112(1):
010505, 2014.

[48] T. Jochym-O’Connor, A. Kubica, and T. J. Yoder. Disjointness of stabilizer
codes and limitations on fault-tolerant logical gates. Physical Review X, 8(2):
021047, 2018.

[49] A. Kitaev, A. Shen, M. N. Vyalyi, and M. N. Vyalyi. Classical and quantum
computation, volume 47. American Mathematical Soc., 2002.

[50] A.Y.Kitaev. Quantum computations: algorithms and error correction. Russian
Math. Surveys, 52:1191–1249, 1997.

[51] E. Knill and R. Laflamme. Theory of quantum error-correcting codes. Physical
Review A, 55(2):900, 1997.

[52] E. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum computation:
error models and thresholds. Proc. Roy. Soc. London, Ser. A 454:365, 1998.
arXiv:quan-ph/9702058.

[53] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D.
Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J Wineland. Randomized
benchmarking of quantum gates. Physical Review A, 77(1):012307, 2008.
doi:10.1103/PhysRevA.77.012307.

[54] A. Kubica, B. Yoshida, and F. Pastawski. Unfolding the color code. New
Journal of Physics, 17(8):083026, 2015.

[55] A. Kubica, M. E. Beverland, F. Brandao, J. Preskill, and K. M. Svore. Three-
dimensional color code thresholds via statistical-mechanical mapping. Physi-
cal review letters, 120(18):180501, 2018.

[56] R. Kueng, D. M. Long, A. C. Doherty, and S. T. Flammia. Comparing
experiments to the fault-tolerance threshold. Physical review letters, 117(17):
170502, 2016.

[57] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek. Perfect quantum error
correcting code. Physical Review Letters, 77(1):198, 1996.

150

[58] Y. Manin. Computable and uncomputable. Sovetskoye Radio, Moscow, 128,
1980.

[59] A.M.Meier, B. Eastin, and E.Knill. Magic-state distillationwith the four-qubit
code. arXiv preprint arXiv:1204.4221, 2012.

[60] J. Napp and J. Preskill. Optimal bacon-shor codes. Quantum Information and
Computation, 13(5&6):0490–0510, 2013.

[61] D. Poulin. Optimal and efficient decoding of concatenated quantum block
codes. Physical Review A, 74(5):052333, 2006.

[62] J. Preskill. Sufficient condition on noise correlations for scalable quantum
computing. Quantum Information & Computation, 13(3-4):181–194, 2013.

[63] B. Rahn, A. C. Doherty, and H. Mabuchi. Exact performance of concatenated
quantum codes. Physical Review A, 66(3):032304, 2002.

[64] R. Raussendorf and H. J. Briegel. A one-way quantum computer. Physical
Review Letters, 86(22):5188, 2001.

[65] R. Raussendorf, D. E. Browne, andH. J. Briegel. Measurement-based quantum
computation on cluster states. Physical review A, 68(2):022312, 2003.

[66] R. Raussendorf, S. Bravyi, and J. Harrington. Long-range quantum entangle-
ment in noisy cluster states. Physical Review A, 71(6):062313, 2005.

[67] R. Raussendorf, J. Harrington, and K. Goyal. Topological fault-tolerance in
cluster state quantum computation. New J. Phys., 9:199, 2007.

[68] Y. R. Sanders, J. J. Wallman, and B. C. Sanders. Bounding quantum gate error
rate based on reported average fidelity. New Journal of Physics, 18(1):012002,
2015.

[69] P. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Rev., 41(2):303–332, 1999.

[70] L. J. Slater. Generalized hypergeometric functions. Cambridge University
Press, 1966.

[71] A. Steane. Multiple-particle interference and quantum error correction. Pro-
ceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 452(1954):2551–2577, 1996.

[72] Y. Suzuki, K. Fujii, and M. Koashi. Efficient simulation of quantum error cor-
rection under coherent error based on non-unitary free-fermionic formalism.
Physical Review Letters, 119(19):190503, 2017.

[73] M. Vasmer and D. E. Browne. Three-dimensional surface codes: Transversal
gates and fault-tolerant architectures. Physical ReviewA, 100(1):012312, 2019.

151

[74] J. Wallman, C. Granade, R. Harper, and S. T. Flammia. Estimating the coher-
ence of noise. New Journal of Physics, 17(11):113020, 2015.

[75] J. J. Wallman and J. Emerson. Noise tailoring for scalable quantum computa-
tion via randomized compiling. Physical Review A, 94(5):052325, 2016.

[76] J. J. Wallman and S. T. Flammia. Randomized benchmarking with confidence.
New Journal of Physics, 16(10):103032, 2014.

[77] T. J. Yoder, R. Takagi, and I. L. Chuang. Universal fault-tolerant gates on
concatenated stabilizer codes. Physical Review X, 6(3):031039, 2016.

152

A p p e n d i x A

CHI MATRIX AND PAULI TRANSFER MATRIX FOR QUBITS

Here we verify Lemma 1 for qubits by expressing all non-diagonal terms in #:; in
terms of j8 9 explicitly:

� ↦→ (j-� + j�-) - + (j. � + j�.). + (j/� + j�/) /
+ (j-. − j.-) (8/) + (j/- − j-/) (8.) + (j./ − j/.) (8-),

- ↦→ (j-. + j.-). + (j-/ + j/-) / + (j�- + j-�) �
+ (j/. − j./) (8�) + (j�. − j. �) (8/) + (j/� − j�/) (8.),

. ↦→ (j-. + j.-) - + (j/. + j./) / + (j�. + j. �) �
+ (j/- − j-.) (8�) + (j�/ − j/�) (8-) + (j-� − j�-) (8/),

/ ↦→ (j/. + j./). + (j-/ + j/-) - + (j�/ + j/�) �
+ (j.- − j-.) (8�) + (j�- − j-�) (8.) + (j. � − j�.) (8-). (A.1)

When we collect all the terms in
∑
0≠1 #

2
01

which are quadratic in {j-. , j.- }, we
obtain

2 (j-. + j.-)2 − 2 (j-. − j.-)2 = 8|j-. |2 = 4
(
|j-. |2 + |j.- |2

)
, (A.2)

using j8 9 = j∗98, as required by complete positivity. The same applies to the terms
involving j�- , j�. , j�/ , j/- , j./ , and their complex conjugates.

To prove the claim we must verify that the linear terms cancel. This can be shown
using the general argument in Lemma 1, but in the qubit case it may be easier to
verify the cancellation explicitly. For example, the contributions to #01 involving

153

j�- , j-� , j./ , j/. are

#�- = (j-� + j�-) + 8 (j./ − j/.) + · · · ,
#-� = (j-� + j�-) − 8 (j./ − j/.) + · · · ,
#./ = (j/. + j./) + 8 (j-� − j�-) + · · · ,
#/. = (j/. + j./) − 8 (j-� − j�-) + · · · ,

(A.3)

and we therefore see that the cross terms cancel in #2
�-
+ #2

-�
and in #2

./
+ #2

/.
.

Similar cancellations occur for all other cross terms.

154

A p p e n d i x B

APPROXIMATING SUMS

We wish to evaluate the sum in equation (2.86):

%= (?) =
(=−1)/2∑
F=0

(
=

F

)
?=−F (1 − ?)F =

=∑
F=(=+1)/2

(
=

F

)
?F (1 − ?)=−F, (B.1)

where ? = B2 = sin2 \/2, and (1−?) = 22 = cos2 \/2. Note that %= (?) is the
probability of a decoding error for the =-bit repetition code subject to independent
noise with bit-flip probability ?. It is convenient to redefine the summation index
obtaining

%= (?) = ? (=+1)/2(1 − ?) (=−1)/2
(=−1)/2∑
A=0

(
=

=+1
2 + A

) (
?

1 − ?

)A
. (B.2)

From the Stirling approximation, we have(
=

=+1
2 + A

)
≈

(√
2
c=

)
2= exp

(
−2
=

(
A + 1

2

)2
)
, (B.3)

neglecting a multiplicative (1 +$ (1/=)) correction. Making another (1 +$ (1/=))
multiplicative error, we may replace the exponential inside the sum over A by 1,
obtaining

%= (G) ≈ ? (=+1)/2(1 − ?) (=−1)/2
(√

2
c=

)
2=
(=−1)/2∑
A=0

(
?

1 − ?

)A
, (B.4)

and we also make a negligible error (assuming ? < 1
2) by extending the upper limit

on the sum to infinity, finding
∞∑
A=0

(
?

1 − ?

)A
=

1 − ?
1 − 2?

. (B.5)

We conclude that

%= (G) =
(√

2
c=

) (√
?(1 − ?)
1 − 2?

)
[4?(1 − ?)]=/2

(
1 +$

(
1
=

))
, (B.6)

assuming ? < 1
2 . Using

4?(1 − ?) = (2B2)2 = sin2 \, 1 − 2? = 22 − B2 = cos \, (B.7)

155

we find

%= (G) =
1
√

2c=

(
sin=+1 \

cos \

) (
1 +$

(
1
=

))
, for sin2 \/2 < 1/2. (B.8)

156

A p p e n d i x C

CORRELATED NOISE: LEADING BEHAVIOR FOR LARGE =

Here we’ll describe an alternative way of understanding equation (2.164), where the
coefficient of ℎ@2 in the logical channel is $ (<3@/2). This leading behavior results
from cancellations of higher order terms in < that occur when we perform the sum
over :' in equation (2.161). What is the explanation for these cancellations?

In Section 2.5 we calculated the coherent and incoherent logical components for the
bit-flip code of size = subject to correlated unitary rotations given by a Hamiltonian
of the form:

� =
∑
8

ℎ1-8 +
∑
9 ,: | 9≠:

ℎ2- 9-: . (C.1)

We expressed the logical coherent component j̃-� and the logical incoherent com-
ponent j̃-- in terms of functions Ω and Δ such that

j̃-� (@) =
@∑

:'=0
Ω(@ − :', :')ℎ@2ℎ

=−2@
1 ,

j̃-- (@) =
@∑

:'=0
Δ (@ − :', :')ℎ@2ℎ

=+1−2@
1 +$ (ℎ@2ℎ

=+3−2@
1), (C.2)

where

j̃-� =

(=−1)/2∑
@=0

j̃-� (@), j̃-- =

(=+1)/2∑
@=0

j̃-- (@), (C.3)

and only even values of @ contribute. Here :' is the number of times theHamiltonian
term 8ℎ2-- acts on the density operator from the right, and :! = @ − :' is the
number of times −8ℎ2-- acts from the left.

We were able to compute Ω and Δ by counting the ways of decomposing each
physical noise term into combinations of one- and two-body Hamiltonian terms.
Repeating equations (2.149) and (2.152), we found

Ω(@ − :', :') =
(8)=−@ (−1)< (< + 1)
(= − 2@)2@

(
=

<

)
× (−1):' (<!)2

:'!(@ − :')!(< − 2:')!(< − 2@ + 2:')!
, (C.4)

157

and

Δ (@ − :', :') =
(8)@
2@

(
=

<

)
× (−1):' ((< + 1)!)2

(< + 1 − 2@ + 2:')!(< + 1 − 2:')!:'!(@ − :')!
.

(C.5)

Let’s evaluate the sum over :' to leading order in 1/< in both equation (C.4) and
(C.5). We focus on the second factor in each equation, which contains all of the :'
dependence. In equation (C.4) this factor is

(−1):' (<) (< − 1) . . . (< − 2:' + 1) × (<) (< − 1) . . . (< − 2@ + 2:' + 1)
(:')!(@ − :')!

.

(C.6)
The dominant term for < large is given by

(−1):' (<)2@
(:')!(@ − :')!

= (−1):' (<)
2@

@!
×

(
@

:'

)
. (C.7)

Then when we sum over :', we have

(<)2@
@!

@∑
:'=0
(−1):'

(
@

:'

)
= 0, (C.8)

where we have made use of the identity

0∑
1=0

%2 (1) (−1)1
(
0

1

)
= 0 ∀2 < 0. (C.9)

Here %2 (1) denotes any polynomial in 1 of degree 2 < 0. The situation for Δ is the
same except that < is replaced by < + 1. Therefore, the leading term for < large in
equations (C.4) and (C.5) vanishes.

Similar cancellations occur for higher-order corrections which are suppressed by
powers in 1/<. These corrections are computed by expanding the numerator,
equation (C.6), as a 2@th order polynomial in <. For example, the coefficient of
<2@−1 is

(−1):' (−1)
2@2 − 4@:' + @ + 4:2

'

@!

(
@

:'

)
, (C.10)

in which the prefactor multiplying
(@
:'

)
is a second-degree polynomial in :', so

that equation (C.9) implies that the sum over :' vanishes if @ > 2. Likewise,
the coefficient of <2@−A is a polynomial in :' of degree of 2A, and the sum over

158

:' vanishes if 2A < @. Recalling that only even @ contribute, we see that the
leading term that survives the summation over :' has A = @/2 and is therefore order
<2@−A = <3@/2. We have now seen why terms higher order in < cancel. The term
of order <3@/2 can be evaluated using the identity

0∑
1=0
(−1)110

(
0

1

)
= (−1)00!. (C.11)

The identities in equations (C.9) and (C.11) can be derived by performing the
binomial expansion of (1 + G)0, differentiating repeatedly, and then setting G = −1.

159

A p p e n d i x D

THE SHAPE OF THE LOGICAL STRING

In this appendix, we prove that among short logical strings nearly all have typical
shape as in Definition 6.

Lemma 9. In a size ! toric code, all but order 1/! of the logical strings running
left to right across the code with length ≤ !+2Z consist of single steps up and down,
so that no vertical segment is longer than one qubit.

Proof. If the size of the code is ! and we consider all length ! + 2Z logical strings
for fixed Z , we will count the number of strings that satisfy the condition that each
step up or down is only length one. First, we start with a horizontal logical string
of length ! and then pick Z sites along it. We have Z upward steps and Z downward
steps, and we need to fix an ordering. Alternatively, we could think of choosing Z
sites for the upward steps and another Z sites for the downward steps. In total the
number of strings of this type is

number of strings with steps of one =
(
!

2Z

) (
2Z
Z

)
=

(
!

Z

) (
! − Z
Z

)
. (D.1)

The ! dependence in equation (D.1) is

!!
(! − 2Z)! . (D.2)

Next we will count the total number of strings that consist of no backwards steps,
that is starting from the left of the code block the strings move only right, up, and
down. These strings potentially contain upward and downward steps of more than
one. In general, such a string involves @1 distinct steps up with Z total length and
@2 steps down also totaling Z in length. The number of ways of writing Z as a
sum of @1 terms, not ignoring order, is given by the number of compositions of the
integer Z into @1 terms, which is

(Z−1
@1−1

)
. Each of the @1 steps up and @2 steps down

can be placed independently. This gives us
(!
@1

) (!−@1
@2

)
combinations of possible

configurations. In total we have(
Z − 1
@1 − 1

) (
!

@1

) (
Z − 1
@2 − 1

) (
! − @1
@2

)
(D.3)

160

such strings. When @1 = @2 = Z , we recover the case where each step up or down is
by one lattice site. Then we can isolate the ! dependence in equation (D.3):

!!
(! − @1 − @2)!

. (D.4)

We can compare this to equation (D.2), and we see that there are fewer paths with
steps larger than one. The ratio is proportional to

number with @1 steps up and @2 steps down
number with Z single steps up and down

= $ (!@1+@2−2Z). (D.5)

Then if we count the paths with a single step of two and the other steps are all one,
there are order 1/! of these relative to the number of paths with single steps up and
down.

We must also count the number of logical strings where the string backtracks on
itself. There are even fewer of these than the strings with jumps up or down by
two. Each string with backtracking can be produced from a string with a jump
up or down of at least two lattice spacings. We add some additional cap onto the
vertical segment of at least length 2. The number of strings with one instance of
backtracking like figure D.1 will be proportional to the number of strings of length
two shorter that also have at least one step up or down of more than one. For this
reason, strings like the one in figure D.1 are an exponentially smaller minority than
the strings with steps up and down of more than one. Then we conclude that nearly
all short logical strings spanning the code left to right consist of steps up and down
by only one qubit.

�

Lemma 10. For the class of length ! +2Z strings described in Lemma 9 (those with
exactly Z steps up and Z steps down as they span the code block from left to right),
for large ! nearly all will have spacings between the steps growing proportional to√
!. We choose a small constant W and define typical strings as those for which all

vertical steps are separated by at least W
√
!. If we fix the length of logical strings

and combine this lemma with Lemma 9, we can make the following statement about
the fraction of strings of that length that have atypical shape:

Number of strings with atypical shape
Total number of strings

=
8WZ2
√
!
+$

(
1
!

)
. (D.6)

161

Qubits

L

Figure D.1: The logical string L has backtracking. Among short logical strings,
those with backtracking are unlikely relative to strings without.

Proof. The total number of strings of the type in Lemma 9 is
(!
2Z

) (2Z
Z

)
. Now let us

compute the number of strings such that each step up or down is separated from
others by W

√
! for some constant W. We can lower bound the number by starting

with a length ! string running left to right across the code and placing our steps up
and down. We suppose that each step we place prohibits placing another step on a
further 2W

√
! of the sites. This is a lower bound because in the true answer these

intervals will sometimes overlap. The lower bound is

!

(
! − (2W

√
! + 1)

) (
! − 2(2W

√
! + 1)

)
· · ·

(
! − (2Z − 1) (2W

√
! + 1)

)
(2Z)!

(
2Z
Z

)
.

(D.7)
Compared to the total, = − 8 has been replaced by = − 8(2W + 1) for each 8, so that
when W = 0, we recover the total number of strings. In general, the ratio of this
limited set to the total for fixed Z and W is given by

number of length ! + 2Z strings with widely separated steps
number of length ! + 2Z strings

≈
2Z−1∏
8=1

(
1 − 28W
√
!

)
.

(D.8)
We can lower bound this by

>

(
1 − 4ZW
√
!

)2Z
= 1 − 8WZ2

√
!
+$

(
1
!

)
. (D.9)

This approaches 1 as ! increases, and we see that with high probability a short
logical string will have the property that the steps up and down are separated by

162

more than W
√
!, as ! becomes large.

�

163

A p p e n d i x E

DISCONNECTED ERRORS

Fix a coherent logical noise component and consider the sum in equation (3.7). In
Section 3.6 we argued that the disconnected term is 1 for disconnected errors that
do not change how a given connected term is decoded. This allows us to write the
sum as

j̃/1 ,� =
©­«
∑
L

∑
?∈P(B)

Connected partª®¬ + Error. (E.1)

The sum over L includes all typical short connected logical strings. P(L) is the
set of likely partitions of connected logical string L. This excludes the partitions
we called “exceptional terms” in Definition 7 and Lemma 4. “Error” contains all
the terms we have neglected. This includes the contribution of long logical strings,
short logical strings with atypical shape, and exceptional terms. It also includes the
terms with disconnected pieces that we did not consider in Section 3.6. These are
all of the terms where the disconnected errors flip the way the partition is decoded,
where we start with a partition and after adding disconnected errors to each side, the
error that was originally uncorrectable becomes correctable and vice versa. These
terms will not follow the analysis we did in Section 3.6. We will describe these
terms now and show that they are negligible in the following lemma.

Lemma 11. In equation (E.1) the error from the neglected terms E can be expressed

Error = E1 + E2, (E.2)

where E1 contains the contributions that we have already proven are negligible—
long connected logical strings, logical strings with an atypical shape, and excep-
tional partitions. E2 contains the contributions from terms where the disconnected
errors have flipped theway the partition is decoded. These are the termswe neglected
in Section 3.6. The following is true:

|E2 | ≤ |E1 |. (E.3)

Proof. We start with a typical short connected logical string and take a partition
into a correctable operator and an uncorrectable operator, denoted ($*d $�). Now

164

we add disconnected errors, �! and �' to the left and right side of the partition. In
some cases the uncorrectable error may become correctable and vice versa. That is,
$*�! will be correctable, while$��' is uncorrectable. For example, the term that
contributes to the j̃/1 � component of the logical noise might be ($��'d $*�!).
Our treatment of the disconnected part in Section 3.6 assumed that the added errors
did not flip the correctable and uncorrectable sides of the original partition. Now
we will justify this assumption by proving that such terms are negligible.

First, we must understand the conditions when an added error will turn the uncor-
rectable side of a partition into a correctable error. $* is the uncorrectable side of
the partition, so theminimal-weight correction to$* is equal to$� up to stabilizers.
For$*�! to be correctable, the minimal-weight correction must equal$*�! up to
stabilizers and not equal$��! up to stabilizers. Note that we write �! and not �'

because �! and �' have the same syndrome, so as far as the decoder is concerned,
they are equivalent. This implies

min
�G∈S

|�G$*�! | < min
�G∈S

|�G$��! |, (E.4)

where�G is an element of S, which denotes the stabilizer group, and | · | denotes the
weight of a Pauli operator. The weight of the minimal-weight operator equivalent
up to stabilizers to $��! is no greater than the sum of the weights of the minimal-
weight operators equivalent up to stabilizers to $� and �! individually. We can
continue:

min
�G∈S

|�G$*�! | < min
�G∈S

|�G$��! | ≤ min
�G∈S

|�G$� | + min
�H∈S

|�H�! |

< min
�G∈S

|�G$* | + min
�H∈S

|�H�! |. (E.5)

We conclude that the added error must be such that the minimal-weight correction
of$*�! is less than the minimal-weight correction of$* plus the minimal-weight
correction of �! . This happens when the disconnected error �! lies near $* such
that the minimal-weight decoder will tend to form a loop out of parts of �! and$* .
This is possible only in cases like the one in figure E.1.

The condition in equation (E.5) requires a special combination of disconnected
error and original partition. This is possible for both coherent- and incoherent-
type disconnected errors as defined in Section 3.6. Let us consider incoherent-type
disconnected errors first. This is what is illustrated in figure E.1. The disconnected
error causes the uncorrectable side of the partition to become correctable when �!

165

Qubits

OCDR

OUDL

Figure E.1: This figure shows a partition of a connected logical string together with
a disconnected error. The disconnected error is incoherent-type, so �! = �'. The
uncorrectable error$��' is in red, while the correctable error$*�! is in blue. The
two form a length-5 connected logical string that runs left to right across the code.
Without the disconnected errors, $� would be correctable and $* , uncorrectable.
Therefore, the added disconnected errors have flipped the original partition.

contains at least two errors in a row adjacent to $* . Based on our condition, we
observe that the number of added errors that flip the partition is greatest for the
lowest-weight partitions. These terms require the fewest added errors to flip. We
also see that the number of these added errors increases with the length of the logical
string. A longer string has more adjacent qubits. This implies that the value of the
disconnected part is decreasing with string length. This fact was used in Lemma 3.

We seek to prove that terms like the one in figure E.1 are negligible in the coherent
logical noise components. We will do this by mapping each combination of a
partition of a connected logical string and a set of disconnected errors such that
uncorrectable and correctable errors in the partition are flipped to a partition of a
longer connected logical string. There exists a unique stabilizer operator that will
multiply the starting partition plus disconnected errors and produce a partition of a
longer logical string. This is illustrated in figure E.2. Our condition in equation (E.5)
says that the minimum stabilizer-equivalent operator to$* is lower weight than$* .
The stabilizer operator we need to map figure E.1 to figure E.2 is the product of
$*�! and its minimal-weight correction. The resulting connected logical string is
longer than the original connected logical string, but the total weight of the noise
term (connected and disconnected) is smaller. This must be true because we have

166

Qubits

OU

OC

Stabilizer

Figure E.2: Here is the partition of a connected logical string corresponding to
figure E.1, with the new uncorrectable error$* in red and the new correctable error
$� in blue. This term shares the same syndrome as the one in figure E.1. We can
always multiply right or left hand sides by a stabilizer to produce different coherent
terms. This term is produced from figure E.1 by multiplying the correctable side
in blue by the stabilizer operator in gray crosshatching. Notice that the connected
logical string is longer, but the total weight of the term is smaller.

lowered the weight of the errors in blue ($*�!), and we have not changed the
weight of the errors in red ($��').

In our previous analysis of the connected part of the coherent logical noise, we
neglected logical strings with length > ! + 2Z for a cut-off constant Z . Then
we neglected short logical strings with atypical shape. Finally, we neglected the
unlikely partitions of each string, whichwe called exceptional terms. In this proofwe
began with a likely partition of a short, typical connected logical string. We added
disconnected errors, and in cases like the one in figure E.1 where the added errors
flipped the partition, we mapped these terms to partitions of a different connected
logical string like in figure E.2. The final part of our proof is to argue that we can
neglect this class of terms, where disconnected errors changed how the connected
partition is decoded.

First, we observed above that the weight of the new connected term produced by
our mapping is less than the weight of the original term with disconnected errors.
This means that the term in figure E.1 is suppressed in powers of sin \/2 relative
to the term in figure E.2. Second, we will argue that the new connected term is
one we have already neglected. Recall how we constructed new connected terms

167

like the one in figure E.2. We took a likely partition of a typical, short, connected
logical string and added disconnected errors to it in such a way that we flipped how
the partition was decoded. The original uncorrectable side became correctable and
vice versa. Then we multiplied the correctable error$*�! by a particular stabilizer
operator to produce a new term that is a partition of a new connected logical string.
We make the following observation. One of two things must be true. One is that
the new logical string has an atypical shape, specifically if the logical string runs
left to right across the code, the steps up and down in the lattice are separated by
less than W!. W was our chosen constant from Lemma 10 that lower bounded the
separation between the vertical steps in the logical string. The alternative is that
the new connected logical string has a typical shape, but the partition we produce
is unlikely. If the stabilizer we multiply by in figure E.2 has a width of at least
W!, the shape of the new connected logical string may be typical. However, in
that case the partition we get for the longer connected logical string has a row of
W! qubits all belonging to the blue error. We proved in Lemma 4 that partitions
with this feature are an exponentially small (in

√
!) fraction of the total partitions.

We neglected these partitions in our earlier sum over connected terms. We find
that the terms with disconnected errors that flip how the partition is decoded are
in one-to-one correspondence with terms we have already neglected and moreover,
the magnitudes of the terms with disconnected errors are smaller by a number of
powers of sin \/2. We conclude that such terms contribute less to the logical noise
than the terms we have already neglected.

So far in this proof, we dealt with incoherent-type added errors. This was for
simplicity, so that we had only one picture in mind. The argument for coherent-
type added errors is the same. Coherent-type disconnected errors can also flip the
correctable and uncorrectable sides of a partition of a connected logical string. We
have already stated the condition when this occurs. The disconnected terms on the
uncorrectable side �! must contain a contiguous set of errors near a contiguous set
of errors in the uncorrectable part of the partition $* .

We bound the contribution of the disconnected coherent-type errors that flip the
correctable and uncorrectable sides of the partition in the same way as we did the
incoherent-type. We will use a mapping that takes such a term and produces a
partition of a longer connected logical string. The mapping multiplies by a suit-
able stabilizer operator as depicted in figure E.4. In this case the new connected
term is negligible for the same reasons as in the incoherent-type added error case.

168

Qubits

OCDR

OUDL

Figure E.3: Here we have a partition of a connected logical string together with a
disconnected error. The partition is the same as the one in figures E.1 and E.2. The
disconnected error is now a coherent-type error. The uncorrectable error$��' is in
red, while the correctable error $*�! is in blue. Without the disconnected errors,
$� would be correctable and $* , uncorrectable. The added loop of disconnected
errors has flipped the original partition.

The connected logical string produced from the original partition plus the discon-
nected coherent-type errors either has an atypical shape or the original partition was
exponentially unlikely (in

√
!). We conclude that the contribution of terms with

disconnected errors that flip the partition is negligible in the logical noise.

�

169

Qubits

OU

OC

Stabilizer

Figure E.4: This is the connected string and partition that corresponds to figure
E.3, with the new uncorrectable error $* in red and the new correctable error $�
in blue. We can always multiply right or left hand sides by a stabilizer to produce
different coherent terms. This term is produced from figure E.3 by multiplying
the correctable side in blue by the stabilizer operator in gray crosshatching. The
connected logical string is longer than the one in figure E.3, but the total weight of
the term is less.

170

A p p e n d i x F

THE DISCONNECTED PART OF THE INCOHERENT LOGICAL
NOISE

In Appendix E we proved that for the dominant noise terms in the coherent logical
noise components, the disconnected part was equal to 1 up to small corrections. We
will now prove the same statement for the dominant noise terms in the incoherent
logical noise components.

Lemma 12. In equation (3.41), we wrote an incoherent logical noise component
as a sum over the contributions from individual logical strings. This included a
disconnected factor. Here we prove that we can set the disconnected factor equal to
1 and make only a small error. In other words suppose we write

j̃/1/1 ≥
∑
L

∑
$*⊂L

1
|{$′

�
}|

∑
$ ′
*

($*d $′*) (1 + E1 + E2), (F.1)

where the sum over L includes all short typical logical strings, $* , |{$′�}|, and
$′
*
are all as described in Section 3.8, and E1 is the error we make by neglecting

various connected terms, including high-weight terms and terms with mismatched
weight. In Lemma 5 we proved that

|E1 | < $
(
(sin \)2Z

)
. (F.2)

E2 represents the error we make when we set the disconnected factor equal to 1.
Then

|E2 | <
8WZ2
√
!
+$

(
1
!

)
. (F.3)

Proof. We can follow the argument from Section 3.6 and Appendix E. The con-
nected noise terms we considered in those sections had the form ($*d $�). Here
we will consider noise terms with the form ($*d $′*). We will imagine arriving
at these noise terms in the manner of Section 3.8. Namely, we begin with a short
logical string with a typical shape. We partition the logical string into $* and $� .
Then we choose an operator $′

*
with the same syndrome as $* . We denoted the

set of possible $′
*
by {$′

*
}.

Now that we have a connected noise term ($*d $′*), we can think of dressing it
with disconnected errors in exactly the same way as we did in the coherent case.

171

In Section 3.6 we observed that the added errors that make up the disconnected
part can be divided into coherent- and incoherent-type. The coherent-type added
errors are when we add different errors to $* and $′

*
. In this case the errors we

add to $* and $′
*
form a loop (with nonzero area). We saw that as long as the

loop was positioned such that the added errors did not change how the connected
noise term was decoded, the sum over the possible ways of dividing the errors in the
loop between $* and $′

*
gave zero. We considered incoherent-type added errors

where we added the same error to $* and $′
*
. In this case the contribution was

nonzero. As long as the added error did not change how the connected noise term
was decoded, the incoherent-type added errors contributed a sin2 \/2 term on each
qubit. Together with the cos2 \/2 term corresponding to no error on each qubit,
this gives 1 for the disconnected part. This applies to the added errors that do not
change how the connected part was decoded. Therefore, our approach is to write
the disconnected part as 1 plus a correction that comes from the configurations of
added errors that change how the connected part is decoded.

In Lemma 11 we considered added errors that change how $* is decoded in the
coherent logical noise components. For connected noise terms that enter into the
incoherent logical noise, the correction to the disconnected part comes from the
same source, certain added errors that change how the connected term is decoded.
In that case the added errors flipped the correctable and uncorrectable sides of
the partition, which gives a phase of −1. In the incoherent case, if $* is made
correctable by the added errors, then so is $′

*
, and the resulting term contributes to

the identity part of the logical noise. In effect, there are disallowed added errors,
which reduce the value of the disconnected part. The counting of such terms is
identical to what we did in Lemma 11. Recall that these added error terms were
related to connected terms that either had an atypical shape or an unlikely partition.
The contribution to E2 from these terms is proportional to the fraction of atypical
logical strings from Lemma 10. The contribution from the unlikely partitions is
exponentially small in

√
! as before.

There is another class of added errors that contribute to the correction to the discon-
nected part. Some errors are near the correction �B so that once the errors have been
added, they become part of a new connected term. An example is shown in figure
F.1. This class of terms contains only incoherent-type added errors. Coherent-type
added error placed here will still give 0 after we sum over the ways of splitting the
errors into the left and right disconnected errors. This is the same as for coherent-

172

Qubits
OU
OC

Es

Added Errors

Figure F.1: This figure illustrates a certain type of added error term. We start with
a short, typical logical string and partition it into operators $* and $� . Then we
would choose some operator $′

*
(not pictured) with the same weight and syndrome

as $* to produce an incoherent term. The errors in the red circle are added to both
$* and $′

*
. The minimal-weight correction is shown as a black dashed line. The

added errors are not disconnected but form a new connected term.

type added errors far from the connected logical string. For a likely partition of a
short logical string with typical shape, �B will have the same weight as $� . The
incoherent-type added errors that join the connected part may either lie near to �B
or they may be contained in �B. We will first study the case where the added errors
are not contained in �B. These terms are closely related to the situation we just
analyzed where the added errors sit next to $* . The condition on the added error is
analogous to equation (E.5). Let � denote the added incoherent-type error and S
denote the stabilizer group. Then

min
�G∈S

|�G$�� | < min
�H∈S

|�H$2 | + min
�I∈S

|�I� |. (F.4)

If this condition is satisfied, then the added error becomes part of a new connected
term ($*�d$′*�). Together with the new lowest-weight correction $*� forms a
new connected logical string. This logical string is similar to the old logical string,
but it contains a detour where it veers off to include the error �. This logical string
either has an unlikely shape because it includes two closely spaced vertical steps,
or the error � has width > W!. In the latter case we also require that the original
correction �B contains > W! consecutive qubits. This is exponentially unlikely
according to the counting we did in Lemma 4 and the bound we wrote in equation
(3.26). We conclude that the contribution to the error term n2 from the noise terms
we arrive at by adding errors proximate to $� is small.

This leaves the added errors that lie within �B or one of the operators with the same
syndrome and weight. In this case the new connected logical string that results from

173

adding the errors is the same as the old logical string. We will compare the set of
terms we arrive at by adding errors in this manner to the set of terms with the same
$* but a higher-weight $′

*
. We will argue that there are more of the terms with

higher-weight $′
*
. We have already neglected such noise terms in Lemma 7, so we

conclude that the correction to the disconnected part is small.

We start with a connected noise term ($*d $′*), where |$* | = |$′* | = F. We form
a higher-weight noise term by adding an incoherent-type error � within one of the
operators $′

�
to produce a new connected noise term ($*�d$′*�). This adds

a total of two to the weight of the term. We can place the added error anywhere
within one of the operators$′

�
. The number of possibilities is$ (F). Now consider

the possible connected noise terms with the same $* , but instead of choosing $′
*

with weight F, we set |$′
*
| = F + 2. Suppose we start with an operator $′

*
with

weight F. We can construct one with F + 2 by adding an extra “cap” consisting of
three qubits around a single plaquette or star. This is illustrated in figure F.2, where
three possible choices of $′

*
are drawn with the red dashed line. The number of

possible choices is at least $ (F), because we can place a cap at each location along
$* . The full set of possibilities will generally be larger. If we consider a pair of
added errors lying within $′

�
, then we compare to the connected noise terms with

|$′
*
| = |$* | + 4. The noise terms where $* and $′

*
have different weights were

discussed in Section 3.9. We proved in Lemma 7 that the contribution of these
terms is negligible. Finally we conclude, just as in Lemma 11, that each of the
disconnected errors that contribute to the error E2 can be matched with a connected
noise term that we have already neglected. In other words, the error E2 is less than
E1. Therefore, we can say that the disconnected part = 1 and make only a small
error for low-weight connected terms.

�

174

Qubits

OU

OC

O′
U

Error Locations

Figure F.2: This figure illustrates the idea of the proof that a certain type of added
error term contributes only a small error. Consider a connected logical string that
we partition into $* and $� , the solid red and blue lines. The class of added errors
we consider are those where the added error lies along $� or one of the operators
$′
�
with the same weight and syndrome. The possible locations for such an added

error are marked by the × symbols. We prove that such terms are negligible by
comparing to the noise terms where the operator$′

*
is chosen with weight 2 greater

than $* . Three of the possible choices for $′* are drawn with the dashed red lines.
In this example there are 12 possible $′

*
operators and six possible added error

terms.

175

A p p e n d i x G

PHYSICAL . ERRORS

In Lemma 8 we considered rotations in the -−/ plane where the single-qubit
rotation angles were allowed to differ. Here we prove that allowing for rotations
partly around the . axis on the physical qubits will decrease the coherence of the
logical noise channel.

Lemma 13. Consider an !×! toric code and a noise channel that consists of single-
qubit rotations by an angle \ about an arbitrary axis. Suppose that | sin \ | < 1/!
as in Lemmas 3 and 5. Then the connected contribution to the logical noise from
low-weight terms is most coherent when the single-qubit rotations are about an axis
in the -−/ plane. We proved elsewhere that the low-weight connected contribution
dominates the logical noise components.

Proof. Let \- , \. , \/ denote the rotation angles about the - , . , and /-axis,
respectively, so that \2

-
+ \2

.
+ \2

/
= \2. Of the coherent logical noise components,

according to Lemmas 14 and 15, the dominant components are the ones (!̃0 d̃),
where !̃0 is a logical - or / operator on one of the encoded qubits. We apply
several of our lemmas to restrict the noise terms we consider, just as in Theorem
6. Among the noise terms that contribute to the coherent logical noise, we keep
the terms with short, typical logical strings and non-exceptional partitions. Among
the noise terms that contribute to the incoherent logical noise, we keep the terms
where the logical string L is short and typical, |$* | = (|L| +1)/2, |$� | = |�B |, and
|$′

*
| = |$* |.

First suppose that \/ = 0. Then the logical (-1 d̃) noise component is generated
from noise terms ($*d $�) where $* and $� together contain - acting on every
qubit along an -1 logical string. Meanwhile, the incoherent logical (-1 d̃-1) noise
component is also generated by -1 logical strings. In Theorem 6 we state a bound
on the relative magnitude of these logical noise components. Here \- plays the role
of \ in equation (3.69). Under our \- and \. rotation noise model, we also have
a non-zero logical (/1 d̃) noise component. This is generated by connected noise
terms, ($*d $�), where$* and$� together contain both - and . acting on every
qubit along a /1 logical string. The number of /1 logical strings with length ℓ is

176

the same as the number of -1 logical strings with length ℓ. However, the weight
of the noise terms that contribute to (/1 d̃) is ℓ2. The contribution of each noise
term is (sin \-/2)ℓ (sin \./2)ℓ. In contrast, the noise terms that contribute to (-1 d̃)
are all proportional to (sin \-/2)ℓ. Therefore, (/1 d̃) is exponentially smaller in
! relative to (-1 d̃) for any choice of rotation axis in the -−. plane. The (/1 d̃)
noise component has a negligible effect on the relative magnitudes of the coherent
and incoherent logical noise components. We also have an incoherent (/1 d̃ /1)
noise component. This is generated by noise terms, ($*d $′*), where $* and
$′
*
contains . errors along an uncorrectable subset of a /1 logical string. These

noise terms have magnitude (sin \./2)ℓ+1, which is exponentially large relative to
the noise terms that contributed to (/1 d̃). It follows that the logical coherence is
maximized when \. = 0 and \- = \. We began by supposing \/ = 0. Next we will
consider the case where \- , \. , and \/ are all nonzero.

Suppose |\/ | ≥ |\- |. If not, switch the role of - and / in what follows. Fix a
/1 logical string L. The contribution of the logical string L to j̃/1 � is a sum over
the partitions of L. For each partition ($*d $�), we can replace a / error in $*
with a . error if we add an - error on the same qubit to $� . Similarly we can
replace a / error in $� by a . error if we add an - error on the same qubit to
$* . The / syndrome is unchanged, but now we also have a non-trivial - syndrome
corresponding to the - error on the chosen site. This does not change how any
partitions are decoded, but it does change the weight. The contribution of each
partition to j̃/1 � is a sum over all combinations of either a / error or a . and an -
error on every qubit in L. The terms with . errors have higher weight. This means
they contain extra factors of sin \./2, which is small since | sin \ | < 1/!. At the
same time, the logical string L contributes to the j̃/1/1 logical noise component.
These noise terms include some that feature only / errors and others with some
number of / errors replaced by . errors. Unlike the contributions to j̃/1 � , these
terms with . errors are not higher-weight. There are no extra factors of sin \./2,
and we conclude that the incoherent logical noise components are made larger
relative to the coherent logical noise components. Therefore, the logical coherence
is maximized when \. = 0.

�

177

A p p e n d i x H

OTHER LOGICAL MAPS

In Section 3.4 we restricted our attention to logical coherent terms of the form (!̃0 d̃),
where !0 is an - or / operator on one of the encoded qubits. Now we would like
to consider the case where !0 acts nontrivially on both encoded qubits or as . on
one or both of the encoded qubits.

Lemma 14. Consider the toric code with minimal-weight decoding and a noise
model that consists of uniform single-qubit unitary rotations about a fixed axis. Then
the coherent logical noise components, (!̃0 d̃), where !̃0 is a. -type logical operator
or !̃0 is a non-trivial logical operator on both encoded qubits, are negligible relative
to the components where !̃0 is an -- or /-type logical operator on one encoded
qubit.

Proof. Suppose we have !̃0 = -1/2. Logical strings of this type are the product of
two operators of the type we have already considered. Each connected noise term
that contributes to the logical noise component, (-1/2 d̃), is a product of a connected
noise term that contributes to (-1 d̃) and a connected noise term that contributes
to (d̃/2). It follows that up to corrections that come from the disconnected part,
(-1/2 d̃) ≈ (-1 d̃) (/2 d̃). The logical components, (-1 d̃) and (/2 d̃), are both small
if error correction is working, so the logical (-1/2 d̃) component will be negligible.
If !̃0 is . -type operator on the first encoded qubit, the argument is the same, since
. -type logical strings are products of -- and /-type logical strings, .1 = -1/1.

If we have !̃0 = /1/2, the logical component (/1/2 d̃) is no longer a product of
(/1 d̃) and (/2 d̃). This is because /1 and /2-type logical strings can overlap, and
this changes the counting of logical strings of a fixed weight. Figure H.1 shows two
examples of this kind of logical string. At length 2!, where ! is the code distance,
there are many connected logical strings because we can have a single connected
string that wraps the torus along both directions. If we count the shortest paths
between two points in the square lattice separated by distance ;1 in the horizontal
and ;2 in the vertical, we get

number of shortest paths travelling ;1 horizontal and ;2 vertical spaces =
(
;1 + ;2
;1

)
.

(H.1)

178

We can use this to bound the number of weight-2! logical /1/2 strings. Fix two
sites in the code, qubit 8 along the vertical edge of the code and qubit 9 along the
horizontal edge. Now count the number of shortest paths that connect these points.
We have (

8 + 9
8

) (
2! − 2 − 8 − 9
! − 1 − 8

)
+

(
! − 1 − 8 + 9

9

) (
8 + ! − 1 − 9

8

)
(H.2)

for the twoways of linking the edge points. We simply apply the result from equation
(H.1). In the end we find that

number of weight-2! /1/2 logical strings ≈
4!
√
c!
. (H.3)

In Section 3.4 we counted logical strings that act as - or / on one of the encoded
qubits starting from length !, and we found exponentially many logical strings at
higher weights. If we consider weight-2! logical strings, we find order `2! logical
strings, where ` ≈ 2.64 for the 2D square lattice. This is more than 4! , so we
have more of the high-weight logical strings that act on only one encoded qubit.
Further, in our path counting in Lemma 3, we neglected all logical strings of length
> ! + 2Z for a constant Z . The strings of length ≥ 2! contribute negligibly for
large !. Then we conclude that the logical noise components, (!̃0 d̃), where !0 is a
. -type logical operator or acts on both encoded qubits, are negligible relative to the
noise components where !0 acts as - or / on one of the encoded qubits.

�

179

Qubits
L1

L2

Figure H.1: Here are two examples of lowest-weight /1/2 logical strings, L1 and
L2, that act as / on both encoded qubits. Notice that red and green connect the
edge points in different (but topologically equivalent) ways.

180

A p p e n d i x I

MORE GENERAL COHERENT TERMS

We have considered coherent logical noise components (!̃0 d̃), where !̃0 is a logical
operator that acts as - or / on exactly one of the encoded qubits. We must also
consider logical noise components (!̃0 d̃ !̃1), where !̃0 and !̃1 are different non-
trivial operators on the encoded qubits.

Lemma 15. Consider the ! × ! toric code with noise that consists of single-qubit
unitary rotations about a fixed axis by angle \ on every qubit, where | sin \ | is < 1/!
as in Lemma 3. Each coherent logical noise component of the form (!̃0 d̃ !̃1), where
!̃0 and !̃1 are different nontrivial logical operators, is negligible relative to the
coherent logical noise components with !̃1 = ˜83. Each of the more general coherent
terms is given by

(!̃0 d̃ !̃1) ≈ (!̃0 d̃) (d̃ !̃1). (I.1)

(!̃0 d̃) and (d̃ !̃1) are both small (because we are interested in the regime where
error correction succeeds with high probability.) Therefore, we may safely neglect
all logical noise components (!̃0 d̃ !̃1), where !̃0 and !̃1 are different nontrivial
logical operators.

Proof. Our approach here is to bound the coherent logical noise components
(!̃0 d̃ !̃1), where !̃0 and !̃1 are different nontrivial logical operators, by the co-
herent logical noise components we have already considered. This follows because
the short connected logical strings with different logical action do not overlap much.
Overlap here means that the strings contain the same error acting on the same qubits.
One possible overlap is between /1 and /2 logical strings. Pick a /1 logical string,
L1, and a /2 logical string, L2. One string runs left to right, and the other runs top
to bottom. If the horizontal string is longer than !, the code distance, then it has
vertical steps along it, and these steps may overlap with the vertical logical string.
An example is given in figure I.1. We assume L1 and L2 both have length ≤ ! + 2Z
because of Lemma 3. Then we use Lemma 9 to restrict to the case where all the
steps are one lattice spacing at a time. Any possible overlap is on at most two sites
as shown in figure I.1. Further, if we consider all possible pairs of a /1 logical string
and a /2 logical string, only order 1/! strings have any overlap at all, so we can
neglect possible overlap.

181

Qubits

Z1

Z2

Figure I.1: Here we have a /1 and a /2 logical string. They have an overlap of two
qubits, but if we fix one string and consider all possible paths for the other string,
we see that only order 1/! have any overlap.

Because the two logical strings L1 and L2 are approximately disjoint, when we
sum over partitions, each partition approximately factors into a partition of L1

times a partition of L2. That is, each connected noise term in the sum for the
logical j̃/1/2 is a partition ($ (1)

*
$
(2)
�
d $

(1)
�
$
(2)
*
) which is approximately equal to

($ (1)
*
d $

(1)
�
) ($ (2)

�
d $

(2)
*
) where $ (1)

*
$
(1)
�

= L1 and $ (2)
*
$
(2)
�

= L2. Therefore,
j̃/1/2 ≈ j̃/1 � j̃� /2 up to small corrections from the overlap between L1 and L2 and
from the disconnected part. Each of the terms j̃/1 � and j̃� /1 will be � 1 if we
are in a regime where error correction succeeds. Therefore, the j̃/1/2 logical noise
component will be negligible relative to the j̃/1 � logical noise component. The same
holds for the other logical noise components with a nontrivial logical operator on
each side of d̃. Then we may safely neglect the more general coherent terms and
consider only the (!̃0 d̃) components.

�

182

A p p e n d i x J

GROWTH OF INFIDELITY

The expression for the average infidelity after < applications of the noise channel
from [25] is an upper bound.

A< ≤ A< +
(3 − 1)Θ2

23
<(< − 1), (J.1)

where A< is the average infidelity after < applications of a fixed noise channel, A
is the average infidelity after one application of the channel, 3 is the dimension of
the Hilbert space on which the channel acts, and Θ is the coherence angle. For
anything save unitary or completely coherent channels, the upper bound has a linear
component. We expect that this linear part is not only an upper bound, but that the
average infidelity will grow linearly to lowest order.

Working in the Pauli transfer matrix representation, a unital noise channel is written
as ©­­­­­«

1 0 0 . . .

0 1 − _2 V2,3 . . .

0 V3,2 1 − _3
...

...
. . .

ª®®®®®¬
. (J.2)

When channels are composed, we multiply the Pauli transfer matrices. After apply-
ing the same noise channel twice, we have diagonal entries

(1 − _ 9)2 +
∑
; |;≠ 9

V 9 ,;V;, 9 . (J.3)

After < applications of the noise channel, the diagonal entries are

(1 − _ 9)< +
(
<

1

)
(1 − _ 9)<−1

∑
; |;≠ 9

V 9 ,;V;, 9 + · · · . (J.4)

Then the infidelity after composing the channel < times is proportional to
3∑
9=1

1 − (1 − _ 9)< −
(
<

1

)
(1 − _ 9)<−1

∑
8 |8≠ 9

V 9 ,8V8, 9 − · · ·

=

3∑
9=1
<_ 9 − _2

9

<(< − 1)
2

+ · · · − <
∑
; |;≠ 9

V 9 ,;V;, 9 · · · . (J.5)

To lowest order the infidelity grows proportional to A, the first term in the upper
bound in equation (J.1).

183

A p p e n d i x K

DIAMOND DISTANCE BOUND

The diamond distance from identity can be bounded in terms of the average infidelity,
A, and the sumof squares of the off-diagonal (coherent) components of the chimatrix.

Lemma 16. In equation (2.47), we upper bounded the diamond distance from
identity for a channel by a function 5 based on [56]. This function depended on the
components of the Pauli transfer matrix for the channel. With a little algebra, we
can show

5 2 ≤ 21
©­«

∑
8, 9 |8≠ 9

j2
8, 9

ª®¬ + 22A
2. (K.1)

where the constants are given by 21 = 32
!
and 22 = 2(3! + 1)2 and 3! is the

dimension of the logical space.

Proof. We start with equation (2.47), and rewrite the Pauli transfer matrix in terms
of chi matrix. We expand (1 − #8,8)2 and compare to A2. Equation (2.49) reads

5 2 =
1

32
!
− 1

©­«
∑
8, 9 |8≠ 9

#2
8, 9 +

∑
;

(1 − #;,;)2
ª®¬ , (K.2)

where # is the Pauli transfer matrix representation of the noise channel. The
diamond distance from identity is bounded by a constant times 5 . We can expand
5 in terms of the chi matrix elements. Recall that we already have Lemma 1
concerning the off-diagonal elements. Also, the infidelity A is related to the trace of
the Pauli transfer matrix or the (0,0) element of the chi matrix.

We can write the diagonal components of Pauli transfer matrix in terms of the
diagonal components of the chi matrix in the following way:

#8,8 =
∑
9∈�8

j 9 , 9 −
∑
;∈�8

j;,; , (K.3)

where the set �8 includes all the Pauli operators f 9 that commute with f8 and the
set �8 is all Pauli operators f; that anticommute with f8. For example, in the case
of a single-qubit channel

#1,1 = j0,0 + j1,1 − j2,2 − j3,3. (K.4)

184

Then we can sum over all the diagonal components of # using the fact that the
identity operator commutes with every operator:

32
!∑

8=0
#8,8 = 3

2
!j0,0, (K.5)

where 3! is the dimension of the logical space. Next we can expand the diagonal
term from equation (K.2):

32
!∑

8=0
(1 − #8,8)2 =

32
!∑

8=0

(
1 − 2#8,8 + #2

8,8

)
= 32

! − 232
!j0,0 + 32

!

∑
9

j2
9 , 9

= 32
!

(
1 − j0,0

)2 + 32
!

∑
9 | 9≠0

j2
9 , 9

= 32
!

©­«
∑
; |;≠0

j;,;
ª®¬

2

+ 32
!

∑
9 | 9≠0

j2
9 , 9 , (K.6)

where we have used the trace preservation condition
∑
8 j8,8 = 1. Because the noise

channel is unitary, the diagonal components of the chi matrix are real and greater
than 0. Then we can bound

32
!∑

8=0
(1 − #8,8)2 ≤ 232

!

©­«
∑
; |;≠0

j;,;
ª®¬

2

. (K.7)

When we substitute into equation (K.2) and use Lemma 1 for the off-diagonal terms,
we have the following bound on the diamond norm distance from identity:

�♦(#)2 ≤
32
!

4
©­«

∑
8, 9 |8≠ 9

j2
8, 9

ª®¬ +
32
!

2

(∑
;≠0

j;,;

)2

. (K.8)

Finally, the average infidelity A is given by

A =
3!

3! + 1
(1 − j0,0) =

3!

3! + 1

∑
;≠0

j;,; (K.9)

in the chi matrix representation. Equation (K.1) follows. �

